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Abstract

The quasilinear differential system

x′ = ax + b|y|p∗−2y + k(t, x, y), y′ = c|x|p−2x + dy + l(t, x, y)

is considered, where a, b, c and d are real constants with b2 + c2 > 0, p and p∗ are positive numbers with 
(1/p) + (1/p∗) = 1, and k and l are continuous for t ≥ t0 and small x2 + y2. When p = 2, this system is 
reduced to the linear perturbed system. It is shown that the behavior of solutions near the origin (0, 0) is very 
similar to the behavior of solutions to the unperturbed system, that is, the system with k ≡ l ≡ 0, near (0, 0), 
provided k and l are small in some sense. It is emphasized that this system can not be linearized at (0, 0)

when p �= 2, because the Jacobian matrix can not be defined at (0, 0). Our result will be applicable to study 
radial solutions of the quasilinear elliptic equation with the differential operator r−(γ−1)(rα |u′|β−au′)′, 
which includes p-Laplacian and k-Hessian.
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1. Introduction

In this paper, we consider the quasilinear differential system

x′ = ax + bφp∗(y) + k(t, x, y),

y′ = cφp(x) + dy + l(t, x, y),
(1.1)

where a, b, c and d are real constants with b2 + c2 > 0, k and l are continuous for t ≥ t0 and 
small x2 + y2, p and p∗ are positive numbers satisfying

1

p
+ 1

p∗ = 1,

and, for q > 1, φq is defined by

φq(s) =
{ |s|q−2s, s �= 0,

0, s = 0.

We note here that p > 1, p∗ > 1 and φp∗ is the inverse function of φp . Throughout this paper, 
we assume that

k(t, x, y) = o
(
(|x|p + |y|p∗

)
1
p

)
, l(t, x, y) = o

(
(|x|p + |y|p∗

)
1

p∗
)

(1.2)

as |x|p + |y|p∗ → 0 uniformly in t ≥ t0, that is, given ε > 0, there exists δ > 0 such that

|k(t, x, y)| ≤ ε(|x|p + |y|p∗
)

1
p , |l(t, x, y)| ≤ ε(|x|p + |y|p∗

)
1

p∗

for |x|p + |y|p∗ ≤ δ and t ≥ t0. Then k(t, 0, 0) = l(t, 0, 0) = 0 for t ≥ t0 and system (1.1) has the 
zero solution (x(t), y(t)) ≡ (0, 0). For the zero solution, we have the following result which will 
be proven in Section 2.

Proposition 1.1. The zero solution (x(t), y(t)) ≡ (0, 0) of (1.1) is unique, that is, (1.1) has no 
solution (x, y) such that (x(t1), y(t1)) = (0, 0) for some t1 ≥ t0 and (x(t), y(t)) �≡ (0, 0).

Remark 1.1. Condition (1.2) of Proposition 1.1 is optimal in the following sense. Gazzola, Serrin 
and Tang [12, Corollary 1 and see also Theorem 1 (i)] prove that

(rN−1φp(u′))′ + rN−1(−um−1 + uq−1) = 0

has a solution u such that u(r) > 0 on [0, R) and u(r) ≡ 0 on [R, ∞) for some R > 0, where 
N > p and 1 < m < p < q < pN/(N − p). Now we set

x(t) = r
− p

p−m u(r), y(t) = r
− m(p−1)

p−m φp(u′(r)), r = et .

Then (x(t), y(t)) is a solution of
217
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x′ = − p

p − m
x + φp∗(y), y′ = −

(m(p − 1)

p − m
+ N − 1

)
y + L(t, x), (1.3)

where

L(t, x) = xm−1 − e
p(q−m)
p−m

t
xq−1.

We see that (x(t), y(t)) �≡ 0 on (−∞, logR) and (x(t), y(t)) ≡ 0 on [logR, ∞). Therefore, (1.3)
neither satisfies (1.2) nor has the unique zero solution.

If b2 + c2 = 0, then (1.1) is a linear perturbed system, and such a case is not treated in this 
paper. When p = 2, system (1.1) is reduced to the linear perturbation system(

x

y

)′
= A

(
x

y

)
+

(
k(t, x, y)

l(t, x, y)

)
, (1.4)

where

A =
(

a b

c d

)
.

The study of the linear perturbation theory on differential systems has a long history. For exam-
ple, the following result is well-known. See [3, Theorem 1.1 in Chapter 13].

Theorem A. Assume that

k(t, x, y) = o

(√
x2 + y2

)
, l(t, x, y) = o

(√
x2 + y2

)
as x2 + y2 → 0 uniformly in t ≥ t0 and every eigenvalue of A has a negative real part, that is, 
a+d < 0. Then the zero solution of (1.4) is exponentially stable. Moreover, if (a−d)2 +4bc < 0, 
then the origin (0, 0) of (1.4) is a stable focus.

It goes without saying that the linear perturbation theory is bringing us great benefits. On the 
other hand, the perturbation theory on (1.1) will be applicable to study radial solutions of the 
quasilinear elliptic equation with the differential operator r−(γ−1)(rα|u′|β−au′)′, which includes 
Laplacian, p-Laplacian and k-Hessian. For example, Miyamoto and Takahashi [19] transformed 
the quasilinear elliptic equation

(rα|u′|β−1u′)′ + rγ−1|u|p−1u = 0

into the system

x′ = qx − qφ(β+1)∗(y), y′ = −by + b|x|p−1x,

where q = (−α + β + γ )/(p − β) and b = α − β(q + 1). Here, b|x|p−1x is the perturbation 
term. See also, Bidaut-Véron [1], Cîrstea [2], Flores and Franca [7], Franca [8], [9], [10], and 
Miyamoto [18]. In Section 9, we consider the quasilinear elliptic equation
218
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div(|x|α|∇u|p−2∇u) + c

|x|p−α
|u|p−2u + |x|β |u|q−2u = 0 in RN − {0}, (1.5)

where N > p, q > p > 1 and α, β , c ∈ R. Radial solutions of (1.5) satisfy

r−(N−1)(rN−1+αφp(u′))′ + c

rp−α
φp(u) + rβφq(u) = 0, r > 0. (1.6)

We assume that p > α − β and N − p + α > 0. By setting a = (p − α + β)/(q − p), η =
(a + 1)(p − 1), x(t) = rau(r), y(t) = −rηφp(u′(r)) and r = et , equation (1.6) is transformed 
into

x′ = ax − φp∗(y), y′ = cφp(x) + (η − N + 1 − α)y + φq(x). (1.7)

Conversely, if (x(t), y(t)) is a solution of (1.7), then u(r) := r−ax(log r) is a solution of (1.6)
and u′(r) = −ar−a−1φp∗(y(log r)). In section 9, we apply our results to (1.7). Especially, we 
find a continuum of singular solutions of (1.5) with c = 0. Such a result was obtained by Franca 
[8] when α = 0 and Troy and Krisner [30] when α = β = 0 and p = 2.

It is natural to expect that the behavior of solutions of (1.1) near the origin (0, 0) is very similar 
to the behavior of solutions to the unperturbed system

x′ = ax + bφp∗(y), y′ = cφp(x) + dy (1.8)

near (0, 0), provided k and l are small in some sense. It is emphasized that this system can not 
be linearized at (0, 0) when p �= 2, because the Jacobian matrix(

a b(p∗ − 1)|y|p∗−2

c(p − 1)|x|p−2 d

)
can not be defined at (0, 0).

There are a lot of studies on quasilinear differential equations. Sometimes, however, it can not 
be linearized by the nonlinearity of its differential operator. To overcome such a problem, it is 
worthwhile to investigate the perturbed system (1.1).

The system (1.8) is studied in [6], [22] and [27]. The nonautonomous case is treated in [5], 
[13], [14], [15], [16], [17], [20], [21], [23], [24], [25], [26], and [29]. These studies succeeded in 
generalizing results on linear systems. Especially, in [22], the function

f (λ) = φp(λ − a)[(p − 1)λ − d] − φp(b)c (1.9)

= 1

p∗

[
p|λ − a|p + (pa − p∗d)φp(λ − a) − p∗φp(b)c

]
is introduced and it is found that the equation

f (λ) = 0 (1.10)

plays the role of the characteristic equation for (1.8). Moreover, (1.10) and its root are regarded 
as generalizations of the characteristic equation and its eigenvalue, respectively. According to 
[22], we define the following constants
219
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T := a + d, D := φp(a)d − φp(b)c, 
 :=
∣∣∣∣ a

p∗ − d

p

∣∣∣∣p + φp(b)c.

In the case where p = 2, setting A = ( a b
c d

), we find that T = trA, D = detA and

4
 = (a − d)2 + 4bc = (trA)2 − 4 detA,

which is the discriminant of the characteristic equation

(λ − a)(λ − d) − bc = 0.

By the proof of Proposition 1.3 in [22], we find that

min
λ∈R

f (λ) = f (T /p) = −
.

Since f (0) = D, we note that

D > −
. (1.11)

The following two results are obtained in [22, Proposition 1.3 and Corollary 1.1].

Proposition B. The following (i)–(iii) hold:

(i) if 
 < 0, then (1.10) has no real root and f (λ) > 0 on R;
(ii) if 
 = 0, then (1.10) has a unique real root λ = T/p and f (λ) > 0 on (−∞, T/p) ∪

(T /p, ∞);
(iii) if 
 > 0, then (1.10) has two real roots λ1 and λ2 with λ1 < λ2, f (λ) < 0 on (λ1, λ2), and 

f (λ) > 0 on (−∞, λ1) ∪ (λ2, ∞).

Moreover, in the case 
 > 0, the following (a)–(c) hold:

(a) if D < 0, then λ1 < 0 < λ2;
(b) if D > 0 and T < 0, then λ1 < λ2 < 0;
(c) if D > 0 and T > 0, then 0 < λ1 < λ2.

Theorem C. The origin (0, 0) of system (1.8) is classified as follows:

(i) if D < 0, then (0, 0) is a saddle;
(ii) if D > 0, 
 > 0 and T < 0, then (0, 0) is a stable node;

(iii) if D > 0, 
 > 0 and T > 0, then (0, 0) is an unstable node;
(iv) if 
 < 0 and T < 0, then (0, 0) is a stable focus;
(v) if 
 < 0 and T = 0, then (0, 0) is a center;

(vi) if 
 < 0 and T > 0, then (0, 0) is an unstable focus.

The main results of this paper are as follows.
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Theorem 1.1. Assume that T < 0 and D > 0. Then the zero solution of system (1.1) is exponen-
tially stable.

