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Abstract

In this article we develop the local wellposedness theory for quasilinear Maxwell equations in Hm for 
all m ≥ 3 on domains with perfectly conducting boundary conditions. The macroscopic Maxwell equations 
with instantaneous material laws for the polarization and the magnetization lead to a quasilinear first order 
hyperbolic system whose wellposedness in H 3 is not covered by the available results in this case. We prove 
the existence and uniqueness of local solutions in Hm with m ≥ 3 of the corresponding initial boundary 
value problem if the material laws and the data are accordingly regular and compatible. We further charac-
terize finite time blowup in terms of the Lipschitz norm and we show that the solutions depend continuously 
on their data. Finally, we establish the finite propagation speed of the solutions.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction and main result

Describing the theory of electromagnetism, the Maxwell equations are one of the fundamental 
partial differential equations in physics. Equipped with instantaneous nonlinear material laws, 
they form a quasilinear hyperbolic system. On the full space Rd , for such systems Kato has 
established a satisfactory local wellposedness theory in Hs(Rd) for s > d

2 +1, see [20]. However, 
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on a domain G �=R
3, the Maxwell equations with the boundary conditions of a perfect conductor 

do not belong to the classes of hyperbolic systems for which one knows such a wellposedness 
theory. The available results need much more regularity and exhibit a loss of derivatives, see [15].

In this work we provide a complete local wellposedness theory for quasilinear Maxwell equa-
tions on domains with a perfectly conducting boundary. We prove the existence and uniqueness 
of solutions in Hm(G) for all m ≥ 3 if the material laws and the data are accordingly regular 
and compatible, provide a blow-up condition in the Lipschitz norm, and show the continuous 
dependence of the solutions on the data, see also [34]. These results are based on a detailed reg-
ularity theory for the corresponding nonautonomous linear equation which we developed in the 
companion paper [35]. Here and in [35], we crucially use the special structure of the Maxwell 
system.

The macroscopic Maxwell equations in a domain G read

∂tD = curlH − J , for x ∈ G, t ∈ (t0, T ),

∂tB = − curlE, for x ∈ G, t ∈ (t0, T ),

divD = ρ, divB = 0, for x ∈ G, t ∈ (t0, T ),

E × ν = 0, B · ν = 0, for x ∈ ∂G, t ∈ (t0, T ),

E(t0) = E0, H (t0) = H 0, for x ∈ G,

(1.1)

for an initial time t0 ∈ R. Here E(t, x), D(t, x) ∈ R
3 denote the electric and H (t, x), B(t, x) ∈

R
3 the magnetic fields. The charge density ρ(t, x) is related with the current density J (t, x) ∈ R

3

via

ρ(t) = ρ(t0) −
t∫

t0

divJ (s)ds

for all t ≥ t0. In (1.1) we consider the Maxwell system with the boundary conditions of a perfect 
conductor, where ν denotes the outer normal unit vector of G. System (1.1) has to be comple-
mented by constitutive relations between the electric fields and the magnetic fields, the so called 
material laws. We choose E and H as state variables and express D and B in terms of E and H . 
The actual form of these material laws is a question of modeling and different kinds have been 
considered in the literature. The so called retarded material laws assume that the fields D and B
depend also on the past of E and H , see [2] and [33] for instance. In dynamical material laws the 
material response is modeled by additional evolution equations for the polarization or magneti-
zation, see e.g. [1], [11], [16], or [17]. In this work we concentrate on the instantaneous material 
laws, see [6] and [14]. Here the fields D and B are given as local functions of E and H , i.e., we 
assume that there are functions θ1, θ2 : G ×R

6 →R
3 such that D(t, x) = θ1(x, E(t, x), H (t, x))

and B(t, x) = θ2(x, E(t, x), H (t, x)). The most prominent example is the so called Kerr nonlin-
earity, where

D = E + ϑ |E|2E, B = H , (1.2)

with ϑ : G → R
3×3 and the vacuum permittivity and permeability set equal to 1 for convenience. 

We further assume that the current density decomposes as J = J 0 +σ1(E, H )E, where J 0 is an 
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external current density and σ1 denotes the conductivity. If we insert these material laws into (1.1)
and formally differentiate, we obtain

(∂tD, ∂tB) = ∂(E,H )θ(x,E,H )∂t (E,H ) = (curlH − J ,− curlE)

for the evolutionary part of (1.1). The resulting equation is a first order quasilinear hyperbolic 
system. In order to write (1.1) in the standard form of first order systems, we introduce the 
matrices

J1 =
⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠ , J2 =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠ , J3 =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠

and

Aco
j =

(
0 −Jj

Jj 0

)
(1.3)

for j = 1, 2, 3. Observe that 
∑3

j=1 Jj ∂j = curl. Writing χ for ∂(E,H )θ , f = (−J 0, 0), σ =(
σ1 0
0 0

)
, and using u = (E, H ) as new variable, we finally obtain

χ(u)∂tu +
3∑

j=1

Aco
j ∂ju + σ(u)u = f. (1.4)

Under mild regularity conditions, e.g., D, B ∈ C([t0, T ], H 1(G)) ∩ C1([t0, T ], L2(G)) and 
divJ ∈ L1((t0, T ), L2(G)), a solution u = (E, H ) of (1.4) satisfies the divergence conditions 
in (1.1) if they hold at the initial time t0. Similarly, the second part of the boundary conditions, 
i.e., B · ν = 0 on (t0, T ) × ∂G is true if E × ν = 0 on (t0, T ) × ∂G and B(t0) · ν = 0 on ∂G. We 
refer to [34, Lemma 7.25] for details. Defining the matrix

B =
⎛
⎝ 0 ν3 −ν2 0 0 0

−ν3 0 ν1 0 0 0
ν2 −ν1 0 0 0 0

⎞
⎠ (1.5)

on ∂G, we can then cast system (1.1) into the equivalent first order quasilinear hyperbolic initial 
boundary value problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

χ(u)∂tu +
3∑

j=1

Aco
j ∂ju + σ(u)u = f, x ∈ G, t ∈ J ;

Bu = g, x ∈ ∂G, t ∈ J ;
u(t0) = u0, x ∈ G,

(1.6)

with additional conditions for the initial value. Here J = (t0, T ) is an open interval. We allow 
for inhomogeneous boundary values which are not only interesting from the mathematical point 
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of view, but also have physical relevance, see [10]. We further assume that χ is symmetric and at 
least locally positive definite, which includes (1.2). Such assumptions are quite standard already 
for linear Maxwell equations.

The initial value problem on the full space (without boundary conditions) corresponding 
to (1.6) has been solved by Kato in [20] in a more general setting. Kato freezes a function û
in the nonlinearities and employs a priori estimates for the corresponding linear problem previ-
ously obtained in [18] and [19]. Then a fixed point argument yields a solution of the quasilinear 
problem. However, Kato works in a general functional analytic setting which does not cover the 
Maxwell equations with perfectly conducting boundary conditions. An alternative approach is to 
use energy techniques in order to derive the a priori estimates for the linear problem needed to 
apply a fixed point argument. This strategy was applied successfully to quasilinear hyperbolic ini-
tial boundary value problems with noncharacteristic boundary (i.e., where the boundary matrix 
A(ν) = ∑d

j=1 Ajνj is nonsingular), see [5,24,32]. Systems with characteristic boundary pose 
several additional difficulties. In particular, no general theory for the corresponding linear prob-
lems is available and even a loss of regularity there is possible, see [26]. In [29] an additional 
structural assumption is proposed in order to prevent this loss of regularity and a quasilinear 
result is derived from it in [30]. However, the Maxwell system does not fulfill this structural as-
sumption. A different approach is taken in [15] for quasilinear hyperbolic initial boundary value 
problems with characteristic boundary. The results there require high regularity (at least H 6(G)), 
are given in Sobolev-like spaces incorporating weights in the normal direction, and contain a loss 
of regularity. In [31] the authors focus on Maxwell’s equations, but treat different boundary con-
ditions (belonging to the class treated in [26], see also [7]) than the perfectly conducting ones. 
Moreover, only the existence of a local solution of the quasilinear system is obtained there.

Somehow surprisingly, the quasilinear Maxwell system (1.1) with perfectly conducting 
boundary has not yet been treated in the natural space H 3(G) and even the basic questions 
on local existence and uniqueness are still open. We will close this gap by providing a complete 
local wellposedness theory. We will prove that

(1) the system (1.6) has a unique maximal solution u in the function space 
⋂m

j=0 Cj ((T−, T+),

Hm−j (G)) for all m ∈ N with m ≥ 3 provided the data are sufficiently regular and compati-
ble (in the sense of (2.10) below) with the material law,

(2) finite existence time can be characterized by blowup in the Lipschitz norm,
(3) the solution depends continuously on the data.

We refer to Theorem 5.3 for the precise statement. The derivation of global properties for (1.6) is 
a highly nontrivial task. In particular, it is already known that global existence cannot be expected 
for all data. Blow-up examples in the Lipschitz norm are given in [25]. For different boundary 
conditions than we consider, blow-up examples in the H(curl)-norm are provided in [9].

In order to prove the local wellposedness theorem, we follow the strategy mentioned above. 
We freeze a function û in the nonlinearities in (1.6) and employ energy estimates to set up a fixed 
point argument. However, energy techniques work in L2-based spaces but require Lipschitz co-
efficients, see [12]. The solutions there are constructed in C(J , L2(G)) but in view of our fixed 
point argument, we need that χ(u) is contained in W 1,∞(J × G). This gap in integrability is 
bridged by Sobolev’s embedding. If a solution u belongs to C(J , Hm(G)) ∩ C1(J , Hm−1(G))

for a number m ∈ N0, then χ(u) is an element of W 1,∞(J × G) if m > 3
2 + 1 and χ is rea-

sonable regular. We thus require m ≥ 3. Reasonable regular here means that χ belongs to 
Cm(G × U , R6×6) and that χ and all of its derivatives up to order m are bounded on G × U1
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for every compact subset U1 of U , where U is a domain in R
6. For later reference we introduce 

the spaces

MLm,n(G,U) = {θ ∈ Cm(G × U ,Rn×n) : For all α ∈ N
9
0 with |α| ≤ m and U1 � U :

sup
(x,y)∈G×U1

|∂αθ(x, y)| < ∞},

MLm,n
pd (G,U) = {θ ∈MLm,n(G,U) : There exists η > 0 with θ = θT ≥ η on G × U}

for n ∈ N. Actually, we only need n = 1 or n = 6. Although C(J , Hm(G)) ∩ C1(J , Hm−1(G))

embeds into W 1,∞(J ×G) for m ≥ 3, the techniques we are going to apply to solve (1.6) require 
that its solution has the same amount of regularity in time as in space. We thus construct solutions 
of (1.6) in the function spaces

Gm(J × G) =
m⋂

j=0

Cj (J ,Hm−j (G))6 (1.7)

for all m ∈ N0, cf. [5,24,32]. (We do not indicate the dimension of u below.) Defining the function 
e−γ : t 	→ e−γ t , we equip the space Gm(J × G) with the family of time-weighted norms

‖v‖Gm,γ (J×G) = max
j=0,...,m

‖e−γ ∂
j
t v‖L∞(J,Hm−j (G))

for all γ ≥ 0. In the case γ = 0, we also write ‖v‖Gm(J×G) instead of ‖v‖Gm,0(J×G). Analogously, 
any time–space norm indexed by γ means the usual norm complemented by the time weight e−γ

in the following. We also need the spaces G̃m(J × G), consisting of those functions v with 
∂αv ∈ L∞(J, L2(G)) for all α ∈ N

4
0 with 0 ≤ |α| ≤ m. We equip them with the same family of 

norms as Gm(J × G).
The paper is organized as follows. In Section 2 we first study the regularity properties of 

θ(u) for θ ∈ MLm,1(G, U) and u ∈ G̃m(J × G). Based on Faá di Bruno’s formula we find 
suitable function spaces and provide corresponding estimates for these compositions. We fur-
ther discuss the compatibility conditions. These are necessary conditions for the existence of 
a Gm(J × G)-solution, which arise since the differential equation and the boundary condition 
in (1.6) both yield information about u and its time derivatives on {t0} × ∂G.

In Section 3 we then follow the strategy described above to deduce existence and uniqueness 
of a solution of (1.6). We freeze a function û from G̃m(J × G) and study the arising linear 
problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A0∂tu +
3∑

j=1

Aco
j ∂ju + Du = f, x ∈ G, t ∈ J ;

Bu = g, x ∈ ∂G, t ∈ J ;
u(t0) = u0, x ∈ G;

(1.8)

where A0 = χ(û) and D = σ(û). Already the higher order energy estimates for this linear 
problem are difficult to obtain since the Maxwell system has a characteristic boundary (i.e., 



JID:YJDEQ AID:9589 /FLA [m1+; v1.289; Prn:22/10/2018; 11:29] P.6 (1-52)

6 M. Spitz / J. Differential Equations ••• (••••) •••–•••
A(ν) = ∑3
j=1 Aco

j νj is singular). Here we rely on [35], where the structure of the Maxwell equa-
tions is heavily exploited in order to derive these estimates. We show how the results from [35]
can be employed to set up a fixed point argument which yields unique local solutions of the 
quasilinear problem (1.6). In order to characterize a finite maximal existence time in terms of the 
Lipschitz norm of the solution, the a priori estimates from (1.8) are not good enough. We have 
to use in Section 4 that the coefficient A0 equals χ(u) with u being the solution of (1.6). Com-
bining Moser-type inequalities and estimates from [35] relying on the structure of (1.8), we can 
then control the Hm(G)-norm of u by its Lipschitz norm. In Section 5 we study the continuous 
dependence of the solutions on the data. Once again the estimates from [35] cannot be applied 
directly as they do not prevent the loss of regularity due to the quasilinearity when the differ-
ence of two solutions is considered. We therefore have to combine the techniques from [35] with 
certain decompositions of u already used in the full space case, cf. [3]. Finally, we also prove 
that solutions of (1.6) have finite propagation speed. Here, we use a simple and flexible method 
relying on weighted energy estimates for the linear problem, cf. [3].

Standing notation: Let m be a nonnegative integer. We denote by G a domain in R3 with 
compact Cmax{m,3}+2-boundary (the assumption that ∂G is compact can be loosened, see [34]
for details) or the half-space R3+ = {x ∈ R

3 : x3 > 0}. The set U is a domain in R6. We further 
write L(A0, . . . , A3, D) for the differential operator A0∂t + ∑3

j=1 Aj∂j + D and ∂0 for ∂t . By 
J we mean an open time interval and we set � = J ×R

3+. Finally, the image of a function v is 
designated by imv.

2. Calculus and compatibility conditions

In the study of quasilinear problems one often has to control compositions θ(v) in higher 
regularity in terms of v. Derivatives of θ(v) can be expressed by the so called Faá di Bruno’s 
formula, which is therefore widespread in the literature, see e.g. [3,5]. More important than the 
formula itself are the estimates which follow from it. We provide both in the next lemma. Its proof 
is an iterative application of the chain and product rule combined with Sobolev’s embedding for 
the estimates and it works as the proof of [34, Lemma 7.1]. We work with functions v taking 
values in R6 in the following.

Lemma 2.1. Let m ∈N and m̃ = max{m, 3}. Let U1 be a compact subset of U ⊆R
6.

(1) Let θ ∈ MLm,1(G, U) and v ∈ G̃m̃(J × G) with imv ⊆ U . The function θ(v) belongs to 
the function space W 1,∞(J × G) and all its derivatives up to order m are contained in 
L∞(J, L2(G)) + L∞(J × G). For γ1, . . . , γj ∈ N

4
0 with |γi | ≤ m, 1 ≤ j ≤ |α|, and α ∈ N

4
0

with 1 ≤ |α| ≤ m there exist constants C(α, γ1, . . . , γj ) such that

∂αθ(v) =
∑

β,γ∈N4
0,β0=0

β+γ=α

∑
1≤j≤|γ |

∑
γ1,...,γj ∈N4

0\{0}∑
γi=γ

6∑
l1,...,lj =1

C(α,γ1, . . . , γj ) (2.1)

· (∂ylj
· · ·∂yl1

∂(β1,β2,β3)
x θ)(v)

j∏
i=1

∂γi vli .

Moreover, there exists a constant C(θ, m, U1) such that
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‖∂αθ(v)‖L∞(J,L2(G))+L∞(J×G) ≤ C(θ,m,U1)(1 + ‖v‖Gm̃(J×G))
m (2.2)

for all α ∈ N
4
0 with |α| ≤ m and v ∈ G̃m̃(J × G) with imv ⊆ U1.

(2) Let θ ∈ MLm−1,1(G, U) and v ∈ Hm̃−1(G) with imv ⊆ U . The composition θ(v) belongs 
to L∞(G) and all of its derivatives up to order m are contained in L2(G) + L∞(G). We 
further have

∂αθ(v) =
∑

β,γ∈N3
0

β+γ=α

∑
1≤j≤|γ |

∑
γ1,...,γj ∈N3

0\{0}∑
γi=γ

6∑
l1,...,lj =1

C0(α, γ1, . . . , γj )

· (∂ylj
· · · ∂yl1

∂β
x θ)(v)

j∏
i=1

∂γi vli (2.3)

for all v ∈ Hm̃−1(G) and α ∈ N
3
0 with 0 < |α| ≤ m − 1, and the constants

C0(α, γ1, . . . , γj ) = C((0, α1, α2, α3), (0, γ1,1, γ1,2, γ1,3), . . . , (0, γj,1, γj,2, γj,3))

from assertion (1). There further exists a constant C0(θ, m, U1) such that

‖∂αθ(v)‖L2(G)+L∞(G) ≤ C0(θ,m,U1)(1 + ‖v‖Hm̃−1(G))
m−1 (2.4)

for all α ∈ N
3
0 with |α| ≤ m − 1 and v ∈ Hm̃−1(G) with imv ⊆ U1.

(3) Assume additionally that m ≥ 2. Let θ ∈MLm,1(G, U) and t0 ∈ J . Then ∂j
t θ(v)(t0) belongs 

to Hm−j−1(G) and there is a constant C(θ, m, U1) such that

‖∂j
t θ(v)(t0)‖Hm−j−1(G)

≤ C(θ,m,U1)(1 + max
0≤l≤j

‖∂l
t v(t0)‖Hm̃−l−1(G))

m−2 max
0≤l≤j

‖∂l
t v(t0)‖Hm̃−l−1(G)

for all j ∈ {1, . . . , m − 1} and v ∈ G̃m̃(J × G) with imv ⊆ U and imv(t0) ⊆ U1.

For the contraction property of the fixed point operator in Section 3 and the derivation of 
the continuous dependence, we need similar estimates for the differences of such compositions. 
They are given by the next corollary. Its proof relies on Lemma 2.1 and works in the same way 
as the one of [34, Corollary 7.2].

Corollary 2.2. Let m ∈ N, m̃ = max{m, 3}, and γ ≥ 0. Take θ ∈ MLm−1,1(G, U), R > 0, and 
pick a compact subset U1 of U .

