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Abstract

Some uniform decay estimates are established for solutions of the following type of retarded integral 
inequalities:

y(t) ≤ E(t, τ )‖yτ ‖ + ∫ t
τ K1(t, s)‖ys‖ds + ∫ ∞

t K2(t, s)‖ys‖ds + ρ, t ≥ τ ≥ 0.

As a simple example of application, the retarded scalar functional differential equation ẋ = −a(t)x +
B(t, xt ) is considered, and the global asymptotic stability of the equation is proved under weaker condi-
tions. Another example is the ODE system ẋ = F0(t, x) + ∑m

i=1 Fi(t, x(t − ri (t))) on Rn with superlinear 
nonlinearities Fi (0 ≤ i ≤ m). The existence of a global pullback attractor of the system is established under 
appropriate dissipation conditions.

The third example for application concerns the study of the dynamics of the functional cocycle system 
du
dt

+ Au = F(θtp, ut ) in a Banach space X with sublinear nonlinearity. In particular, the existence and 
uniqueness of a nonautonomous equilibrium solution � is obtained under the hyperbolicity assumption on 
operator A and some additional hypotheses, and the global asymptotic stability of � is also addressed.
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1. Introduction

Decay estimate of solutions is a fundamental problem in the qualitative analysis of evolution 
equations. In most cases this problem can be reduced to differential or integral inequalities. For 
non-retarded evolution equations, numerous inequalities are available to make the performance of 
decay estimate fruitful (see e.g. [1,31,45,46]), among which is the remarkable Gronwall-Bellman 
inequality which was first proposed in Gronwall [15] and later extended to a more general form 
in Bellman [2]. In contrast, the situation in the case of retarded equations seems to be more com-
plicated. Although there have appeared many nice retarded differential and integral inequalities 
in the literature (see e.g. [12,13,16,31,35–37,45,61] and references cited therein), the existing 
ones are far from being adequate to provide easy-to-handle and efficient tools for studying the 
dynamics of this type of equations, and it is still a challenging task to derive decay estimates for 
their solutions, even if for the scalar functional differential equation ẋ = f (t, x, xt ). In fact, it 
is often the case that one has to fall his back on differential/integral inequalities without delay 
when dealing with retarded differential or integral equations, which makes the calculations in the 
argument much involved and restrictive.

In this paper we investigate the following type of retarded integral inequalities:

y(t) ≤ E(t, τ )‖yτ‖ + ∫ t

τ
K1(t, s)‖ys‖ds

+ ∫ ∞
t

K2(t, s)‖ys‖ds + ρ, ∀ t ≥ τ ≥ 0,
(1.1)

where E, K1 and K2 are nonnegative measurable functions on Q := (R+)2, ρ ≥ 0 is a constant, 
‖ · ‖ denotes the usual sup-norm of the space C := C([−r, 0]) for some given r ≥ 0, y(t) is a 
nonnegative continuous function on [−r, ∞) (called a solution of (1.1)), and yt (t ≥ 0) denotes 
the lift of y in C,

yt (s) = y(t + s), s ∈ [−r,0]. (1.2)

Our main purpose is to establish some uniform decay estimates for its solutions. Specifically, let 
E be a function on Q satisfying that

limt→∞ E(t + s, s) = 0 uniformly w.r.t. s ∈R+, (1.3)

and suppose

ϑ(E) := sup
t≥s≥0

E(t, s) ≤ ϑ < ∞, (1.4)

I (K1,K2) := supt≥0

(∫ t

0 K1(t, s)ds + ∫ ∞
t

K2(t, s)ds
)

≤ κ < ∞. (1.5)

Denote Lr (E; K1, K2; ρ) the solution set of (1.1), i.e.,

Lr (E;K1,K2;ρ) = {y ∈ C([−r,∞)) : y ≥ 0 and satisfies (1.1)}. (1.6)

We show that the following theorem holds true.
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Theorem 1.1. Let ϑ and κ be the positive constants in (1.4) and (1.5).

(1) If κ < 1 then for any R, ε > 0, there exists T > 0 such that

‖yt‖ < μρ + ε, t > T (1.7)

for all bounded functions y ∈ Lr (E; K1, K2; ρ) with ‖y0‖ ≤ R, where

μ = 1/(1 − κ). (1.8)

(2) If κ < 1/(1 + ϑ) then there exist M, λ > 0 (independent of ρ) such that

‖yt‖ ≤ M‖y0‖e−λt + γρ, t ≥ 0 (1.9)

for all bounded functions y ∈ Lr (E; K1, K2; ρ), where

γ = (μ + 1)/(1 − κc), c = max (ϑ/(1 − κ), 1) . (1.10)

Remark 1.2. If κ < 1/(1 + ϑ) then one trivially verifies that κc < 1.

The particular case where K2 = 0 is of crucial importance in applications. In such a case we 
show that if I (K1, 0) ≤ κ < 1 then any function y ∈ Lr (E; K1, 0; ρ) is automatically bounded. 
Hence the boundedness requirement on y in Theorem 1.1 can be removed. Consequently we 
have

Theorem 1.3. Let (K1, K2) = (K, 0), and let ϑ , κ , μ and γ be the same constants as in Theo-
rem 1.1. Then the following assertions hold.

(1) If κ < 1 then for any R, ε > 0, there exists T > 0 such that

‖yt‖ < μρ + ε, t > T (1.11)

for all y ∈ Lr (E; K, 0; ρ) with ‖y0‖ ≤ R.
(2) If κ < 1/(1 + ϑ) then there exist M, λ > 0 such that for all y ∈ Lr (E; K, 0; ρ),

‖yt‖ ≤ M‖y0‖e−λt + γρ, t ≥ 0. (1.12)

Theorem 1.1 can be seen as an extension of the following result in Hale [18] (see [18, pp. 110, 
Lemma 6.2]) which plays a fundamental role in constructing invariant manifolds of differential 
equations.

Proposition 1.4. [18] Suppose α > 0, γ > 0, K, L, M are nonnegative constants and u is a 
nonnegative bounded continuous solution of the inequality

u(t) ≤ Ke−αt + L

t∫
e−α(t−s)u(s)ds + M

∞∫
e−γ su(t + s)ds, t ≥ 0. (1.13)
0 0
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If β := L/α + M/γ < 1 then

u(t) ≤ (1 − β)−1Ke−[α−(1−β)−1L]t , t ≥ 0. (1.14)

Note that there is in fact an additional requirement in (1.14) to guarantee the exponential decay 
of u, that is, α − (1 − β)−1L > 0, or equivalently,

L/α + M/γ < 1 − L/α. (1.15)

Let us say a little more about the special case M = 0, in which (1.15) reads as L/α < 1/2. 
In such a case L/α coincides with the constant κ in Theorem 1.3. Setting K = u0 in (1.13), we 
see that the upper bound ϑ of the decay functor E in (1.13) (corresponding to (1.1)) equals 1. 
Consequently the smallness requirement on κ in assertion (2) of Theorem 1.3 reduces to that 
κ = L/α < 1/2.

On the other hand, if 1/2 ≤ κ = L/α < 1 then we can only infer from (1.14) that u has at 
most an exponential growth. However, Theorem 1.3 still assures that a function satisfying the 
corresponding integral inequality must approach 0 in a uniform manner with respect to initial 
data in bounded sets.

We also mention that our proof for Theorem 1.1 is significantly different not only from the 
one for Proposition 1.4 given in [18], but also from those in the literature for other types of 
differential or integral inequalities.

Remark 1.5. The smallness requirement κ < 1 in the above theorems is optimal in some sense. 
This can be seen from the simple example of scalar equation:

ẋ = −ax + bx(t − 1), (1.16)

where a, b > 0 are constants, for which the assumption κ < 1 in Theorem 1.1 on the corre-
sponding integral inequality to guarantee the global asymptotic stability of the 0 solution of the 
equation amounts to require that b < a; see Section 3.1 for details. On the other hand, if b > a

then simple calculations show that (1.16) has a positive eigenvalue and hence 0 is unstable; see 
e.g. Kuang [30, Chap. 3, Sect. 2].

Remark 1.6. It remains open whether the assumption κ < 1/(1 +ϑ) in Theorem 1.3 to guarantee 
global exponential decay for (1.1) can be further relaxed in the full generality of the theorem.

As a simple example of applications, we consider the asymptotic stability of the scalar func-
tional differential equation:

ẋ = −a(t)x + B(t, xt ), (1.17)

where a ∈ C(R), and B is a continuous function on R × C([−r, 0]) for some fixed r ≥ 0 with 
|B(t, φ)| ≤ b(t)‖φ‖. Special cases of the equation were studied in the literature by many au-
thors. For instance, in an earlier work of Winston [59], the author considered the case where 
a(t) is nonnegative and b(t) ≤ θa(t) for some θ < 1. Using Razumikhin’s method the author 
proved the exponential asymptotic stability and the asymptotic stability of the equation un-
der the assumption a(t) ≥ α > 0 and that a(t) ≥ 0 with 

∫ ∞
a(t)dt = ∞, respectively. Here 
0
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we revisit this problem and allow a(t) to be a function which may change sign. Assume 
limt→∞

∫ s+t

s
a(τ )dτ → ∞ uniformly w.r.t s ∈ R. We show that the null solution of (1.17) is 

globally asymptotically stable provided that

κτ := supt≥τ

∫ t

τ
E(t, s)b(s)ds < 1, ∀ τ ∈ R,

where E(t, s) = exp
(
− ∫ t

s
a(σ )dσ

)
. Some results on global exponential asymptotic stability 

will also be presented. It is not difficulty to check that if a(t) is a nonnegative function with ∫ ∞
0 a(s)ds = ∞ and b(t) ≤ θa(t) (t ∈ R) for some θ < 1, then κτ ≤ θ < 1 for all τ ∈R.

As another example of applications for our integral inequalities, we discuss the existence of 
pullback attractor for ODE system

ẋ = F0(t, x) +
m∑

i=1

Fi(t, x(t − ri)), x = x(t) ∈Rn, (1.18)

where Fi(t, x) (0 ≤ i ≤ m) are continuous mappings from R × Rn to Rn which are locally 
Lipschitz in x in a uniform manner with respect to t on bounded intervals, and ri : R → [0, r]
(1 ≤ i ≤ m) are measurable functions. The investigation of the dynamics of delayed differential 
equations in the framework of pullback attractor theory developed in [11,28,29] etc. was first 
initiated by Caraballo et al. [4]. In recent years there is an increasing interest on this topic for both 
retarded ODEs and PDEs; see e.g. [5,6,8,10,27,39,47,56,65]. However, we find that the existing 
works mainly focus on the case where the terms involving time lags have at most sublinear 
nonlinearities. Here we allow the nonlinearities Fi(t, x) (0 ≤ i ≤ m) in (1.18) to be superlinear 
in space variable x. Suppose

(F) there exist positive constants p > q ≥ 1, αi > 0 (0 ≤ i ≤ m), and nonnegative measurable 
functions βi(t) (0 ≤ i ≤ m) on R such that

(F0(t, x), x) ≤ −α0|x|p+1 + β0(t), ∀x ∈ Rn, t ∈ R,

|Fi(t, x)| ≤ αi |x|q + βi(t), ∀x ∈ Rn, t ∈ R.