Theorem 1.2. Assume that T < 0 and 
 < 0. Then the origin (0, 0) of system (1.1) is a stable 
focus in the following sense. The zero solution of system (1.1) is exponentially stable and ev-
ery solution (x(t), y(t)) near the origin is rotating infinitely around the origin in a clockwise
[respectively counter-clockwise] direction as t → ∞ when b > 0 [respectively b < 0].

Theorem 1.3. Assume that T < 0, D > 0 and 
 > 0. Then the origin (0, 0) of system (1.1) is 
a stable node in the following sense. The zero solution of system (1.1) is exponentially stable, 
(1.10) has two real roots λ1 and λ2 with λ1 < λ2 < 0, and every solution (x(t), y(t)) of (1.1)
near the origin satisfies

lim
t→∞

φp∗(y(t))

x(t)
= λi − a

b
(1.12)

for some i ∈ {1, 2} when b �= 0, and

lim
t→∞

φp(x(t))

y(t)
= 0 or

(p − 1)a − d

c

when b = 0. Moreover, for every solution (x(t), y(t)) of (1.1) near the origin and each ε > 0, 
there exist t1 ≥ t0, i ∈ {1, 2} and C0 > 0 such that

C0e
p(λi−ε)t ≤ |x(t)|p + |y(t)|p∗ ≤ C0e

p(λi+ε)t , t ≥ t1, (1.13)

and, in particular, if b �= 0, then there exist C1 > 0 and C2 > 0 such that

C1e
(λi−ε)t ≤ |x(t)| ≤ C2e

(λi+ε)t , t ≥ t1. (1.14)

Remark 1.2. In Theorems 1.2 and 1.3, a focus and a node may be not standard ones, respectively. 
Namely, the focus in Theorem 1.2 might not have the topological conjugation property to the 
unperturbed system, and the stable manifold in Theorem 1.3 might not be 1 dimensional.

Remark 1.3. We can consider the case where t → −∞ in the following way. If (x(t), y(t)) is a 
solution of (1.1) on (−∞, t0], then (x(−t), y(−t)) is a solution of

x′ = −ax − bφp∗(y) − k(−t, x, y), y′ = −cφp(x) − dy − l(−t, x, y)

on [−t0, ∞).

The existence of a local solution (x(t), y(t)) to (1.1) with an initial condition (x(t0), y(t0)) =
(x0, y0) is guaranteed by the Peano existence theorem. By a standard argument on a general 
theory on ordinary differential equations, the solution (x(t), y(t)) is continuable whenever it is 
bounded.

When the origin (0, 0) is a saddle, we need more assumptions. We consider the autonomous 
differential system
221
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x′ = ax + bφp∗(y) + k(x, y), y′ = cφp(x) + dy + l(x, y), (1.15)

where a, b, c and d are real constants with b2 + c2 > 0, k and l are continuous in the neighbor-
hood of (0, 0), p and p∗ are positive numbers satisfying (1/p) + (1/p∗) = 1.

Theorem 1.4. Let D < 0. Assume that k and l are continuous in the neighborhood of (0, 0) and

k(x, y) = o
(
(|x|p + |y|p∗

)
2
p

)
, l(x, y) = o

(
|x|p + |y|p∗)

(1.16)

as |x|p + |y|p∗ → 0. Then the origin (0, 0) of system (1.15) is a saddle in the following sense. 
Equation (1.10) has two real roots λ1 and λ2 with λ1 < 0 < λ2, and there exists δ > 0 such that 
every solution (x(t), y(t)) of (1.15) with 0 < |x(t1)|p + |y(t1)|p∗

< δ for some t1 ∈ R satisfies 
one of the following (i)–(iii):

(i) there exist t0 and t2 such that t0 < t1 < t2 and |x(ti)|p + |y(ti)|p∗
> δ for i = 0, 2;

(ii) (x(t), y(t)) → (0, 0) as t → ∞ and

lim
t→∞

φp∗(y(t))

x(t)
= λ1 − a

b
when b �= 0,

lim
t→∞

φp(x(t))

y(t)
= 0 when b = 0, a > 0,

lim
t→∞

φp(x(t))

y(t)
= (p − 1)a − d

c
when b = 0, a < 0,

and for each ε > 0, there exist t2 ≥ t1 and C0 > 0 such that

C0e
p(λ1−ε)t ≤ |x(t)|p + |y(t)|p∗ ≤ C0e

p(λ1+ε)t , t ≥ t2,

and, in particular, if b �= 0, then there exist C1 > 0 and C2 > 0 such that

C1e
(λ1−ε)t ≤ |x(t)| ≤ C2e

(λ1+ε)t , t ≥ t2;

(iii) (x(t), y(t)) → (0, 0) as t → −∞ and

lim
t→−∞

φp∗(y(t))

x(t)
= λ2 − a

b
when b �= 0,

lim
t→−∞

φp(x(t))

y(t)
= (p − 1)a − d

c
when b = 0, a > 0,

lim
t→−∞

φp(x(t))

y(t)
= 0 when b = 0, a < 0,

and for each ε > 0, there exist t0 ≤ t1 and C0 > 0 such that

C0e
p(λ2+ε)t ≤ |x(t)|p + |y(t)|p∗ ≤ C0e

p(λ2−ε)t , t ≤ t0,
222
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and, in particular, if b �= 0, then there exist C1 > 0 and C2 > 0 such that

C1e
(λ2+ε)t ≤ |x(t)| ≤ C2e

(λ2−ε)t , t ≤ t0.

Moreover, there exist solutions (x(t), y(t)) of (1.15) satisfying each one of (ii) and (iii).

Remark 1.4. If D < 0 and b = 0, then a �= 0.

In Section 2, the generalized Prüfer transformation is introduced and the proof of Propo-
sition 1.1 is given. In Section 3, we give lemmas which play crucial roles in this paper. In 
Sections 4, 5 and 6, we consider the cases where 
 < 0, 
 > 0 and 
 = 0, respectively. In 
Section 7, we prove Theorems 1.1, 1.2 and 1.3. In Section 8, we give a proof of Theorem 1.4. In 
Section 9, we consider radial solutions of (1.5) and apply our results to (1.7).

2. Prüfer transformation

Let p > 1. A generalization of the classical trigonometric functions, denoted by sinp and 
cosp is well-known. See, for example, [4], [5], [6] and [28]. The function sinp is defined as the 
solution of the initial value problem

(φp(S′))′ + (p − 1)φp(S) = 0, S(0) = 0, S′(0) = 1.

The function sinp is defined on R and is periodic with period 2πp , where πp = 2π/(p sin(π/p)). 
Further, sinp x is an odd function having zeros at x = jπp , j ∈ Z; it is positive for 2jπp < x <

(2j + 1)πp , j ∈ Z, and negative for (2j + 1)πp < x < 2(j + 1)πp , j ∈ Z. The function cosp is 
defined by cosp x = (sinp x)′. Then

sinp(x + πp) = − sinp x, cosp(x + πp) = − cosp x, (2.1)

(φp(cosp x))′ = −(p − 1)φp(sinp x)

and

(cosp x)′ = (φp∗(φp(cosp x)))′ = −| cosp x|2−pφp(sinp x) (2.2)

if cosp x �= 0 or 1 < p ≤ 2. Since

(| sinp x|p + | cosp x|p)′ = (| sinp x|p + |φp(cosp x)|p∗
)′ = 0,

the generalized Pythagorean identity holds:

| sinp x|p + | cosp x|p = | sinp x|p + |φp(cosp x)|p∗ = 1, x ∈ R. (2.3)

Hence,

| sinp x| ≤ 1, | cosp x| ≤ 1, x ∈ R.
223



K. Itakura, M. Onitsuka and S. Tanaka Journal of Differential Equations 271 (2021) 216–253
Now we make use of the generalized Prüfer transformation, which was first introduced by 
Elbert [5]. Let (x, y) be a non-zero solution of (1.1). We define the functions r and θ by

x(t) = r(t) sinp θ(t), y(t) = φp(r(t) cosp θ(t)), (2.4)

where

r(t) = (|x(t)|p + |y(t)|p∗
)

1
p > 0.

Then

p(r(t))p−1r ′(t) = [(r(t))p]′
= (|x(t)|p + |y(t)|p∗

)′

= pφp(x(t))x′(t) + p∗φp∗(y(t))y′(t)

= pa|x(t)|p + (pb + p∗c)φp(x(t))φp∗(y(t)) + p∗d|y(t)|p∗

+ pφp(x(t))k(t, x(t), y(t)) + p∗φp∗(y(t))l(t, x(t), y(t)).

Now we use the notation:

G(θ) := pa| sinp θ |p + (pb + p∗c)φp(sinp θ) cosp θ + p∗d| cosp θ |p;
F(θ) := pb| cosp θ |p + (pa − p∗d) sinp θφp(cosp θ) − p∗c| sinp θ |p;

K(t, r, θ) := k(t, r sinp θ,φp(r cosp θ));
L(t, r, θ) := l(t, r sinp θ,φp(r cosp θ)).

We find that

r ′ = 1

p
r1−p[pa|x|p + (pb + p∗c)φp(x)φp∗(y) + p∗d|y|p∗ ]

+ r1−pφp(x)k(t, x, y) + p∗

p
r1−pφp∗(y)l(t, x, y)

= 1

p
G(θ)r + φp(sinp θ)K(t, r, θ) + 1

p − 1
r2−p cosp θL(t, r, θ).

From (2.4) it follows that

x′ = r ′ sinp θ + rθ ′ cosp θ

and

y′ = (rp−1φp(cosp θ))′

= (p − 1)rp−2r ′φp(cosp θ) − (p − 1)rp−1θ ′φp(sinp θ),

which imply
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r−1φp(cosp θ)x′ − 1

p − 1
r1−p sinp θy′ = θ ′.

Hence, by (1.1), we have

θ ′ = r−1φp(cosp θ)[ar sinp θ + br cosp θ + K(t, r, θ)]

− 1

p − 1
r1−p sinp θ [cφp(r sinp θ) + dφp(r cosp θ) + L(t, r, θ)]

= 1

p
F(θ) + r−1φp(cosp θ)K(t, r, θ) − 1

p − 1
r1−p sinp θL(t, r, θ).

Consequently, a solution (x, y) of (1.1) satisfying (x(t), y(t)) �= (0, 0) is transformed to a solu-
tion of the system

r ′ = 1

p
G(θ)r + M(t, r, θ), θ ′ = 1

p
F(θ) + N(t, r, θ), (2.5)

where

M(t, r, θ) := φp(sinp θ)K(t, r, θ) + (p∗ − 1)r2−p cosp θL(t, r, θ),

N(t, r, θ) := r−1φp(cosp θ)K(t, r, θ) − (p∗ − 1)r1−p sinp θL(t, r, θ).