(1) Let v1, v2 ∈ G̃m̃−1(J × G) with the bounds ‖v1‖Gm̃−1(J×G), ‖v2‖Gm̃−1(J×G) ≤ R and 
imv1, imv2 ⊆ U1. Then there exists a constant C = C(θ, m, R, U1) such that
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‖(∂αθ(v1))(t) − (∂αθ(v2))(s)‖L2(G) ≤ C
∑
β∈N4

0
0≤|β|≤m̃−1

‖∂βv1(t) − ∂βv2(s)‖L2(G) (2.5)

for almost all t ∈ J and almost all s ∈ J if α ∈ N
4
0 with 0 ≤ |α| ≤ m − 2. In the case |α| =

m − 1 and m > 1 we have the estimate

‖(∂αθ(v1))(t) − (∂αθ(v2))(s)‖L2(G)+L∞(G) ≤ C
∑
β∈N4

0
0≤|β|≤m̃−1

‖∂βv1(t) − ∂βv2(s)‖L2(G)

+ C
∑

0≤j≤m−1

∑
0≤γ≤α,γ0=0
|γ |=m−1−j

6∑
l1,...,lj =1

‖(∂ylj
. . . ∂yl1

∂
(γ1,γ2,γ3)
x θ)(v1)(t) (2.6)

− (∂ylj
. . . ∂yl1

∂
(γ1,γ2,γ3)
x θ)(v2)(s)‖L∞(G)

for almost all t ∈ J and almost all s ∈ J . If θ additionally belongs to MLm,1(G, U), the 
estimate (2.5) is true for almost all t ∈ J and almost all s ∈ J in the case |α| = m − 1. 
Finally, if α0 = 0, it is enough to sum in (2.5) and (2.6) over those multiindices β with 
β0 = 0.

(2) Let v1, v2 ∈ G̃m̃−1(J × G) with the bounds ‖v1‖Gm̃−1(J×G), ‖v2‖Gm̃−1(J×G) ≤ R and 
imv1, imv2 ⊆ U1, and θ ∈ MLm,1(G, U). Then there exists a constant C = C(θ, m, R, U1)

such that

‖θ(v1) − θ(v2)‖Gm−1,γ (J×G) ≤ C‖v1 − v2‖Gm̃−1,γ (J×G)

for all γ ≥ 0.

Assume that u ∈ Gm(J × G) is a solution of (1.6) with inhomogeneity f ∈ Hm(J × G) and 
initial value u0 ∈ Hm(G). Lemma 2.1 implies that we can take p − 1 time-derivatives of the 
evolution equation in (1.6), insert t0 ∈ J , and solve for ∂p

t u(t0). This procedure yields a closed 
expression for ∂p

t u(t0) in terms of the material laws and the data for all p ∈ {0, . . . , m}, which 
will be utterly important in the following.

Definition 2.3. Let J ⊆ R be an open interval, m ∈ N, and χ ∈ MLm,6
pd (G, U) and σ ∈

MLm,6(G, U). We inductively define the operators

Sχ,σ,G,m,p : J × Hmax{m,3}(J × G) × Hmax{m,2}(G,U) → Hm−p(G)

by Sχ,σ,G,m,0(t0, f, u0) = u0 and

Sχ,σ,G,m,p(t0, f,u0) = χ(u0)
−1

(
∂

p−1
t f (t0) −

3∑
Aco

j ∂j Sχ,σ,G,m,p−1(t0, f,u0)
j=1
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−
p−1∑
l=1

(
p − 1

l

)
Ml

1(t0, f,u0)Sχ,σ,G,m,p−l (t0, f,u0) (2.7)

−
p−1∑
l=0

(
p − 1

l

)
Ml

2(t0, f,u0)Sχ,σ,G,m,p−1−l (t0, f,u0)
)
,

M
p
k =

∑
1≤j≤p

∑
γ1,...,γj ∈N4

0\{0}∑
γi=(p,0,0,0)

6∑
l1,...,lj =1

C((p,0,0,0), γ1, . . . , γj )

· (∂ylj
· · ·∂yl1

θk)(u0)

j∏
i=1

Sχ,σ,G,m,|γi |(t0, f,u0)li (2.8)

for 1 ≤ p ≤ m, k ∈ {1, 2}, where θ1 = χ , θ2 = σ , M0
2 = σ(u0), and C is the constant from 

Lemma 2.1. By Hmax{m,2}(G, U) we mean those functions u0 ∈ Hmax{m,2}(G) with imu0 ⊆ U .

Lemma 2.1 then implies that

∂
p
t u(t0) = Sχ,σ,G,m,p(t0, f,u0) for all p ∈ {0, . . . ,m} (2.9)

if u ∈ Gm(J × G) is a solution of (1.6) with data f ∈ Hm(J × G) and u0 ∈ Hm(G). The next 
lemma shows that the operators Sχ,σ,G,m,p indeed map into Hm−p(G) and it provides corre-
sponding estimates. The proof relies on Lemma 2.1, Corollary 2.2 and the product estimates 
from [35, Lemma 2.1]. We refer to [34, Lemma 7.7] for details.

Lemma 2.4. Let J ⊆ R be an open interval, t0 ∈ J , m ∈ N, and m̃ = max{m, 3}. Take χ ∈
MLm,6

pd (G, U) and σ ∈ MLm,6(G, U) Choose data f, f̃ ∈ Hm̃(J × G) and u0, ũ0 ∈ Hm̃(G)

such that imu0 and im ũ0 are contained in U . Take r > 0 such that

m̃−1∑
j=0

‖∂j
t f (t0)‖Hm̃−j−1(G) + ‖u0‖Hm̃(G) ≤ r,

m̃−1∑
j=0

‖∂j
t f̃ (t0)‖Hm̃−j−1(G) + ‖ũ0‖Hm̃(G) ≤ r.

Then the function Sχ,σ,G,m,p(t0, f, u0) belongs to Hm−p(G) and for a constant C1 =
C1(χ, σ, m, r, U1) it satisfies

‖Sχ,σ,G,m,p(t0, f,u0)‖Hm−p(G) ≤ C1

(m−1∑
j=0

‖∂j
t f (t0)‖Hm−j−1(G) + ‖u0‖Hm(G)

)

for all p ∈ {0, . . . , m}, where U1 is a compact subset of U with imu0 ⊆ U1. Moreover, there is a 
constant C2 = C2(χ, σ, m, r, U2) such that
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‖Sχ,σ,G,m,p(t0, f,u0) − Sχ,σ,G,m,p(t0, f̃ , ũ0)‖Hm−p(G)

≤ C2

(m−1∑
j=0

‖∂j
t f (t0) − ∂

j
t f̃ (t0)‖Hm−j−1(G) + ‖u0 − ũ0‖Hm(G)

)

for all p ∈ {0, . . . , m}, where U2 is a compact subset of U with imu0, im ũ0 ⊆ U2.

In [35] a solution in Gm(J × G) of the linear problem (1.8) was constructed for boundary 
data from the space

Em(J × ∂G) =
m⋂

j=0

Hj(J,Hm+ 1
2 −j (∂G)),

‖g‖Em(J×∂G) = max
0≤j≤m

‖∂j
t g‖L2(J,Hm+1/2−j (∂G)).

We thus also take boundary data g ∈ Em(J × ∂G) for the nonlinear problem (1.6). But then we 
can differentiate the boundary condition in (1.6) up to m − 1-times in time and still evaluate in 
t0 if u belongs to Gm(J × G). In combination with (2.9) we deduce the identities

BSχ,σ,G,m,p(t0, f,u0) = ∂
p
t g(t0) on ∂G (2.10)

for all p ∈ {0, . . . , m − 1}, which are thus necessary conditions for the existence of a 
Gm(J ×G)-solution of (1.6). We say that the data tuple (χ, σ, t0, B, f, g, u0) fulfills the compat-
ibility conditions of order m if imu0 ⊆ U and (2.10) holds for all p ∈ {0, . . . , m − 1}. In the next 
lemma we relate the operators Sχ,σ,G,m,p with their linear counterparts from [35]. Therefore, we 
have to recall some notation. In [35] we introduced the function spaces

Fm,k(J × G) = {A ∈ W 1,∞(J × G)k×k : ∂αA ∈ L∞(J,L2(G))k×k for all α ∈ N
4
0

with 1 ≤ |α| ≤ m},
‖A‖Fm(J×G) = max{‖A‖W 1,∞(J×G), max

1≤|α|≤m
‖∂αA‖L∞(J,L2(G))},

F 0
m,k(G) = {A ∈ L∞(G)k×k : ∂αA ∈ L2(G)k×k for all α ∈N

3
0 with 1 ≤ |α| ≤ m},

‖A‖F 0
m(G) = max{‖A‖L∞(G), max

1≤|α|≤m
‖∂αA‖L2(G)}

for k ∈ N. Moreover, by Fm,k,η(J × G) we mean those functions A from Fm,k(J × G) with 
A(t, x) = A(t, x)T ≥ η for all (t, x) ∈ J × G and by F c

m,k(J × G) those which have a limit as 
|(t, x)| → ∞. If it is clear from the context which parameter k we consider, we suppress it in the 
notation.

Remark 2.5. As noted in Remark 1.2 in [35] the linear theory allows for coefficients in 
W 1,∞(J × G) whose derivatives up to order m are contained in L∞(J, L2(G)) + L∞(J × G). 
In view of Lemma 2.1, we can thus apply the linear theory with coefficients χ(û) and σ(û) and 
û ∈ G̃m̃(J × G). However, the part of the derivatives in L∞(J × G) is easier to treat so that 
we concentrated on coefficients from Fm(J × G) in [35]. The same is true for the nonlinear 
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problem. In the proofs we will therefore assume without loss of generality that χ and σ from 
MLm,6(G, U) have decaying space derivatives as |x| → ∞. More precisely, for all multiindices 
α ∈ N

9
0 with α4 = . . . = α9 = 0 and 1 ≤ |α| ≤ m, R > 0, U1 � U , and v ∈ L∞(J, L2(G)) with 

imv ⊆ U1 and ‖v‖L∞(J,L2(G)) ≤ R we have

(∂αχ)(v), (∂ασ )(v) ∈ L∞(J,L2(G)),

‖(∂αχ)(v)‖L∞(J,L2(G)) + ‖(∂ασ )(v)‖L∞(J,L2(G)) ≤ C, (2.11)

where C = C(χ, σ, m, R, U1). With this assumption we obtain from Lemma 2.1 that χ(û) and 
σ(û) belong to Fm(J × G).

Finally, we point out that if G is bounded, the above considerations are unnecessary since 
L2(G) + L∞(G) = L2(G) in this case.

If one has a Gm(J × G)-solution u of the linear problem (1.8) with coefficients A0 ∈
Fm̃,η(J × G) with η > 0 and m̃ = max{m, 3}, A1, A2, A3 ∈ Fm̃(J × G) independent of time, 
and D ∈ Fm̃(J × G) (note that we allow more general spatial coefficients here), the same rea-
soning as above first gives a closed expression for ∂p

t u(t0) in terms of the coefficients and the 
data, which we denote by SG,m,p(t0, A0, . . . , A3, D, f, u0), and compatibility conditions on the 
boundary. We refer to (2.2) and (2.4) in [35] for the precise notion. We then say that the tu-
ple (t0, A0, . . . , A3, D, B, f, g, u0) fulfills the linear compatibility conditions of order m if the 
equations

BSG,m,p(t0,A0, . . . ,A3,D,f,u0) = ∂
p
t g(t0) on ∂G (2.12)

are satisfied for all p ∈ {0, . . . , m − 1}. Since we want to apply the linear theory with coeffi-
cients χ(û) and σ(û), we have to know in which way the compatibility conditions (2.10) for the 
nonlinear problem imply the compatibility conditions (2.12) for the resulting linear problem.

Lemma 2.6. Let J ⊆ R be an open interval, t0 ∈ J , and m ∈ N with m ≥ 3. Take χ ∈
MLm,6

pd (G, U) and σ ∈ MLm,6(G, U). Choose data f ∈ Hm(J × G) and u0 ∈ Hm(G) such 

that imu0 is contained in U . Let r > 0. Assume that f and u0 satisfy

‖u0‖Hm(G) ≤ r, max
0≤j≤m−1

‖∂j
t f (t0)‖Hm−j−1(G) ≤ r,

‖f ‖Gm−1(J×G) ≤ r, ‖f ‖Hm(J×G) ≤ r.

(1) Let û ∈ G̃m(J × G) with ∂p
t û(t0) = Sχ,σ,G,m,p(t0, f, u0) for 0 ≤ p ≤ m − 1. Then û fulfills 

the equations

SG,m,p(t0, χ(û),Aco
1 ,Aco

2 ,Aco
3 , σ (û), f,u0) = Sχ,σ,G,m,p(t0, f,u0) (2.13)

for all p ∈ {0, . . . , m}.
(2) There is a constant C(χ, σ, m, r, U1) > 0 and a function u in Gm(J ×G) realizing the initial 

conditions

∂
p
t u(t0) = Sχ,σ,G,m,p(t0, f,u0)
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for all p ∈ {0, . . . , m} and it is bounded by

‖u‖Gm(J×G) ≤ C(χ,σ,m, r,U1)
(m−1∑

j=0

‖∂j
t f (t0)‖Hm−j−1(G) + ‖u0‖Hm(G)

)
.

Here U1 denotes a compact subset of U with imu0 ⊆ U1.

Proof. (1) Assertion (1) follows by induction from the definition of the operators SG,m,p in [35, 
(2.2)], Lemma 2.1, and the definition of Sχ,σ,G,m,p in (2.7).

(2) Since Sχ,σ,G,m,p(t0, f, u0) belongs to Hm−p(G) for all p ∈ {0, . . . , m}, an extension 
theorem (see e.g. Lemma 2.34 in [34]) yields the existence of a function u with ∂p

t u(t0) =
Sχ,σ,G,m,p(t0, f, u0) for all p ∈ {0, . . . , m} and

‖u‖Gm(J×G) ≤ C

m∑
p=0

‖Sχ,σ,G,m,p(t0, f,u0)‖Hm−p(G).

Lemma 2.4 then implies the assertion. �
3. Local existence

In this section we prove existence and uniqueness of a solution of (1.6) by a fixed point 
argument based on the a priori estimates and the regularity theory from [35] for the corresponding 
linear problem. By a solution of the nonlinear problem (1.6) we mean a function u which belongs 
to 

⋂m
j=0 Cj (I, Hm−j (G)) with imu(t) ⊆ U for all t ∈ I and which satisfies (1.6). Here I is an 

interval with t0 ∈ I . Since the main result from [35] is omnipresent in the following, we recall 
it in Theorem 3.1 below. Prior to this, we want to stress that in [35] the initial boundary value 
problem (1.8) on general domains G was reduced to a half-space problem via local charts. The 
localization procedure and a subsequent transform lead to the study of

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A0∂tu +
3∑

j=1

Aj∂ju + Du = f, x ∈R
3+, t ∈ J ;

Bu = g, x ∈ ∂R3+, t ∈ J ;
u(t0) = u0, x ∈R

3+;

(3.1)

with coefficients A0 ∈ F c
m̃,6,η

(�), D ∈ F c
m̃,6(�), A3 = Aco

3 , and A1, A2 ∈ F
cp
m̃,coeff(R

3+), where

F
cp
m,coeff(R

3+) := {A ∈ Fm,6(�) : ∃μ1,μ2,μ3 ∈ Fm,1(�) independent of time,

constant outside of a compact set such that A =
3∑

j=1

Aco
j μj }.

Moreover, in the boundary condition we have B = Bco, where Bco is a constant matrix in R2×6

with rank 2. There further exists another constant matrix Cco ∈ R
2×6 with rank 2 such that
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Aco
3 = 1

2

(
Cco T Bco + Bco T Cco

)
. (3.2)

We refer to [35, Section 2] and [34, Chapter 5] for the details.
The main result from [35] shows that the linear initial boundary value problem (1.8) respec-

tively (3.1) has a unique solution in Gm(J × G) if the coefficients and data are accordingly 
regular and compatible. Moreover, the Gm(J × G)-norm of the solution can be estimated by the 
corresponding norms of the data.

Theorem 3.1. Let η > 0, m ∈ N0, and m̃ = max{m, 3}. Fix radii r ≥ r0 > 0. Take a domain G
with compact Cm̃+2-boundary or G =R

3+. Choose times t0 ∈ R, T ′ > 0 and T ∈ (0, T ′) and set 
J = (t0, t0 +T ). Take coefficients A0 ∈ F c

m̃,η
(J ×G), D ∈ F c

m̃
(J ×G), and A3 = Aco

3 . If G =R
3+, 

pick A1, A2 ∈ F
cp
m̃,coeff(R

3+). Otherwise, let A1 = Aco
1 and A2 = Aco

2 . Assume the bounds

‖Ai‖Fm̃(J×G) ≤ r, ‖D‖Fm̃(J×G) ≤ r,

max{‖Ai(t0)‖F 0
m̃−1(G), max

1≤j≤m̃−1
‖∂j

t A0(t0)‖Hm̃−j−1(G)} ≤ r0,

max{‖D(t0)‖F 0
m̃−1(G), max

1≤j≤m̃−1
‖∂j

t D(t0)‖Hm̃−j−1(G)} ≤ r0,

for all i ∈ {0, 1, 2}. Set B = Bco if G = R
3+ and define B as in (1.5) else. Choose data f ∈

Hm(J × G), g ∈ Em(J × ∂G), and u0 ∈ Hm(G) such that the tuple (t0, A0, . . . , A3, D, B, f,

g, u0) fulfills the linear compatibility conditions (2.12) of order m.
Then the linear initial boundary value problem (3.1) respectively (1.8) has a unique solution 

u in Gm(J × G). Moreover, there is a number γm = γm(η, r, T ′) ≥ 1 such that

‖u‖2
Gm,γ (J×G) ≤ (Cm,0 + T Cm)emC1T

(m−1∑
j=0

‖∂j
t f (t0)‖2

Hm−1−j (G)
+ ‖g‖2

Em,γ (J×∂G)

+ ‖u0‖2
Hm(G)

)
+ Cm

γ
‖f ‖2

Hm
γ (J×G)

for all γ ≥ γm, where Ci = Ci(η, r, T ′) ≥ 1 and Ci,0 = Ci,0(η, r0) ≥ 1 for i ∈ {1, m}.

We point out that the scope of [35] was to provide the regularity theory for (1.8), building up 
on the L2-theory from [12]. The case m = 0 in Theorem 3.1 is already contained in [12]. We 
note that we need a further assumption on our material laws χ and σ to guarantee that χ(û) and 
σ(û) have a limit at infinity, which is required in Theorem 3.1. We therefore define

MLm,n,c(G,U) = {θ ∈ MLm,n(G,U) : ∃A ∈R
n×n such that for all

(xk, yk)k ∈ (G × U)N with |xk| → ∞ and yk → 0 :
θ(xk, yk) → A as k → ∞},

MLm,n,c
pd (G,U) =MLm,n

pd (G,U) ∩MLm,n,c(G,U).
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We point out that MLm,n,c(G, U) coincides with MLm,n(G, U) if G is bounded. Let χ ∈
MLm,6,c

pd (G, U) and σ ∈ MLm,6,c(G, U) satisfy (2.11) and take a function û ∈ G̃m̃(J × G). 
Lemma 2.1 and Sobolev’s embedding then imply that χ(û) is an element of F c

m̃,η
(J × G) for a 

number η > 0 and σ(û) is contained in F c
m̃
(J × G). In the next lemma we prove the uniqueness 

of solutions of (1.6).