We show under some additional assumptions on βi(t) (0 ≤ i ≤ m) that system (1.18) is dissipa-
tive and has a global pullback attractor.

As our third example to illustrate applications of Theorems 1.1 and 1.3, we finally consider the 
dynamics of retarded nonlinear evolution equations with sublinear nonlinearities in the general 
setting of the cocycle system:

du

dt
+ Au = F(θtp,ut ), p ∈H (1.19)

in a Banach space X, where A is a sectorial operator in X with compact resolvent, H is a compact 
metric space, and θt is a dynamical system on H. We will show under a hyperbolicity assumption 
on A and some smallness requirements on the growth rate and the Lipschitz constant of F(p, u)

in u that the system has a unique nonautonomous equilibrium solution �. The global asymptotic 
stability and exponential stability of � will also be addressed.
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This paper is organized as follows. Section 2 is devoted to the proofs of the main results, 
namely, Theorems 1.1 and 1.3; and Section 3 consists of the two examples of ODE systems 
mentioned above. Section 4 is concerned with the dynamics of system (1.19). We will also talk 
about in this section how to put a differential equation with multiple variable delays and external 
forces into the general setting of (1.19).

2. Proofs of Theorems 1.1 and 1.3

For convenience in statement, let us first introduce several classes of functions.
Denote E the family of bounded nonnegative measurable functions on Q := (R+)2 satisfying 

(1.3), and let

K1 = {K ∈ M +(Q) : ∫ t

0 K(t, s)ds < ∞ for all t ≥ 0},
K2 = {K ∈ M +(Q) : ∫ ∞

t
K(t, s)ds < ∞ for all t ≥ 0},

where M +(Q) is the family of nonnegative measurable functions on Q. Denote I (K1, K2) the 
constant defined in (1.5) for any (K1, K2) ∈ K1 × K2.

Let C be the space C([−r, 0]) equipped with the usual sup-norm

‖φ‖ = sup
s∈[−r,0]

|φ(s)|, φ ∈ C.

Given y ∈ C([−r, T )) (T > 0), one can assign a function yt from [0, T ) to C as follows: for each 
t ∈ [0, T ), yt is the element in C defined by (1.2). For convenience, yt will be referred to as the 
lift of y in C.

2.1. Proof of Theorem 1.1

We begin with the following lemma:

Lemma 2.1. Assume that κ < 1. Then for any bounded function y ∈ Lr (E; K1, K2; ρ),

‖yt‖ ≤ c‖y0‖ + μρ, t ≥ 0, (2.1)

where c, μ are the constants defined in Theorem 1.1.

Proof. It can be assumed that there is t > 0 such that y(t) > ‖y0‖ + μρ; otherwise (2.1) readily 
holds true. Write

sup
t∈R+

‖yt‖ = Nε(‖y0‖ + ε) + μρ

for ε > 0. We show that Nε ≤ c for all ε > 0, and the conclusion follows.
For each δ > 0 sufficiently small, pick an η > 0 with

y(η) > sup
+
‖yt‖ − δ.
t∈R
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Then by (1.1) we have

Nε(‖y0‖ + ε) + μρ − δ = supt∈R+ ‖yt‖ − δ < y(η)

≤ E(η,0)‖y0‖ + ∫ η

0 K1(η, s)‖ys‖ds

+ ∫ ∞
η

K2(η, s)‖ys‖ds + ρ

≤ ϑ(‖y0‖ + ε) + κ (Nε(‖y0‖ + ε) + μρ) + ρ.

Setting δ → 0 we obtain that

Nε(‖y0‖ + ε) + μρ ≤ ϑ(‖y0‖ + ε) + κ (Nε(‖y0‖ + ε) + μρ) + ρ

= (ϑ + κNε)(‖y0‖ + ε) + (κμ + 1)ρ.
(2.2)

The choice of μ implies that

κμ + 1=μ. (2.3)

Hence (2.2) implies that

Nε(‖y0‖ + ε) ≤ (ϑ + κNε)(‖y0‖ + ε).

It follows that Nε ≤ ϑ/(1 − κ) ≤ c. This completes the proof of (2.1). �
Let y ∈ Lr (E; K1, K2; ρ). For σ > 0, if we set ỹ(t) = y(σ + t) and define

Ẽ(t, s) = E(t + σ, s + σ), K̃i(t, s) = Ki(t + σ, s + σ) (i = 1,2)

for t, s ≥ 0, then one trivially checks that ỹ ∈ Lr (Ẽ; K̃1, K̃2; ρ) with

I (K̃1, K̃2) ≤ I (K1,K2) ≤ κ < 1.

Thus if y is bounded, then by Lemma 2.1 one also concludes that

‖yt+σ ‖ ≤ c‖yσ ‖ + μρ, t, σ ≥ 0. (2.4)

Proof of Theorem 1.1. (1) Assume κ < 1. To verify assertion (1), we first show that if y ∈
Lr (E; K1, K2; ρ) is a bounded function, then

lim sup
t→∞

‖yt‖ ≤ μρ. (2.5)

Let us argue by contradiction and suppose

lim sup‖yt‖ = μρ + δ

t→∞

7
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for some δ > 0. Take a monotone sequence τn → ∞ such that limn→∞ y(τn) = μρ + δ. For any 
ε > 0, take a τ > 0 sufficiently large so that

‖yt‖ < μρ + δ + ε, t ≥ τ.

Then for τn > τ , by (1.1) we deduce that

y(τn) ≤ E(τn, τ )‖yτ‖ + ∫ τn

τ
K1(τn, s)‖ys‖ds + ∫ ∞

τn
K2(τn, s)‖ys‖ds + ρ

≤ E(τn, τ )‖yτ‖ + κ (μρ + δ + ε) + ρ.

Setting n → ∞ in the above inequality, it yields

μρ + δ ≤ κ (μρ + δ + ε) + ρ.

Since ε is arbitrary, we conclude that

μρ + δ ≤ (κμ + 1)ρ + κδ.

Therefore by (2.3) one has δ≤κδ, which leads to a contradiction and verifies (2.5).
Now we complete the proof of assertion (1). Let R > 0. Denote

BR = {y ∈ Lr (E;K1,K2;ρ) : y is bounded with ‖y0‖ ≤ R}.

By (2.1) we see that BR is uniformly bounded. Hence the envelope

y∗(t) = sup
y∈BR

y(t)

of the family BR is a bounded nonnegative measurable function on [−r, ∞). (The measurability 
of y∗ follows from the simple observation that

{t ∈ (−r,∞) : y∗(t) > a} = ⋃
y∈BR

{t ∈ (−r,∞) : y(t) > a}

is an open subset of R for any a ∈ R.) As in the case of a continuous function, we use the notation 
y∗
t (t ≥ 0) to denote the lift of y∗ in the space of measurable functions on [−r, 0] (y∗

t (·) =
y∗(t + ·)) and write ‖y∗

t ‖ = sups∈[−r,0] y∗
t (s). (One should distinguish ‖y∗

t ‖ with the L∞-norm 
‖y∗

t ‖L∞(−r,0) of y∗
t , although it can be shown by using the definition of y∗ and the continuity of 

the functions y ∈ BR that the two quantities coincide for y∗
t .) We claim that ϕ(t) := ‖y∗

t ‖ is a 
measurable function on [0, ∞). Indeed, one trivially verifies that

‖y∗
t ‖ = sup

y∈BR

‖yt‖, t ≥ 0.

Since ‖yt‖ is continuous in t for every y, the conclusion immediately follows.
8
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We infer from (1.1) that

y(t) ≤ E(t, τ )‖y∗
τ ‖ + ∫ t

τ
K1(t, s)‖y∗

s ‖ds

+ ∫ ∞
t

K2(t, s)‖y∗
s ‖ds + ρ, ∀ t ≥ τ ≥ 0

for any y ∈ BR . Further taking supremum in the lefthand side of the above inequality with 
respect to y ∈ BR it yields

y∗(t) ≤ E(t, τ )‖y∗
τ ‖ + ∫ t

τ
K1(t, s)‖y∗

s ‖ds

+ ∫ ∞
t

K2(t, s)‖y∗
s ‖ds + ρ, ∀ t ≥ τ ≥ 0.

(2.6)

The only difference between (1.1) and the above inequality (2.6) is that the function y∗ in (2.6)
may not be continuous. Note that we do not make use of any continuity requirement on y in the 
proofs of Lemma 2.1 and (2.5). Therefore all the arguments therein can be directly carried over 
to y∗ without any modifications except that the function y is replaced by y∗. As a result, we 
deduce that lim supt→∞ ‖y∗

t ‖ ≤ μρ. Hence for any ε > 0 there is a T > 0 such that

‖y∗
t ‖ < μρ + ε, t > T ,

from which assertion (1) immediately follows.
(2) Now we assume κ < 1/(1 +ϑ). To obtain the exponential decay estimate in (1.9), we first 

prove a temporary result:
There exist T , λ > 0 such that if ‖y0‖ ≤ N0 + γρ with N0 > 0, then

‖yt‖ ≤ N0e
−λt + γρ, t ≥ T . (2.7)

For this purpose, we take

σ = (1 + κc)/2. (2.8)

Since κc < 1 (see Remark 1.2), it is clear that σ < 1. Define

η = min{s≥ 0 : ‖yt‖ ≤ σN0 + γρ for all t ≥ s}.

The key point is to estimate the upper bound of η.
Because γ > μ and N0 > 0, by (2.5) it is clear that η < ∞. We may assume η > r (otherwise 

we are done). Then by continuity of y one necessarily has

‖yη‖ = σN0 + γρ.

For simplicity, write E(t, 0) := b(t). Given t ∈ [η − r, η], by (1.1) we have
9
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y(t) ≤ b(t)‖y0‖ + ∫ t

0 K1(t, s)‖ys‖ds + ∫ ∞
t

K2(t, s)‖ys‖ds + ρ

≤ (by (2.1)) ≤ ‖bη‖‖y0‖ + κ(c‖y0‖ + μρ) + ρ

≤ (‖bη‖ + κc
)‖y0‖ + (κμ + 1)ρ

≤ (‖bη‖ + κc
)
(N0 + γρ) + μρ.