Lemma 2.1. Given ε > 0, there exists δ > 0 such that M and N are continuous for t ≥ t0, 
0 ≤ r ≤ 2δ and θ ∈ R, and

|M(t, r, θ)| ≤ p∗εr, |N(t, r, θ)| ≤ p∗ε (2.6)

for 0 ≤ r ≤ δ and t ≥ t0.

Proof. Let ε > 0. Then there exists δ > 0 such that

|K(t, r, θ)| ≤ εr, |L(t, r, θ)| ≤ εrp−1

for 0 ≤ r ≤ δ and t ≥ t0. Hence, if 0 ≤ r ≤ δ and t ≥ t0, then

|M(t, r, θ)| ≤ |φp(sinp θ)||K(t, r, θ)| + (p∗ − 1)r2−p| cosp θ ||L(t, r, θ)|
≤ εr + (p∗ − 1)r2−pεrp−1

= p∗εr

and

|N(t, r, θ)| ≤ r−1|φp(cosp θ)||K(t, r, θ)| + (p∗ − 1)r1−p| sinp θ ||L(t, r, θ)|
≤ r−1εr + (p∗ − 1)r1−pεrp−1

= p∗ε. �
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Lemma 2.2. Let (r(t), θ(t)) be a solution of (2.5) and let I be the maximal interval of the exis-
tence for (r(t), θ(t)). If r(t1) > 0 for some t1 ∈ I , then r(t) > 0 on I .

Proof. Assume that there exists t2 ∈ I such that r(t2) = 0. Let ε := 1/p∗. By Lemma 2.1, there 
exists δ > 0 such that M(t, r, θ) ≤ r for 0 ≤ r ≤ δ and t ≥ t0. Since r(t2) = 0, there exists an 
interval J ⊂ I such that 0 ≤ r(t) ≤ δ on J and 0 < r(t3) ≤ δ for some t3 ∈ J . Since G(θ) is 
periodic, we can take constants G1 > 0 for which

|G(θ)| ≤ G1 for θ ∈ R.

Set C := (G1/p) + 1. From (2.5) it follows that

−Cr(t) ≤ r ′(t) ≤ Cr(t), t ∈ J,

that is,

(eCt r(t))′ ≥ 0, (e−Ct r(t))′ ≤ 0, t ∈ J.

Hence, if t ≤ t2 and t ∈ J , then

eCt r(t) ≤ eCt2r(t2) = 0

and if t ≥ t2 and t ∈ J , then

e−Ct r(t) ≤ e−Ct2r(t2) = 0.

Consequently r(t) ≤ 0 on J . This contradicts the fact that r(t3) > 0 and t3 ∈ J . �
Proof of Proposition 1.1. Proposition 1.1 follows from Lemma 2.2 immediately. �
3. Crucial lemmas

The following lemma has been obtained in [22, Lemma 4.1].

Lemma 3.1. The functions F(θ) and G(θ) satisfy F ′(θ) = −pG(θ) + pT .

Since F(θ) and G(θ) are periodic, we can take constants F1 > 0 and G1 > 0 such that

|F(θ)| ≤ F1, |G(θ)| ≤ G1 for θ ∈ R. (3.1)

The following two lemmas play crucial roles in this paper.

Lemma 3.2. Let F1 and G1 be constants as in (3.1). Assume that b �= 0, T < 0 and that there 
exist constants F0 > 0, α, β such that α < β and

|F(θ)| ≥ F0, θ ∈ [α,β].
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Let ε > 0 satisfy T + C0ε < 0, where

C0 := pp∗

F0
(F0 + |T | + G1), (3.2)

and let δ > 0 be as in Lemma 2.1. Then every solution (r(t), θ(t)) of (2.5) with 0 < r(t1) <
(F0/F1)

1/pδ and α < θ(t1) < β for some t1 ≥ t0 satisfies

0 < r(t) ≤ r(t1)

(
F1

F0

)1/p

e(T +C0ε)(t−t1)/p < δe(T +C0ε)(t−t1)/p (3.3)

for t ∈ [t1, t2), where t2 = sup{s ≥ t1 : α < θ(t) < β on [t1, s)}.

Proof. Let (r(t), θ(t)) be a solution of (2.5) with

0 < r(t1) < (F0/F1)
1/pδ, α < θ(t1) < β.

Since 0 < F0 ≤ F1, we note that

(F0/F1)
1/pδ ≤ δ.

Define t∗ ≥ t1 by

t∗ := sup{s ≥ t1 : 0 < r(t) < δ, α < θ(t) < β on [t1, s)}.

Then t1 < t∗ ≤ t2. Lemma 3.1 implies that

d

dt

(
(r(t))pF (θ(t))

)
= T (r(t))pF (θ(t)) + p(r(t))p−1F(θ(t))M(t, r(t), θ(t))

+ p(r(t))p[T − G(θ(t))]N(t, r(t), θ(t)).

We note that F(θ) > 0 or F(θ) < 0 on [α, β]. We define σ by

σ =
{ +1, if F(θ) > 0 on [α,β],

−1, if F(θ) < 0 on [α,β].

Set

w(t) := (r(t))pσF (θ(t)) = (r(t))p|F(θ(t))| > 0, t ∈ [t1, t∗).

Then

w′(t) = T w(t) + p(r(t))p−1|F(θ(t))|M(t, r(t), θ(t)) + σp(r(t))p[T − G(θ)]N(t, r(t), θ(t)).

From (2.6) it follows that
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∣∣∣p(r(t))p−1|F(θ(t))|M(t, r(t), θ(t))

+ σp(r(t))p[T − G(θ)]N(t, r(t), θ(t))

∣∣∣
≤ p(r(t))p−1|M(t, r(t), θ(t))||F(θ(t))|

+ p(r(t))p(|T | + |G(θ)|)|N(t, r(t), θ(t))|
≤ pp∗ε(r(t))p|F(θ(t))| + |T | + G1

F0
pp∗ε(r(t))p|F(θ(t))|

= C0εw(t), t ∈ [t1, t∗).

Hence,

w′(t) ≤ (T + C0ε)w(t), t ∈ [t1, t∗),

that is,

(e−(T +C0ε)(t−t1)w(t))′ ≤ 0, t ∈ [t1, t∗). (3.4)

Integrating (3.4) on [t1, t], we have

w(t) ≤ e(T +C0ε)(t−t1)w(t1) = e(T +C0ε)(t−t1)(r(t1))
p|F(θ(t1))|

≤ e(T +C0ε)(t−t1)(r(t1))
pF1, t ∈ [t1, t∗).

Thus

(r(t))p ≤ (r(t1))
pF1e

(T +C0ε)(t−t1)

|F(θ(t))| ≤ (r(t1))
p F1

F0
e(T +C0ε)(t−t1)

< δpe(T +C0ε)(t−t1), t ∈ [t1, t∗).

Consequently, recalling Lemma 2.2, we obtain (3.3) for t ∈ [t1, t∗). This shows that t∗ = t2 and 
completes the proof. �
Lemma 3.3. Let F1 and G1 be constants as in (3.1). Assume that b �= 0, T < 0 and |F(θ)| ≥ F0
on R for some F0 > 0. Let ε > 0 satisfy T + C0ε < 0, where C0 is a constant defined by (3.2)
and let δ > 0 be as in Lemma 2.1. Then every solution (r(t), θ(t)) of (2.5) with 0 < r(t1) <
(F0/F1)

1/pδ for some t1 ≥ t0 satisfies

0 < r(t) < δe(T +C0ε)(t−t1)/p, t ≥ t1.

Proof. By Lemma 3.2, we obtain (3.3) whenever θ(t) is bounded. We assume that there exists 
t3 > t1 such that θ(t) is bounded on [t1, s] for each s ∈ (t1, t3) and

lim sup
t→t−

|θ(t)| = ∞. (3.5)

3
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Since (3.3) holds on [t1, s] for each s ∈ (t1, t3), we note that 0 < r(t) < δ for t ∈ [t1, t3). By (2.5), 
we have

|θ ′(t)| ≤ F1

p
+ p∗ε =: C1, t ∈ [t1, t3).

Hence,

θ(t1) − C1(t − t1) ≤ θ(t) ≤ θ(t1) + C1(t − t1), t ∈ [t1, t3).

This contradicts (3.5). Therefore, (3.3) holds on [t1, ∞). �
4. Case � < 0

In this section we consider the case 
 < 0. We note that b �= 0, provided 
 < 0, by the 
definition of 
. The following lemma is obtained in [22, Lemma 5.1].

Lemma 4.1. Assume that 
 < 0. Then bF(θ) > 0 for θ ∈ R.

Theorem 4.1. Assume that T < 0 and 
 < 0. Then there exist δ > 0, ρ > 0 and μ > 0 such that 
every solution (r(t), θ(t)) of (2.5) with 0 < r(t1) < ρδ for some t1 ≥ t0 satisfies

0 < r(t) < δe−μ(t−t1), t ≥ t1 (4.1)

and bθ(t) → ∞ as t → ∞.

Proof. Since F(θ) and G(θ) are periodic, Lemma 4.1 implies that there exist constants F0 > 0, 
F1 > 0 and G1 > 0 such that

F0 ≤ |F(θ)| ≤ F1, |G(θ)| ≤ G1 for θ ∈ R. (4.2)

We take ε > 0 satisfying T + C0ε < 0 and pp∗ε < F0, where C0 is a constant defined by (3.2). 
Recall b �= 0 by 
 < 0. By Lemma 2.1 and 3.3, there exists δ > 0 such that (2.6) holds for 
0 ≤ r ≤ δ and t ≥ t0 and that every solution (r(t), θ(t)) of (2.5) with 0 < r(t1) < ρδ for some 
t1 ≥ t0 satisfies (4.1), where ρ := (F0/F1)

1/p and μ := −(T + C0ε)/p > 0.
Let (r(t), θ(t)) be a solution of (2.5) with 0 < r(t1) < ρδ. Lemma 4.1 shows that bF(θ) =

|bF(θ)| = |b||F(θ)| for θ ∈ R. Hence, from (2.5) and (2.6), it follows that

bθ ′(t) = 1

p
|b||F(θ(t))| + bN(t, r, θ) ≥ 1

p
|b|F0 − |b|p∗ε =: c0 > 0

for t ≥ t1. Integrating these inequalities on [t1, t], we obtain

bθ(t) ≥ bθ(t1) + c0(t − t1), t ≥ t1,

which shows that bθ(t) → ∞ as t → ∞. �
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5. Case � > 0

In this section we consider the case where 
 > 0. Assume that b �= 0. Since cosp θ/ sinp θ is 
strictly decreasing on (0, πp), we have

lim
θ→0+

cosp θ

sinp θ
= ∞ and lim

θ→π−
p

cosp θ

sinp θ
= −∞.