Lemma 3.2. Let t0 ∈ R, T > 0, and J = (t0, t0 + T ). Let m ∈ N with m ≥ 3. Take χ ∈
MLm,6,c

pd (G, U) and σ ∈ MLm,6,c(G, U). Choose data f ∈ Hm(J × G), g ∈ Em(J × ∂G), 
and u0 ∈ Hm(G). Let u1 and u2 be two solutions in Gm(J × G) of (1.6) with inhomogeneity f , 
boundary value g, and initial value u0 at initial time t0. Then u1 = u2.

Proof. As explained in Remark 2.5, we assume without loss of generality that χ and σ possess
property (2.11). Set

K = {T0 ∈ J : u1 = u2 on [t0, T0]}.

This set is nonempty since u1(t0) = u0 = u2(t0). Let T1 = supK . The continuity of u1 and u2
implies that the two functions coincide on [t0, T1].

Since u1 and u2 are solutions of (1.6), there is a compact subset U1 ⊆ U such that 
imu1, imu2 ⊆ U1. We now assume that T1 is not equal to T . We then take a time Tu ∈ (T1, T ] to 
be fixed below and we set Ju = [T1, Tu]. We observe that u1 and u2 are both solutions of (1.6)
in Gm(Ju × G) with inhomogeneity f , boundary value g, and initial value u1(T1) = u2(T1). 
In particular, both functions solve the linear initial boundary value problem (1.8) with data f , 
g, and u1(T1) and differential operator L1 := L(χ(u1), Aco

1 , Aco
2 , Aco

3 , σ(u1)) respectively L2 :=
L(χ(u2), Aco

1 , Aco
2 , Aco

3 , σ(u2)). Lemma 2.1 and Sobolev’s embedding theorem yield that χ(u1), 
χ(u2), σ(u1), and σ(u2) are elements of F c

3 (J × G). Take r > 0 such that ‖u1‖G3(Ju×G) ≤ r . 
Lemma 2.1 and Remark 2.5 then provide a radius R = R(χ, σ, r, U1) such that the bounds

max{‖χ(u1)‖F3(J×G),‖σ(u1)‖F3(J×G)} ≤ R,

max{‖χ(u1(T1))‖F 0
2 (G), max

1≤j≤2
‖∂j

t χ(u1)(T1)‖Hm−1−j (G)} ≤ R,

max{‖σ(u1(T1))‖F 0
2 (G), max

1≤j≤2
‖∂j

t σ (u1)(T1)‖Hm−1−j (G)} ≤ R

hold true. We further note that χ(u1) is symmetric and uniformly positive definite. Therefore, 
Theorem 3.1 for the differential operator L1 can be applied to u1 − u2. We take η = η(χ) > 0
such that χ ≥ η and set γ = γ3.1,0(η, R), where γ3.1,0 denotes the corresponding constant from 
Theorem 3.1. Theorem 3.1 and Corollary 2.2 (2) then show that

‖u1 − u2‖2
G0,γ (Ju×G)

≤ C3.1(η,R,T )‖L1u1 − L1u2‖2
L2

γ (Ju×G)

= C(χ,σ, r, T ,U1)‖f − χ(u1)∂tu2 − σ(u1)u2 + χ(u2)∂tu2 + σ(u2)u2 − f ‖2
L2

γ (Ju×G)

≤ C(χ,σ, r, T ,U1)(Tu − T1)‖∂tu2‖2 ∞ ‖χ(u1) − χ(u2)‖2

L (Ju×G) G0,γ (Ju×G)
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+ C(χ,σ, r, T ,U1)(Tu − T1)‖u2‖2
L∞(Ju×G)‖σ(u1) − σ(u2)‖2

G0,γ (Ju×G)

≤ C(χ,σ, r, T ,U1)(‖∂tu2‖2
G2(Ju×G) + ‖u2‖2

G2(Ju×G))(Tu − T1)‖u1 − u2‖2
G0,γ (Ju×G),

where C3.1 is the corresponding constant from Theorem 3.1. Fixing the generic constant in the 
last line of the above estimate, we choose Tu > T1 so small that

C(χ,σ, r, T ,U1)(‖∂tu2‖2
G2(Ju×G) + ‖u2‖2

G2(Ju×G))(Tu − T1) ≤ 1

2
.

Hence,

‖u1 − u2‖G0,γ (Ju×G) = 0,

implying u1 = u2 on [T1, Tu] and thus on [t0, Tu]. This result contradicts the definition of T1. We 
conclude that T1 = T , i.e., u1 = u2 on J . �

Finally, we can combine all the preparations in order to prove the local existence of solutions 
of (1.6) using Banach’s fixed point theorem. For the self-mapping and the contraction property 
we heavily rely on Theorem 3.1. Special care in the treatment of the constants is needed to close 
the argument. In particular, the structure of the constants in Theorem 3.1 is crucial here.

Theorem 3.3. Let t0 ∈ R, T > 0, J = (t0, t0 + T ), and m ∈ N with m ≥ 3. Take χ ∈
MLm,6,c

pd (G, U) and σ ∈MLm,6,c(G, U). Let

B(x) =
⎛
⎝ 0 ν3(x) −ν2(x) 0 0 0

−ν3(x) 0 ν1(x) 0 0 0
ν2(x) −ν1(x) 0 0 0 0

⎞
⎠

for all x ∈ ∂G, where ν denotes the unit outer normal vector of ∂G. Choose an inhomogeneity 
f ∈ Hm(J × G), boundary value g ∈ Em(J × ∂G), and initial value u0 ∈ Hm(G) with imu0 ⊆
U such that the tuple (χ, σ, t0, B, f, g, u0) fulfills the nonlinear compatibility conditions (2.10)
of order m. Choose a radius r > 0 satisfying

m−1∑
j=0

‖∂j
t f (t0)‖2

Hm−1−j (G)
+ ‖g‖2

Em(J×∂G) + ‖u0‖2
Hm(G) + ‖f ‖2

Hm(J×G) ≤ r2. (3.3)

Take a number κ > 0 with

dist({u0(x) : x ∈ G}, ∂U) > κ.

Then there exists a time τ = τ(χ, σ, m, T , r, κ) > 0 such that the nonlinear initial boundary 
value problem (1.6) with data f , g, and u0 has a unique solution u on [t0, t0 + τ ] which belongs 
to Gm(Jτ × G), where Jτ = (t0, t0 + τ).
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Proof. Without loss of generality we assume t0 = 0 and that (2.11) holds true for χ and σ , 
cf. Remark 2.5. If f = 0, g = 0, and u0 = 0, then u = 0 is a Gm(J × G)-solution of (1.6)
and it is unique by Lemma 3.2. So in the following we assume ‖f ‖Hm(J×G) + ‖g‖Em(J×∂G) +
‖u0‖Hm(G) > 0. Recall that the map Sχ,σ,G,m,p was defined in (2.7) for 0 ≤ p ≤ m. Let τ ∈
(0, T ]. We set Jτ = (0, τ) and

Uκ = {y ∈ U : dist(y, ∂U) ≥ κ} ∩ B2CSobr (0), (3.4)

where CSob denotes the constant for the Sobolev embedding from H 2(G) into L∞(G). Then Uκ

is compact and imu0 is contained in Uκ .
I) Let R > 0. We set

BR(Jτ ) := {v ∈ G̃m(Jτ × G) : ‖v‖Gm(Jτ ×G) ≤ R, ‖v − u0‖L∞(Jτ ×G) ≤ κ/2,

∂
j
t v(0) = Sχ,σ,G,m,j (0, f,u0) for 0 ≤ j ≤ m − 1}

and equip it with the metric d(v1, v2) = ‖v1 − v2‖Gm−1(Jτ ×G). We first show that BR(Jτ ) is a 
complete metric space. Recall that G̃m(Jτ × G) is continuously embedded in Gm−1(Jτ × G) so 
that BR(Jτ ) is well defined. Moreover, Lemma 2.6 (2) shows that BR(Jτ ) is nonempty for all 
R > C2.6(2)(χ, σ, m, r, Uκ ) · (m + 1)r .

Let (vn)n be a Cauchy sequence in (BR(Jτ ), d). The functions vn then tend to v in 
Gm−1(Jτ ×G) as n → ∞, and hence v satisfies ∂j

t v(0) = Sχ,σ,G,m,j (0, f, u0) for 0 ≤ j ≤ m −1
and ‖v‖Gm−1(Jτ ×G) ≤ R. Let α ∈ N

4
0 with |α| = m. The sequence (∂αvn)n is bounded in 

L∞(Jτ , L2(G)) = (L1(Jτ , L2(G)))∗. The Banach–Alaoglu Theorem thus gives a subsequence 
(again denoted by (∂αvn)n) with σ ∗-limit vα in L∞(Jτ , L2(G)). It is straightforward to check 
that ∂αv = vα . In particular, v belongs to G̃m(Jτ × G) with norm less or equal R. Finally, as 
m ≥ 3, we infer

‖v − u0‖L∞(Jτ ×G) ≤ ‖v − vn‖L∞(Jτ ×G) + ‖vn − u0‖L∞(Jτ ×G)

≤ CSob‖v − vn‖G2(Jτ ×G) + κ/2 −→ κ/2

as n → ∞. We conclude that v again belongs to BR(Jτ ).
II) Let û ∈ BR(Jτ ). Take η = η(χ) > 0 such that χ ≥ η. Then χ(û) is contained in 

F c
m,η(Jτ ×G) and σ(û) is an element of F c

m(Jτ ×G) by Lemma 2.1, Remark 2.5, and Sobolev’s 
embedding. Lemma 2.6 (1) and the compatibility of (χ, σ, t0, B, f, g, u0) imply that the tu-
ple (t0, χ(û), Aco

1 , Aco
2 , Aco

3 , σ(û), B, f, g, u0) fulfills the linear compatibility conditions (2.12). 
Theorem 3.1 yields a solution u ∈ Gm(Jτ ×G) of the linear initial boundary value problem (1.8)
with differential operator L(χ(û), Aco

1 , Aco
2 , Aco

3 , σ(û)), inhomogeneity f , boundary value g, 
and initial value u0. One thus defines a mapping � : û 	→ u from BR(Jτ ) to Gm(Jτ × G). We 
want to prove that � also maps BR(Jτ ) into BR(Jτ ) for a suitable radius R and a sufficiently 
small time interval Jτ .

For this purpose take numbers τ ∈ (0, T ] and R > C2.6(2)(χ, σ, m, r, Uκ )(m + 1)r which will 
be fixed below. Let û ∈ BR(Jτ ). We first note that there is a constant C2.4(χ, σ, m, r, Uκ ) such 
that

‖Sχ,σ,G,m,p(0, f,u0)‖Hm−p(G) ≤ C2.4(χ,σ,m, r,Uκ ) (3.5)
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for all p ∈ {0, . . . , m} due to Lemma 2.4. Lemma 2.1 (2) further provides a constant C2.1(2) such 
that

‖χ(û)(0)‖F 0
m−1(G) = ‖χ(u0)‖F 0

m−1(G) ≤ C2.1(2)(χ,m, r,Uκ ),

‖σ(û)(0)‖F 0
m−1(G) = ‖σ(u0)‖F 0

m−1(G) ≤ C2.1(2)(σ,m, r,Uκ ).

Note that im û is contained in the compact set

Ũκ = Uκ + B(0, κ/2) ⊆ U (3.6)

as û ∈ BR(Jτ ). From Lemma 2.1 (3) and (3.5) we deduce the bound

‖∂l
t χ(û)(0)‖Hm−l−1(G)

≤ C2.1(3)(χ,m,Uκ )(1 + max
0≤k≤l

‖∂k
t û(0)‖Hm−k−1(G))

m−1

= C2.1(3)(χ,m,Uκ )(1 + max
0≤k≤l

‖Sχ,σ,G,m,k(0, f,u0)‖Hm−k−1(G))
m−1

≤ C2.1(3)(χ,m,Uκ )(1 + C2.4(χ,σ,m, r,Uκ ))m−1,

‖∂l
t σ (û)(0)‖Hm−l−1(G) ≤ C2.1(3)(σ,m,Uκ )(1 + C2.4(χ,σ,m, r,Uκ ))m−1

for all l ∈ {1, . . . , m − 1}. We thus find a radius r0 = r0(χ, σ, m, r, κ) such that

max{‖χ(û)(0)‖F 0
m−1(G), max

1≤l≤m−1
‖∂l

t χ(û)(0)‖Hm−l−1(G)} ≤ r0,

max{‖σ(û)(0)‖F 0
m−1(G), max

1≤l≤m−1
‖∂l

t σ (û)(0)‖Hm−l−1(G)} ≤ r0. (3.7)

As û belongs to BR(Jτ ), Lemma 2.1 (1) gives

‖χ(û)‖Fm(J×G),‖σ(û)‖Fm(J×G) ≤ C2.1(1)(χ,σ,m, Ũκ )(1 + R)m.

We thus obtain a radius R1 = R1(χ, σ, m, R, κ) with

‖χ(û)‖Fm(J×G) ≤ R1 and ‖σ(û)‖Fm(J×G) ≤ R1. (3.8)

We next define the constant Cm,0 = Cm,0(χ, σ, r, κ) by

Cm,0(χ,σ, r, κ) = C3.1,m,0(η(χ), r0(χ,σ,m, r, κ)), (3.9)

where C3.1,m,0 denotes the constant Cm,0 from Theorem 3.1. We set the radius R = R(χ, σ, m,

r, κ) for BR(Jτ ) to be

R(χ,σ,m, r, κ) = max
{√

6Cm,0(χ,σ, r, κ) r, C2.6(2)(χ,σ,m, r,Uκ )(m + 1)r + 1
}
. (3.10)

We further introduce the constants
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γm = γm(χ,σ,T , r, κ) := γ3.1,m(η(χ),R1(χ,σ,m,R(χ,σ,m, r, κ), κ), T ), (3.11)

Cm = Cm(χ,σ,T , r) := C3.1,m(η(χ),R1(χ,σ,m,R(χ,σ,m, r, κ), κ), T ), (3.12)

where γ3.1,m and C3.1,m denote the corresponding constants from Theorem 3.1. Let

C2.2(2)(θ,m,R, Ũκ )

denote the constant arising from the application of Corollary 2.2 (2) to the components of θ ∈
MLm,6(G, U).

With these constants at hand we define the parameter γ = γ (χ, σ, m, T , r, κ) and the time 
step τ = τ(χ, σ, m, T , r, κ) by

γ = max
{
γm, C−1

m,0Cm

}
, (3.13)

τ = min
{
T , (2γ + mC3.1,1)

−1 log 2, C−1
m Cm,0, (2CSobR)−1κ, (3.14)

[32R2Cm,0C
2
P (C2

2.2(2)(χ,m,R, Ũκ ) + C2
2.2(2)(σ,m,R, Ũκ ))]−1

}
,

where CP and C3.1,1 denote the corresponding constants from [35, Lemma 2.1] and Theorem 3.1
respectively. Observe that γ and τ actually only depend on χ , σ , m, T , r , and κ as Cm,0, Cm, 
C3.1,1, and R only depend on these quantities (see (3.9) to (3.12)). For later reference we note 
that the choice of γ and τ implies

γ ≥ γm, (3.15)

Cm

γ
≤ Cm,0, (3.16)

τ ≤ T , (3.17)

(2γ + mC3.1,1) τ ≤ log 2, (3.18)

Cmτ ≤ Cm,0, (3.19)

CSobRτ ≤ κ/2, (3.20)

4Cm,0C
2
P C2

2.2(2)(θ,m,6,R, Ũκ )R2 τ ≤ 1

8
, θ ∈ {χ,σ }. (3.21)

III) We want to bound the function �(û) from step II) by means of Theorem 3.1. In view of 
the estimates (3.7) and (3.8), the definitions of Cm,0, γm, and Cm in (3.9), (3.11), and (3.12), 
respectively, fit to the assertion of Theorem 3.1. Using also (3.15) and (3.17), we arrive at the 
inequality

‖�(û)‖2
Gm(Jτ ×G) ≤ e2γ τ‖�(û)‖2

Gm,γ (Jτ ×G)

≤ (Cm,0 + τCm)e(2γ+mC3.1,1)τ
(m−1∑

‖∂j
t f (0)‖2

Hm−1−j (G)

j=0
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+ ‖g‖2
Em,γ (Jτ ×∂G) + ‖u0‖2

Hm(G)

)
+ Cm

γ
e2γ τ‖f ‖2

Hm
γ (Jτ ×G).

Observe that (3.3) yields

‖f ‖2
Hm

γ (Jτ ×G) ≤ ‖f ‖2
Hm(Jτ ×G) ≤ ‖f ‖2

Hm(J×G) ≤ r2

and analogously ‖g‖2
Em,γ (Jτ ×∂G) ≤ ‖g‖2

Em(J×∂G). Employing (3.19), (3.16), (3.18), (3.3), 
and (3.10), we then deduce the inequalities

‖�(û)‖2
Gm(Jτ ×G) ≤ (Cm,0 + Cm,0)e

log 2r2 + Cm,0e
log 2r2 = 6Cm,0r

2 ≤ R2,

‖�(û)‖Gm(Jτ ×G) ≤ R.

Since �(û) belongs to Gm(Jτ × G), identity (2.1) in [35] (which is the linear counterpart 
to (2.9)) shows that

∂
p
t �(û)(0) = SG,m,p(0, χ(û),Aco

1 ,Aco
2 ,Aco

3 , σ (û), f,u0)

for all p ∈ {0, . . . , m}. On the other hand, as an element of BR(Jτ ), the function û satisfies 
∂

p
t û(0) = Sχ,σ,G,m,p(0, f, u0) for all p ∈ {0, . . . , m − 1}. Lemma 2.6 (1) thus yields

∂
p
t �(û)(0) = SG,m,p(0, χ(û),Aco

1 ,Aco
2 ,Aco

3 , σ (û), f,u0) = Sχ,σ,G,m,p(0, f,u0)

for all p ∈ {0, . . . , m − 1}. We further estimate

‖�(û) − u0‖L∞(Jτ ×G) =
∥∥∥�(û)(0) +

t∫
0

∂t�(û)(s)ds − u0

∥∥∥
L∞(Jτ ×G)

=
∥∥∥

t∫
0

∂t�(û)(s)ds

∥∥∥
L∞(Jτ ×G)

≤ CSob sup
t∈(0,τ )

t∫
0

‖∂t�(û)(s)‖H 2(G)ds

≤ CSobτ‖∂t�(û)‖G2(Jτ ×G) ≤ CSobτR ≤ κ/2

for all û ∈ BR(Jτ ), where we used that �(û)(0) = u0 for û ∈ BR(Jτ ) and (3.20). We conclude 
that �(û) belongs to BR(Jτ ), i.e., � maps BR(Jτ ) into itself.

IV) Let û1, û2 ∈ BR(Jτ ). Since χ(ûi) and σ(ûi) belong to Fm(Jτ × G) for i ∈ {1, 2}, 
Lemma 2.1 of [35] implies that χ(ûi)∂t�(û2) and σ(ûi)�(û2) are elements of the space 
G̃m−1(Jτ × G) ↪→ Hm−1(Jτ × G) for i ∈ {1, 2}. The function �(û2) thus fulfills

L(χ(û1),A
co
1 ,Aco

2 ,Aco
3 , σ (û1))�(û2)

= χ(û1)∂t�(û2) + σ(û1)�(û2) − χ(û2)∂t�(û2) − σ(û2)�(û2)

+ L(χ(û2),A
co
1 ,Aco

2 ,Aco
3 , σ (û2))�(û2)

= (χ(û1) − χ(û2))∂t�(û2) + (σ (û1) − σ(û2))�(û2) + f
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and this function belongs to G̃m−1(Jτ ×G) ↪→ Hm−1(Jτ ×G). We further stress that �(û1)(0) =
u0 = �(û2)(0).