Here we have used the fact that κμ + 1 = μ (see (2.3)). Therefore

σN0 + γρ = ‖yη‖ = maxt∈[η−r,η] y(t)

≤ (‖bη‖ + κc
)
N0 + ((‖bη‖ + κc

)
γ + μ

)
ρ.

(2.9)

Take a number t0 > 0 such that

E(t + s, s)γ ≤ 1, ∀ t ≥ t0, s ∈ R+. (2.10)

If η ≤ t0 + r then we are done. Thus we assume that η > t0 + r . Then by the definition of γ and 
(2.10) one deduces that

γ = κcγ + μ + 1 ≥ (‖bη‖ + κc
)
γ + μ.

It follows by (2.9) that σN0 ≤ (‖bη‖ + κc
)
N0. Hence

‖bη‖ ≥ σ − κc = (1 − κc)/2 > 0. (2.11)

Take a number t1 > 0 such that

E(t + s, s) < (1 − κc)/2, t > t1, s ∈ R+. (2.12)

(2.11) then implies that η ≤ t1 + r . Hence we conclude that

η ≤ T := max (t0, t1) + r. (2.13)

By far we have proved that if ‖y0‖ ≤ N0 + γρ (N0 > 0) then

‖yt‖ ≤ σN0 + γρ, t ≥ T .

Let ỹ(t) = y(t + T ), and set

Ẽ(t, s) = E(t + T , s + T ), K̃i(t, s) = Ki(t + T , s + T )

for t, s ≥ 0, i = 1, 2. Then ỹ ∈ Lr (Ẽ; K̃1, K̃2; ρ) with

I (K̃1, K̃2) ≤ I (K1,K2) ≤ κ < 1/(1 + ϑ).

Since ‖ỹ0‖ ≤ σN0 + γρ, the same argument as above applies to show that
10
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‖ỹt‖ ≤ σ(σN0) + γρ, t ≥ T ,

that is,

‖yt‖ ≤ σ 2N0 + γρ, t ≥ 2T .

(We emphasize that the numbers t0 and t1 in (2.10) and (2.12) can be chosen independent of 
s ∈ R+. This plays a crucial role in the above argument.) Repeating the above procedure we 
finally obtain that

‖yt‖ ≤ σnN0 + γρ, t ≥ nT , n = 1,2, · · · . (2.14)

Setting λ = −(lnσ)/2T , one trivially verifies that

σn ≤ e−λt , t ∈ [nT , (n + 1)T ]
for all n ≥ 1. (2.7) then follows from (2.14).

We are now in a position to complete the proof of the theorem.
Note that (2.1) implies that if ‖y0‖ = 0 then

‖yt‖ ≤ μρ ≤ γρ, t ≥ 0,

and hence the conclusion readily holds true. Thus we assume that ‖y0‖ > 0. Take N0 = ‖y0‖. 
Clearly ‖y0‖ = N0 ≤ N0 + γρ. Therefore by (2.7) we have

‖yt‖ ≤ ‖y0‖e−λt + γρ, t ≥ T . (2.15)

On the other hand, by (2.4) we deduce that

‖yt‖ ≤ c‖y0‖ + μρ ≤ c‖y0‖ + γρ, t ∈ [0, T ].
Set M = ceλT . Then

‖yt‖ ≤ c‖y0‖ + γρ ≤ Me−λt‖y0‖ + γρ, t ∈ [0, T ].
Combining this with (2.15) we finally arrive at the estimate

‖yt‖ ≤ M‖y0‖e−λt + γρ, t ≥ 0.

The proof of the theorem is complete. �
Remark 2.2. In many examples from applications, the function E(t, s) in (1.1) takes the form:

E(t, s) = M0e
−λ0(t−s),

where M0 and λ0 are positive constants. In such a case one can write out the constants M and λ
in (1.9) and (1.12) explicitly.
11
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Indeed, the number t0 and t1 in (2.10) and (2.12) can be taken, respectively, as

t0 = λ−1
0 ln (M0γ ), t1 = λ−1

0 ln

(
2M0

1 − κc

)
.

Consequently the number T in (2.13) reads as T = λ−1
0 M1 + r , where

M1 = max

(
ln (M0γ ), ln

(
2M0

1 − κc

))
.

Thus we infer from the proof of Theorem 1.1 that

λ = − lnσ

2T
= ln 2 − ln (1 + κc)

2 (M1 + rλ0)
λ0,

M = ceλT = c
√

2/(1 + κc).

In particular, if r = 0 then we have

λ = θλ0, θ = ln 2 − ln (1 + κc)

2M1
.

Remark 2.3. In the general case, (1.3) implies that there is a bounded nonnegative function e(t)
on R+ with e(t) → 0 as t → ∞ such that

E(t + s, s) ≤ e(t), t, s ≥ 0. (2.16)

One can easily see that the numbers t0 and t1 in (2.10) and (2.12) can be chosen in such a way that 
they only depend upon the constants γ, κ, c and the function e(t). Consequently the constants M
and λ in Theorem 1.1 (2) (which are defined explicitly below (2.14) in the proof of the theorem) 
only depend upon γ, κ, c, σ and e(t). Since γ, c and σ are completely determined by ϑ and κ
(see Theorem 1.1 and (2.8) for the definitions of these constants), we finally conclude that M
and λ only depend upon ϑ, κ and e(t).

2.2. Proof of Theorem 1.3

Proof. The conclusions of Theorem 1.3 immediately follow from Theorem 1.1 as long as 
Lemma 2.4 below is proved. �
Lemma 2.4. Let E ∈ E , and K1 = K ∈ K1. Suppose I (K, 0) ≤ κ < 1. Let r, ρ ≥ 0, and let y be 
a nonnegative continuous function on [−r, T ) (0 < T ≤ ∞) satisfying the integral inequality

y(t) ≤ E(t,0)‖y0‖ +
t∫

0

K(t, s)‖ys‖ds + ρ, 0 ≤ t < T . (2.17)

Then
12
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y(t) ≤ (c + 1)(‖y0‖ + 1) + μρ, t ∈ [0, T ), (2.18)

where μ and c are the constants defined in Theorem 1.1.

Proof. Suppose the contrary. There would exist 0 < τ < T such that

y(τ) = c′(‖y0‖ + 1) + μρ, y(t) ≤ c′(‖y0‖ + 1) + μρ (t ∈ [0, τ )),

where c′ = c + 1. By (2.17) we see that

c′(‖y0‖ + 1) + μρ = y(τ)

≤ E(τ,0)‖y0‖ + ∫ τ

0 K(τ, s)‖ys‖ds + ρ

≤ ϑ(‖y0‖ + 1) + κ[c′(‖y0‖ + 1) + μρ] + ρ

≤ (ϑ + κc′)(‖y0‖ + 1) + (κμ + 1)ρ.

(2.19)

By (2.3) we have κμ + 1 = μ. Hence (2.19) implies

c′(‖y0‖ + 1) ≤ (ϑ + κc′)(‖y0‖ + 1),

that is, c′ ≤ ϑ + κc′. Therefore

c + 1 = c′ ≤ ϑ/(1 − κ) ≤ c,

a contradiction. �
Remark 2.5. A classical result closely related to Theorem 1.3 is the Halanay’s inequality (which 
is also called by some authors the Gronwall-Halanay inequality): If a nonnegative function y on 
[t0 − r, ∞) satisfies

ẏ(t) ≤ −αy(t) + β‖yt‖, t ≥ t0, (2.20)

where α > β > 0 are constants, then there exist γ > 0 and k > 0 such that

y(t) ≤ ke−γ (t−t0), t ≥ t0;

see Halanay [16, pp. 378]. For simplicity we may put t0 = 0. Using a similar argument as in the 
proof of Proposition 3.3 below, one can easily show that a function y satisfying (2.20) fulfills the 
integral inequality (1.1) with K2 = 0 and

E(t, s) = e−α(t−s), K1(t, s) = βE(t, s)

for t, s ≥ 0. Note that
13
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ϑ = sup
t≥s≥0

E(t, s) = 1, κ = sup
t≥0

t∫
0

K1(t, s)ds = β/α.

Thus the assumption that κ < 1 in Theorem 1.3 amounts to say that α > β . Hence Theorem 1.3
can be seen as a generalization of the Halanay’s inequality.

On the other hand, we emphasize that in the special case of (2.20), Halanay’s result is stronger 
than Theorem 1.3 in the way that it guarantees the exponential convergence of y(t) to 0 under 
the assumption that β < α, whereas under this weaker assumption Theorem 1.3 only gives con-
vergence result. This is also one of the reasons why we are interested in the question proposed in 
Remark 1.6.

An integral version of the Halanay’s inequality can be found in a recent work of Chen [9, 
Lemma 3.2] along with a very simple proof: Let y be a nonnegative continuous function on 
[−r, ∞). Suppose that for α > 0, there exist two positive constants M, β > 0 such that y(t) ≤
Me−αt (t ∈ [−r, 0]) and that

y(t) ≤ Me−αt + β

t∫
0

e−α(t−s)‖ys‖ds, t ≥ 0. (2.21)

If β < α, then y(t) ≤ Me−μt for t ≥ −r , where μ ∈ (0, α) is a constant satisfying that 
β

α−μ
eμr = 1. One advantage of this integral inequality is that it significantly reduces the smooth-

ness requirement on the function y. This may greatly enlarge the applicability of the inequality. 
Other types of extensions of the Halanay’s inequality can be found in [21,58] etc. and references 
therein.

3. Asymptotic behavior of ODE systems

This section consists of two examples of ODE systems illustrating possible applications of the 
integral inequalities given here. For the general theory of delay differential equations, one may 
consult the excellent books [19,30,49,60].

3.1. Asymptotic stability of a scalar functional ODE

Our first example concerns the asymptotic stability of the scalar functional differential equa-
tion:

ẋ = −a(t)x + B(t, xt ), (3.1)

where xt is the lift of x = x(t) in C := C([−r, 0]) (r ≥ 0 is fixed), a ∈ C(R), and B is a continu-
ous function on R ×C. We always assume that B satisfies the following local Lipschitz condition 
in the second variable: For any compact interval J ⊂ R and R > 0, there exists L > 0 such that

|B(t,φ) − B(t,φ′)| ≤ L‖φ − φ′‖, ∀φ,φ′ ∈ BR, t ∈ J.