Therefore, for each λ0 ∈ R, there exists a unique θ0 ∈ (0, πp) such that

b cosp θ0

sinp θ0
+ a = λ0. (5.1)

Lemma 5.1. Assume that b �= 0. Let λ0 be a real root of (1.10) with λ0 �= 0 and let θ0 ∈ (0, πp)

satisfy (5.1). Then G(θ0) = pλ0.

Proof. Since cosp θ0 = b−1(λ0 − a) sinp θ0, we find that

G(θ0) = pa| sinp θ0|p + (pb + p∗c)φp(sinp θ0)b
−1(λ0 − a) sinp θ0

+ p∗d|b−1(λ0 − a) sinp θ0|p
= |b|−p| sinp θ0|pg(λ0),

where

g(λ) := p∗d|λ − a|p + φp(b)(pb + p∗c)(λ − a) + pa|b|p
= p∗d(λ − a)φp(λ − a) + p|b|p(λ − a) + p∗φp(b)c(λ − a) + pa|b|p
= p∗(λ − a)[dφp(λ − a) + φp(b)c] + p|b|pλ.

Note that f (λ0) = 0 is equivalent to

dφp(λ0 − a) + φp(b)c = (p − 1)λ0φp(λ0 − a).

Hence,

g(λ0) = p∗(λ0 − a)(p − 1)λ0φp(λ0 − a) + p|b|pλ0

= pλ0(|λ0 − a|p + |b|p).

Consequently,

G(θ0) = |b|−p| sinp θ0|ppλ0(|λ0 − a|p + |b|p)

= pλ0(|b−1(λ0 − a) sinp θ0|p + | sinp θ0|p)

= pλ0(| cosp θ0|p + | sinp θ0|p)

= pλ0. �
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In this section, hereafter, we assume that T < 0, D > 0, 
 > 0 and b > 0. Proposition B
implies that (1.10) has two real roots λ1 and λ2 with λ1 < λ2 < 0, f (λ) < 0 on (λ1, λ2), and 
f (λ) > 0 on (−∞, λ1) ∪ (λ2, ∞). We can take θ1, θ2 ∈ (0, πp) for which

b cosp θi

sinp θi

+ a = λi, i = 1,2. (5.2)

Then 0 < θ2 < θ1 < πp .
In this section we prove the following result.

Theorem 5.1. Assume that T < 0, D > 0, 
 > 0 and b > 0. Let λ1 and λ2 be two real roots of 
(1.10) with λ1 < λ2 < 0, and let θ1, θ2 ∈ (0, πp) satisfy (5.2) and t1 ≥ t0. Then, for each ε > 0, 
there exist δ > 0 and ρ > 0 such that every solution (r(t), θ(t)) of (2.5) with 0 < r(t1) < ρδ

satisfies

0 < r(t2)e
(λi−ε)(t−t2) ≤ r(t) ≤ r(t2)e

(λi+ε)(t−t2) ≤ δe(λi+ε)(t−t2), t ≥ t2,

lim
t→∞ θ(t) = θi + jπp

for some t2 ≥ t1, i ∈ {1, 2} and j ∈ Z.

Recalling (2.1), we note that F(θ) and G(θ) are periodic with period πp by (2.1). Thus 
F(jπp) = pb > 0 for j ∈ Z. Since

F(θ) = p∗| sinp θ |p
φp(b)

f

(
b cosp θ

sinp θ
+ a

)
, θ �= jπp, j ∈ Z, (5.3)

it follows that

F(θ1 + jπp) = F(θ2 + jπp) = 0, j ∈ Z, (5.4)

F(θ) < 0, θ ∈ (θ2 + jπp, θ1 + jπp), j ∈ Z, (5.5)

F(θ) > 0, θ ∈ (θ1 + jπp, θ2 + (j + 1)πp), j ∈ Z. (5.6)

Lemma 5.1 implies that

G(θi) < 0, i = 1,2.

Let σ > 0 be an arbitrarily sufficiently small number. Then

[θ2 − σ, θ2 + σ ] ∩ [θ1 − σ, θ1 + σ ] = ∅,

G(θ) < 0, θ ∈ [θ2 − σ, θ2 + σ ] ∪ [θ1 − σ, θ1 + σ ].

There exist μ0 > 0, μ1 > 0 and F0 > 0 such that μ0 > μ1 and
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−μ0 ≤ G(θ) ≤ −μ1, θ ∈ [θ2 − σ, θ2 + σ ] ∪ [θ1 − σ, θ1 + σ ],
F (θ) ≤ −F0, θ ∈ [θ2 + σ, θ1 − σ ],

F (θ) ≥ F0, θ ∈ [θ1 + σ − πp, θ2 − σ ].

We take constants F1 > 0 and G1 > 0 satisfying (3.1). Let ε > 0 satisfy T + C0ε < 0, 2pp∗ε <

μ1 and 2pp∗ε < F0, where C0 is the constant defined by (3.2). Let δ > 0 be as in Lemma 2.1. 
For j ∈ Z, we define sets Pj , Qj , Rj and Sj by

Pj := {(r, θ) : 0 < r ≤ δ, θ1 + σ + (j − 1)πp ≤ θ ≤ θ2 − σ + jπp},
Qj := {(r, θ) : 0 < r ≤ δ, θ2 − σ + jπp ≤ θ ≤ θ2 + σ + jπp},
Rj := {(r, θ) : 0 < r ≤ δ, θ2 + σ + jπp ≤ θ ≤ θ1 − σ + jπp},
Sj := {(r, θ) : 0 < r ≤ δ, θ1 − σ + jπp ≤ θ ≤ θ1 + σ + jπp}.

Lemma 5.2. Let (r(t), θ(t)) be a solution of (2.5) and let j ∈ Z. Then the following (i)–(iii) hold:

(i) If (r(t), θ(t)) ∈ Qj ∪ Sj , then

r ′(t) ≤ −μ1

2p
r(t) < 0;

(ii) If (r(t), θ(t)) ∈ Pj , then θ ′(t) ≥ F0/(2p) > 0;
(iii) If (r(t), θ(t)) ∈ Rj , then θ ′(t) ≤ −F0/(2p) < 0.

Proof. From (2.5) and (2.6), it follows that if (r(t), θ(t)) ∈ Qj ∪ Sj , then

r ′(t) ≤ −μ1

p
r(t) + p∗εr(t) ≤ −μ1

p
r(t) + μ1

2p
r(t) = −μ1

2p
r(t) < 0,

and that if (r(t), θ(t)) ∈ Pj , then

θ ′(t) ≥ F0

p
− p∗ε ≥ F0

2p
> 0,

and that if (r(t), θ(t)) ∈ Rj , then

θ ′(t) ≤ −F0

p
+ p∗ε ≤ −F0

2p
< 0. �

Lemma 5.3. Let (r(t), θ(t)) be a solution of (2.5) and let t1 ≥ t0 and j ∈ Z. If (r(t1), θ(t1)) ∈ Pj

and 0 < r(t1) < (F0/F1)
1/pδ, then (r(t2), θ(t2)) ∈ Pj ∩ Qj for some t2 ∈ [t1, ∞), and hence 

θ(t2) = θ2 − σ + jπp .

Proof. It is enough to consider the case where (r(t1), θ(t1)) /∈ Pj ∩ Qj . Let

t2 := sup{s ≥ t1 : (r(t), θ(t)) ∈ Pj , t ∈ [t1, s)}.
232



K. Itakura, M. Onitsuka and S. Tanaka Journal of Differential Equations 271 (2021) 216–253
From (ii) of Lemma 5.2, it follows that θ(t) is strictly increasing on [t1, t2) and

θ(t) ≥ θ(t1) + F0

2p
(t − t1), t ∈ [t1, t2). (5.7)

Hence t2 < ∞. Indeed, if t2 = ∞, then θ(t) → ∞ as t → ∞ by (5.7), which means that 
(r(t3), θ(t3)) /∈ Pj for some t3 ∈ (t1, ∞). This is a contradiction. Then Lemma 3.2 implies that

0 < r(t) < δe(T +C0ε)(t−t1)/p ≤ δ, t ∈ [t1, t2),

which shows that 0 < r(t2) < δ. Consequently (r(t2), θ(t2)) ∈ Pj ∩ Qj . �
By the same argument as in the proof of Lemma 5.3, we obtain the following result.

Lemma 5.4. Let (r(t), θ(t)) be a solution of (2.5) and let t1 ≥ t0 and j ∈ Z. If (r(t1), θ(t1)) ∈ Rj

and 0 < r(t1) < (F0/F1)
1/pδ, then (r(t2), θ(t2)) ∈ Qj ∩ Rj for some t2 ∈ [t1, ∞), and hence 

θ(t2) = θ2 + σ + jπp .

Lemma 5.5. Let (r(t), θ(t)) be a solution of (2.5) and let t1 ≥ t0 and j ∈ Z. If (r(t1), θ(t1)) ∈ Qj , 
then (r(t), θ(t)) ∈ Qj and 0 < r(t) ≤ δe−μ1(t−t1)/(2p) for t ≥ t1.

Proof. Let t2 := sup{s ≥ t1 : (r(t), θ(t)) ∈ Qj, t ∈ [t1, s)}. We will show that t2 = ∞. Assume 
that t2 < ∞. From Lemma 5.2 it follows r(t) is decreasing on [t1, t2]. Thus Lemma 2.2 shows that 
either (r(t2), θ(t2)) ∈ Pj or (r(t2), θ(t2)) ∈ Rj . If (r(t2), θ(t2)) ∈ Pj , then it must be that θ ′(t2) ≤
0. However, Lemma 5.2 implies that θ ′(t2) > 0 when (r(t2), θ(t2)) ∈ Pj . This is a contradiction. 
When (r(t2), θ(t2)) ∈ Rj , we can derive a contradiction in the same way. Therefore, t2 = ∞. We 
conclude that (r(t), θ(t)) ∈ Qj for t ≥ t1 and

r ′(t) ≤ −μ1

2p
r(t) < 0, t ≥ t1,

by Lemma 5.2. Hence, (eμ1(t−t1)/(2p)r(t))′ ≤ 0 for t ≥ t1, which shows that

eμ1(t−t1)/(2p)r(t) ≤ r(t1) ≤ δ, t ≥ t1.