As in step III), properties (3.7), (3.8), (3.9), (3.11), (3.12), (3.15), and (3.17) allow us to 
apply Theorem 3.1 with differential operator L(χ(û1), Aco

1 , Aco
2 , Aco

3 , σ(û1)) and parameter γ
on Jτ × G. We thus obtain the inequality

‖�(û1) − �(û2)‖2
Gm−1(Jτ ×G)

≤ e2γ τ‖�(û1) − �(û2)‖2
Gm−1,γ (Jτ ×G)

≤ (Cm,0 + τCm)e(2γ+mC3.1,1)τ
m−2∑
j=0

‖∂j
t (f − L�(û2))(0)‖2

Hm−2−j (G)

+ Cm

γ
e(2γ+mC3.1,1)τ‖f − L�(û2)‖2

Hm−1
γ (Jτ ×G)

= (Cm,0 + τCm)e(2γ+mC3.1,1)τ

m−2∑
j=0

‖∂j
t ((χ(û1) − χ(û2))∂t�(û2))(0)

+ ∂
j
t ((σ (û1) − σ(û2))�(û2))(0)‖2

Hm−2−j (G)

+ Cm

γ
e(2γ+mC3.1,1)τ‖(χ(û1) − χ(û2))∂t�(û2)

+ (σ (û1) − σ(û2))�(û2)‖2
Hm−1

γ (Jτ ×G)
.

Lemma 2.1 and the equalities

∂l
t û1(0) = Sχ,σ,G,m,l(0, f,u0) = ∂l

t û2(0)

for all l ∈ {0, . . . , m − 1} imply that the terms in the sum vanish. Employing (3.18), we then 
deduce

‖�(û1) − �(û2)‖2
Gm−1(Jτ ×G) ≤ 4Cm

1

γ
‖(χ(û1) − χ(û2))∂t�(û2)‖2

Hm−1
γ (Jτ ×G)

+ 4Cm

1

γ
‖(σ (û1) − σ(û2))�(û2)‖2

Hm−1
γ (Jτ ×G)

=: I1 + I2. (3.22)

Before going on, we point out that we know from step II) that �(û2) is an element of BR(Jτ )

and hence

‖∂t�(û2)‖Gm−1(Jτ ×G) ≤ ‖�(û2)‖Gm(Jτ ×G) ≤ R. (3.23)

We now treat the first summand. Lemma 2.1 of [35], estimate (3.23), and Corollary 2.2 (2) show 
that
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I1 ≤ 4Cm

1

γ
τ‖(χ(û1) − χ(û2))∂t�(û2)‖2

Gm−1,γ (Jτ ×G)

≤ 4Cm

1

γ
τC2

P ‖χ(û1) − χ(û2)‖2
Gm−1,γ (Jτ ×G)‖∂t�(û2)‖2

Gm−1(Jτ ×G)

≤ 4Cm

1

γ
C2

P C2
2.2(2)(χ,m,R, Ũκ )R2τ‖û1 − û2‖2

Gm−1,γ (Jτ ×G).

Exploiting (3.16) and (3.21), we finally arrive at

I1 ≤ 1

8
‖û1 − û2‖2

Gm−1,γ (Jτ ×G) ≤ 1

8
‖û1 − û2‖2

Gm−1(Jτ ×G). (3.24)

Analogously, we obtain

I2 ≤ 1

8
‖û1 − û2‖2

Gm−1(Jτ ×G). (3.25)

Estimates (3.22), (3.24), and (3.25) imply

‖�(û1) − �(û2)‖Gm−1(Jτ ×G) ≤ 1

2
‖û1 − û2‖Gm−1(Jτ ×G).

We conclude that � is a strict contraction on BR(Jτ ).
V) Banach’s fixed point theorem thus gives a fixed point u ∈ BR(Jτ ), i.e., �(u) = u. By 

definition of �, this means that u ∈ Gm(Jτ × G) is a solution of (1.6). Lemma 3.2 shows that u
is the only one on [0, τ ]. �
Remark 3.4.

(1) Using time reversion and adapting coefficients and data accordingly, we can transfer the 
result of Theorem 3.3 to the negative time direction, see [34, Remark 3.3] for details.

(2) Standard techniques show that the restriction and the concatenation of solutions of (1.8) are 
again solutions of (1.8). For the precise statements and the proofs we refer to Lemma 7.13 
and Lemma 7.14 in [34].

Theorem 3.3 and Remark 3.4 show that the definition of a maximal solution makes sense.

Definition 3.5. Let t0 ∈ R and m ∈ N with m ≥ 3. Take χ ∈ MLm,6,c
pd (G, U) and σ ∈

MLm,6,c(G, U). Choose data f ∈ Hm((−T , T ) ×G), g ∈ Em((−T , T ) ×∂G), and u0 ∈ Hm(G)

for all T > 0 and define B as in Theorem 3.3. Assume that the tuple (χ, σ, t0, B, f, g, u0) fulfills 
the compatibility conditions (2.10) of order m. We introduce

T+(m, t0, f, g,u0) = sup{τ ≥ t0 : ∃Gm-solution of (1.6) on [t0, τ ]},
T−(m, t0, f, g,u0) = inf{τ ≤ t0 : ∃Gm-solution of (1.6) on [τ, t0]}.

The interval (T−(m, t0, f, g, u0), T+(m, t0, f, g, u0)) =: Imax(m, t0, f, g, u0) is called the maxi-
mal interval of existence.
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The name maximal interval of existence is justified by the next proposition. It states that there 
is a unique solution of (1.6) on the maximal interval of existence which cannot be extended 
beyond this interval. This solution is also called the maximal solution in the following. The proof 
works with standard techniques, see [34, Proposition 7.16] for details.

Proposition 3.6. Let t0 ∈ R and m ∈ N with m ≥ 3. Take χ ∈ MLm,6,c
pd (G, U) and σ ∈

MLm,6,c(G, U). Choose data f ∈ Hm((−T , T ) × G), g ∈ Em((−T , T ) × ∂G), and u0 ∈
Hm(G) for all T > 0 and define B as in Theorem 3.3. Assume that the tuple (χ, σ, t0, B, f, g, u0)

fulfills the compatibility conditions (2.10) of order m. Then there exists a unique maximal solution 
u ∈ ⋂m

j=0 Cj (Imax, Hm−j (G)) of (1.6) on Imax which cannot be extended beyond this interval.

4. Blow-up criteria

We next want to characterize finite maximal existence times, i.e., the situation when T+ < ∞, 
by a blow-up condition. As it is usually the case when the solution is constructed via Banach’s 
fixed point theorem, the construction allows to derive such a blow-up condition in the norm 
which controls the initial value. In our case this is the Hm(G)-norm.

Lemma 4.1. Let t0 ∈ R and m ∈ N with m ≥ 3. Take χ ∈ MLm,6,c
pd (G, U) and σ ∈

MLm,6,c(G, U). Choose data f ∈ Hm((−T , T ) × G), g ∈ Em((−T , T ) × ∂G), and u0 ∈
Hm(G) for all T > 0 and define B as in Theorem 3.3. Assume that the tuple (χ, σ, t0, B, f, g, u0)

fulfills the compatibility conditions (2.10) of order m. Let u be the maximal solution of (1.6) on 
Imax provided by Proposition 3.6. If T+ = T+(m, t0, f, g, u0) < ∞, then one of the following 
blow-up properties

(1) lim inft↗T+ dist({u(t, x) : x ∈ G}, ∂U) = 0,
(2) limt↗T+ ‖u(t)‖Hm(G) = ∞

occurs. The analogous result is true for T−(m, t0, f, g, u0).

Proof. Let T+ < ∞ and assume that condition (1) does not hold. This means that there exists 
κ > 0 such that

dist({u(t, x) : x ∈ G}, ∂U) > κ

for all t ∈ (t0, T+). Assume that there exists a sequence (tn)n converging from below to the 
maximal existence time T+ such that ρ := supn∈N ‖u(tn)‖Hm(G) is finite. Fix a time T ′ > T+ and 
take a radius r > ρ with

m‖f ‖2
Gm−1((t0,T

′)×G) + ‖g‖2
Em((t0,T

′)×∂G) + ρ2 + ‖f ‖2
Hm((t0,T

′)×G) < r2.

Then pick an index N ∈ N such that

tN + τ(χ,σ,m,T ′ − t0, r, κ) > T+,

for the time step τ = τ(χ, σ, m, T ′ − t0, r, κ) from Theorem 3.3. Identity (2.9) shows that the 
tuple (χ, σ, tN , B, f, g, u(tN)) fulfills the compatibility conditions (2.10) of order m. Since the 
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distance between imu(tN ) and ∂U is larger than κ , Theorem 3.3 thus gives a Gm-solution v
of (1.6) with inhomogeneity f , boundary value g, and initial value u(tN) at tN on [tN , tN + τ ]. 
Setting w(t) := u(t) if t ∈ [t0, tN ] and w(t) := v(t) if t ∈ [tN , tN + τ ], we obtain a Gm-solution 
of (1.6) with data f , g, and u0 on [t0, tN + τ ] by Remark 3.4. This contradicts the definition of 
T+ since tN + τ > T+. The assertion for T− is proven analogously. �

The blow-up criterion above can be improved. In fact we will show that if T+ < ∞ (and the 
solution does not come arbitrarily close to ∂U ), then the spatial Lipschitz norm of the solution 
has to blow up when one approaches T+, see Theorem 5.3 (2) below. There are several exam-
ples of quasilinear systems, both on the full space and on domains, where the blow-up condition 
is given in terms of the Lipschitz norm of the solution, see e.g. [3–5,21,23–25]. This improve-
ment (in comparison with the Hm(G)-norm) is possible as one can exploit that a solution u
of the nonlinear problem (1.6) solves the linear problem (1.8) with coefficients χ(u) and σ(u). 
Deriving estimates for the derivatives of u, one can then use so-called Moser-type estimates, 
see the proof of Proposition 4.4 below. These estimates, introduced in [27] and based on the 
Gagliardo–Nirenberg estimates from [28], are an efficient tool to estimate products of deriva-
tives of u. However, as our material laws χ and σ do also depend on the space variable x, we 
cannot use them in their standard form (see e.g. [22,25] and also [34] for domains, where we 
treated a slightly simpler case). But the proof of the version below still follows the standard ideas 
already used in [27].

Lemma 4.2. Let T > 0, J = (0, T ), and m ∈ N with m ≥ 3. Let θ ∈ MLm,1(G, U) and v ∈
Gm(J × G). Assume that there is a number ζ0 > 0 and a compact subset U1 of U such that 
‖v‖W 1,∞(J×G) ≤ ζ0 and imv ⊆ U1. Then there is a constant C = C(θ, ζ0, U1) such that

‖∂βθ(v)∂t ∂
α−βv‖L2(J×G) + ‖∂βθ(v)∂α−βv‖L2(J×G) ≤ C‖v‖H |α|(J×G)

for all 0 < β ≤ α and α ∈ N
4
0 with |α| ≤ m.

We will employ this lemma in the proof of the next proposition. There it has to be combined 
with a technique developed in [35] to control the derivatives in normal direction of solutions 
of (1.6) although this system has a characteristic boundary. For later reference, we recall the key 
result in this direction. It is a simplified version of [35, Proposition 3.3 and Remark 4.11] and 
relies heavily on the structure of the Maxwell equations.

Lemma 4.3. Let T ′ > 0, η > 0, γ ≥ 1, and r ≥ r0 > 0. Pick T ∈ (0, T ′) and set J = (0, T ). Take 
A0 ∈ F c

0,η(�), A1, A2 ∈ F
cp
0,coeff(R

3+), A3 = Aco
3 , and D ∈ F c

0 (�) with

‖Ai‖W 1,∞(�) ≤ r, ‖D‖W 1,∞(�) ≤ r,

‖Ai(0)‖L∞(R3+) ≤ r0, ‖D(0)‖L∞(R3+) ≤ r0

for all i ∈ {0, 1, 2}. Choose f ∈ H 1(�) and u0 ∈ H 1(R3+). Let u ∈ G1(�) solve the initial value 
problem



JID:YJDEQ AID:9589 /FLA [m1+; v1.289; Prn:22/10/2018; 11:29] P.24 (1-52)

24 M. Spitz / J. Differential Equations ••• (••••) •••–•••
⎧⎪⎪⎨
⎪⎪⎩

A0∂tu +
3∑

j=1

Aj∂ju + Du = f, x ∈R
3+, t ∈ J ;

u(0) = u0, x ∈R
3+.

(4.1)

Then there are constants C1,0 = C1,0(η, r0) ≥ 1 and C1 = C1(η, r, T ′) ≥ 1 such that

‖∇u‖2
G0,γ (�) ≤ eC1T

(
(C1,0 + T C1)

( 2∑
j=0

‖∂ju‖2
G0,γ (�) + ‖f (0)‖2

L2(R3+)
+ ‖u0‖2

H 1(R3+)

)

+ C1

γ
‖f ‖2

H 1
γ (�)

)
. (4.2)

We can now prove the main result of this section, showing that we control the Hm(G)-norm 
of a solution as soon as we control its spatial Lipschitz norm. For the proof we differentiate (1.6)
and employ the basic L2-estimate from Theorem 3.1 to the derivative of u. The Moser-type 
estimates from Lemma 4.2 allow us to treat the arising inhomogeneities in such a way that the 
Gronwall lemma yields the desired estimate. However, this approach only works in tangential 
directions. In order to bound the derivatives of u containing a derivative in normal direction, we 
have to combine the above approach with Lemma 4.3.

Proposition 4.4. Let m ∈ N with m ≥ 3 and t0 ∈ R. Take functions χ ∈ MLm,6,c
pd (G, U) and 

σ ∈ MLm,6,c(G, U). Let

B(x) =
⎛
⎝ 0 ν3(x) −ν2(x) 0 0 0

−ν3(x) 0 ν1(x) 0 0 0
ν2(x) −ν1(x) 0 0 0 0

⎞
⎠

for all x ∈ ∂G, where ν denotes the unit outer normal vector of ∂G. Choose data u0 ∈
Hm(G), g ∈ Em((−T , T ) × ∂G), and f ∈ Hm((−T , T ) × G) for all T > 0 such that the tu-
ple (χ, σ, t0, B, f, g, u0) fulfills the compatibility conditions (2.10) of order m. Let u denote the 
maximal solution of (1.6) provided by Proposition 3.6 on (T−, T+). We introduce the quantity

ω(T ) = sup
t∈(t0,T )

‖u(t)‖W 1,∞(G)

for every T ∈ (t0, T+). We further take r > 0 with

m−1∑
j=0

‖∂j
t f (t0)‖Hm−j−1(G) + ‖g‖Em((t0,T+)×∂G) + ‖u0‖Hm(G) + ‖f ‖Hm((t0,T+)×G) ≤ r.

We set T ∗ = T+ if T+ < ∞ and take any T ∗ > t0 if T+ = ∞. Let ω0 > 0 and let U1 be a compact 
subset of U .
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Then there exists a constant C = C(χ, σ, m, r, ω0, U1, T ∗ − t0) such that

‖u‖2
Gm((t0,T )×G) ≤ C

(m−1∑
j=0

‖∂j
t f (t0)‖2

Hm−1−j (G)
+ ‖u0‖2

Hm(G) + ‖g‖2
Em((t0,T )×∂G)

+ ‖f ‖2
Hm((t0,T )×G)

)

for all T ∈ (t0, T ∗) which have the property that ω(T ) ≤ ω0 and imu(t) ⊆ U1 for all t ∈ [t0, T ]. 
The analogous result is true on (T−, t0).

Proof. Without loss of generality we assume t0 = 0 and that χ and σ have property (2.11), 
cf. Remark 2.5. Let ω0 > 0 and U1 be a compact subset of U . If ω(T ) > ω0 or if the set 
{u(t, x) : (t, x) ∈ [t0, T ] × G} is not contained in U1 for all T ∈ (0, T ∗), there is nothing to 
prove. Otherwise we fix T ′ ∈ (0, T ∗) with ω(T ′) ≤ ω0 and imu(t) ⊆ U1 for all t ∈ [t0, T ′]. 
Let T ∈ (0, T ′] be arbitrary and denote (0, T ) × R

3+ by �. Note that ω(T ) ≤ ω(T ′) ≤ ω0 and 
imu(t) ⊆ U1 for all t ∈ [t0, T ].

To derive the improved estimates, we have to study the problem on the half-space. To that 
purpose, we apply the localization procedure and the subsequent transform already used in the 
proof of Theorem 3.1, see [35, Section 2] and [34, Chapter 5]. To streamline the argument, we do 
not perform the localization here but assume that G = R

3+ and that we have spatial coefficients 
A1, A2 ∈ F

cp
m,coeff(R

3+) and A3 = Aco
3 . The full space case is easier and treated similarly. We refer 

to [35, page 9] and [34, Proposition 7.20] for the details.
We pick a number η = η(χ) > 0 such that χ ≥ η. Consequently, there is a constant C with 

|χ(ξ)−1| ≤ Cη−1 for all ξ ∈ R
6. Since the function u solves (1.6), we infer

‖∂tu‖L∞(�) ≤ ‖χ(u)−1f ‖L∞(�) +
3∑

j=1

‖χ(u)−1Aj∂ju‖L∞(�) + ‖χ(u)−1σ(u)u‖L∞(�)

≤ C(η,σ,U1)
(
‖f ‖Hm(�) + 3ω(T ) + ω(T )

)
,

‖u‖W 1,∞(�) ≤ ‖∂tu‖L∞(�) + ω(T ) ≤ C4.3(χ,σ, r,ω0,U1). (4.3)

In the following we will frequently apply (4.3) without further reference.
I) We set

fα = ∂αf −
∑

0<β≤α

(
α

β

)
∂βχ(u)∂t ∂

α−βu −
2∑

j=1

∑
0<β≤α

(
α

β

)
∂βAj∂j ∂

α−βu

−
∑

0<β≤α

(
α

β

)
∂βσ (u)∂α−βu (4.4)

for all α ∈ N
4
0 with |α| ≤ m. As u is a solution of (1.6), the function ∂αu solves the linear initial 

value problem
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{
L(χ(u),A1,A2,A3, σ (u))v = fα, x ∈R

3+, t ∈ (0, T );
v(0) = ∂(0,α1,α2,α3)Sχ,σ,R3+,m,α0

(0, f,u0), x ∈R
3+; (4.5)

for all α ∈N
4
0 with |α| ≤ m. Moreover, if additionally α3 = 0, it solves

⎧⎪⎪⎨
⎪⎪⎩

L(χ(u),A1,A2,A3, σ (u))v = fα, x ∈ R
3+, t ∈ (0, T );

Bv = ∂αg, x ∈ ∂R3+, t ∈ (0, T );
v(0) = ∂(0,α1,α2,0)Sχ,σ,R3+,m,α0

(0, f,u0), x ∈ R
3+.