Here and below BR denotes the ball in C centered at 0 with radius R > 0.
14
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Given (τ, φ) ∈R ×C, the above smoothness requirements on a and B are sufficient to guaran-
tee the existence and uniqueness of a local solution x(t) = x(t; τ, φ) (t ≥ τ ) of (3.1) with initial 
value xτ = φ ∈ C; see [19, Chap. 2, Theorems 2.1, 2.3]. We also assume that

|B(t,φ)| ≤ b(t)‖φ‖, (t, φ) ∈R× C (3.2)

for some nonnegative function b ∈ C(R), so that x(t; τ, φ) globally exists for each (τ, φ) ∈
R × C. Furthermore, (3.2) implies that 0 is a solution of (3.1).

Definition 3.1. The null solution 0 of (3.1) is said to be

(1) globally asymptotically stable (GAS in short), if (i) it is stable, i.e., for every τ ∈ R and 
ε > 0, there exists δ > 0 such that x(t; τ, φ) ∈ Bε for all t ≥ τ and φ ∈ Bδ , and (ii) it is 
globally attracting, meaning that x(t; τ, φ) → 0 as t → ∞ for every (τ, φ) ∈R × C;

(2) globally exponentially asymptotically stable (GEAS in short), if for every τ ∈R, there exist 
positive constants M, λ > 0 such that

|x(t; τ,φ)| ≤ M‖φ‖e−λ(t−τ), ∀ t ≥ τ, φ ∈ C. (3.3)

Remark 3.2. The notions given in the above definition are the global versions of some corre-
sponding local ones for functional differential equations in [19, Chap. 5, Def. 1.1] and [59, Def. 
2.1-2.3], etc.

We now assume that a satisfies the following hypothesis:

(A1)
∫ s+t

s
a(σ )dσ → ∞ as t → ∞ uniformly with respect to s ∈ R.

Define two functions E(t, s) and K(t, s) on R2 as below: ∀ (t, s) ∈R2,

E(t, s) = exp
(
− ∫ t

s
a(σ )dσ

)
, K(t, s) = E(t, s)b(s).

By (A1) one trivially verifies that

limt→∞ E(t + s, s) = 0 uniformly w.r.t. s ∈ R. (3.4)

For each τ ∈R, set

ϑτ = sup
t≥s≥τ

E(t, s), κτ = sup
t≥τ

t∫
τ

K(t, s)ds.

Proposition 3.3. The null solution of (3.1) is GAS if κτ < 1 for all τ ∈ R. If we further assume 
that κτ < 1/(1 + ϑτ ) for τ ∈ R, then it is GEAS.

Proof. Let τ ∈R. Write x(t) = x(t; τ, φ). For any t ≥ η ≥ τ , multiplying (3.1) with E(t, η)−1 =
exp

(∫ t
a(σ )dσ

)
, we obtain that
η

15
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d

dt

(
E(t, η)−1x

)
= E(t, η)−1B(t, xt ). (3.5)

Integrating (3.5) in t between η and t , it yields

x(t) = E(t, η)x(η) +
t∫

η

E(t, s)B(s, xs)ds. (3.6)

(Here we have used the simple observation that E(t, η)E(s, η)−1 = E(t, s).) Hence

|x(t)| ≤ E(t, η)‖xη‖ +
t∫

η

K(t, s)‖xs‖ds, ∀ t ≥ η ≥ τ. (3.7)

Rewriting t, s and η in (3.7) as t +τ , s +τ and η+τ , respectively, i.e., performing a τ -translation 
on the variables in (3.7), we obtain that

y(t) ≤ Eτ (t, η)‖yη‖ +
t∫

η

Kτ (t, s)‖ys‖ds, ∀ t ≥ η ≥ 0, (3.8)

where y(t) = |x(t + τ)|, and

Eτ (t, s) = E(t + τ, s + τ), Kτ (t, s) = K(t + τ, s + τ) (3.9)

for t, s ≥ 0. Note that

ϑτ = sup
t≥s≥0

Eτ (t, s), κτ = sup
t≥0

t∫
0

Kτ (t, s)ds.

Assume that κτ < 1. Then by Theorem 1.3 one deduces that for any R, ε > 0, there exists 
T > 0 such that

|x(t; τ,φ)| < ε, ∀ t > τ + T , φ ∈ BR. (3.10)

On the other hand, we infer from Lemma 2.1 that |x(t; τ, φ)| ≤ cτ‖φ‖ for all t ≥ τ and φ ∈ C, 
where cτ = max (ϑτ /(1 − κτ ), 1), from which it follows that the 0 solution is stable at τ . Thus 
we see that 0 is GAS. (We mention that the stability of the null solution can be also deduced by 
using (3.10) and the continuity property of x(t; τ, φ) in φ. We omit the details.)

The second conclusion is a direct consequence of Theorem 1.3 (2). �
Remark 3.4. If a is a bounded function on R and κτ fulfills a stronger uniform smallness re-
quirement:

κ := sup κτ < 1/(1 + ϑ), (3.11)

τ∈R

16
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where ϑ = supτ∈R ϑτ , then it can be shown that there exist positive constants M, λ > 0 indepen-
dent of τ ∈ R such that (3.3) holds true. In such a case we simply say that the solution 0 of (3.1)
is uniformly GEAS.

To see this, we define for each (τ, s) ∈R ×R+ a function eτ,s on R+:

eτ,s(t) = Eτ (s + t, s), t ∈ R+.

By (A1) we see that limt→∞ eτ,s(t) = 0 uniformly with respect to (τ, s) ∈ R × R+. Using this 
simple fact and the boundedness of a one easily examines that the family {eτ,s}(τ,s)∈R×R+ is 
uniformly bounded on R+. Define

e(t) = sup
(τ,s)∈R×R+

eτ,s(t), t ∈ R+.

Then e(t) → 0 as t → ∞. Since for every τ ∈ R, we have

Eτ (s + t, s) ≤ e(t), t, s ≥ 0,

invoking Remark 2.3 we deduce by (3.8) and (3.11) that there exist M, λ > 0 independent of 
τ ∈ R such that (3.3) holds for all solutions of (3.1).

Remark 3.5. If a(t) ≥ 0 for t ∈ R, then ϑτ = 1 for all τ ∈ R, and the hypothesis on κτ to 
guarantee GEAS of the null solution reduces to that κτ < 1/2.

In such a case one can also easily verify that κτ ≤ θ < 1 for all τ ∈ R if the following hy-
potheses in Winston [59] are fulfilled:

(A2) b(t) ≤ θa(t) (t ∈R) for some θ < 1; and (A3)
∫ ∞

0 a(t)dt = ∞.

It follows that the null solution 0 of (3.1) is GAS. If a is bounded and θ < 1/2, then we also infer 
from Remark 3.4 that 0 is uniformly GEAS.

Example 3.1. Let a(t) be a continuous ω-periodic (ω > 0) function. Denote a+(t) (a−(t)) the 
positive (negative) part of a(t) (hence a(t) = a+(t) − a−(t)). Let

I =
ω∫

0

a(t)dt, I± =
ω∫

0

a±(t)dt.

Clearly I = I+ − I−. For s ∈R and t ≥ 0, we observe that

∫ s+t

s
a(σ )dσ = ∫ s+mtω

s
a(σ )dσ + ∫ s+t

s+mtω
a(σ )dσ

= mtI + ∫ s+t

s+mtω
a(σ )dσ

≥ mtI − ∫ s+t

s+mtω
a−(σ )dσ ≥ mtI − I−,

(3.12)

where mt = [t/ω] is the integer part of t/ω.
17
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Now suppose that I > 0. Then by (3.12) we have that

s+t∫
s

a(σ )dσ ≥ mtI − I− ≥
(

t

ω
− 1

)
I − I− = �t − I+, (3.13)

where � = I
ω

, and

s+t∫
s

a(σ )dσ ≥ mtI − I− ≥ −I−. (3.14)

By (3.13) it is obviously that a fulfills hypothesis (A1).
We infer from (3.14) that for any τ ∈R,

Eτ (t, s) = exp

⎛
⎝−

t∫
s

a(σ + τ)dσ

⎞
⎠ ≤ eI− := ϑ, t ≥ s ≥ 0. (3.15)

Assume that the function b in (3.2) is bounded. Set β = supt≥0 b(t). Then

t∫
0

Kτ (t, s)ds =
t∫

0

Eτ (t, s)b(s + τ)ds ≤ (by (3.13)) ≤ βωeI+
/I := κ (3.16)

for all t ≥ 0. Thus in the case where a is periodic and b is bounded, we have

Proposition 3.6. If β < β1 := I/(ωeI+
), the null solution of (3.1) is GAS; and if β < β2 :=

I/(ωeI+
(1 + eI−

)), then it is GEAS.

Proof. Assume β < β1. Then by (3.16) we see that

κτ := supt≥0

∫ t

0 Kτ (t, s)ds < 1, ∀ τ ∈ R.

We infer from (3.15) that ϑτ := supt≥s≥0 Eτ (t, s) ≤ eI− := ϑ . Thus if we assume β < β2, 
then one trivially verifies that

κτ ≤ (by (3.16)) ≤ βωeI+
/I < 1/(1 + ϑ), τ ∈ R.

Now the conclusion directly follows from Propositions 3.3. �
A concrete example as in Example 3.1 is the linear equation:

ẋ = −(sin t + ε)x + β x(t − 1), t > 0, (3.17)

where 0 < ε, β < 1 are constants. Simple calculations show that
18
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I+ < 2 + 2πε, I− < 2.

It is easy to check that if β < εe−(2+2πε), then the first hypothesis in Proposition 3.6 is 
fulfilled, and hence the null solution 0 of the equation is GAS. If we further assume that 
β < εe−(2+2πε)/ 

(
1 + e2

)
, then it is GEAS.

3.2. Pullback attractors of an ODE system with delays

As a second example, we consider in this part the existence of pullback attractors of the ODE 
system:

ẋ = F0(t, x) +
m∑

i=1

Fi(t, x(t − ri)), x = x(t) ∈ Rn (3.18)

with superlinear nonlinearities Fi (0 ≤ i ≤ m).
Assume that Fi (0 ≤ i ≤ m) are continuous mappings from R ×Rn → Rn which are locally 

Lipschitz in the space variable x in a uniform manner with respect to t on bounded intervals 
and satisfy the structure condition (F) given in Section 1, and ri : R → [0, r] (1 ≤ i ≤ m) are 
measurable functions.