Consequently, 0 < r(t) ≤ δe−μ1(t−t1)/(2p) for t ≥ t1. �
Lemma 5.6. Let (r(t), θ(t)) be a solution of (2.5) and let t1 ≥ t0 and j ∈ Z. If (r(t1), θ(t1)) ∈ Sj

and 0 < r(t1) < (F0/F1)
1/pδ, then one of the following (i)–(iii) holds:

(i) (r(t), θ(t)) ∈ Sj and 0 < r(t) ≤ δe−μ0(t−t1)/(2p) for t ≥ t1;
(ii) (r(t2), θ(t2)) ∈ Rj and r(t2) < (F0/F1)

1/pδ for some t2 ∈ [t1, ∞);
(iii) (r(t2), θ(t2)) ∈ Pj+1 and r(t2) < (F0/F1)

1/pδ for some t2 ∈ [t1, ∞).

Proof. Let t2 := sup{s ≥ t1 : (r(t), θ(t)) ∈ Sj , t ∈ [t1, s)}. If t2 = ∞, then we conclude that 
0 < r(t) ≤ δe−μ1(t−t1)/(2p) for t ≥ t1, by the same argument as in the proof of Lemma 5.5, and 
hence (i) holds. Suppose that t2 < ∞. From (i) of Lemma 5.2, it follows that r(t2) ≤ r(t1) <
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(F0/F1)
1/pδ ≤ δ. Recalling Lemma 2.2, we have r(t2) > 0. Therefore, (r(t2), θ(t2)) ∈ Rj or 

(r(t2), θ(t2)) ∈ Pj+1. �
Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. Set ρ := (F0/F1)
1/p and μ := μ1/(2p). Let (r(t), θ(t)) be a solution 

of (2.5) with 0 < r(t1) < ρδ for some t1 ≥ t0. Then, by Lemmas 5.3, 5.4, 5.5 and 5.6, there 
exist t2 ≥ t1 and j ∈ Z such that, for t ≥ t2, (r(t), θ(t)) satisfies 0 < r(t) ≤ δe−μ(t−t2) and either 
(r(t), θ(t)) ∈ Qj or (r(t), θ(t)) ∈ Sj . Since σ is an arbitrarily sufficiently small number, we find 
that

lim
t→∞ θ(t) = θi + jπp,

where i = 1 or 2.
Recalling Lemma 5.1 and the fact that G(θ) is periodic with period πp by (2.1), we see that

lim
t→∞G(θ(t)) = pλi.

Let ε > 0 be arbitrary. By Lemma 2.1, there exists t3 ≥ t2 such that

0 < r(t3) < δ, |G(θ(t)) − pλi | ≤ pε

2
, |M(t, r(t), θ(t))| ≤ ε

2
r(t)

for t ≥ t3. Therefore, from (2.5) it follows that

(λi − ε)r(t) ≤ r ′(t) ≤ (λi + ε)r(t), t ≥ t0,

which implies that

r(t3)e
(λi−ε)(t−t3) ≤ r(t) ≤ r(t3)e

(λi+ε)(t−t3) ≤ δe(λi+ε)(t−t3), t ≥ t3. �
6. Case � = 0

In this section, hereafter, we assume that T < 0, D > 0, 
 = 0 and b > 0. Proposition B
implies that (1.10) has a unique real root λ0 := T/p and f (λ) > 0 on (−∞, λ0) ∪ (λ0, ∞). We 
take θ0 ∈ (0, πp) satisfying

b cosp θ0

sinp θ0
+ a = T

p
. (6.1)

Lemmas 3.1 and 5.1 imply that F ′(θ0) = 0. We note that F(θ0) = 0. We set h(θ) :=
F(θ)/(θ − θ0). By L’Hospital’s rule, we see that

lim
θ→θ0

h(θ) = F ′(θ0) = 0.

Hence we regard h(θ) as a continuous function on R, and we have
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F(θ) = h(θ)(θ − θ0), θ ∈ R. (6.2)

Since F(jπp) = pb > 0 for j ∈ Z, recalling (5.3), we conclude that

F(θ0 + jπp) = 0, j ∈ Z,

F (θ) > 0, θ �= θ0 + jπp, j ∈ Z.

By Lemma 5.1, we note that G(θ0) = pλ0 = T < 0. There exist σ ∈ (0, πp/2) and F0 > 0 such 
that

|h(θ)| ≤ p, θ ∈ [θ0 − σ, θ0 + σ ],
F (θ) ≥ F0, θ ∈ [θ0 + σ − πp, θ0 − σ ],

2T ≤ G(θ) ≤ T/2, θ ∈ [θ0 − σ, θ0 + σ ].
By (6.2), we have

F(θ) ≤ p|θ − θ0|, θ ∈ [θ0 − σ, θ0 + σ ]. (6.3)

In this section we prove the following result.

Theorem 6.1. Assume that T < 0, D > 0, 
 = 0 and b > 0. Let θ0 ∈ (0, πp) satisfy (6.1) and let 
t1 ≥ t0. Then there exist δ > 0, ρ > 0 and μ > 0 such that every solution (r(t), θ(t)) of (2.5) with 
0 < r(t1) < ρδ satisfies

0 < r(t) ≤ δe−μ(t−t2), t ≥ t2

for some t2 ≥ t1.

Let F1 > 0 and G1 > 0 satisfy (3.1). We take ε > 0 so small that T + (4/3)C0ε < 0, 2pp∗ε <

−T/2, 2pp∗ε < F0, and (
p∗ε
σ

)−T/(4p)

≤
(

F0

F1

)1/p

, (6.4)

where C0 is the constant defined by (3.2). Let δ > 0 be as in Lemma 2.1. For j ∈ Z, we define 
sets Vj and Wj by

Vj := {(r, θ) : 0 < r ≤ δ, θ0 + σ + (j − 1)πp ≤ θ ≤ θ0 − σ + jπp},
Wj := {(r, θ) : 0 < r ≤ δ, θ0 − σ + jπp ≤ θ ≤ θ0 + σ + jπp}.

By the same argument as in the proof of Lemmas 5.2 and 5.3, we obtain the following two 
lemmas.

Lemma 6.1. Let (r(t), θ(t)) be a solution of (2.5) and let j ∈ Z. Then the following (i) and (ii) 
hold:
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(i) If (r(t), θ(t)) ∈ Wj , then

r ′(t) ≤ T

4p
r(t) < 0;

(ii) If (r(t), θ(t)) ∈ Vj , then θ ′(t) ≥ F0/(2p) > 0.

Lemma 6.2. Let (r(t), θ(t)) be a solution of (2.5) and let t1 ≥ t0 and j ∈ Z. If (r(t1), θ(t1)) ∈ Vj

and 0 < r(t1) < (F0/F1)
1/pδ, then (r(t2), θ(t2)) ∈ Vj ∩ Wj for some t2 ∈ [t1, ∞).

Lemma 6.3. Let (r(t), θ(t)) be a solution of (2.5) and let t1 ≥ t0 and j ∈ Z. If (r(t1), θ(t1)) ∈ Wj , 
then the following (i) or (ii) holds:

(i) (r(t), θ(t)) ∈ Wj and 0 < r(t) ≤ δeT (t−t1)/(4p) for t ≥ t1;
(ii) (r(t2), θ(t2)) ∈ Vj+1 and 0 < r(t) ≤ r(t1)e

T (t−t1)/(4p) on [t1, t2] for some t2 ∈ [t1, ∞).

Proof. Let t2 := sup{s ≥ t1 : (r(t), θ(t)) ∈ Wj, t ∈ [t1, s)}. First we assume that t2 = ∞. Then 
(r(t), θ(t)) ∈ Wj for t ≥ t1. From (i) of Lemma 6.1, it follows that

(e−T (t−t1)/(4p)r(t))′ ≤ 0, t ≥ t1.

Integrating this inequality on [t1, t], we have

r(t) ≤ r(t1)e
T (t−t1)/(4p) ≤ δeT (t−t1)/(4p) (6.5)

for t ≥ t1. Lemma 2.2 implies that r(t) > 0 for t ≥ t1. Hence (i) of Lemma 6.3 holds.
Now we suppose that t2 < ∞. By Lemma 2.2, we have r(t) > 0 on [t1, t2]. Lemma 6.1

implies that r(t) is strictly decreasing on [t1, t2]. Thus, either (r(t2), θ(t2)) ∈ Vj ∩ Wj or 
(r(t2), θ(t2)) ∈ Vj+1 ∩ Wj . Recalling Lemma 6.1, we see that if (r(t2), θ(t2)) ∈ Vj ∩ Wj , then 
θ ′(t2) ≥ F0/(2p) > 0, which shows that θ(t) < θ(t2) on (t2 − ρ, t2) for some small ρ > 0, and 
hence (r(t), θ(t)) /∈ Wj on (t2 − ρ, t2). This is a contradiction. Therefore, (r(t2), θ(t2)) ∈ Vj+1. 
By the same argument as in the case where t2 = ∞, we conclude that (6.5) holds on [t1, t2]. 
Consequently, (ii) of Lemma 6.3 holds. �
Lemma 6.4. Let (r(t), θ(t)) be a solution of (2.5). Assume that there exists t1, t2 ∈ [t0, ∞) and 
j ∈ Z such that (r(t1), θ(t1)) ∈ Vj ∩ Wj , (r(t2), θ(t2)) ∈ Vj+1 ∩ Wj+1, and (r(t), θ(t)) ∈ Wj ∪
Vj+1 for t ∈ [t1, t2]. Then 0 < r(t) ≤ r(t1)e

T (t−t1)/(8p) for t ∈ [t1, t2].

Proof. There exists s1 ∈ (t1, t2) such that (r(s1), θ(s1)) ∈ Wj ∩ Vj+1 and (r(t), θ(t)) ∈ Vj+1 for 
t ∈ [s1, t2]. We note that θ(t1) = θ0 −σ +jπp , θ(s1) = θ0 +σ +jπp , θ(t2) = θ0 −σ + (j +1)πp

and

θ0 − σ + jπp ≤ θ(t) ≤ θ0 + σ + jπp, t ∈ [t1, s1].

By (2.5), (2.6) and (6.3), we have
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θ ′(t) = 1

p
F(θ(t) − jπp) + N(t, r(t), θ(t))

≤ |θ(t) − jπp − θ0| + p∗ε, t ∈ [t1, s1],

that is,

1 ≥ θ ′(t)
|θ(t) − jπp − θ0| + p∗ε

, t ∈ [t1, s1].

Integrating this inequality on [t1, s1], we obtain

s1 − t1 ≥
s1∫

t1

θ ′(t)
|θ(t) − jπp − θ0| + p∗ε

dt (6.6)

=
θ(s1)∫

θ(t1)

du

|u − jπp − θ0| + p∗ε

=
θ0+σ+jπp∫

θ0−σ+jπp

du

|u − jπp − θ0| + p∗ε

=
σ∫

−σ

dv

|v| + p∗ε

= 2

σ∫
0

dv

v + p∗ε

= 2 log
σ + p∗ε

p∗ε
.