(4.6)

Here we used that ∂j
t u(0) = Sχ,σ,R3+,m,j (0, f, u0) for all j ∈ {0, . . . , m} by (2.9).

In view of (4.6) respectively (4.5), we want to apply Theorem 3.1 respectively Lemma 4.3
to ∂αu. We thus need estimates for ‖fα‖L2(�) for all α ∈ N

4
0 with |α| ≤ m, ‖fα‖H 1(�) for all 

α ∈ N
4
0 with |α| ≤ m − 1, and ‖fα(0)‖L2(R3+) for all α ∈ N

4
0 with |α| ≤ m − 1. We start with the 

estimate for ‖fα‖L2(�). Take α ∈ N
4
0 with |α| ≤ m. Let β ∈N

4
0 with 0 < β ≤ α. Lemma 4.2 then 

implies that

‖fα‖L2(�) ≤ ‖f ‖H |α|(�) + C(χ,σ, r,ω0,U1)‖u‖H |α|(�). (4.7)

Next, we want to estimate ‖fα‖H 1(�) for α ∈ N
4
0 with |α| ≤ m − 1. So fix such a multi-index. 

Let k ∈ {0, . . . , 3} and set αk = α + ek . A straightforward computation, see e.g. (3.6) in [34], 
shows the formula

fαk = ∂kfα − ∂kχ(u)∂t ∂
αu −

2∑
j=1

∂kAj∂j ∂
αu − ∂kσ (u)∂αu. (4.8)

Combined with (4.7), Lemma 4.2 now yields the inequality

‖fα‖H 1(�) ≤ C(χ,σ, r,ω0,U1)
(
‖f ‖H |α|+1(�) + ‖u‖H |α|+1(�)

)
. (4.9)

It remains to estimate ‖fα(0)‖L2(R3+) for α ∈ N
4
0 with |α| ≤ m − 1. To that purpose we first 

insert t = 0 in the definition of fα in (4.4). The product estimates from Lemma 2.1 in [35], the 
fact that ∂j

t u(0) = Sχ,σ,R3+,m,j (0, f, u0) for all j ∈ {0, . . . , m} by (2.9), and Lemma 2.4 then lead 
to the bound

‖fα(0)‖L2(R3+) ≤ C(χ,σ,m, r,ω0,U1)
( |α|∑

l=0

‖∂l
t f (0)‖H |α|−l (R3+) + ‖u0‖H |α|+1(R3+)

)
, (4.10)

see Proposition 7.20 in [34] for the details.



JID:YJDEQ AID:9589 /FLA [m1+; v1.289; Prn:22/10/2018; 11:29] P.27 (1-52)

M. Spitz / J. Differential Equations ••• (••••) •••–••• 27
II) We will show inductively that there are constants Ck = Ck(χ, σ, m, r, ω0, U1, T ∗) such that

‖∂αu‖2
G0(�) ≤ Ck

( k−1∑
j=0

‖∂j
t f (0)‖2

Hk−1−j (R3+)
+ ‖g‖2

Ek(J×∂R3+)
+ ‖u0‖2

Hk(R3+)

+ ‖f ‖2
Hk(�)

)
(4.11)

for all α ∈N
4
0 with |α| = k and k ∈ {0, . . . , m}.

We first apply Lemma 2.1 (1) and (3) to obtain a radius R1 = R1(χ, σ, r, ω0, U1) with

‖χ(u)‖W 1,∞(�) + ‖σ(u)‖W 1,∞(�) ≤ R1(χ,σ, r,ω0,U1),

‖χ(u(0))‖L∞(R3+) + ‖σ(u(0))‖L∞(R3+) ≤ R1(χ,σ, r,ω0,U1).

Set γ0 = γ0(χ, σ, r, ω0, U1, T ∗) = γ3.1,0(η(χ), R1(χ, σ, r, ω0, U1), T ∗) ≥ 1, where γ3.1,0 is 
the corresponding constant from Theorem 3.1. As u solves (4.6) with α = 0, Theorem 3.1 yields

‖u‖2
G0(�) ≤ e2γ0T sup

t∈(0,T )

‖e−γ0t u(t)‖2
L2(R3+)

≤ C3.1,0,0(η,R1)e
2γ0T

∗(‖u0‖2
L2(R3+)

+ ‖g‖2
E0,γ0 (J×∂R3+)

)

+ C3.1,0(η,R1, T
∗)e2γ0T

∗ 1

γ0
‖f ‖2

L2
γ0

(�)

≤ C0

(
‖u0‖2

L2(R3+)
+ ‖g‖2

E0(J×∂R3+)
+ ‖f ‖2

L2(�)

)
,

where C0 = C0(χ, σ, r, ω0, U1, T ∗) and C3.1,0,0 respectively C3.1,0 denote the corresponding 
constants from Theorem 3.1. This inequality shows the claim (4.11) for k = 0.

Let k ∈ {1, . . . , m} and assume that (4.11) has been shown for all 0 ≤ j ≤ k −1. We first claim 
that there are constants Ck,α = Ck,α(χ, σ, r, ω0, U1, T ∗) such that

‖∂αu‖2
G0(�) ≤ Ck,α

( k−1∑
j=0

‖∂j
t f (0)‖2

Hk−1−j (R3+)
+ ‖g‖2

Ek(J×∂R3+)
+ ‖u0‖2

Hk(R3+)

+ ‖f ‖2
Hk(�)

+
T∫

0

∑
β∈N4

0,|β|=k

‖∂βu(s)‖2
L2(R3+)

ds
)

(4.12)

for all α ∈N
4
0 with |α| = k. We show (4.12) by another induction, this time with respect to α3.

Let α ∈ N
4
0 with |α| = k and α3 = 0. In step I) we have seen that ∂αu solves the initial 

boundary value problem (4.6). Hence, Theorem 3.1 yields

‖∂αu‖2
G0(�)

≤ e2γ0T sup ‖e−γ0t ∂αu(t)‖2
L2(R3+)
t∈(0,T )



JID:YJDEQ AID:9589 /FLA [m1+; v1.289; Prn:22/10/2018; 11:29] P.28 (1-52)

28 M. Spitz / J. Differential Equations ••• (••••) •••–•••
≤ C3.1,0,0(η,R1)e
2γ0T

∗(‖∂(0,α1,α2,0)Sχ,σ,R3+,m,α0
(0, f,u0)‖2

L2(R3+)

+ ‖∂αg‖2
E0,γ0 (J×∂R3+)

)
+ C3.1,0(η,R1, T

∗)e2γ0T
∗ 1

γ0
‖fα‖2

L2
γ0

(�)

≤ C(χ,σ, k, r,ω0,U1, T
∗)

( k−1∑
j=0

‖∂j
t f (0)‖2

Hk−1−j (R3+)
+ ‖g‖2

Ek(J×∂R3+)
+ ‖u0‖2

Hk(R3+)

)

+ ‖f ‖2
Hk(�)

+ ‖u‖2
Hk(�)

)
,

where we employed Lemma 2.4 and (4.7). Using the induction hypothesis (4.11) for the deriva-
tives of u of order smaller or equal than k − 1, we arrive at

‖∂αu‖2
G0(�) ≤ Ck,α(χ,σ, r,ω0,U1, T

∗)
( k−1∑

j=0

‖∂j
t f (0)‖2

Hk−1−j (R3+)
+ ‖g‖2

Ek(J×∂R3+)

+ ‖u0‖2
Hk(R3+)

+ ‖f ‖2
Hk(�)

+
T∫

0

∑
β∈N4

0,|β|=k

‖∂βu(s)‖2
L2(R3+)

ds
)
,

which is (4.12) for all multiindices α with |α| = k and α3 = 0.
Now, assume that there is a number l ∈ {1, . . . , k} such that (4.12) is true for all α ∈ N

4
0 with 

|α| = k and α3 ∈ {0, . . . , l − 1}.
Take α ∈N

4
0 with |α| = k and α3 = l. The multi-index α′ = α − e3 belongs to N4

0 and satisfies 
|α′| = k − 1 ≤ m − 1. Due to step I), we know that ∂α′

u solves the initial value problem (4.5)
with right-hand side fα′ and initial value

∂(0,α1,α2,α3−1)Sχ,σ,R3+,m,α0
(0, f,u0).

As |α′| ≤ m − 1, the function fα′ belongs to H 1(�) by (4.9), the derivative of the higher order 
initial value ∂(0,α1,α2,α3−1)Sχ,σ,G,m,α0(0, f, u0) to H 1(R3+) by Lemma 2.4, and ∂α′

u to G1(�). 
Moreover, χ(u) and σ(u) are elements of F c

0,η(�) respectively F c
0 (�), A1 and A2 belong to 

F
cp
0,coeff(R

3+) and A3 = Aco
3 . We can therefore apply Lemma 4.3. We choose γ = 1 to infer

‖∂αu‖2
G0(�)

= ‖∂3∂
α′

u‖2
G0(�) ≤ e2T ‖∇∂α′

u‖2
G0,1(�)

≤ e(2+C1)T
(
(C1,0 + T C1)

( 2∑
j=0

‖∂j ∂
α′

u‖2
G0,1(�) + ‖fα′(0)‖2

L2(R3+)

)

+ (C1,0 + T C1)‖∂(0,α1,α2,α3−1)Sχ,σ,R3 ,m,α (0, f,u0)‖2
1 3 + C1‖fα′‖2

1

)

+ 0 H (R+) H (�)
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≤ C(χ,σ, k, r,ω0,U1, T
∗)

( 2∑
j=0

‖∂j ∂
α′

u‖2
G0(�) +

k−1∑
j=0

‖∂j
t f (0)‖2

Hk−1−j (R3+)

+ ‖u0‖2
Hk(R3+)

+ ‖f ‖2
Hk(�)

+ ‖u‖2
Hk(�)

)
, (4.13)

where we used (4.10), Lemma 2.4, and (4.9) in the last estimate and where

C1,0 = C1,0(χ,σ, r,ω0,U1) = C4.3,1,0(η(χ),R1(χ,σ, r,ω0,U1)),

C1 = C1(χ,σ, r,ω0,U1, T
∗) = C4.3,1(η(χ),R1(χ,σ, r,ω0,U1), T

∗).

Inserting the induction hypothesis for ‖∂j∂
α′

u‖2
G0(�)

and the induction hypothesis (4.11) for the 

derivatives of u of order smaller or equal than k − 1, we obtain (4.12) for all α ∈N
4
0 with |α| = k

and α3 = l. By induction, we thus infer that the estimate in (4.12) is valid for all multiindices 
α ∈N

4
0 with |α| = k.

We now sum in (4.12) over all multiindices with |α| = k, which yields

∑
α∈N4

0,|α|=k

‖∂αu(T )‖2
L2(R3+)

≤
∑

α∈N4
0,|α|=k

‖∂αu‖2
G0(�)

≤
( ∑

α∈N4
0,|α|=k

Ck,α

)( k−1∑
j=0

‖∂j
t f (0)‖2

Hk−1−j (R3+)
+ ‖g‖2

Ek((0,T )×∂R3+)
+ ‖u0‖2

Hk(R3+)

+ ‖f ‖2
Hk((0,T )×R

3+)
+

T∫
0

∑
β∈N4

0,|β|=k

‖∂βu(s)‖2
L2(R3+)

ds
)
.

Recall that the time T ∈ (0, T ′] was arbitrary. Since T 	→ ‖f ‖2
Hk((0,T )×R

3+)
and T 	→

‖g‖2
Ek((0,T )×∂R3+)

are monotonically increasing, Gronwall’s inequality leads to

∑
α∈N4

0,|α|=k

‖∂αu(t)‖2
L2(R3+)

≤ C′
ke

C′
k t

( k−1∑
j=0

‖∂j
t f (0)‖2

Hk−1−j (R3+)
+ ‖g‖2

Ek((0,t)×R
3+)

+ ‖u0‖2
Hk(R3+)

+ ‖f ‖2
Hk((0,t)×R

3+)

)
(4.14)

for all t ∈ [0, T ′], where we defined C′
k = C′

k(χ, σ, r, ω0, U1, T ∗) by 
∑

α∈N4
0,|α|=k Ck,α . Defining 

Ck = Ck(χ, σ, r, ω0, U1, T ∗) by C′
ke

C′
kT

∗
and taking again a fixed time T ∈ (0, T ′], we particu-

larly obtain
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∑
α∈N4

0,|α|=k

‖∂αu(t)‖2
L2(R3+)

≤ Ck

( k−1∑
j=0

‖∂j
t f (0)‖2

Hk−1−j (R3+)
+ ‖g‖2

Ek((0,T )×∂R3+)

+ ‖u0‖2
Hk(R3+)

+ ‖f ‖2
Hk((0,T )×R

3+)

)

for all t ∈ [0, T ].
We conclude that (4.11) is true for all α ∈ N

4
0 with |α| = k. Again by induction, we infer 

that (4.11) is true for all α ∈ N
4
0 with |α| ∈ {0, . . . , m}. Summing over all multiindices with 

absolute value between 0 and m, the assertion of the proposition finally follows. �
This proposition now easily implies the improved blow-up condition. We postpone the state-

ment and its proof to the full local wellposedness theorem below.

5. Continuous dependence and local wellposedness theorem

The investigation of continuous dependence for quasilinear problems is challenging because 
of a loss of derivatives. It occurs since the difference of two solutions satisfies an equation with 
a less regular right-hand side. For the same reason one can only hope for continuous (and not 
Lipschitz-continuous) dependence on the data. We start with an approximation lemma in low 
regularity. It is the first step to overcome the loss of derivatives.

Lemma 5.1. Let J ⊂ R be an open interval, t0 ∈ J , and η > 0. Take coefficients A0,n, A0 ∈
F c

3,η(�), A1, A2 ∈ F
cp
3,coeff(R

3+), A3 = Aco
3 , and Dn, D ∈ F c

3 (�) for all n ∈ N such that (A0,n)n

and (Dn)n are bounded in W 1,∞(�) and converge to A0 respectively D in L∞(�). Set 
B = Bco. Choose data u0 ∈ L2(R3+), g ∈ E0(J × ∂R3+), and f ∈ L2(�). Let un denote the 
weak solution of the linear initial boundary value problem (3.1) with differential operator 
L(A0,n, A1, A2, A3, Dn) and these data for all n ∈ N and u be the weak solution of (3.1) with 
differential operator L(A0, . . . , A3, D) and the same data. Then (un)n converges to u in G0(�).

Proof. Without loss of generality we assume that J = (0, T ) for some T > 0 and t0 = 0. Set 
A0,0 = A0 and D0 = D. Take r > 0 with ‖A0,n‖W 1,∞(�) ≤ r and ‖Dn‖W 1,∞(�) ≤ r for all n ∈N0.

I) We first assume that u0 belongs to H 1(R3+), g to E1(J × ∂R3+), f to H 1(�), and that 
Bu0 = g(0) on ∂R3+. Then the tuples (0, A0,n, A1, A2, A3, B, Dn, f, g, u0) fulfill the linear 
compatibility conditions (2.12) of first order for each n ∈N0. The solutions un and u are thus con-
tained in G1(�) by Theorem 3.1. The difference un −u further solves the linear initial boundary 
value problem

⎧⎪⎪⎨
⎪⎪⎩

L(A0,n,A1,A2,A3,Dn)(un − u) = fn, x ∈R
3+, t ∈ J ;

B(un − u) = 0, x ∈ ∂R3+, t ∈ J ;
(un − u)(0) = 0, x ∈R

3+;

where fn = (A0 − A0,n)∂tu + (D − Dn)u for all n ∈ N. As u is an element of G1(�), the 
right-hand side of the differential equation above belongs to L2(�). Theorem 3.1 thus provides 
constants γ = γ3.1,0(η, r) and C0 = max{C3.1,0,0(η, r), C3.1,0(η, r, T )} such that
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‖un − u‖2
G0(�) ≤ e2γ T ‖un − u‖2

G0,γ (�) ≤ C0e
2γ T ‖(A0 − A0,n)∂tu + (D − Dn)u‖2

L2
γ (�)

≤ 2C0e
2γ T (‖A0,n − A0‖2

L∞(�)‖∂tu‖2
L2

γ (�)
+ ‖Dn − D‖2

L∞(�)‖u‖2
L2

γ (�)
)

for all n ∈N. Since A0,n → A0 and Dn → D in L∞(�), we conclude that the functions un tend 
to u in G0(�) as n → ∞.

II) We now come to the general case. Take sequences (fj )j in H 1(�), (gj )j in E2(J ×∂R3+), 
and (ũ0,j )j in C∞

c (R3+) converging to f , g and u0 in L2(�), E0(J × ∂R3+), and L2(R3+) respec-
tively. As B is constant and has rank 2, there is a sequence (h̃j )j in E2(J ×∂R3+) with Bh̃j = gj

for all j ∈ N. Extending h̃j to J × R
3+ via a suitable sequence of smooth cut-off functions in 

x3-direction, we obtain functions hj in C(J , H 1(R3+)) such that u0,j = ũ0,j + hj (0) converges 
to u0 in L2(R3+) as j → ∞ and Bu0,j = Bhj (0) = Bh̃j (0) = gj (0) on ∂R3+ for all j ∈ N. We 
refer to step I) of the proof of Theorem 4.13 in [34] for the details of this construction. Note that 
the tuples (0, A0,n, A1, A2, A3, Dn, B, fj , gj , u0,j ) consequently fulfill the linear compatibility 
conditions (2.12) of order 1 for all n, j ∈ N.

Let the function uj
n denote the weak solution of (3.1) with differential operator L(A0,n, A1,

A2, A3, Dn) and data fj , gj , and u0,j as well as uj the weak solution of (3.1) with differen-
tial operator L(A0, . . . , A3, D), and the same data for all n, j ∈ N. These solutions belong to 
G1(�) by Theorem 3.1. Observe that the difference uj

n − un solves (3.1) with differential oper-
ator L(A0,n, A1, A2, A3, Dn), inhomogeneity fj − f , boundary value gj − g, and initial value 
u0,j − u0, and the function uj − u solves (3.1) with differential operator L(A0, A1, A2, A3, D)

and the same data. The a priori estimate in Theorem 3.1 thus shows

‖uj
n − un‖2

G0(�) ≤ e2γ T ‖uj
n − un‖2

G0,γ (�) (5.1)

≤ C0 e2γ T
(
‖u0,j − u0‖2

L2(R3+)
+ ‖gj − g‖2

E0,γ (J×∂R3+)
+ ‖fj − f ‖2

L2
γ (�)

)
,

‖uj − u‖2
G0(�) ≤ e2γ T ‖uj − u‖2

G0,γ (�) (5.2)

≤ C0 e2γ T
(
‖u0,j − u0‖2

L2(R3+)
+ ‖gj − g‖2

E0,γ (J×∂R3+)
+ ‖fj − f ‖2

L2
γ (�)

)
for all n, j ∈ N, where γ and C0 were introduced in step I).