Denote C the space C([−r, 0], Rn) equipped with the usual norm ‖ ·‖. By the hypotheses on Fi

and the delay functions ri , it can be easily shown that the initial value problem of (3.18) is well-
posed. Specifically, for each τ ∈R and φ ∈ C the system has a unique solution x(t; τ, φ) := x(t)

on a maximal existence interval [τ − r, Tφ) (Tφ > τ ) with

x(τ + s) = φ(s), s ∈ [−r,0].
For convenience, we call the lift xt of x(t) the solution curve of (3.18) in C with initial value 
xτ = φ, denoted hereafter by xt (τ, φ).

Lemma 3.7. Suppose that there exist M, N > 0 such that

∑m
i=0

∫ t

s
βi(μ)dμ ≤ M(t − s) + N, −∞ < s < t < ∞, (3.19)

where βi (0 ≤ i ≤ m) are the functions in (F). Then each solution x(t; τ, φ) of (3.18) is globally 
defined for t ≥ τ . Furthermore, there exist C, λ, ρ > 0 independent of τ ∈R such that

|x(t; τ,φ)| ≤ C‖φ‖e−λ(t−τ) + ρ, ∀ t ≥ τ, (τ,φ) ∈R× C. (3.20)

Proof. Let x = x(t) := x(t; τ, φ) be a solution of (3.18) with maximal existence interval [τ −
r, Tφ). Set γ := p(q − 1)/(p − q) + 1. Taking the inner product of both sides of (3.18) with 
|x|γ−1x, we find that

1
γ+1

d
dt

|x|γ+1 = |x|γ−1(F0(t, x), x) + |x|γ−1 ∑m
i=1(Fi(t, x(t − ri)), x)

≤ (−α0|x|γ+p + β0(t)|x|γ−1
) + ∑m

i=1 (αi |x|γ ‖xt‖q + βi(t)|x|γ ) .

The classical Young’s inequality implies that
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|x|γ ‖xt‖q ≤ ε‖xt‖γ+1 + Cε|x|γ (γ+1)/((γ+1)−q)

for any ε > 0. Here and below Cε denotes a general constant depending upon ε. By the choice 
of γ one easily verify that γ (γ + 1)/((γ + 1) − q) < γ +p. Hence using the Young’s inequality 
once again we deduce that

|x|γ ‖xt‖q ≤ ε‖xt‖γ+1 + ε|x|γ+p + Cε.

We also have

|x|γ−1, |x|γ ≤ ε|x|γ+1 + Cε.

Combining the above estimates together it gives

1
γ+1

d
dt

|x|γ+1 ≤ − (α0 − εα) |x|γ+p + εα‖xt‖γ+1

+εβ(t)|x|γ+1 + Cε(β(t) + 1),
(3.21)

where

α = ∑m
i=1 αi, β(t) = ∑m

i=0 βi(t).

It can be assumed that εα < α0. Noticing that sγ+1 ≤ sγ+p + 1 for all s ≥ 0, by (3.21) we find 
that

d

dt
|x|γ+1 ≤ −aε(t)|x|γ+1 + ε(γ + 1)α‖xt‖γ+1 + Cε(β(t) + 1), (3.22)

where aε(t) = (γ + 1) (α0 − εα − εβ(t)).

Let Eε(t, s) = exp
(
− ∫ t

s
aε(μ)dμ

)
(t ≥ s ≥ τ ). In what follows we always assume ε < 1 and 

that ε(γ + 1)(α + M) < c0/2, where c0 = (γ + 1)α0. Then

− ∫ t

s
aε(μ)dμ = −c0(t − s) + ε(γ + 1)

(
α(t − s) + ∫ t

s
β(μ)dμ

)
≤ (by (3.19)) ≤
≤ − (c0 − ε(γ + 1)(α + M)) (t − s) + ε(γ + 1)N

≤ −c1(t − s) + c2, t ≥ s ≥ τ,

(3.23)

where c1 = c0
2 , and c2 = (γ + 1)N . By (3.23) we see that

Eε(t, s) ≤ ec2e−c1(t−s) := E(t, s), t ≥ s ≥ τ. (3.24)

Clearly

lim E(t + s, s) = 0

t→∞

20



D. Li, Q. Liu and X. Ju Journal of Differential Equations 271 (2021) 1–38
uniformly with respect to s ∈R.
Now performing a similar argument as in the proof of Proposition 3.3 on the differential 

inequality (3.22), one can obtain that

|x(t)|γ+1 ≤ Eε(t, η)‖xη‖γ+1 + ε
∫ t

η
Kε(t, s)‖xs‖γ+1ds

+Cε

∫ t

η
Eε(t, s)β̃(s)ds, τ ≤ η < t < Tφ,

where

Kε(t, s) = α(γ + 1)Eε(t, s), β̃(t) = β(t) + 1.

Hence by (3.24) we have

|x(t)|γ+1 ≤ E(t, η)‖xη‖γ+1 + ε
∫ t

η
K(t, s)‖xs‖γ+1ds

+Cε

∫ t

η
E(t, s)β̃(s)ds

(3.25)

where K(t, s) = α(γ + 1)E(t, s).
We observe that ∫ t

η
E(t, s)β̃(s)ds = ec2

∫ t

η
e−c1(t−s)β̃(s)ds

≤ ec2
∫ ∞

0 e−c1s β̃(t − s)ds.

(3.26)

Note that

∫ ∞
0 e−c1s β̃(t − s)ds = ∑∞

k=0

∫ k+1
k

e−c1s β̃(t − s)ds

≤ ∑∞
k=0 e−c1k

∫ k+1
k

β̃(t − s)ds

≤ (by (3.19)) ≤ (M + N + 1)
∑∞

k=0 e−c1k.

Therefore by (3.25) and (3.26) we deduce that

|x(t)|γ+1 ≤ E(t, η)‖xη‖γ+1 + ε

t∫
η

K(t, s)‖xs‖γ+1ds + C′
ε (3.27)

for all τ ≤ η < t < Tφ . As in the proof of Proposition 3.3, performing a τ -translation on the 
variables in (3.27), we obtain that

y(t) ≤ E(t, η)‖yη‖ + ε

t∫
η

K(t, s)‖ys‖ds + C′
ε, ∀ t ≥ η ≥ 0, (3.28)

where y(t) = |x(t + τ)|γ+1 = |x(t + τ ; τ, φ)|γ+1. Here we have used the translation invariance 
property of E and K : for any t, s ≥ 0,
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E(t + τ, s + τ) = E(t, s), K(t + τ, s + τ) = K(t, s).

Simple calculations yield sup−∞<η<t<∞
∫ t

η
E(t, s)ds = ec2/c1, and hence

κ0 := sup−∞<η<t<∞
∫ t

η
K(t, s)ds = α(γ + 1)ec2/c1.

Note also that ϑ := supt≥s≥0 E(t, s) = ec2 .
We now fix an ε > 0 sufficiently small so that

κ := εκ0 < 1/(1 + ϑ).

Then the requirement in Theorem 1.3 is fulfilled. Thus by virtue of Lemma 2.4 we first deduce 
that x(t) is bounded on [τ − r, Tφ). It follows that Tφ = ∞. Further since y ∈ Lr (E; εK, 0; C′

ε)

for all τ ∈ R, where Lr (E; εK, 0; C′
ε) denotes the family of nonnegative continuous functions 

on R+ satisfying (3.28) (see also (1.6)), invoking Theorem 1.3 one immediate concludes that 
there exist C, λ, ρ > 0 independent of τ such that (3.20) holds. �

Lemma 3.7 enables us to define a process �(t, τ) on C:

�(t, τ )φ = xt (τ,φ), t ≥ τ > −∞, φ ∈ C, (3.29)

where xt (τ, φ) is the solution curve of (3.18) in C with xτ (τ, φ) = φ defined as above. � pos-
sesses the following basic properties:

• �(t, τ) : C → C is a continuous mapping for each fixed (t, τ) ∈R2, t ≥ τ ;
• �(τ, τ) = idC for all τ ∈R, where idC is the identity mapping on C;
• �(t, τ) = �(t, s)�(s, τ) for all t ≥ s ≥ τ .
For system (3.18), the estimate given in Lemma 3.7 is sufficient to guarantee the existence 

of a global pullback attractor; see [3,4] etc. (The interested reader is referred to [7] etc. for the 
general theory of pullback attractors.) Hence we have

Theorem 3.8. Assume the hypotheses in Lemma 3.7. Then � has a (unique) global pullback 
attractor in C. Specifically, there is a unique family A = {A(t)}t∈R of compact sets contained in 
the ball Bρ in C centered at 0 with radius ρ such that

(1) �(t, τ)A(τ) = A(t) for all t ≥ τ ;
(2) for any bounded set B ⊂ C,

lim
τ→−∞dH (�(t, τ )B, A(t)) = 0

for all t ∈ R, where dH (·, ·) denotes the Hausdorff semi-distance in C,

dH (M,N) = sup inf{‖φ − ψ‖ : ψ ∈ N}, ∀M,N ⊂ C.

φ∈M
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4. On the dynamics of retarded evolution equations with sublinear nonlinearities

As our third example to illustrate the application of Theorems 1.1 and 1.3, we investigate the 
dynamics of abstract retarded functional differential equations with sublinear nonlinearities in 
the general setting of cocycle systems.

Let H be a compact metric space with metric d(·, ·). Assume that there has been given a 
dynamical system θ on H, i.e., a continuous mapping θ : R × H → H satisfying the group 
property: for all p ∈ H and s, t ∈R,

θ(0,p) = p, θ(s + t, p) = θ(s, θ(t,p)).

As usual, we will rewrite θ(t, p) = θtp.
In what follows we always assume that H is minimal (with respect to θ ). This means that θ

has no proper nonempty compact invariant subsets in H.
Let X be a real Banach space with norm ‖ · ‖0, and let A be a sectorial operator on X with 

compact resolvent. Denote Xs (s ≥ 0) the fractional power of X generated by A with norm ‖ · ‖s ; 
see [20, Chap. 1] for details.

Let 0 ≤ r < ∞, and α ∈ [0, 1). Denote Cα = C([−r, 0], Xα). Cα is equipped with the norm 
‖ · ‖Cα

defined by

‖φ‖Cα
= max[−r,0] ‖φ(s)‖α, φ ∈ Cα.

Given a continuous function u : [t0 − r, T ) → Xα , denote by ut the lift of u in Cα ,

ut (s) = u(t + s), s ∈ [−r,0], t ≥ t0.

The retarded functional cocycle system we are concerned with is as follows:

du

dt
+ Au = F(θtp,ut ), t ≥ 0, p ∈ H, (4.1)

where F is a continuous mapping from H× Cα to X. Later we will show how to put a nonlinear 
evolution equation like

du

dt
+ Au = f (u(t − r1), · · · , u(t − rm)) + h(t)

into the abstract form of (4.1). For convenience in statement, H and θ are usually called the base 
space and the driving system of (4.1), respectively.