≥ 2 log
σ

p∗ε
.

Lemma 6.1 implies that

(e−T (t−t1)/(4p)r(t))′ ≤ 0, t ∈ [t1, s1].

Integrating this inequality on [t1, t], we obtain

r(t) ≤ r(t1)e
T (t−t1)/(4p), t ∈ [t1, s1]. (6.7)

Since

T + C0ε = T + 3
(

T + 4
C0ε

)
<

T
,

p 4p 4p 3 4p

237



K. Itakura, M. Onitsuka and S. Tanaka Journal of Differential Equations 271 (2021) 216–253
from Lemma 3.2 and (6.7), it follows that, for t ∈ [s1, t2],

0 < r(t) ≤ r(s1)

(
F1

F0

)1/p

e(T +C0ε)(t−s1)/p

≤ r(t1)e
T (s1−t1)/(4p)

(
F1

F0

)1/p

e(T +C0ε)(t−s1)/p

≤ r(t1)e
T (s1−t1)/(4p)

(
F1

F0

)1/p

eT (t−s1)/(4p)

= r(t1)e
T (t−t1)/(4p)

(
F1

F0

)1/p

= r(t1)e
T (t−t1)/(8p)eT (t−t1)/(8p)

(
F1

F0

)1/p

≤ r(t1)e
T (t−t1)/(8p)eT (s1−t1)/(8p)

(
F1

F0

)1/p

.

By (6.4) and (6.6), we conclude that

0 < r(t) ≤ r(t1)e
T (t−t1)/(8p), t ∈ [s1, t2]. (6.8)

Since (r(t), θ(t)) ∈ Wj ∪ Vj+1 for t ∈ [t1, t2], we note that r(t) > 0 for t ∈ [t1, t2]. Combining 
(6.7) and (6.8), we have

0 < r(t) ≤ r(t1)e
T (t−t1)/(8p), t ∈ [t1, t2]. �

Proof of Theorem 6.1. Set ρ := (F0/F1)
1/p and μ := −T/(8p) > 0. Let (r(t), θ(t)) be a solu-

tion of (2.5) with 0 < r(t1) < ρδ for some t1 ≥ t0. Then (r(t1), θ(t1)) ∈ Vj or (r(t1), θ(t1)) ∈ Wj

for some j ∈ Z.
When (r(t1), θ(t1)) ∈ Vj , Lemma 6.2 shows that (r(t2), θ(t2)) ∈ Vj ∩ Wj for some t2 ∈

[t1, ∞).
Assume that (r(t1), θ(t1)) ∈ Wj . Then either (i) or (ii) of Lemma 6.3 holds. If (i) holds, then 

Theorem 6.1 follows. If (ii) holds, then (r(t2), θ(t2)) ∈ Vj+1 for some t2 ≥ t1 and

0 < r(t2) ≤ r(t1)e
T (t2−t1)/(4p) ≤ r(t) < ρδ = (F0/F1)

1/pδ,

and hence Lemma 6.2 implies that (r(t3), θ(t3)) ∈ Vj+1 ∩ Wj+1 for some t3 ∈ [t2, ∞).
Therefore we conclude that either the following (a) or (b) holds:

(a) (r(t), θ(t)) ∈ Wi and 0 < r(t) ≤ δeT (t−t∗)/(4p) on [t∗, ∞) for some i ∈ Z and t∗ ≥ t1;
(b) there exists i0 ∈ Z and {τi}∞i=i0

such that (r(τi), θ(τi)) ∈ Vi ∩ Wi and (r(t), θ(t)) ∈ Wi ∪
Vi+1 on [τi, τi+1] for i ≥ i0.

It is sufficient to consider the case (b). Then Lemma 6.4 implies that

0 < r(t) ≤ r(τi)e
−μ(t−τi ), t ∈ [τi, τi+1] (6.9)
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for i ≥ i0. Therefore we have

r(τi) ≤ r(τi−1)e
−μ(τi−τi−1), i ≥ i0 + 1.

From (6.9) it follows that if t ∈ [τi, τi+1] and i ≥ i0, then

0 < r(t) ≤ r(τi−1)e
−μ(τi−τi−1)e−μ(t−τi )

= r(τi−1)e
−μ(t−τi−1)

≤ r(τi−2)e
−μ(τi−1−τi−2)e−μ(t−τi−1)

= r(τi−2)e
−μ(t−τi−2)

...

≤ r(τi0)e
−μ(t−τi0 ).

Since (r(τi0), θ(τi0)) ∈ Vi0 ∩ Wi0 , we note that r(τi0) ≤ δ. Consequently,

0 < r(t) ≤ δe−μ(t−τi0 ), t ≥ τi0 . �
7. Proofs of main results

In this section we give proof of Theorems 1.1, 1.2 and 1.3.

Proof of Theorem 1.2. Theorem 1.2 follows immediately from Theorem 4.1. �
To prove Theorem 1.3, we need the following two lemmas.

Lemma 7.1. Let (x(t), y(t)) be a solution of (1.1). Then (̃x(t), ̃y(t)) := (−x(t), y(t)) is a solu-
tion of

x̃′ = ãx̃ + b̃φp∗(ỹ) + k̃(t, x̃, ỹ),

ỹ′ = c̃φp(̃x) + d̃ ỹ + l̃(t, x̃, ỹ),
(7.1)

where

ã = a, b̃ = −b, c̃ = −c, d̃ = d,

k̃(t, x̃, ỹ) = −k(t,−x̃, ỹ), l̃(t, x̃, ỹ) = l(t,−x̃, ỹ).

Moreover,

f̃ (λ) := φp(λ − ã)[(p − 1)λ − d̃] − φp(̃b)̃c = f (λ),

T̃ := ã + d̃ = T , D̃ := φp(̃a)d̃ − φp(̃b)̃c = D,


̃ :=
∣∣∣∣ ã

p∗ − d̃

p

∣∣∣∣p + φp(̃b)̃c = 
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and

k̃(t, x̃, ỹ) = o
(
(|̃x|p + |̃y|p∗

)
1
p

)
, l̃(t, x̃, ỹ) = o

(
(|̃x|p + |̃y|p∗

)
1

p∗
)

as |̃x|p + |̃y|p∗ → 0 uniformly in t ≥ t0.

Lemma 7.2. Assume that b = 0. Let (x(t), y(t)) be a solution of (1.1). Then (x(t), y(t)) :=
(y(t), x(t)) is a solution of

x′ = a x + bφp∗(y) + k(t, x, y),

y′ = cφp(x) + dy + l(t, x, y),
(7.2)

where

p = p∗, a = d, b = c �= 0, c = b = 0, d = a,

k(t, x, y) = l(t, y, x), l(t, x, y) = k(t, y, x).

Moreover,

f (λ) := φp(λ − a)[(p − 1)λ − d] − φp(b)c = φp∗(λ − d)[(p∗ − 1)λ − a],
T := a + d = T , D := φp(a)d − φp(b)c = aφp∗(d) = φp∗(D),


 :=
∣∣∣∣ a

p∗ − d

p

∣∣∣∣p + φp(b)c =
∣∣∣∣ dp − a

p∗

∣∣∣∣p∗

= 

p∗
p ,

and

k(t, x, y) = o
(
(|x|p + |y|p∗

)
1
p

)
, l(t, x, y) = o

(
(|x|p + |y|p∗

)
1

p∗
)

as |x|p + |y|p∗ → 0 uniformly in t ≥ t0.

Proof of Theorem 1.3. By Proposition B, we note that (1.10) has two real roots λ1 and λ2 with 
λ1 < λ2 < 0. First we assume that b > 0. Theorem 5.1 implies that the zero solution of system 
(1.1) is exponentially stable. Moreover, if (x(t), y(t)) is a solution of (1.1) near the origin, then 
there exist i ∈ {1, 2} and j ∈ Z such that

lim
t→∞

φp∗(y(t))

x(t)
= lim

t→∞
cosp θ(t)

sinp θ(t)
= cosp(θi + jπp)

sinp(θi + jπp)
= cosp θi

sinp θi

= λi − a

b
,

since cosp θ/ sinp θ is periodic with period πp. By Theorem 5.1 again, for each ε > 0, there exist 
t2 ≥ t1, i ∈ {1, 2} and C0 > 0 such that

C0e
(λi−ε)t ≤ r(t) ≤ C0e

(λi+ε)t , t ≥ t2,
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which is equivalent to (1.13). By (1.12), there exist c1 > 0 and t3 such that

|y(t)|p∗

|x(t)|p ≤ c1, t ≥ t3.

Hence, from (1.13), it follows that

|x(t)|p ≤ |x(t)|p + |y(t)|p∗ ≤ C
p
0 ep(λi+ε)t = C2e

p(λi+ε)t

and

(1 + c1)|x(t)|p ≥ |x(t)|p + |y(t)|p∗ ≥ C
p

0 ep(λi+ε)t = (1 + c1)C1e
p(λi+ε)t

for t ≥ t3, where C1 = C
p

0 /(1 + c1) and C2 = C
p

0 . Hence we have shown Theorem 1.3 with 
b > 0.

Next we suppose that b < 0. Applying Theorem 1.3 with b > 0 to (7.1), we conclude that the 
zero solution of (7.1) is exponentially stable and that if (̃x(t), ̃y(t)) := (−x(t), y(t)) is a solution 
of (7.1) near the origin, then

lim
t→∞

φp∗(y(t))

x(t)
= lim

t→∞
φp∗(ỹ(t))

−x̃(t)
= λi − ã

−b̃
= λi − a

b

for some i ∈ {1, 2}, and moreover (1.13) holds. This means that Theorem 1.3 with b < 0 follows. 
So we have obtained Theorem 1.3 with b �= 0.

Finally, we assume that b = 0. Recalling b2 + c2 > 0, we find that c > 0. Let (x(t), y(t)) be 
a solution of (1.1). Thus we can apply Theorem 1.3 with b �= 0 to (7.2). Then the zero solution 
of (7.2) is exponentially stable and if (x(t), y(t)) := (y(t), x(t)) is a solution of (7.2) near the 
origin, then

lim
t→∞

φp(x(t))

y(t)
= lim

t→∞
φp∗(y(t))

x(t)
= λ − a

b
= λ − d

c
,

where λ = d or (p − 1)a. We note that

|x(t)|p + |y(t)|p∗ = |y(t)|p∗ + |x(t)|p.