Let ε > 0. Because of the convergence of the data, we find an index j0 such that

C0 e2γ T
(
‖u0,j0 − u0‖2

L2(R3+)
+ ‖gj0 − g‖2

E0,γ (J×∂R3+)
+ ‖fj0 − f ‖2

L2
γ (�)

)
≤ ε2

9
. (5.3)

On the other hand, the tuple (fj0, gj0, u0,j0) fulfills the assumptions of step I), which therefore 
implies uj0

n → uj0 in G0(�) as n → ∞. Hence, there is an index n0 ∈ N such that

‖uj0
n − uj0‖G0(�) ≤ ε

3
(5.4)

for all n ≥ n0. Combining (5.1) to (5.4), we arrive at

‖un − u‖G0(�) ≤ ‖un − u
j0
n ‖G0(�) + ‖uj0

n − uj0‖G0(�) + ‖uj0 − u‖G0(�) ≤ ε

for all n ≥ n0. �
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The next lemma contains the core of the proof for the continuous dependence. It states that 
given a sequence of data converging in Hm respectively Em and assuming that the sequence of 
corresponding solutions of (1.6) converges in Gm−1, then the solutions also converge in Gm. 
The proof involves techniques developed for the full space (see e.g. [3]) which prevents to lose 
regularity because of the quasilinearity. Using methods from [35], we again exploit the structure 
of Maxwell’s equations to avoid the loss of a derivative due to the characteristic boundary.

Lemma 5.2. Let J ′ ⊆ R be an open and bounded interval, t0 ∈ J ′, and m ∈ N with m ≥ 3. Take 
functions χ ∈MLm,6,c

pd (G, U) and σ ∈ MLm,6,c(G, U). Set

B(x) =
⎛
⎝ 0 ν3(x) −ν2(x) 0 0 0

−ν3(x) 0 ν1(x) 0 0 0
ν2(x) −ν1(x) 0 0 0 0

⎞
⎠ ,

for all x ∈ ∂G, where ν denotes the unit outer normal vector of ∂G. Choose fn, f ∈ Hm(J ′ ×G), 
gn, g ∈ Em(J ′ × ∂G), and u0,n, u0 ∈ Hm(G) for all n ∈N with

‖u0,n − u0‖Hm(G) −→ 0, ‖gn − g‖Em(J ′×∂G) −→ 0, ‖fn − f ‖Hm(J ′×G) −→ 0,

as n → ∞. We further assume that (1.6) with data (t0, fn, gn, u0,n) and (t0, f, g, u0) have 
Gm(J ′ × G)-solutions un and u for all n ∈ N, that there is a compact subset Ũ1 of U with 
imu(t) ⊆ Ũ1 for all t ∈ J ′, that (un)n is bounded in Gm(J ′ × G), and that (un)n converges to u
in Gm−1(J

′ × G).
Then the functions un converge to u in Gm(J ′ × G).

Proof. Without loss of generality we assume that t0 = 0, that J ′ = (0, T ′) for a number T ′ > 0, 
and that χ and σ fulfill (2.11), cf. Remark 2.5. The proof is again reduced to the half-space 
case G = R

3+ via local charts. We do not give the details of the localization procedure here but 
assume as in the proof of Proposition 4.4 that G = R

3+ and that we have spatial coefficients 
A1, A2 ∈ F

cp
m,coeff(R

3+) A3 = Aco
3 , and B = Bco. We refer to [35, Section 2] and [34, Chapter 5]

for the details.
Let T ∈ (0, T ′], J = (0, T ), and � = J × R

3+. Sobolev’s embedding yields a constant CS

depending on the length of the interval J ′ such that

m−1∑
j=0

‖∂j
t fn(0) − ∂

j
t f (0)‖Hm−j−1(R3+) ≤ mCS‖fn − f ‖Hm(J ′×R

3+) −→ 0 (5.5)

as n → ∞. We set N = N ∪ {∞}, u∞ = u, f∞ = f , g∞ = g, and u0,∞ = u0. Throughout, let 
n ∈ N and α ∈N

4
0 with |α| ≤ m. By assumption, (5.5), and Sobolev’s embedding there is a radius 

r > 0 such that

‖un‖Gm(J ′×R
3+) + ‖un‖L∞(J ′×R

3+) +
2∑

‖Aj‖Fm(J ′×R
3+) ≤ r, (5.6)
j=1



JID:YJDEQ AID:9589 /FLA [m1+; v1.289; Prn:22/10/2018; 11:29] P.33 (1-52)

M. Spitz / J. Differential Equations ••• (••••) •••–••• 33
m−1∑
j=0

‖∂j
t fn(0)‖Hm−j−1(R3+) + ‖u0,n‖Hm(R3+) + ‖gn‖Em(J ′×∂R3+) + ‖fn‖Hm(J ′×R

3+) ≤ r. (5.7)

Moreover, (un)n converges to u in L∞(J ′ ×G) so that there is a compact and connected set U1 ⊆
U and an index n0 such that imun(t) ⊆ U1 for all t ∈ J ′ and n ≥ n0. Without loss of generality 
we assume n0 = 1. Lemma 2.1 (1) then shows that χ(un) and σ(un) belong to F c

m(J ′ ×R
3+) and 

that there is a radius R = R(χ, σ, m, r, U1) with

‖χ(un)‖Fm(J ′×R
3+) + ‖σ(un)‖Fm(J ′×R

3+) ≤ R. (5.8)

Furthermore, χ(un) is symmetric and positive definite with χ(un) ≥ η. We use the operators and 
right-hand sides

Ln = L(χ(un),A1,A2,A3, σ (un)),

fα,n = ∂αfn −
∑

0<β≤α

(
α

β

)
∂βχ(un)∂

α−β∂tun −
2∑

j=1

∑
0<β≤α

(
α

β

)
∂βAj∂

α−β∂jun

−
∑

0<β≤α

(
α

β

)
∂βσ (un)∂

α−βun. (5.9)

As in [35], the function ∂αun then solves the linear initial value problem

{
Lnv = fα,n, x ∈ R

3+, t ∈ J ;
v(0) = ∂(0,α1,α2,α3)Sχ,σ,R3+,m,α0

(0, fn,u0,n), x ∈ R
3+; (5.10)

and it is the solution of the linear initial boundary value problem

⎧⎪⎪⎨
⎪⎪⎩

Lnv = fα,n, x ∈R
3+, t ∈ J ;

Bv = ∂αgn, x ∈ ∂R3+, t ∈ J ;
v(0) = ∂(0,α1,α2,0)Sχ,σ,R3+,m,α0

(0, fn,u0,n), x ∈R
3+;

(5.11)

if also α3 = 0. Here we exploited that A3 and B are constant.
I) To estimate fα,n and fα,n − fα,∞, we introduce the quantity

hn(t) =
3∑

i=1

∑
0≤j≤m

∑
0≤γ≤α,γ0=0

|γ |=m−j

6∑
l1,...,lj =1

‖(∂ylj
. . . ∂yl1

∂
(γ1,γ2,γ3)
x θi)(un(t))

− (∂ylj
. . . ∂yl1

∂
(γ1,γ2,γ3)
x θi)(u(t))‖L∞(R3+)

for all t ∈ J ′ and n ∈N, where θ1 = χ , θ2 = σ , and θ3 is the matrix inverse of χ , cf. Corollary 2.2. 
Recall that (un)n tends to u uniformly as n → ∞ and that these functions map in the compact 
set U1. It follows
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hn(t) −→ 0 for all t ∈ J ′ and

T ′∫
0

h2
n(t)dt −→ 0 (5.12)

as n → ∞. Using Lemma 2.1 of [35] and Corollary 2.2 we derive the bounds

‖fα,n‖L2(�) ≤ C(χ,σ,m, r,U1, T
′),

‖fα,n − fα,∞‖2
L2(�)

=
T∫

0

‖fα,n(s) − fα,∞(s)‖2
L2(R3+)

ds

≤ C(χ,σ,m, r,U1, T
′)
(
‖fn − f ‖2

Hm(�) + ‖un − u‖2
Gm−1(�) + δ|α|m

T∫
0

h2
n(s)ds

+
T∫

0

∑
α̃∈N4

0,|α̃|=m

‖∂α̃un(s) − ∂α̃u(s)‖2
L2(R3+)

ds
)
. (5.13)

Let |α| ≤ m − 1. Using also (4.8), we then obtain

‖fα,n‖G0(�) ≤ C(χ,σ,m, r,U1),

‖fα,n − fα,∞‖G0(�) ≤ ‖fn − f ‖Gm−1(�) + C(χ,σ,m, r,U1)‖un − u‖Gm−1(�), (5.14)

‖fα,n‖H 1(�) ≤ C(χ,σ,m, r,U1, T
′),

‖fα,n − fα,∞‖2
H 1(�)

≤ C(χ,σ,m, r,U1, T
′)
(
‖fn − f ‖2

Hm(�) + ‖un − u‖2
Gm−1(�)

+ δ|α|m−1

T∫
0

h2
n(s)ds +

T∫
0

∑
α̃∈N4

0,|α̃|=m

‖∂α̃un(s) − ∂α̃u(s)‖2
L2(R3+)

ds
)
. (5.15)

(See [34] for further details.)
II) We now look at the tangential case α3 = 0. To split ∂αun, we define the functions

w0,n = ∂(0,α1,α2,0)Sχ,σ,R3+,m,α0
(0, fn,u0,n),

which belong to L2(R3+) by Lemma 2.4. Consider the linear initial boundary value problems

⎧⎪⎪⎨
⎪⎪⎩

Lnv = fα,∞, x ∈R
3+, t ∈ J ;

Bv = ∂αg∞, x ∈ ∂R3+, t ∈ J ;
v(0) = w , x ∈R

3 ;
(5.16)
0,∞ +
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and

⎧⎪⎪⎨
⎪⎪⎩

Lnv = fα,n − fα,∞, x ∈R
3+, t ∈ J ;

Bv = ∂αgn − ∂αg∞, x ∈ ∂R3+, t ∈ J ;
v(0) = w0,n − w0,∞, x ∈R

3+.

(5.17)

Because of the above regularity statements, Theorem 3.1 implies that the problem (5.16) has a 
unique solution wn in G0(�), the problem (5.17) has a unique solution zn in G0(�), and that the 
sum wn + zn uniquely solves (5.11). We thus obtain

wn + zn = ∂αun. (5.18)

We point out that in the case n = ∞ the initial boundary value problems (5.16) and (5.11) coin-
cide. Since the latter is solved by ∂αun and solutions of that problem are unique by Theorem 3.1, 
we conclude that

w∞ = ∂αu∞ = ∂αu. (5.19)

Since (un)n tends to u uniformly and these functions map into the compact set U1, we obtain the 
limits

‖χ(un) − χ(u)‖L∞(�) + ‖σ(un) − σ(u)‖L∞(�) ≤ C(χ,σ,U1)‖un − u‖Gm−1(�) −→ 0

as n → ∞. In view of (5.8), Lemma 5.1 therefore tells us that

‖wn − ∂αu‖G0(�) = ‖wn − w∞‖G0(�) −→ 0 (5.20)

as n → ∞. Define γ = γ (χ, σ, m, r, U1, T ′) ≥ 1 by

γ = γ3.1,0(η(χ),R(χ,σ,m, r,U1), T
′),

where γ3.1,0 is the corresponding constant from Theorem 3.1. The estimate from this theorem 
applied to (5.17) then yields

‖zn‖2
G0(�) ≤ e2γ T ‖zn‖2

G0,γ (�) (5.21)

≤ C0e
2γ T ′(‖w0,n − w0,∞‖2

L2(R3+)
+ ‖∂αgn − ∂αg∞‖2

E0,γ (J×∂R3+)
+ ‖fα,n − fα,∞‖2

L2
γ (�)

)

where C0(χ, σ, m, r, U1, T ′) is the maximum of the constants C0 and C0,0 appearing in Theo-
rem 3.1. Because of (5.7), Lemma 2.4 provides a constant C2.4 = C2.4(χ, σ, m, r, U1) such that

‖w0,n − w0,∞‖L2(R3+)

= ‖∂(0,α1,α2,0)S 3 (0, fn,u0,n) − ∂(0,α1,α2,0)S 3 (0, f,u0)‖ 2 3
χ,σ,R+,m,α0 χ,σ,R+,m,α0 L (R+)
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≤ C2.4

(m−1∑
j=0

‖∂j
t fn(0) − ∂

j
t f (0)‖Hm−j−1(R3+) + ‖u0,n − u0‖Hm(R3+)

)

for all n ∈N. Inserting this estimate together with (5.13) into (5.21), we derive

‖zn‖2
G0(�) ≤ C5.22

(m−1∑
j=0

‖∂j
t fn(0) − ∂

j
t f (0)‖2

Hm−j−1(R3+)
+ ‖u0,n − u0‖2

Hm(R3+)

+ ‖gn − g‖2
Em(J×∂R3+)

+ ‖fn − f ‖2
Hm(�) + ‖un − u‖2

Gm−1(�)

)

+ C5.22

T∫
0

h2
n(s)ds + C5.22

T∫
0

∑
α̃∈N4

0,|α̃|=m

‖∂α̃un(s) − ∂α̃u(s)‖2
L2(R3+)

ds,

for all n ∈ N, where we introduce a constant C5.22 = C5.22(χ, σ, m, r, U1, T ′). We write a′
n for 

the first part of the above right-hand side. It follows

‖zn‖2
G0(�) ≤ a′

n + C5.22

T∫
0

∑
α̃∈N4

0,|α̃|=m

‖∂α̃un(s) − ∂α̃u(s)‖2
L2(R3+)

ds, (5.22)

for all n ∈ N. Observe that a′
n converges to 0 as n → ∞ by our assumptions, (5.5), and (5.12). 

Formula (5.18) and inequality (5.22) imply that

‖∂αun − ∂αu‖2
G0(�)

= ‖wn + zn − ∂αu‖2
G0(�) ≤ 2‖wn − ∂αu‖2

G0(�) + 2‖zn‖2
G0(�)

≤ 2‖wn − ∂αu‖2
G0(�) + 2a′

n + 2C5.22

T∫
0

∑
α̃∈N4

0,|α̃|=m

‖∂α̃un(s) − ∂α̃u(s)‖2
L2(R3+)

ds

= aα,n + C5.23

T∫
0

∑
α̃∈N4

0,|α̃|=m

‖∂α̃un(s) − ∂α̃u(s)‖2
L2(R3+)

ds, (5.23)

for all n ∈N. Here we set C5.23 = C5.23(χ, σ, m, r, U1, T ′) and note that

aα,n := 2‖wn − ∂αu‖2
G0(�) + 2a′

n −→ 0

as n → ∞ by (5.20).
III) We claim that for all multiindices α ∈ N

4
0 with |α| = m there is a sequence (aα,n)n and a 

constant Cα = Cα(χ, σ, m, r, U1, T ′) such that

‖∂αun − ∂αu‖2
G0(�) ≤ aα,n + Cα

T∫ ∑
α̃∈N4,|α̃|=m

‖∂α̃un(s) − ∂α̃u(s)‖2
L2(R3+)

ds (5.24)
0 0
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for all n ∈N and

aα,n −→ 0 (5.25)

as n → ∞. One proves this assertion by induction with respect to α3. Observe that step II) 
shows the claim for the case α3 = 0. In the induction step one assumes that there is an index 
l ∈ {1, . . . , m} such that the assertion is true for all α ∈ N

4
0 with |α| = m and α3 = l − 1. Take 

α ∈N
4
0 with |α| = m and α3 = l. We set α′ = α − e3.

Unfortunately we cannot directly apply Lemma 4.3 here, since it was derived for a fixed differ-
ential operator. If we apply only one such operator to a difference of solutions we experience the 
typical loss of derivatives. Therefore, one has to repeat the key step of the proof of Lemma 4.3 for 
the operators Ln and the difference ∂α′

un − ∂α′
u. In this calculation we use results from step II) 

such as estimate (5.15). Since in this very lengthy reasoning essentially the same arguments are 
employed as in [35], we decided to omit these calculations here. The details can be found in 
steps III) to V) of the proof of Lemma 7.22 in [34].

We define an and Cm = Cm(χ, σ, r, U1, T ′) by

an =
∑

α̃∈N4
0,|α̃|=m

aα̃,n, Cm =
∑

α̃∈N4
0,|α̃|=m

Cα̃,

for all n ∈N. Summing (5.24) over all multiindices α ∈N
4
0 with |α| = m, we then derive

∑
α̃∈N4

0,|α̃|=m

‖∂α̃un(T ) − ∂α̃u(T )‖2
L2(R3+)

≤
∑

α̃∈N4
0,|α̃|=m

‖∂α̃un − ∂α̃u‖2
G0(�)

≤ an + Cm

T∫
0

∑
α̃∈N4

0,|α̃|=m

‖∂α̃un(s) − ∂α̃u(s)‖2
L2(R3+)

ds

for all n ∈N. Since T ∈ (0, T ′] was arbitrary, Gronwall’s lemma shows that

∑
α̃∈N4

0,|α̃|=m

‖∂α̃un(T ) − ∂α̃u(T )‖2
L2(R3+)

≤ ane
CmT

for all T ∈ [0, T ′] and n ∈N. As (an)n converges to 0 due to (5.25), we finally arrive at

∑
α̃∈N4

0,|α̃|=m

‖∂α̃un − ∂α̃u‖2
G0(J

′×R
3+)

≤ ane
CmT ′ −→ 0

as n → ∞. Since ‖un −u‖Gm−1(J
′×R

3+) tends to zero as n → ∞ by assumption, we conclude that 

(un)n converges to u in Gm(J ′ ×R
3+). �

Finally, we can prove the full local wellposedness theorem. In the following we will write 
BM(x, r) for the ball of radius r around a point x from a metric space M . For times t0 < T we 
further set
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Mχ,σ,m(t0, T ) = {(f̃ , g̃, ũ0) ∈ Hm((t0, T ) × G) × Em((t0, T ) × ∂G) × Hm(G) :
(χ,σ, t0,B, f̃ , g̃, ũ0) is compatible of order m},

d((f̃1, g̃1, ũ0,1), (f̃2, g̃2, ũ0,2))

= max{‖f̃1 − f̃2‖Hm((t0,T )×G),‖g̃1 − g̃2‖Em((t0,T )×∂G),‖ũ0,1 − ũ0,2‖Hm(G)}.

Theorem 5.3. Let m ∈ N with m ≥ 3 and fix t0 ∈ R. Take functions χ ∈ MLm,6,c
pd (G, U) and 

σ ∈ MLm,6,c(G, U) and set

B(x) =
⎛
⎝ 0 ν3(x) −ν2(x) 0 0 0

−ν3(x) 0 ν1(x) 0 0 0
ν2(x) −ν1(x) 0 0 0 0

⎞
⎠

for all x ∈ ∂G, where ν denotes the unit outer normal vector of ∂G. Choose data u0 ∈ Hm(G), 
g ∈ Em((−T , T ) × ∂G), and f ∈ Hm((−T , T ) × G) for all T > 0 such that imu0 ⊆ U and the 
tuple (χ, σ, t0, B, f, g, u0) fulfills the compatibility conditions (2.10) of order m. For the maximal 
existence times from Definition 3.5 we then have

T+ = T+(m, t0, f, g,u0) = T+(k, t0, f, g,u0),

T− = T−(m, t0, f, g,u0) = T−(k, t0, f, g,u0)

for all k ∈ {3, . . . , m}. The following assertions are true.

(1) There exists a unique maximal solution u of (1.6) which belongs to the function space ⋂m
j=0 Cj ((T−, T+), Hm−j (G)).

(2) If T+ < ∞, then
(a) the solution u leaves every compact subset of U , or
(b) lim supt↗T+ ‖∇u(t)‖L∞(G) = ∞.
The analogous result holds for T−.