Denote by BR the ball in Cα centered at 0 with radius R.
Assume that F satisfies the following conditions:

(F1) F(p, φ) is locally Lipschitz in φ uniformly w.r.t p ∈ H, namely, for any R > 0, there exists 
LR > 0 such that

‖F(p,φ) − F(p,φ′)‖0 ≤ LR‖φ − φ′‖C , ∀φ,φ′ ∈ BR, p ∈ H.

α
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(F2) There exist C0, C1 > 0 such that

‖F(p,φ)‖0 ≤ C0‖φ‖Cα
+ C1, ∀ (p,φ) ∈H× Cα.

Under the above assumptions, the same argument as in the proof of [51, Proposition 3.1] with 
minor modifications applies to show the existence and uniqueness of global mild solutions for 
(4.1): For each initial data φ ∈ Cα := C([−r, 0], Xα) and p ∈ H, there is a unique continuous 
function u : [−r, ∞) → Xα with u(t) = φ(t) (−r ≤ t ≤ 0) satisfying the integral equation

u(t) = e−Atφ(0) +
t∫

0

e−A(t−s)F (θsp,us)ds, t ≥ 0.

A solution of (4.1) clearly depends on p. For convenience, given p ∈ H, we call a solution 
u of (4.1) a solution pertaining to p. We will use the notation u(t; p, φ) to denote the solution 
of (4.1) on [−r, ∞) pertaining to p with initial value φ ∈ Cα . The solutions of (4.1) generate a 
cocycle � on Cα ,

�(t,p)φ = ut , t ≥ 0, (p,φ) ∈ H× Cα,

where ut is the lift of the solution u(t) = u(t; p, φ) in Cα .
Since H is compact and A has compact resolvent, using a similar argument as in the proof of 

[50, Proposition 4.1], it can be shown that for each fixed t > r , �(t, p)φ is compact as a mapping 
from H × Cα to Cα . Making use of this basic fact one can easily verify that � is asymptotically 
compact, that is, � enjoys the following property:

(AC) For any sequences tn → ∞ and (pn, φn) ∈ H × Cα , if 
⋃

n≥1 �([0, tn], pn)φn is bounded 
in Cα then the sequence �(tn, pn)φn has a convergent subsequence.

4.1. Basic integral formulas on bounded solutions

Suppose A has a spectral decomposition σ(A) = σ− ∪ σ+, where

Re z ≤ −β < 0 (z ∈ σ−), Re z ≥ β > 0 (z ∈ σ+) (4.2)

for some β > 0. Let X = X1 ⊕ X2 be the corresponding direct sum decomposition of X with 
X1 and X2 being invariant subspaces of A. Denote Pi : X → Xi (i = 1, 2) the projection from 
X to Xi , and write Ai = A|Xi

. By the basic knowledge on sectorial operators (see Henry [20, 
Chap. 1]), there exists M ≥ 1 such that

‖�αe−A1t‖ ≤ Meβt , ‖e−A1t‖ ≤ Meβt , t ≤ 0, (4.3)

‖�αe−A2tP2�
−α‖ ≤ Me−βt , ‖�αe−A2t‖ ≤ Mt−αe−βt , t > 0. (4.4)

The verification of the following basic integral formulas on bounded solutions are just slight 
modifications of the corresponding ones for that of equations without delays (see e.g. [17, pp. 
180, Lemma A.1] and [24]), and hence is omitted.
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Lemma 4.1. Let u : [−r, +∞) → Xα be a bounded continuous function. Then u is a solution of 
(4.1) on [−r, ∞) pertaining to p ∈ H if and only if u solves the integral equation

u(t) = e−A2tP2u(0) + ∫ t

0 e−A2(t−s)P2F(θsp,us)ds

− ∫ ∞
t

e−A1(t−s)P1F(θsp,us)ds, t ≥ 0.

4.2. Existence of bounded complete solutions

For nonlinear evolution equations, bounded complete solutions are of equal importance as 
equilibrium ones. This is because that the long-term dynamics of an equation is determined not 
only by the distribution of its equilibrium solutions, but also by that of all its bounded complete 
trajectories. In fact, for a nonautonomous evolution equation it may be of little sense to talk about 
equilibrium solutions in the usual terminology.

In this subsection we establish an existence result for bounded complete solutions of equation 
(4.1). For this purpose we need first to give some a priori estimates.

Let C0, C1 be the constants in (F2), and set

κ0 = supt≥0

(∫ t

0 (t − s)−αe−β(t−s)ds + ∫ ∞
t

eβ(t−s)ds
)

. (4.5)

Lemma 4.2. Suppose A has a spectral decomposition as in (4.2), and that C0 < 1/(κ0M). Then 
for any R, ε > 0, there exists T > 0 such that for all bounded solutions u(t) = u(t; p, φ) of (4.1)
with φ ∈ BR ,

‖u(t)‖α < ρ + ε, t>T , (4.6)

where ρ = C1M(1 − κ0C0M)−1
∫ ∞

0 (1 + s−α)e−βsds. Consequently

sup
t∈R

‖γ (t)‖α ≤ ρ (4.7)

for all bounded complete solutions γ (t) of (4.1).

Proof. (1) Let u(t) = u(t; p, φ) be a bounded solution of (4.1) on [−r, ∞). For any τ ≥ 0, set 
v(t) = u(t + τ) (t ≥ 0). Then v is a bounded solution of (4.1) pertaining to q = θτp. Hence we 
infer from Lemma 4.1 that

v(t) = e−A2tP2v(0) + ∫ t

0 e−A2(t−s)P2F(θsq, vs)ds

− ∫ ∞
t

e−A1(t−s)P1F(θsq, vs)ds, t ≥ 0.
(4.8)

Therefore by (4.3), (4.4) and (F2), we deduce that

‖v(t)‖α ≤ Me−βt‖v0‖Cα
+ ∫ t

0 K1(t, s)‖vs‖Cα
ds

+ ∫ ∞
t

K2(t, s)‖vs‖Cα
ds + C2, t ≥ 0,

where
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K1(t, s) = C0M(t − s)−αe−β(t−s), K2(t, s) = C0Meβ(t−s), (4.9)

and C2 = C1M
∫ ∞

0 (1 + s−α)e−βsds. That is, u satisfies

‖u(t)‖α ≤ Me−β(t−τ)‖uτ‖Cα
+ ∫ t

τ
K1(t, s)‖us‖Cα

ds

+ ∫ ∞
t

K2(t, s)‖us‖Cα
ds + C2, t ≥ τ ≥ 0.

(4.10)

Applying Theorem 1.1 one deduces that if C0 < 1/(κ0M) then for any R, ε > 0, there exists 
T > 0 such that (4.6) holds true for all p ∈H and φ ∈ BR .

(2) Let γ (t) be a bounded complete solution of (4.1) pertaining to some q ∈ H. Pick an R > 0
such that ‖γ (t)‖α < R for all t ∈ R. Then for any ε > 0, there is T > 0 such that (4.6) holds for 
all p ∈H and φ ∈ BR . Taking p = θ−T q and φ = γ (−T ), one finds that

‖γ (0)‖α = ‖u(T ;p,φ)‖α < ρ + ε.

Since ε is arbitrary, we conclude that ‖γ (0)‖α ≤ ρ.
In a similar fashion it can be shown that ‖γ (t)‖α ≤ ρ for all t ∈R. �
Thanks to Lemma 4.2, one can now show by very standard argument via the Conley index 

theory that equation (4.1) has a bounded complete solution u. Specifically, we have the following 
existence result.

Theorem 4.3. Assume the hypotheses in Lemma 4.2. Then for any p ∈ H, (4.1) has at least one 
bounded complete solution u pertaining to p.

Proof. The estimate (4.7) allows us to prove by using the Conley index theory and some standard 
argument that (4.1) has at least one bounded complete solution γ = γ (t) pertaining to some 
p0 ∈H. The interested reader is referred to [55, Sect. 7] and [34] for details.

To show that for any p ∈ H, equation (4.1) has at least one bounded complete solution u
pertaining to p, we consider the skew-product flow � on X = H× Cα defined as below:

�(t)(p,φ) = (θtp,�(t,p)φ) , (p,φ) ∈ X , t ≥ 0. (4.11)

The asymptotic compactness of � implies that � is asymptotically compact. Let ϕ(t) =
(θtp0, γt ). Then ϕ = ϕ(t) is a bounded complete trajectory of �.

Let S = ω(ϕ) be the ω-limit set of ϕ,

ω(ϕ) = ⋂
τ≥0 {ϕ(t) : t ≥ τ }. (4.12)

By the basic knowledge in the dynamical systems theory we know that S is a nonempty compact 
invariant set of �. Set K = PHS , where PH : X → H is the projection. One can easily verify 
that K is a nonempty compact invariant set of the driving system θ . Hence due to the minimality 
hypothesis on H we deduce that K = H. Consequently for each p ∈ H, there is a φ ∈ Cα such 
that (p, φ) ∈ S . Let (θtp, ut ) be a bounded complete trajectory of � in S through (p, φ). Set
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u(t) = ut (0), t ∈R.

Then u(t) is bounded complete solution of (4.1) pertaining to p. �
4.3. Existence of a nonautonomous equilibrium solution

For the sake of simplicity in statement, instead of (F1) and (F2), in this section we assume 
that F(p, φ) is globally Lipschitz in φ uniformly w.r.t p ∈H, i.e.,

(F3) there exist L > 0 such that

‖F(p,φ) − F(p,φ′)‖0 ≤ L‖φ − φ′‖Cα
, ∀φ,φ′ ∈ Cα, p ∈ H.

In such a case, since

‖F(p,φ)‖0 = ‖F(p,φ) − F(p,0)‖0 + ‖F(p,0)‖0 ≤ L‖φ‖Cα
+ ‖F(p,0)‖0,

we see that hypothesis (F2) is automatically fulfilled with

C0 = L, C1 = max
p∈H

‖F(p,0)‖0. (4.13)

Definition 4.4. A nonautonomous equilibrium solution of (4.1) is a continuous mapping � ∈
C(H, Xα) such that γp(t) := �(θtp) is a bounded complete solution of (4.1) pertaining to p for 
each p ∈ H.

Theorem 4.5. Suppose A has a spectral decomposition as in (4.2), and that L < 1/(κ0M). Then 
the following assertions hold:

(1) Equation (4.1) has a nonautonomous equilibrium solution � ∈ C(H, Xα).
(2) For any R, ε > 0, there exists T > 0 such that for any bounded solution u(t) = u(t; p, φ)

with φ ∈ BR ,

‖u(t) − �(θtp)‖α < ε, t > T .