Consequently Theorem 1.3 for the case b = 0 follows. �
Proof of Theorem 1.1. Theorem 1.1 with 
 �= 0 follows from Theorems 1.2 and 1.3. By the 
same argument as in the proof of Theorem 1.3, Theorem 6.1 implies Theorem 1.1 with 
 =
0. �
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8. Saddle points

In this section we will show Theorem 1.4. We assume that D < 0. From (1.11) it follows 
that 
 > 0. Proposition B implies that (1.10) has two real roots λ1 and λ2 such that λ1 < 0 <
λ2, f (λ) < 0 on (λ1, λ2), and f (λ) > 0 on (−∞, λ1) ∪ (λ2, ∞). By the generalized Prüfer 
transformation (2.4), system (1.1) is transformed into

r ′ = 1

p
G(θ)r + M(r, θ), θ ′ = 1

p
F(θ) + N(r, θ), (8.1)

where

M(r, θ) := φp(sinp θ)K(r, θ) + (p∗ − 1)r2−p cosp θL(r, θ),

N(r, θ) := r−1φp(cosp θ)K(r, θ) − (p∗ − 1)r1−p sinp θL(r, θ),

K(r, θ) := k(r sinp θ,φp(r cosp θ)),

L(r, θ) := l(r sinp θ,φp(r cosp θ)).

First we assume that b > 0. We take θ1, θ2 ∈ (0, πp) satisfying (5.2). Then 0 < θ2 < θ1 < πp and 
(5.4)–(5.6) hold. Lemmas 3.1 and 5.1 show that

G(θi) = pλi, F ′(θi) = p(T − pλi), i = 1,2. (8.2)

Since F(θi) = 0, we note that

lim
θ→θi

F (θ)

θ − θi

= F ′(θi) = p(T − pλi).

Since f (0) = D < 0 and f (T /p) = −
 < 0, recalling (iii) of Proposition B, we find that λ1 <

T/p < λ2, that is, T −pλ2 < 0 < T −pλ1. Let σ > 0 be an arbitrarily sufficiently small number. 
Then

[θ2 − σ, θ2 + σ ] ∩ [θ1 − σ, θ1 + σ ] = ∅,

G(θ) < 0, θ ∈ [θ1 − σ, θ1 + σ ],
G(θ) > 0, θ ∈ [θ2 − σ, θ2 + σ ],

F (θ)

θ − θ1
≥ p(T − pλ1)

2
, θ ∈ [θ1 − σ, θ1 + σ ]. (8.3)

There exist μ1 > 0 and F0 > 0 such that

G(θ) ≤ −μ1, θ ∈ [θ1 − σ, θ1 + σ ],
G(θ) ≥ μ1, θ ∈ [θ2 − σ, θ2 + σ ],

F (θ) ≤ −F0, θ ∈ [θ2 + σ, θ1 − σ ],
F (θ) ≥ F0, θ ∈ [θ1 + σ − πp, θ2 − σ ].
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Let ε > 0 satisfy

2pp∗ε < μ1, 2pp∗ε < F0,
T − pλ1

2
− p∗ε > 0. (8.4)

From (1.16) it follows that

|K(r, θ)| ≤ εr2, |N(r, θ)| ≤ εrp

for all sufficiently small r ≥ 0. By the same argument as in the proof of Lemma 2.1, there exists 
δ ∈ (0, 1) such that M and N are continuous for 0 ≤ r ≤ 2δ and θ ∈ R, and

|M(r, θ)| ≤ p∗εr2, |N(r, θ)| ≤ p∗εr for 0 < r ≤ δ. (8.5)

Since δ ∈ (0, 1), we note that (8.5) implies

|M(r, θ)| ≤ p∗εr, |N(r, θ)| ≤ p∗ε for 0 < r ≤ δ.

For j ∈ Z, we define sets Pj , Qj , Rj and Sj as in Section 5.
In the same way as Lemma 5.2, we have the following result.

Lemma 8.1. Let (r(t), θ(t)) be a solution of (8.1) and let j ∈ Z. Then the following (i)–(iv) hold:

(i) If (r(t), θ(t)) ∈ Qj , then r ′(t) ≥ μ1r(t)/(2p) > 0;
(ii) If (r(t), θ(t)) ∈ Sj , then r ′(t) ≤ −μ1r(t)/(2p) < 0;

(iii) If (r(t), θ(t)) ∈ Pj , then θ ′(t) ≥ F0/(2p) > 0;
(iv) If (r(t), θ(t)) ∈ Rj , then θ ′(t) ≤ −F0/(2p) < 0.

Lemma 8.2. Let (r(t), θ(t)) be a solution of (8.1) and let j ∈ Z. If (r(t1), θ(t1)) ∈ Pj ∪ Qj ∪ Rj

for some t1 ∈ R, then r(t2) > δ for some t2 ≥ t1.

Proof. First we assume that (r(t1), θ(t1)) ∈ Qj . We will prove that r(t2) > δ for some t2 ≥ t1. 
Let

t3 := sup{s ≥ t1 : (r(t), θ(t)) ∈ Qj, t ∈ [t1, s)}.

Then t3 < ∞. Indeed, if t3 = ∞, then Lemma 8.1 implies that (e−(μ1/(2p))t r(t))′ ≥ 0 for t ≥ t1, 
and hence r(t) ≥ r(t1)e

(μ1/(2p))(t−t1) for t ≥ t1. This is a contradiction. Thus t3 < ∞. Then 
either (r(t3), θ(t3)) ∈ Pj or (r(t3), θ(t3)) ∈ Rj . If (r(t3), θ(t3)) ∈ Pj , then Lemma 8.1 shows that 
θ ′(t3) ≥ F0/(2p) > 0, which means that θ(t3 − ρ) < θ(t3) = θ2 − σ + jπp for all sufficiently 
small ρ > 0. This is a contradiction. When (r(t3), θ(t3)) ∈ Rj , we can derive a contradiction. 
Consequently, we find that t3 < ∞ and (r(t3), θ(t3)) /∈ Pj ∪ Rj , that is, (r(t3), θ(t3)) ∈ Qj and 
r(t3) = δ. Using Lemma 8.1 again, we see that r ′(t3) > 0, which shows that r(t2) > δ for some 
t2 > t3.

Now we suppose that (r(t1), θ(t1)) ∈ Pj . We will show that r(t2) > δ for some t2 ≥ t1. As-
sume that r(t) ≤ δ for t ≥ t1. Recalling Lemma 2.2, we have r(t) > 0 for t ≥ t1. From Lemma 8.1
it follows that (r(s1), θ(s1)) ∈ Qj for some s1 ≥ t1, which implies that r(t2) > δ for some t2 ≥ t1. 
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This is a contradiction. Hence we find that r(t2) > δ for some t2 ≥ t1. In the same way, we con-
clude that if (r(t1), θ(t1)) ∈ Rj , then r(t2) > δ for some t2 ≥ t1. �
Lemma 8.3. Let (r(t), θ(t)) be a solution of (8.1) and let j ∈ Z. If (r(t1), θ(t1)) ∈ Sj for some 
t1 ∈ R, then one of the following (i)–(iii) holds:

(i) (r(t), θ(t)) ∈ Sj for t ≥ t1 and (r(t), θ(t)) → (0, θ1 + jπp) as t → ∞;
(ii) (r(t2), θ(t2)) ∈ Rj for some t2 ∈ [t1, ∞);

(iii) (r(t2), θ(t2)) ∈ Pj+1 for some t2 ∈ [t1, ∞).

Proof. Without loss of generality, we may assume that j = 0, since F(θ) and G(θ) are pe-
riodic with period πp by (2.1). Lemma 8.1 implies that r(t) is strictly decreasing whenever 
(r(t), θ(t)) ∈ S0. Hence, (ii) or (iii) holds or (r(t), θ(t)) ∈ S0 for t ≥ t1.

Hereafter, we assume that (r(t), θ(t)) ∈ S0 for t ≥ t1. Then Lemmas 2.2 and 8.1 show that 
r(t) is strictly decreasing and r(t) → 0 as t → ∞. Now we consider the sets

S+ := {(r, θ) ∈ S0 : r ≤ θ − θ1},
S− := {(r, θ) ∈ S0 : r ≤ −(θ − θ1)}.

By (8.3) and (8.5), we see that if (r(t), θ(t)) ∈ S+, then

θ ′(t) = 1

p
F(θ) + N(r, θ) (8.6)

≥ T − pλ1

2
(θ(t) − θ1) − p∗εr(t)

≥ T − pλ1

2
(θ(t) − θ1) − p∗ε(θ(t) − θ1)

= C(θ(t) − θ1) > 0,

where

C := T − pλ1

2
− p∗ε > 0.

We claim that (r(t), θ(t)) /∈ S+ for t ≥ t1. Suppose that (r(t2), θ(t2)) ∈ S+. Since we have as-
sumed that (r(t), θ(t)) ∈ S0 for t ≥ t1 and recall that r(t) is strictly decreasing and r(t) → 0 as 
t → ∞, we see that (r(t), θ(t)) ∈ S+ for t ≥ t2. From (8.6) it follows that(

e−Ct (θ(t) − θ1)
)′ ≥ 0, t ≥ t2,

which means that

θ(t) − θ1 ≥ eC(t−t2)(θ(t2) − θ1), t ≥ t2.

Thus, θ(t) → ∞ as t → ∞. This contradicts the fact that (r(t), θ(t)) ∈ S0. Consequently, 
(r(t), θ(t)) /∈ S+ for t ≥ t1 as claimed. In the same way, we conclude that (r(t), θ(t)) /∈ S− for 
t ≥ t1. Therefore, θ(t) must converge to θ1 as t → ∞, provided (r(t), θ(t)) ∈ S0 for t ≥ t1. �
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The following result is known. See, for example, [3, Theorem 6.1 in Chapter 15].

Theorem D. Let λ1 and λ2 satisfy λ1 < 0 < λ2. Assume that k and l are continuous in the 
neighborhood of (0, 0) and

k(x, y) = o

(√
x2 + y2

)
, l(x, y) = o

(√
x2 + y2

)
as x2 + y2 → 0.

Then the linear perturbed system

x′ = λ1x + k(x, y), y′ = λ2y + l(x, y)

has at least one orbit tending to (0, 0) at each of the angle 0 and π .

Lemma 8.4. For each j ∈ Z, system (8.1) has a solution (r(t), θ(t)) such that (r(t), θ(t)) →
(0, θ1 + jπp) as t → ∞ and r(t) > 0 for all sufficiently large t . Moreover, for each such a 
solution and each ε > 0, there exists t2 such that

r(t2)e
(λ1−ε)(t−t2) ≤ r(t) ≤ r(t2)e

(λ1+ε)(t−t2), t ≥ t2. (8.7)

Proof. It is sufficient to give a proof for the case where j = 0, because F(θ) and G(θ) are 
periodic with period πp by (2.1). By Taylor’s theorem, (5.4) and (8.2), there exists a function ζ
such that

F(θ) = p(T − pλ1)(θ − θ1) + ζ(θ)(θ − θ1), θ ∈ R,

lim
θ→θ1

ζ(θ) = 0.