(3) Let T ′ ∈ (t0, T+). Then there is a number δ > 0 such that for all data f̃ ∈ Hm((t0, T+) ×G), 
g̃ ∈ Em((t0, T+) × ∂G), and ũ0 ∈ Hm(G) fulfilling

‖f̃ − f ‖Hm((t0,T+)×G) < δ, ‖g̃ − g‖Em((t0,T+)×∂G) < δ, ‖ũ0 − u0‖Hm(G) < δ

and the compatibility conditions (2.10) of order m, the maximal existence time satisfies 
T+(m, t0, f̃ , g̃, ũ0) > T ′. We denote by u(·; f̃ , g̃, ũ0) the corresponding maximal solution 
of (1.6). The flow map

� : BMχ,σ,m(t0,T+)((f, g,u0), δ) → Gm((t0, T
′) × G),

(f̃ , g̃, ũ0) 	→ u(·; f̃ , g̃, ũ0),

is continuous. Moreover, there is a constant C = C(χ, σ, m, r, T+ − t0, κ0) such that
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‖�(f̃1, g̃1, ũ0,1) − �(f̃2, g̃2, ũ0,2)‖Gm−1((t0,T
′)×G)

≤ C

m−1∑
j=0

‖∂j
t f̃1(t0) − ∂

j
t f̃2(t0)‖Hm−j−1(G) + C‖g̃1 − g̃2‖Em−1((t0,T

′)×∂G)

+ C‖ũ0,1 − ũ0,2‖Hm(G) + C‖f̃1 − f̃2‖Hm−1((t0,T
′)×G) (5.26)

for all (f̃1, g̃1, ũ0,1), (f̃2, g̃2, ũ0,2) ∈ BMχ,σ,m(t0,T+)((f, g, u0), δ), where κ0 = dist(imu0, ∂U). 
The analogous result is true for T−.

Proof. We show the assertion for T+, the proofs for T− are analogous. Let k ∈ {3, . . . , m − 1}. 
We have T+ = T+(m, t0, f, g, u0) ≤ T+(k, t0, f, g, u0) by definition. Assume now that T+ <

T+(k, t0, f, g, u0). Then T+ < ∞ and the maximal Hm(G)-solution u of (1.6), which exists on 
(t0, T+), can be extended to a Hk(G)-solution on (t0, T+(k, t0, f, g, u0)) by the definition of the 
maximal existence time and Lemma 3.2. It follows that

sup
t∈(t0,T+)

‖u(t)‖Hk(G) < ∞ and lim inf
t↗T+

dist({u(t, x) : x ∈ G}, ∂U) > 0. (5.27)

Sobolev’s embedding thus implies

ω0 := sup
t∈(t0,T+)

‖u(t)‖W 1,∞(G) < ∞.

Pick a radius ρ > 0 such that

m−1∑
j=0

‖∂j
t f (t0)‖Hm−j−1(G) + ‖g‖Em((t0,T+)×∂G) + ‖u0‖Hm(G) + ‖f ‖Hm((t0,T+)×G) < ρ.

Due to (5.27) and the boundedness of u there is a compact subset U1 of U such that imu(t) ⊆ U1
for all t ∈ [t0, T+]. Proposition 4.4 then yields the bound

sup
t∈(t0,T+)

‖u(t)‖2
Hm(G) ≤ C4.4(χ,σ,m,ρ,ω0,U1, T+ − t0) · Cρ2.

But by Lemma 4.1 and (5.27) we have limt↗T+ ‖u(t)‖Hm(G) = ∞ and thus a contradiction. We 
conclude that T+(k, t0, f, g, u0) = T+.

Assertion (1) is just Proposition 3.6. To show (2), assume that T+ < ∞ and that Properties (2)a
and (2)b do not hold. We then have

ω0 := sup
t∈(t0,T+)

‖u(t)‖W 1,∞(G) < ∞

and there is a compact subset U1 of U such that imu(t) ⊆ U1 for all t ∈ [t0, T+]. We apply 
Proposition 4.4 with T ∗ = T+ again to deduce

‖u(t)‖2
Hm(G) ≤ C4.4(χ,σ,m, r,ω0,U1, T+ − t0) · Cr2
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for all t ∈ (t0, T+) and thus supt∈(t0,T+) ‖u(t)‖Hm(G) < ∞. Lemma 4.1 however shows that 
limt↗T+ ‖u(t)‖H 3(G) = ∞. We thus obtain a contradiction.

(3) Let T ′ ∈ (t0, T+). Without loss of generality we assume that χ and σ satisfy (2.11), 
cf. Remark 2.5. The difficulty in assertion (3) is to make sure that the solutions to the data in 
the neighborhood we have to construct exist at least till T ′. To that purpose we use an itera-
tive scheme that allows us to apply Theorem 3.3 with the same minimal time step size in each 
iteration.

Recall that by Sobolev’s embedding there is a constant depending only on the length of the 
interval [t0, T+) such that

‖f̃ ‖Gm−1((t0,T+)×G) ≤ CS‖f̃ ‖Hm((t0,T+)×G) (5.28)

for all f̃ ∈ Hm((t0, T+) × G). Fix a time T ∗ ∈ (T ′, T+). We pick two radii 0 < r0 < r < ∞ such 
that

‖u0‖Hm(G) + ‖f ‖Gm−1((t0,T+)×G) + ‖f ‖Hm((t0,T+)×G) < r0,

CSmr0 < r, and ‖u‖Gm((t0,T
∗)×G) < r. (5.29)

Moreover, there is a compact subset U1 of U such that imu(t) ⊆ U1 for all t ∈ [t0, T ∗]. 
Lemma 2.1 thus provides a number r̃ = r̃(χ, σ, m, r, U1) with

‖χ(u)‖Fm((t0,T
∗)×G) + ‖σ(u)‖Fm((t0,T

∗)×G) ≤ r̃ ,

max{‖χ(u)(t0)‖F 0
m−1(G), max

1≤j≤m−1
‖∂j

t χ(u)(t0)‖Hm−j−1(G)} ≤ r̃ ,

max{‖σ(u)(t0)‖F 0
m−1(G), max

1≤j≤m−1
‖∂j

t σ (u)(t0)‖Hm−j−1(G)} ≤ r̃ . (5.30)

I) Let t ′ ∈ (t0, T ∗) and (f̃ , g̃, ũ0) ∈ Mχ,σ,m(t0, T+). Assume that the solution ũ of (1.6) with 
data f̃ , g̃, ũ0 exists on [t0, t ′] and thus belongs to Gm((t0, t ′) ×G). Pick a radius R′ and a compact 
subset Ũ1 of U such that ‖ũ‖Gm((t0,t

′)×G) ≤ R′ and imu(t), im ũ(t) ⊆ Ũ1 for all t ∈ [t0, t ′]. Set 
T̃ = T+ − t0. We first show the inequality

‖ũ − u‖2
Gm−1((t0,t

′)×G) ≤ C‖f̃ − f ‖2
Hm−1((t0,t

′)×G)
+ C‖g̃ − g‖Em−1((t0,t

′)×∂G) (5.31)

+ C
(m−1∑

j=0

‖∂j
t f̃ (t0) − ∂

j
t f (t0)‖2

Hm−j−1(G)
+ ‖ũ0 − u0‖2

Hm(G)

)
,

for a constant C = C(χ, σ, m, r, R′, Ũ1, T̃ ). To this aim, we apply the linear differential operator 
L = L(χ(u), Aco

1 , Aco
2 , Aco

3 , σ(u)) to ũ − u. We obtain

L(ũ − u) = f̃ + (χ(u) − χ(ũ))∂t ũ + (σ (u) − σ(ũ))ũ − f =: F.

Lemma 2.1 and [35, Lemma 2.1] show that F is an element of Hm−1((t0, t ′) × G). Set

γ0 = γ0(χ,σ,m, r,U1, T̃ ) = γ3.1;0(η(χ), r̃, T̃ ) ≥ 1,
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where χ ≥ η(χ) > 0 and γ3.1;0 is the corresponding constant from Theorem 3.1. This theorem 
then yields

‖ũ − u‖2
Gm−1,γ ((t0,t

′)×G)

≤ (C3.1;m,0 + T̃ C3.1;m)emC3.1;1T̃
(m−2∑

j=0

‖∂j
t F (t0)‖2

Hm−2−j (G)
+ ‖ũ0 − u0‖2

Hm−1(G)

+ ‖g̃ − g‖2
Em−1,γ ((t0,t

′)×∂G)

)
+ C3.1;m

γ
‖F‖2

Hm−1
γ ((t0,t

′)×G)
(5.32)

for all γ ≥ γ0, where C3.1;m,0 = C3.1;m,0(η(χ), ̃r), C3.1;m = C3.1;m(η(χ), ̃r, T̃ ), and C3.1;1 =
C3.1;1(η(χ), ̃r, T̃ ) are the corresponding constants from Theorem 3.1. We next apply part (2) of 
Lemma 2.1 from [35] and then Corollary 2.2 to obtain

‖F‖2
Hm−1

γ ((t0,t
′)×G)

(5.33)

≤ C‖f̃ − f ‖2
Hm−1

γ ((t0,t
′)×G)

+ CT̃ ‖χ(ũ) − χ(u)‖2
Gm−1,γ ((t0,t

′)×G)‖∂t ũ‖2
Gm−1((t0,t

′)×G)

+ CT̃ ‖σ(ũ) − σ(u)‖2
Gm−1,γ ((t0,t

′)×G)‖ũ‖2
Gm−1((t0,t

′)×G)

≤ C‖f̃ − f ‖2
Hm−1

γ ((t0,t
′)×G)

+ C(χ,σ,m, r,R′, Ũ1, T̃ )‖ũ − u‖2
Gm−1,γ ((t0,t

′)×G).

Let j ∈ {0, . . . , m − 2}. To treat ∂j
t F (t0), we employ Lemma 2.1 and the definition of the Ml

k

in (2.8). The same arguments as in the proof of Lemma 2.4 then show that

‖∂j
t F (t0)‖Hm−2−j (G) (5.34)

≤ ‖∂j
t F (t0)‖Hm−1−j (G)

≤ C(χ,σ,m, r,R′, Ũ1)
(m−1∑

l=0

‖∂l
t f (t0) − ∂l

t f̃ (t0)‖Hm−l−1(G) + ‖u0 − ũ0‖Hm(G)

)
.

We obtain a constant C5.35 = C5.35(χ, σ, m, r, R′, Ũ1, T̃ ) and the bound

‖ũ − u‖2
Gm−1,γ ((t0,t

′)×G) (5.35)

≤ C5.35

( 1

γ
‖ũ − u‖2

Gm−1,γ ((t0,t
′)×G) +

m−1∑
l=0

‖∂l
t f̃ (t0) − ∂l

t f (t0)‖2
Hm−l−1(G)

+ ‖g̃ − g‖2
Em−1,γ ((t0,t

′)×∂G) + ‖ũ0 − u0‖2
Hm(G) + ‖f̃ − f ‖2

Hm−1
γ ((t0,t

′)×G)

)
for all γ ≥ γ0 by inserting (5.33) and (5.34) into (5.32). We next fix a number γ =
γ (χ, σ, m, r, R′, Ũ1, T̃ ) with γ ≥ γ0 and C5.35

1
γ

≤ 1
2 to infer that (5.31) is true.

II) Recall that U1 is a compact subset of U such that imu(t) ⊆ U1 for all t ∈ [t0, T ∗]. Pick a 
number κ such that



JID:YJDEQ AID:9589 /FLA [m1+; v1.289; Prn:22/10/2018; 11:29] P.42 (1-52)

42 M. Spitz / J. Differential Equations ••• (••••) •••–•••
2κ < dist(U1, ∂U). (5.36)

Take the time step τ = τ(χ, σ, m, T̃ , 4r, κ) from Theorem 3.3. Choose an index N ∈ N with

t0 + (N − 1)τ < T ′ ≤ t0 + Nτ.

We set tk = t0 + kτ for k ∈ {1, . . . , N − 1}. If t0 + Nτ < T ∗, we put tN = t0 + Nτ ; else we take 
any tN from (T ′, T ∗).

Let 0 < δ0 < r0 be so small that CSobδ0 < κ , where CSob is the norm of the embedding from 
H 2(G) ↪→ L∞(G). As in (3.4) and (3.6) we define the compact sets

Uκ = {y ∈ U : dist(y, ∂U) ≥ κ} ∩ B2CSob4r (0) and Ũκ = Uκ + B(0, κ/2).

Take (f̃ , g̃, ũ0) ∈ BMχ,σ,m(t0,T+)((f, g, u0), δ0). Using the choice of r and r0 in (5.29), we deduce 
that

‖ũ0‖Hm(G) ≤ ‖u0‖Hm(G) + ‖ũ0 − u0‖Hm(G) ≤ r0 + δ0 < 2r0 < 2r,

‖g̃‖Em((t0,T
′)×∂G) ≤ r0 + δ0 < 2r, ‖f̃ ‖Hm((t0,T

′)×G) ≤ r0 + δ0 < 2r, (5.37)

m−1∑
j=0

‖∂j
t f̃ (t0)‖Hm−1−j (G) ≤ m‖f̃ ‖Gm−1((t0,T

′)×G) ≤ CSm‖f̃ ‖Hm((t0,T
′)×G)

< 2CSmr0 < 2r. (5.38)

Moreover, ‖ũ0 − u0‖L∞(G) ≤ CSobδ0 < κ so that im ũ0 is contained in Uκ . So Theorem 3.3
shows that the solution ũ of (1.6) with data f̃ , g̃, and ũ0 at t0 exists on [t0, t1] and belongs to 
Gm((t0, t1) ×G). Moreover, the proof of this theorem yields a radius R = R3.3(χ, σ, m, 4r, κ) >
4r , see (3.10), such that ‖ũ‖Gm((t0,t1)×G) ≤ R. This proof also shows that im ũ(t) ⊆ Ũκ for all t ∈
[t0, t1], cf. (3.6). We conclude that � maps BMχ,σ,m(t0,T+)((f, g, u0), δ0) into BGm((t0,t1)×G)(0, R). 
We further deduce from (5.31) that there is a constant

C5.39 = C5.39(χ,σ,m, r, T̃ , κ) = C5.31(χ,σ,m, r,R(χ,σ,m, r, κ), Ũκ , T̃ )

such that

‖�(f̃ , g̃, ũ0) − �(f,g,u0)‖2
Gm−1((t0,t1)×G)

≤ C5.39‖f̃ − f ‖2
Hm−1((t0,t1)×G)

+ C5.39‖g̃ − g‖2
Em−1((t0,t

′)×∂G)

+ C5.39

(m−1∑
j=0

‖∂j
t f̃ (t0) − ∂

j
t f (t0)‖2

Hm−j−1(G)
+ ‖ũ0 − u0‖2

Hm(G)

)
(5.39)

for all (f̃ , g̃, ũ0) ∈ BMχ,σ,m(t0,T+)((f, g, u0), δ0).
Next take a sequence (fn, gn, u0,n)n in BMχ,σ,m(t0,T+)((f, g, u0), δ0) which converges to 

(f, g, u0) in this space. Since
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m−1∑
j=0

‖∂j
t fn(t0) − ∂

j
t f (t0)‖2

Hm−j−1(G)
≤ mCS‖fn − f ‖Hm((t0,T+)×G) −→ 0 (5.40)

as n → ∞, estimate (5.39) yields the limit

‖�(fn,gn,u0,n) − �(f,g,u0)‖Gm−1((t0,t1)×G) −→ 0

as n → ∞. Lemma 5.2 thus shows that (�(fn, gn, u0,n))n converges to �(f, g, u0) in 
Gm((t0, t1) × G). We conclude that the map

� : BMχ,σ,m(t0,T+)((f, g,u0), δ0) → Gm((t0, t1) × G)

is continuous at (f, g, u0). Using also (5.29) and (5.36), we find a number δ1 ∈ (0, δ0] such that 
for all data (f̃ , g̃, ũ0) ∈ BMχ,σ,m(t0,T+)((f, g, u0), δ1) the function �(f̃ , g̃, ũ0) exists on [t0, t1]
and satisfies (5.39) and

‖�(f̃ , g̃, ũ0)‖Gm((t0,t1)×G)

≤ ‖�(f̃ , g̃, ũ0) − �(f,g,u0)‖Gm((t0,t1)×G) + ‖�(f,g,u0)‖Gm((t0,t1)×G) < 2r,

dist(im�(f̃ , g̃, ũ0)(t), ∂U) > κ,

for all t ∈ [t0, t1].
Now assume that there is an index j ∈ {1, . . . , N − 1} and a number δj > 0 such that 

�(f̃ , g̃, ũ0) exists on [t0, tj ] and satisfies

‖�(f̃ , g̃, ũ0)‖Gm((t0,tj )×G) < 2r and dist(im�(f̃ , g̃, ũ0)(t), ∂U) > κ

for all t ∈ [t0, tj ] and (f̃ , g̃, ũ0) ∈ BMχ,σ,m(t0,T+)((f, g, u0), δj ).

Fix such a tuple (f̃ , g̃, ũ0). Then the tuple (χ, σ, tj , B, f̃ , g̃, �(f̃ , g̃, ũ0)(tj )) fulfills the non-
linear compatibility conditions (2.10) of order m by (2.9) and

‖�(f̃ , g̃, ũ0)(tj )‖Hm(G) ≤ ‖�(f̃ , g̃, ũ0)‖Gm((t0,tj )×G) < 2r,

dist(im�(f̃ , g̃, ũ0)(tj ), ∂U) > κ.

In view of (5.37) and (5.38), Theorem 3.3 shows that the problem (1.6) with inhomogeneity f̃ , 
boundary value g̃, and initial value �(f̃ , g̃, ũ0)(tj ) at initial time tj has a unique solution ũj on 
[tj , tj+1], which is bounded by R in Gm((tj , tj+1) × G) and whose image is contained in Ũκ . 
Concatenating �(f̃ , g̃, ũ0) and ũj , we obtain a solution of (1.6) with data f̃ , g̃, and ũ0 at initial 
time t0, cf. Remark 3.4. This means that �(f̃ , g̃, ũ0) exists on [t0, tj+1]. Uniqueness of solutions 
of (1.6), i.e. Lemma 3.2, further yields �(f̃ , g̃, ũ0)|[tj ,tj+1] = ũj so that

‖�(f̃ , g̃, ũ0)‖Gm((t0,tj+1)×G) ≤ max{‖�(f̃ , g̃, ũ0)‖Gm((t0,tj )×G),‖ũj‖Gm((tj ,tj+1)×G)}
≤ max{2r,R} ≤ R.
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As for the interval [t0, t1], we obtain a number δj+1 ∈ (0, δj ] such that

‖�(f̃ , g̃, ũ0)‖Gm((t0,tj+1)×G) < 2r and dist(im�(f̃ , g̃, ũ0)(t), ∂U) > κ

for all t ∈ [t0, tj+1] and (f̃ , g̃, ũ0) ∈ BMχ,σ,m(t0,T+)((f, g, u0), δj+1).
By induction, the above property holds for j + 1 = N , so that

T+(m, t0, f̃ , g̃, ũ0) > tN ≥ T ′

for all (f̃ , g̃, ũ0) ∈ BMχ,σ,m(t0,T+)((f, g, u0), δN).