(3) There exists c > 0 such that for any bounded solution u(t) = u(t; p, φ),

‖u(t) − �(θtp)‖α ≤ c max
s∈[−r,0] ‖φ(s) − �(θsp)‖α, t ≥ 0.

Proof. (1) We continue the argument in the proof of Theorem 4.3. Set

S[p] = {φ : (p,φ) ∈ S}, p ∈ H,

where S is the ω-limit set of ϕ given by (4.12). Using the compactness of S one easily checks 
that S[p] is upper semicontinuous, i.e., given p ∈ H, for any ε > 0, there is a δ > 0 such that 
S[q] is contained in the ε-neighborhood of S[p] for all q with d(q, p) < δ. In what follows we 
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show that S[p] is a singleton. Consequently the upper semicontinuity of S[p] reduces to the 
continuity of S[p] in p.

Let φ1, φ2 ∈ S[p]. As in the proof of Theorem 4.3 we know that � has two bounded complete 
trajectories γ i

t (i = 1, 2) in Cα pertaining to p with γ i
0 = φi . We check that γt := γ 1

t − γ 2
t ≡ 0

for t ∈R, or equivalently,

γ (t) := γ 1(t) − γ 2(t) ≡ 0, where γ i(t) = γ i
t (0). (4.14)

It then follows that φ1 = φ2, hence S[p] is a singleton.
For η ∈ R, we write ϕi(t) = γ i(t +η). Then ϕi(t) is a solution of (4.1) pertaining to q = θηp. 

By Lemma 4.1 we have

ϕi(t) = e−A2tP2ϕ
i(0) + ∫ t

0 e−A2(t−s)P2F
(
θsq, ϕi

s

)
ds

− ∫ ∞
t

e−A1(t−s)P1F
(
θsq, ϕi

s

)
ds, t ≥ 0.

Let ϕ(t) := ϕ1(t) − ϕ2(t). Then

ϕ(t) = e−A2tP2ϕ(0) + ∫ t

0 e−A2(t−s)P2
(
F

(
θsq, ϕ1

s

) − F
(
θsq, ϕ2

s

))
ds

− ∫ ∞
t

e−A1(t−s)P1
(
F

(
θsq, ϕ1

s

) − F
(
θsq, ϕ2

s

))
ds, t ≥ 0.

Thus by (F3) we deduce that

‖ϕ(t)‖α ≤ Me−βt‖ϕ0‖Cα
+ LM

∫ t

0 (t − s)−αe−β(t−s)‖ϕs‖Cα
ds

+LM
∫ ∞
t

e−β(s−t)‖ϕs‖Cα
ds, ∀ t ≥ 0.

(4.15)

Since ϕ(t) = γ 1(t + η) − γ 2(t + η) and η ∈ R can be taken arbitrary, it can be easily seen that 
(4.15) is readily satisfied by all the translations ϕ(· + τ) of ϕ, i.e.,

‖ϕ(t + τ)‖α ≤ Me−βt‖ϕτ‖Cα
+ LM

∫ t

0 (t − s)−αe−β(t−s)‖ϕs+τ‖Cα
ds

+LM
∫ ∞
t

e−β(s−t)‖ϕs+τ‖Cα
ds, ∀ t ≥ 0.

Rewriting t + τ as t , the above inequality can be put into the following one:

‖ϕ(t)‖α ≤ E(t, τ )‖ϕτ‖Cα
+ ∫ t

τ
K1(t, s)‖ϕs‖Cα

ds

+ ∫ ∞
t

K2(t, s)‖ϕs‖Cα
ds, ∀ t ≥ τ ,

(4.16)

where E(t, s) = Me−β(t−s), and

K1 = LM(t − s)−αe−β(t−s), K2 = LMe−β(s−t). (4.17)

Applying Theorem 1.1 (1) to y(t) = ‖ϕ(t)‖α , we deduce by (4.16) that if L < 1/(κ0M), then 
for any ε > 0 there exists T > 0 (independent of η) such that ‖ϕ(t)‖α < ε for all t > T , that is,
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‖γ (t + η)‖α < ε, t > T , η ∈R. (4.18)

Now for any τ ∈ R, setting t = T + 1 and η = τ − (T + 1) in (4.18) we obtain that ‖γ (τ)‖α < ε. 
Since ε is arbitrary, one immediately concludes that γ (τ) = 0, which justifies the validity of 
(4.14).

Now we write S[p] = {φp}. Then φp is continuous in p, and the invariance property of S
implies that γt := φθtp is a complete trajectory of the cocycle � in Cα for each p ∈H. Define

�(p) = φp(0), p ∈ H.

Clearly � ∈ C(H, Xα). It is easy to see that for each p ∈ H, γp(t) := �(θtp) = φθtp(0) is a 
complete solution of (4.1) pertaining to p. Hence � is a nonautonomous equilibrium solution of 
equation (4.1).

(2)-(3) Let p ∈ H, and let u(t) = u(t; p, φ) be a bounded solution of (4.1). Then the same 
argument as above with minor modifications applies to show that (4.16) is fulfilled by ϕ(t) :=
u(t) −�(θtp) for all t ≥ τ ≥ 0. Assertions (2) and (3) then immediately follow from Theorem 1.1
and Lemma 2.1. �
4.4. Global asymptotic stability of the equilibrium

Now we pay some attention to the particular case where σ(A) lies in the right half plane. We 
continue the argument in Section 4.3 and assume that F satisfies the global Lipschitz condition 
(F3).

Given (p, φ) ∈ H × Cα , we write u(t) = u(t; p, φ). Since the spectral set σ− = ∅, using the 
constant variation formula it can be shown that

‖u(t)‖α ≤ Me−β(t−τ)‖uτ‖Cα
+

t∫
τ

K1(t, s)‖us‖Cα
ds+ρ0, t ≥ τ ≥ 0 (4.19)

where ρ0 = C1M
∫ ∞

0 s−αe−βsds (C1 is the constant given in (4.13)), and K1(t, s) is the function 
given in (4.17). The calculations involved here are similar to those as in the proof of Lemma 4.2. 
We omit the details. Let

κ0 = supt≥0

(∫ t

0 (t − s)−αe−β(t−s)ds
)

, ρ = (1 − κ0LM)−1ρ0,

where L is the constant in (F3). Applying Theorem 1.3 (1) one deduces that if L < 1/(κ0M), 
then for any R, ε > 0, there exists T > 0 such that

‖u(t)‖α < ρ + ε, ∀ t>T , (p,φ) ∈H×BR. (4.20)

Let � be the nonautonomous equilibrium solution given by Theorem 4.5. As a direct conse-
quence of (4.20) and Theorem 4.5, we have

Theorem 4.6. Suppose L < 1/(κ0M), and that

Re z ≥ β > 0, ∀ z ∈ σ(A). (4.21)
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Then � is uniformly globally asymptotically stable in the following sense:

(1) � is uniformly table, i.e., for any ε > 0, there exists δ > 0 such that for all (p, φ) ∈ H × Cα

with maxs∈[−r,0] ‖φ(s) − �(θsp)‖α < δ,

‖u(t) − �(θtp)‖α < ε, t ≥ 0. (4.22)

(2) � is uniformly globally attracting, i.e., for any R, ε > 0, there exists T > 0 such that for all 
p ∈H and φ ∈ BR ,

‖u(t) − �(θtp)‖α < ε, t > T . (4.23)

Proof. The uniform stability of � follows from Theorem 4.5 (3), and the uniform global attrac-
tion of � is a consequence of (4.20) and some general results on the uniform forward attraction 
properties of pullback attractors; see e.g. [57, Theorem 3.3]. �

If we impose on L a stronger smallness requirement, then it can be shown that � is uniformly 
globally exponentially asymptotically stable.

Theorem 4.7. Assume that A satisfies (4.21). If L < 1/(κ0M(1 + M)), then there exist C, λ > 0
such that for all (p, φ) ∈H× Cα ,

‖u(t) − �(θtp)‖α ≤ Ce−λt max
s∈[−r,0] ‖φ(s) − �(θsp)‖α , t ≥ 0.

Proof. Let ϕ(t) = u(t) − �(θtp). Using a parallel argument as in the proof of Lemma 4.2 (1), 
we can obtain that

‖ϕ(t)‖α ≤ Me−β(t−τ)‖ϕτ‖Cα
+

t∫
τ

K1(t, s)‖ϕs‖Cα
ds. t ≥ τ ≥ 0.

If L < 1/(κ0M(1 + M)) then the functions E(t, s) := Me−β(t−s) and K1(t, s) fulfill the require-
ments in Theorem 1.3. Thus there exist constants C, λ > 0 independent of ϕ such that

‖ϕ(t)‖α ≤ Ce−λt‖ϕ0‖Cα
, t ≥ 0.

The conclusion of the theorem then immediately follows. �
4.5. Nonlinear evolution equations with multiple delays

Let us now consider the nonlinear evolution equation

du

dt
+ Au = f (u(t − r1), · · · , u(t − rm)) + h(t) (4.24)

with multiple delays, where X and A are the same as in Subsection 4.1, f is a continuous map-
ping from (Xα)m to X for some α ∈ [0, 1), h ∈ C(R, X), ri ∈ C(R, R+), and
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0 ≤ ri(t) ≤ r < ∞, 1 ≤ i ≤ m.

It is well known that (4.24) covers a large number of concrete examples from applications. Our 
main goal here is to demonstrate how to put such an equation into the abstract form of (4.1).

The initial value problem of (4.24) reads as follows:

{
du
dt

+ Au = f (u(t − r1), · · · , u(t − rm)) + h(t), t ≥ τ,

u(τ + s) = φ(s), s ∈ [−r,0], (4.25)

where φ ∈ Cα = C([−r, 0], Xα), and τ ∈ R is given arbitrary. Rewriting t − τ as t , one obtains 
an equivalent form of (4.25):

{
dv
dt

+ Av = f (v(t − r̃1), · · · , v(t − r̃m)) + h̃(t), t ≥ 0,

v(s) = φ(s), s ∈ [−r,0], (4.26)

where v(t) = u(t + τ), and

r̃i (t) = ri(t + τ), h̃(t) = h(t + τ).

Denote Y the space C(R)m × C(R, X) equipped with the compact-open topology (under 
which a sequence pn(t) in Y is convergent iff it is uniformly convergent on any compact interval 
I ⊂ R). Let θ be the translation operator on Y ,

θτp = p(· + τ), ∀p ∈ Y, τ ∈R.

Set

p∗(t) = (r1(t), · · · , rm(t), h(t)), (4.27)

and assume that p∗(t) is translation compact in Y , i.e., the hull

H = H[p∗] := {θτp∗ : τ ∈ R}

of p∗ in Y is a compact subset of Y .
We also assume that H is minimal w.r.t θ . This requirement is naturally fulfilled when p∗ is, 

say for instance, periodic, pseudo-periodic, or almost periodic.
Define a function F : H× Cα → X as

F(p,φ) = f (φ(−p1(0)), · · · , φ(−pm(0))) + pm+1(0) (4.28)

for any p = (p1, · · · , pm+1) ∈ H. Observing that

(r1(t + τ), · · · , rm(t + τ), h(t + τ)) = p∗(t + τ) = (θt+τp
∗)(0),

we can rewrite the righthand side of the equation in (4.26) as follows:
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f (v(t − r̃1), · · · , v(t − r̃m)) + h̃(t)

= F(θt+τ p
∗, vt ) = F(θtp, vt ), p = θτp

∗.

Consequently (4.26) can be reformulated as

{
dv
dt

+ Av = F(θtp, vt ), t ≥ 0, p ∈ {θτp
∗ : τ ∈R},

v0 = φ.
(4.29)

Since {p = θτp
∗ : τ ∈ R} is dense in H, for theoretical completeness we usually embed (4.29)

into the following cocycle system:

{
dv
dt

+ Av = F(θtp, vt ), t ≥ 0, p ∈ H,

v0 = φ.
(4.30)

Now assume f satisfies the following conditions:

(f1) f is locally Lipschitz, namely, for any R > 0, there exists Lf = Lf (R) > 0 such that for all 
ui, u′

i ∈ Xα (1 ≤ i ≤ m) with ‖ui‖α, ‖u′
i‖α ≤ R,

‖f (u1, · · · , um) − f (u′
1, · · · , u′

m)‖0 ≤ Lf (‖u1 − u′
1‖α + · · · + ‖um − u′

m‖α).

(f2) There exist C0, C1 > 0 such that

‖f (u1, · · · , um)‖0 ≤ C0(‖u1‖α + · · · + ‖um‖α) + C1, ∀ui ∈ Xα.

Then one can trivially verify that the mapping F defined by (4.28) satisfies hypotheses (F1) and 
(F2).

Remark 4.8. Note that if the function p∗ in (4.27) is periodic (resp. quasi-periodic, almost peri-
odic), then θtp is periodic (resp. quasi-periodic, almost periodic) for any fixed p ∈ H := H[p∗]. 
Let � be the equilibrium solution of (4.30) given in Theorems 4.6 and 4.7. Then since �(q) is 
continuous in q , we deduce that γp := �(θtp) is periodic (resp. quasi-periodic, almost periodic) 
as well. Therefore these two theorems give the existence of asymptotically stable periodic (resp. 
pseudo periodic, almost periodic) solutions for equation (4.24).

The interested reader is referred to [19,23,25,26,33,38,40,42–44,53,54] etc. for some classical 
results and new trends on periodic solutions of delay differential equations, and to [22,32,41,48,
60,62–64] and references therein for typical results on almost periodic solutions.

Remark 4.9. In the case where the functions h and ri (1 ≤ i ≤ m) in the equation (4.24) are 
not translation compact (or, the righthand side of the equation takes a more general form like 
g(t, u(t − r1), · · · , u(t − rm))), the framework of cocycle systems does not seem to be quite 
suitable to handle the problem, because the base space H of the cocycle system corresponding 
to the equation may not be compact. Instead, the processes one may be more appropriate.

Set F(t, φ) = f (φ(−r1), · · · , φ(−rm)) + h(t) (t ∈R, φ ∈ Cα). Then (4.24) can be put into a 
functional one:

du + Au = F(t, ut ). (4.31)

dt
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Suppose (4.31) has a unique global solution x(t; τ, φ) (t ∈ [τ − r, ∞)) for each initial data 
(τ, φ) ∈ R × Cα . Denote by xt (τ, φ) the lift of x(t) := x(t; τ, φ) in Cα . Then as in (3.29), we 
can define a process P(t, τ) on Cα . This allows us to take some steps in the investigation of the 
dynamics of the equation. For instance, under similar hypotheses as in Section 4.4, it is desirable 
to prove that the equation has a unique bounded complete (entire) solution γ (t) (t ∈ R) which 
is uniformly globally (exponentially) asymptotically stable by employing the pullback attractor 
theory for processes.

The situation becomes quite complicated if the operator A fails to be a dissipative one, i.e., 
the spectral set σ− in (4.2) is non-void. One drawback is that both the pullback attractor theory 
and the Conley index theory are not applicable in proving the existence of bounded complete 
solutions of the equation. If the delay functions ri(t) are constants, then since the external force 
h(t) and the nonlinear term in the righthand side of (4.24) are separate, one may try to get a 
bounded complete solution γ (t) of the equation by considering periodic approximations of h(t). 
However, if the functions ri(t) also depend on t , we are not sure whether such a strategy still 
works. There are also many other interesting questions such as the synchronizing property of 
the bounded complete solution γ (t) with the external force (in case ri(t) are constant functions) 
and a more detailed description of the dynamics of the equation. (Note that even if in the case 
where h(t) and ri(t) are translation compact, Theorem 4.5 only gives us some information on 
the asymptotic behavior of bounded solutions of the equation. A natural question is to ask: What 
can we say about those unbounded solutions?) All these questions deserve to be clarified, and a 
further study on the geometric theory of functional differential equations in a processes fashion 
may be helpful for us to take some steps, in which the integral inequality (1.1) may once again 
play a fundamental role.

4.6. Neural networks with multiple delays

As a concrete example, we consider the following reaction diffusion neural network system 
with multiple delays:

⎧⎪⎨
⎪⎩

∂ui

∂t
= div (ai(x)∇ui) + ∑n

j=1 bijuj+
+∑n

j=1 Tij gj (x,uj , uj (x, t − rij )) + Ji(x, t),

ui(x, t) = 0, t ≥ 0, x ∈ ∂�, i = 1,2, ..., n.

(4.32)

Here � ⊂ Rm is a bounded domain with a smooth boundary ∂�, ai ∈ C1(�) and is positive 
everywhere on �, bij and Tij are constant coefficients,

0 ≤ rij ≤ r < ∞, 1 ≤ i, j ≤ n,

and Ji(x, t) are bounded inputs. We refer the interested reader to [14,52] etc. for a physical 
background of this type of systems.

Let Ai be the elliptic operator given by

Aiu = −
m∑ ∂

∂xk

(
ai(x)

∂u

∂xk

)

k=1
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associated with the corresponding boundary condition. It is a basic knowledge (see e.g. Henry 
[20, Chap.7]) that Ai is a sectorial operator in L2(�) with compact resolvent.

For notational simplicity, we use the same notation gj to denote the Nemytskii operator gen-
erated by the function gj (x, u, v), i.e.,

gj (u, v)(x) = gj (x,u, v) (x ∈ �), u, v ∈ L2(�).

Let Ji(t) = Ji(·, t). Then (4.32) takes a slightly abstract form:

dui

dt
+ Aiui =

n∑
j=1

bijuj +
n∑

j=1

Tij gj (uj , uj (t − rij )) + Ji(t), 1 ≤ i ≤ n. (4.33)

Set H = (
L2(�)

)n
, and let u = (u1, · · · , un)

′. Denote

Au = (A1u1, ...,Anun)
′, u ∈ D(A) ⊂ H.

(It is clear that A is a sectorial operator in H .) Let C0 = C([−r, 0], H), and define an operator 
G : C0 → Hn = (L2(�))n×n as follows: ∀ φ = (φ1, · · · , φn)

′ ∈ C0,

G(φ) = (ψji)n×n, where ψij = gj (φj (0),φj (−rij )).

Let T = (
Tij

)
n×n

. Write T G(φ) = ([T G(φ)]ij
)
n×n

, and define

F(φ) = (F1(φ),F2(φ), · · · ,Fn(φ))′, Fi(φ) = [T G(φ)]ii .

Then (4.33) can be reformulated as

du

dt
+ Au = Bu + F(ut ) + J (t), (4.34)

where B = (
bij

)
n×n

, and J = (J1, · · · , Jn)
′.

Since (4.34) is nonautonomous, generally the initial value problem reads

{
dv
dt

+ Av = Bv + F(vt ) + J (t + τ), t ≥ 0,

v0 = φ ∈ C0,
(4.35)

where v(t) = u(t + τ), and τ ∈ R denotes the initial time. We assume that J is translation 
compact in Y . Denote H the hull H[J ] of the function J in Y . Then as in the previous subsection 
one can embed (4.35) into the cocycle system:

{
dv
dt

+ (A − B)v = F(θtp, vt ), t ≥ 0, p ∈H,

v0 = φ ∈ C0,
(4.36)

where

F(p,φ) = F(φ) + p(0), p ∈H, φ ∈ C0.
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For simplicity, we always assume that gj (x, u, v) are continuous and globally Lipschitz in 
(u, v) uniformly for x ∈ �, that is, there exists Lj > 0 such that

|gj (x, t1, s1) − gj (x, t2, s2)| ≤ Lj (|t1 − t2| + |s1 − s2|)
for all ti , si ∈ R and x ∈ �. Then for the Nemytskii operator gj of the function gj (x, u, v), we 
have

‖gj (u1, v1) − gj (u2, v2)‖L2(�) ≤Lj(‖u1 − u2‖L2(�) + ‖v1 − v2‖L2(�)).

Further by some simple calculations it can be shown that

‖F(p,φ) − F(p,φ′)‖H ≤ L‖φ − φ′‖C0

with L = 2 
(∑n

i=1

(∑n
j=1 |Tij |Lj

)2
)1/2

. This allows us to carry over all the results on the 
abstract evolution equation (4.1) to system (4.36). In particular, by Remark 4.8 we have the 
following theorem.

Theorem 4.10. Suppose Re (σ (A −B)) ≥ β > 0, and that L < 1/ (MI), where M is the constant 
appearing in (4.3) corresponding to operator A − B , and

I = sup
t≥0

t∫
0

e−β(t−s)ds.

Let J (t) = (J1(t), · · · , Jn(t))
′ be a periodic (resp. quasi-periodic, almost periodic) function. 

Then system (4.32) has a unique periodic (resp. quasi-periodic, almost periodic) solution γ
which is globally uniformly asymptotically stable.

If we further assume L < 1/ (MI (1 + M)), then γ is globally exponentially asymptotically 
stable.
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