Next fix two tuples (f̃1, g̃1, ũ0,1) and (f̃2, g̃2, ũ0,2) in BMχ,σ,m(t0,T+)((f, g, u0), δN). Replacing 
u by �(f̃2, g̃2, ũ0,2) in step I), we deduce from (5.31) that

‖�(f̃1, g̃1, ũ0,1) − �(f̃2, g̃2, ũ0,2)‖2
Gm−1((t0,T

′)×G)

≤ C‖f̃1 − f̃2‖2
Hm−1((t0,T

′)×G)
+ C‖g̃1 − g̃2‖2

Em−1((t0,T
′)×G)

+ C
(m−1∑

j=0

‖∂j
t f̃1(t0) − ∂

j
t f̃2(t0)‖2

Hm−j−1(G)
+ ‖ũ0,1 − ũ0,2‖2

Hm(G)

)
, (5.41)

where C = C(χ, σ, m, r, T̃ , κ) = C5.31(χ, σ, m, 2r, 2r, Uκ , T̃ ) and the constant C5.31 from (5.31). 
This estimate implies (5.26).

Finally, we take a sequence (f̃n, g̃n, ũ0,n)n in BMχ,σ,m(t0,T+)((f, g, u0), δN) which converges 
to (f̃1, g̃1, ũ0,1) in Mχ,σ,m(t0, T+). Employing (5.28), we deduce from (5.41) that �(f̃n, g̃n, ũ0,n)

tends to �(f̃1, g̃1, ũ0,1) in the space Gm−1((t0, T ′) ×G) as n → ∞. Lemma 5.2 therefore implies 
that

‖�(f̃n, g̃n, ũ0,n) − �(f̃1, g̃1, ũ0,1)‖Gm((t0,T
′)×G) −→ 0

as n → ∞. Consequently, the flow map

� : BMχ,σ,m(t0,T+)((f, g,u0), δN) → Gm((t0, T
′) × G)

is continuous at (f̃1, g̃1, ũ0,1) and thus on BMχ,σ,m(t0,T+)((f, g, u0), δN). �
6. Finite propagation speed

We finally prove that solutions of (1.6) have finite propagation speed, i.e., that initial distur-
bances travel with finite speed. Several techniques to establish this property have been developed 
in the literature, see e.g. [3,5,13]. While these references work on the full space, finite speed 
of propagation is proven for an initial boundary value problem in [8], making however several 
structural assumptions on the problem which are not fulfilled by Maxwell’s equations. We thus 
follow a different approach and show that the technique of weighted energy estimates from [3]
is well adaptable to our setting.
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We first prove the finite propagation speed property for the corresponding linear problem (3.1). 
This result can be transferred to domains via localization as in the previous sections, see [34, 
Chapter 6] for details. We concentrate on the half-space case here since in this case one sees 
much better how the maximal propagation speed depends on the coefficients. We however note 
that the coefficients on the half-space arising after localization depend on the charts of ∂G so 
that the maximal propagation speed of the solution on domains depends on the shape of ∂G. We 
refer to Theorem 6.1 of [34] for a result on G itself.

In this section we set J = (0, T ) for a time T > 0.

Theorem 6.1. Let η > 0, A0 ∈ F c
3,η(�), A1, A2 ∈ F

cp
3,coeff(R

3+), A3 = Aco
3 , D ∈ F c

3 (�), and B =
Bco. We set

C0 = 1

η

3∑
j=1

‖Aj‖L∞(�).

Let R > 0 and x0 ∈R
3+. We define the backward cone C by

C = {(t, x) ∈R×R
3 : |x − x0| < R − C0 t}.

Let f ∈ L2(�), g ∈ L2(J, H 1/2(∂R3+)), and u0 ∈ L2(R3+) satisfy

f = 0 on C ∩ �,

g = 0 on C ∩ (J × ∂R3+),

u0 = 0 on Ct=0 ∩R
3+,

where Ct=0 = {x ∈ R
3 : (0, x) ∈ C}. Then the unique solution u ∈ C(J , L2(R3+)) of the linear 

initial boundary value problem (3.1) with inhomogeneity f , boundary value g, and initial value 
u0 vanishes on the cone C, i.e.,

u(t, x) = 0 for almost all (t, x) ∈ C ∩ �.

Proof. I) Let ε > 0 and set K = C−1
0 . We fix a function ψ ∈ C∞(R3) with

− 2ε + K(R − |x − x0|) ≤ ψ(x) ≤ −ε + K(R − |x − x0|) for all x ∈ R
3, (6.1)

‖∇ψ‖L∞(R3) ≤ K, (6.2)

see step I) of the proof of Theorem 6.1 in [34]. We first assume that f belongs to H 1(�), g
to E1(J × ∂R3+), and u0 to H 1(R3+) and that (t0, A0, . . . , A3, D, B, f, g, u0) fulfills the linear 
compatibility conditions of first order. Fix ε > 0. We introduce the cone

Cε = {(t, x) ∈R×R
3 : |x − x0| < R − C0t − C0ε}.

The cone Ct=0,ε is defined analogously. We set
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�(t, x) = −t + ψ(x)

for all (t, x) ∈ R ×R
3. Note that � belongs to C∞(J ×R

3+). We next want to derive a weighted 
energy inequality for u. To that purpose, we define

uτ = eτ�u, fτ = eτ�f, gτ = eτ�(·,0)g, u0,τ = eτ�(0,·)u0

for all τ > 0. Observe that there is a constant C = C(τ, ε) such that

eτ�(t,x) +
3∑

j=0

|∂j e
τ�(t,x)| ≤ Ce−τK|x−x0|

for all (t, x) ∈ [0, ∞) × R
3 and τ > 0. We further observe that u belongs to G1(�) by Theo-

rem 3.1. Consequently, we infer that uτ is contained in G1(�), fτ in H 1(�), gτ in E1(J ×∂R3+), 
and u0,τ in H 1(R3+) for all τ > 0. With this amount of regularity we can compute

A0∂tuτ +
3∑

j=1

Aj∂juτ + Duτ = fτ − τ
(
A0 −

3∑
j=1

∂jψAj

)
uτ (6.3)

for all τ > 0. These functions also satisfy uτ (0) = u0,τ on R3+ and Buτ = gτ on J × ∂R3+ for all 
τ > 0.

Moreover, A0 − ∑3
j=1 ∂jψAj is uniformly positive semidefinite since

((
A0 −

3∑
j=1

∂jψAj

)
ξ, ξ

)
R6×R6

≥ η|ξ |2 −
3∑

j=1

‖∂jψ‖L∞(R3)‖Aj‖L∞(�)|ξ |2

≥ η|ξ |2 − ηKC0|ξ |2 = 0

on � for ξ ∈ R
6, where we used the definition of C0 = K−1. Identity (6.3) in combination with 

this estimate then yields

∂t 〈A0uτ ,uτ 〉L2(R3+)×L2(R3+)

= 〈∂tA0uτ ,uτ 〉L2(R3+)×L2(R3+) + 2
〈
fτ −

3∑
j=1

Aj∂juτ − Duτ ,uτ

〉
L2(R3+)×L2(R3+)

− 2τ
〈(

A0 −
3∑

j=1

∂jψAj

)
uτ ,uτ

〉
L2(R3+)×L2(R3+)

≤ 〈∂tA0uτ ,uτ 〉L2(R3+)×L2(R3+) − 2
3∑

j=1

〈Aj∂juτ , uτ 〉L2(R3+)×L2(R3+)

− 2〈Duτ ,uτ 〉L2(R3+)×L2(R3+) + 2〈fτ ,uτ 〉L2(R3+)×L2(R3+)
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for almost all t ∈ J and for all τ > 0. Hence,

η‖uτ (t)‖2
L2(R3+)

≤ 〈A0uτ ,uτ 〉L2(R3+)×L2(R3+)

= 〈A0(0)uτ (0), uτ (0)〉L2(R3+)×L2(R3+) +
t∫

0

∂t 〈A0uτ ,uτ 〉L2(R3+)×L2(R3+)(s)ds

≤ ‖A0‖L∞(�)‖u0,τ‖2
L2(R3+)

+ (‖∂tA0‖L∞(�) + 2‖D‖L∞(�))

t∫
0

‖uτ (s)‖2
L2(R3+)

ds

− 2
3∑

j=1

t∫
0

〈Aj(s)∂juτ (s), uτ (s)〉L2(R3+)×L2(R3+)ds

+ 2

t∫
0

‖fτ (s)‖L2(R3+)‖uτ (s)‖L2(R3+)ds (6.4)

for all t ∈ J and τ > 0. Since uτ ∈ G1(�), the symmetry of the matrices Aj further implies

〈Aj∂juτ , uτ 〉L2(R3+)×L2(R3+) = −1

2
〈∂jAjuτ ,uτ 〉L2(R3+)×L2(R3+), (6.5)

〈A3∂3uτ ,uτ 〉L2(R3+)×L2(R3+) = −1

2
〈∂3A3uτ ,uτ 〉L2(R3+)×L2(R3+)

− 1

2

∫
∂R3+

tr(A3uτ )(σ ) tr(uτ )(σ )dσ (6.6)

on J for j ∈ {1, 2} by integration by parts. We set

C1 = 1

η

( 3∑
j=0

‖Aj‖W 1,∞(�) + 2‖D‖L∞(�) + 1

η

)
.

Inserting (6.5) and (6.6) into (6.4), we derive

η‖uτ (t)‖2
L2(R3+)

≤ ηC1‖u0,τ‖2
L2(R3+)

+ η‖fτ‖2
L2(�)

+ ηC1

t∫
0

‖uτ (s)‖2
L2(R3+)

ds

+ 〈tr(A3uτ ), truτ 〉L2(�t )×L2(�t )
(6.7)
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for all t ∈ J and τ > 0, where we denote (0, t) × ∂R3+ by �t . In order to estimate the last term 
in (6.7), we recall that the boundary matrix A3 = Aco

3 decomposes as

Aco
3 = 1

2
Cco T Bco + 1

2
Bco T Cco,

see (3.2). Employing Buτ = gτ , B = Bco, and u ∈ G1(�), we thus infer

〈tr(A3uτ ), truτ 〉L2(�t )×L2(�t )
= 〈Cco truτ ,B

co truτ 〉L2(�t )×L2(�t )
(6.8)

= 〈Cco truτ , gτ 〉L2(�t )×L2(�t )
= 〈Cco tru,g2τ 〉L2(�t )×L2(�t )

≤ ‖Cco tru‖L2(�t )
‖g2τ‖L2(�t )

≤ ‖ tru‖L2(�t )
‖g2τ‖L2(�t )

≤ ‖u‖H 1(�)‖g2τ‖L2(�)

for all t ∈ J and τ > 0, where � denotes J × ∂R3+ as usual. We point out that ‖u‖H 1(�) is finite 
as u ∈ G1(�). Estimate (6.7) and (6.8) finally lead to

‖uτ (t)‖2
L2(R3+)

≤ C1‖u0,τ‖2
L2(R3+)

+ ‖fτ‖2
L2(�)

+ 1

η
‖u‖H 1(�)‖g2τ‖L2(�)

+ C1

t∫
0

‖uτ (s)‖2
L2(R3+)

ds

for all t ∈ J and τ > 0 so that Gronwall’s lemma implies

sup
t∈J

‖uτ (t)‖2
L2(R3+)

≤
(
C1‖u0,τ‖2

L2(R3+)
+ ‖fτ‖2

L2(�)
+ 1

η
‖u‖H 1(�)‖g2τ‖L2(�)

)
eC1T (6.9)

for all τ > 0.
III) To exploit the weighted energy estimate (6.9), we take (s, x) from (J × R

3+) \ C, i.e., 
|x − x0| ≥ R − C0s and hence

−s + K(R − |x − x0|) = −s + 1

C0
(R − |x − x0|) ≤ 0.

It follows

eτ�(s,x) = eτ (−s+ψ(x)) ≤ e−τε

for all τ > 0. On the other hand, f (s, x) = 0 for almost all (s, x) ∈ C, g(s, x) = 0 for almost all 
(s, x) ∈ C ∩ (J × ∂R3+), and u0(x) = 0 for almost all x ∈ Ct=0 ∩R

3+. We conclude that

|fτ (s, x)| ≤ |f (s, x)| for all τ > 0 and |fτ (s, x)| −→ 0 as τ → ∞

for almost all (s, x) ∈ J ×R
3+ so that
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‖fτ‖L2(�) −→ 0

as τ → ∞. Analogously, we deduce

‖g2τ‖L2(�) −→ 0 and ‖u0,τ‖L2(R3+) −→ 0

as τ → ∞. By (6.9) the functions uτ thus tend to 0 in G0(�) as τ → ∞, so that

C2 := sup
t∈J,τ>0

‖uτ (t)‖2
L2(R3+)

< ∞. (6.10)

Now take a point (t, x) from C3ε . We then calculate

3ε < K(R − |x − x0|) − t ≤ −t + ψ(x) + 2ε = �(t, x) + 2ε,

ε < �(t, x).

Estimate (6.10) now implies

∫
C3ε∩�

|u(t, x)|2dxdt ≤ e−2ετ

∫
C3ε∩�

e2τ�(t,x)|u(t, x)|2dxdt

≤ e−2ετ T sup
t∈J

‖uτ (t)‖2
L2(R3+)

≤ C2T e−2ετ

for all τ > 0. Letting τ → ∞, we obtain |u(t, x)| = 0 for almost all (t, x) ∈ C3ε .
Finally, we take a sequence (εn)n in (0, 1) with εn → 0 as n → ∞. Since u(t, x) = 0 for 

almost all (t, x) ∈ C3εn for all n ∈N, we conclude that

u(t, x) = 0 for almost all (t, x) ∈
⋃
n∈N

C3εn = C.

IV) Now let f , g, and u0 be as in the assertion. We take a family of functions (fε, gε, u0,ε)

in H 1(�) × E1(J × ∂R3+) × H 1(R3+) for 0 < ε < 1 such that fε converges to f in 
L2(�), gε to g in E0(J × ∂R3+), and u0,ε to u0 in L2(R3+) as ε → 0 and the tuples 
(0, A0, . . . , A3, D, B, fε, gε, u0,ε) are compatible of order 1 for all ε ∈ (0, 1). Such a family 
can be constructed as explained at the beginning of step II) of Lemma 5.1. Using a standard mol-
lifier for the regularization as in step I) of the proof of Theorem 4.13 in [34], we can construct 
this family in such a way that

suppfε ⊆ suppf + B(0, ε), suppgε ⊆ suppg + B(0, ε)

suppu0,ε ⊆ (suppu0 ∪ (suppg(0) × {0})) + B(0, ε)

for all ε ∈ (0, 1).
Let ε ∈ (0, 1) and (s, y) ∈ R × R

3 with (s, y) ∈ CC + B(0, ε), where CC = R
4 \ C. We then 

find (t, x) ∈ CC such that |(t, x) − (s, y)| < ε. Assume that (s, y) belongs to C
(2+ 1

C0
)ε

. We then 

obtain
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R ≤ |x − x0| + C0t ≤ |x − y| + C0(t − s) + |y − x0| + C0s

≤ ε + C0ε + R − C0

(
2 + 1

C0

)
ε = R − C0ε,

which is a contradiction. This means that CC + B(0, ε) ⊆ CC

(2+ 1
C0

)ε
for all ε > 0. We thus arrive 

at

suppfε ∩ � ⊆ (suppf + B(0, ε)) ∩ � ⊆ CC

(2+ 1
C0

)ε
∩ �

for all ε > 0. Analogously, we derive that

suppgε ∩ � ⊆ (suppg + B(0, ε)) ∩ � ⊆ CC

(2+ 1
C0

)ε
∩ �,

suppu0,ε ∩R
3+ ⊆ ((suppu0 ∪ (suppg(0) × {0})) + B(0, ε)) ∩R

3+
⊆ CC

t=0,(2+ 1
C0

)ε
∩R

3+,

for all ε > 0, where CC

t=0,(2+ 1
C0

)ε
=R

3 \C
t=0,(2+ 1

C0
)ε

. Steps II) and III) now show that the unique 

solution uε ∈ C(J , L2(R3+)) of (3.1) with inhomogeneity fε, boundary value gε , and initial value 
u0,ε vanishes on C

(2+ 1
C0

)ε
, i.e., uε(t, x) = 0 for almost all (t, x) ∈ C

(2+ 1
C0

)ε
for each ε > 0.

Take a monotonically decreasing sequence (εn)n in (0, 1) with εn → 0 as n → ∞. By Theo-
rem 3.1 there is a constant C3 and a number γ > 0 such that

‖uεn − u‖2
G0,γ (�) ≤ C3

(
‖u0,εn − u0‖2

L2(R3+)
+ ‖gεn − g‖2

E0,γ (J×∂R3+)
+ 1

γ
‖fεn − f ‖2

L2
γ (�)

)
→ 0

as n → ∞, in particular (uεn)n tends to u in L2(�) as n → ∞. Consequently, there is a sub-
sequence, which we again denote by (uεn)n, which converges pointwise almost everywhere 
to u. Since C

(2+ 1
C0

)εn
⊆ C

(2+ 1
C0

)εm
for all m > n, we infer that u(t, x) = 0 for almost all 

(t, x) ∈ C
(2+ 1

C0
)εn

for all n ∈N. Hence,

u(t, x) = 0 for almost all (t, x) ∈
⋃
n∈N

C
(2+ 1

C0
)εn

= C. �

We also formulate the finite propagation speed property using the forward light cone, cf. [3]. 
This version shows that if the data is supported on a forward light cone, then also the solution is 
supported on this cone.

Corollary 6.2. Let η > 0, A0 ∈ F c
3,η(�), A1, A2 ∈ F

cp
3,coeff(R

3+), A3 = Aco
3 , D ∈ F c

3 (�), and 
B = Bco. We set

C0 = 1

η

3∑
j=1

‖Aj‖L∞(�).
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Let R > 0 and x0 ∈R
3+. We define the forward cone K by

K = {(t, x) ∈ R×R
3 : |x − x0| ≤ R + C0 t}.

Let f ∈ L2(�), g ∈ L2(J, H 1/2(∂R3+)), and u0 ∈ L2(R3+) such that

f = 0 on � \K,

g = 0 on (J × ∂R3+) \K,

u0 = 0 on R
3+ \Kt=0,

where Kt=0 = {x ∈ R
3 : (0, x) ∈ K}. Then the unique solution u ∈ C(J , L2(R3+)) of the linear 

initial boundary value problem (3.1) with inhomogeneity f , boundary value g, and initial value 
u0 is supported in the cone K, i.e.,

u(t, x) = 0 for almost all (t, x) ∈ � \K.

The assertion can be reduced to Theorem 6.1, see [34, Corollary 6.2] for details.

Remark 6.3. In the framework of Theorem 5.3 assume that the data vanish on a backward light 
cone or outside of a forward light cone, see Theorem 6.1 respectively Corollary 6.2 for the pre-
cise statement. Then also the solution of the nonlinear problem (1.6) vanishes on the backward 
respectively forward light cone. This assertion follows from the simple observation that the solu-
tion u of (1.6) also solves the linear problem (1.8) respectively (3.1) with coefficients χ(u) and 
σ(u). Theorem 6.1 respectively Corollary 6.2 then yield the assertion.
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