We set ψ(θ) := G(θ) − G(θ1). Then, by (8.2), we have

G(θ) = pλ1 + ψ(θ), θ ∈ R,

lim
θ→θ1

ψ(θ) = 0.

Setting η(t) = θ(t) − θ1, we conclude that (8.1) is equivalent to

r ′ = λ1r + P(r, η), η′ = (T − pλ1)η + Q(r,η), (8.8)

where

P(r, η) = 1

p
ψ(η + θ1)r + M(r,η + θ1),

Q(r, η) = 1

p
ζ(η + θ1)η + N(r, η + θ1).

We extend the domain of (r, η) of (8.8) to the case r < 0 as follows:
245



K. Itakura, M. Onitsuka and S. Tanaka Journal of Differential Equations 271 (2021) 216–253
r ′ = λ1r + P(|r|, η), η′ = (T − pλ1)η + Q(|r|, η). (8.9)

Let ε > 0. There exists δ > 0 satisfying (8.5) and P and Q are continuous for |r| ≤ 2δ and η ∈ R
and

|ζ(η + θ1)| < pε, |ψ(η + θ1)| < pε for |η| ≤ δ.

If 
√

r2 + η2 ≤ δ, then

|P(|r|, η)| ≤ 1

p
|ψ(η + θ1)||r| + |M(|r|, η + θ1)|

≤ ε|r| + p∗ε|r|2 (8.10)

≤ ε

√
r2 + η2 + p∗ε(r2 + η2)

= (1 + p∗
√

r2 + η2)ε

√
r2 + η2

≤ (1 + p∗δ)ε
√

r2 + η2

and

|Q(|r|, η)| ≤ 1

p
|ζ(η + θ1)||η| + |N(|r|, η + θ1)|

≤ ε|η| + p∗ε|r|

≤ ε

√
r2 + η2 + p∗ε

√
r2 + η2

= (1 + p∗)ε
√

r2 + η2.

Hence,

P(|r|, η) = o

(√
r2 + η2

)
, Q(|r|, η) = o

(√
r2 + η2

)
as r2 + η2 → 0. We recall that λ1 < 0 < T − pλ1. Therefore we can apply Theorem D to (8.9). 
Then (8.8) has a solution (r(t), η(t)) for which (r(t), η(t)) → (0, 0) as t → ∞ and r(t) > 0 for 
all sufficiently large t . This means that (8.9) has a solution (r(t), θ(t)) such that (r(t), θ(t)) →
(0, θ1) as t → ∞ and r(t) > 0 for all sufficiently large t .

Let (r(t), η(t)) be a solution of (8.8) such that (r(t), η(t)) → (0, 0) as t → ∞ and r(t) > 0 for 
all sufficiently large t . By (8.9) and (8.10), for each ε > 0, there exists t2 such that r(t) satisfies

(λ1 − ε)r(t) ≤ r ′(t) ≤ (λ1 + ε)r(t), t ≥ t2,

which shows (8.7). �
Combining Lemmas 8.2, 8.3 and 8.4, we can obtain the following result immediately.
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Theorem 8.1. Assume that D < 0 and 
 > 0. Let λ1 and λ2 be two real roots of (1.10) with 
λ1 < 0 < λ2, and let θ1 ∈ (0, πp) satisfy (5.2) and t1 ∈ R. Then there exists δ > 0 such that every 
solution (r(t), θ(t)) of (8.1) with 0 < r(t1) < δ satisfies the following (i) or (ii):

(i) r(t2) > δ for some t2 ≥ t1;
(ii) (r(t), θ(t)) → (0, θ1 + jπp) as t → ∞ for some j ∈ Z and for each ε > 0 there exists 

t2 ≥ t1 such that (8.7) holds.

Moreover, there exist solutions (r(t), θ(t)) of (8.1) satisfying each (i) and (ii).

Proof of Theorem 1.4. By Theorem 8.1, there exists δ > 0 such that every solution (r(t), θ(t))

of (8.1) with 0 < r(t1) < δ1/p satisfies either (i) or (ii) of Theorem 8.1. We see that (i) of The-
orem 8.1 implies that |x(t2)|p + |y(t2)|p∗

> δ for some t2 > t1. Now we assume that (ii) of 
Theorem 8.1 holds. Let (x(t), y(t)) be a solution of (1.15) with 0 < |x(t1)|p + |y(t1)|p∗

< δ. 
Then (x(t), y(t)) → 0 as t → ∞ and for each ε > 0, there exist t2 ≥ t1 and C0 > 0 such that 
(1.13) with i = 1 holds for t ≥ t2. If b �= 0, then

lim
t→∞

φp∗(y(t))

x(t)
= lim

t→∞
cosp θ(t)

sinp θ(t)
= cosp θ1

sinp θ1
= λ1 − a

b
.

By the same argument as in the proof of Theorem 1.3, we obtain (1.14) with i = 1 holds for 
t ≥ t2.

Next we suppose that b = 0. Then c �= 0. Set (x(t), y(t)) := (y(t), x(t)). We use Lemma 7.2. 
Then we note that

f (λ) = φp∗(λ − d)[(p∗ − 1)λ − a] = 0

has roots λ = d , a/(p∗ − 1) = (p − 1)a. Since φp(a)d = D < 0, we find that either d < 0 <
(p − 1)a or (p − 1)a < 0 < d . Using the same argument as in the case b �= 0, we conclude that

lim
t→∞

φp(x(t))

y(t)
= lim

t→∞
φp∗(y(t))

x(t)
= λ − a

b
= λ − d

c
,

where λ = d if a > 0 and λ = (p − 1)a if a < 0. Consequently (ii) of Theorem 1.4 holds. More-
over, by Theorem 8.1, there exists a solution (x(t), y(t)) of (1.15) satisfying (ii) of Theorem 1.4.

Now we consider the case t → −∞. If (x(t), y(t)) is a solution of (1.15), then (x(−t), y(−t))

is a solution of

x′ = −ax − bφp∗(y) − k(x, y), y′ = −cφp(x) − dy − l(x, y). (8.11)

We note that the characteristic equation

φp(λ + a)[(p − 1)λ + d] − φp(b)c = 0

for (8.11) has two real roots −λ2 and −λ1 and −λ2 < 0 < −λ1. Applying the argument above to 
(8.11), we conclude that every solution (x(t), y(t)) of (1.15) satisfies either |x(t0)|p +|y(t0)|p∗

>

δ for some t0 < t1 or (iii) of Theorem 1.4 and we also find that there exists a solution (x(t), y(t))

of (1.15) satisfying (iii) of Theorem 1.4. �
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9. Application to elliptic equations

In this section we consider equation (1.6) and assume that

q > p > α − β, N − p + α > 0. (9.1)

We set

a := p − α + β

q − p
> 0, η := (a + 1)(p − 1) > 0 (9.2)

and define the exponent E1 and E2 by

E1 := (p − 1)(N + β)

N − p + α
, E2 := (p − 1)(N + β) + p − α + β

N − p + α
,

respectively. If p = 2 and α = β = 0, then E1 = N/(N − 2) is the Serrin exponent and E2 =
(N + 2)/(N − 2) is the Sobolev exponent. Now we set

b := −1, d := η − N + 1 − α = −N − p + α

q − p
(q − 1 − E1). (9.3)

Then

T := a + d = −N − p + α

q − p

(
q − 1 − E2

)
,

D := φp(a)d − φp(b)c = −N − p + α

q − p
(q − 1 − E1)a

p−1 + c

and


 :=
∣∣∣∣ a

p∗ − d

p

∣∣∣∣p + φp(b)c =
(N − p + α

p

)p − c.

Since q > p, we have

φq(x) = o

(
(|x|p + |y|p∗

)
1

p∗
)

as |x|p + |y|p∗ → 0.

First we consider the case 
 < 0.

Proposition 9.1. Assume that (9.1) holds and

c >
(N − p + α

p

)p

.

Then every nontrivial solution u of (1.6) on (r0, ∞) for some r > 0 changes sign infinitely many 
times. In particular, (1.6) has no positive solution on (0, ∞).
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Proof. Using the generalized Prüfer transformation to (1.7), we have

θ ′(t) = 1

p
F(θ(t)) − (p∗ − 1)rq−p| sinp θ(t)|q, t > t0,

where t0 = log r0. By Lemma 4.1, since F(θ) is periodic, there exists F0 > 0 such that

F(θ) ≤ −F0, θ ∈ R.

Hence we have

θ ′(t) ≤ −F0

p
< 0, t > t0,

which implies that θ(t) → −∞ as t → ∞. Therefore, every nontrivial solution u of (1.6) on 
(r0, ∞) changes sign infinitely many times. �

Next we assume that D < 0. Then (1.7) has an equilibrium (x, y) = ((−D)1/(q−p),

ap−1(−D)(p−1)/(q−p)). Therefore, (1.6) has an exact positive singular solution u∗(r) :=
(−D)1/(q−p)r−a . If c > 0, then (1.6) has another singular solution as follows.

Proposition 9.2. Assume that (9.1) holds and q − 1 > p and

0 < c <
N − p + α

q − p
(q − 1 − E1)

(
p − α + β

q − p

)p−1

.

Then (1.6) has a singular solution u(r) on (0, r0) for some r0 > 0 such that

lim
r→0

u(r) = ∞, lim
r→0

rau(r) = 0.

Proof. We note that D < 0 and l(x, y) := φq(x) satisfies

l(x, y) = o(|x|p + |y|p∗
) (9.4)

as |x|p + |y|p∗ → 0, because of q − 1 > p. Recalling (1.11), we have 
 > 0. Proposition B
implies that

f (λ) = φp(λ − a)[(p − 1)λ − d] + c = 0

has two real roots λ1 and λ2 with λ1 < 0 < λ2, f (λ) < 0 on (λ1, λ2), and f (λ) > 0 on 
(−∞, λ1) ∪ (λ2, ∞). Since f (a) = c > 0, we conclude that λ2 < a. Let ε = (a −λ2)/2. By The-
orem 1.4, there exist t0, C0 > 0 and a solution (x(t), y(t)) of (1.7) such that (x(t), y(t)) → (0, 0)

as t → −∞ and (1.14) with i = 2 holds for t ≤ t0. Hence (1.6) has a solution u(r) on (0, et0]
such that

C1r
λ2+ε ≤ rau(r) ≤ C2r

λ2−ε, r ∈ (0, et0],
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which shows that limr→0 rau(r) = 0. Moreover, since

u(r) ≥ C1r
λ2−a+ε = C1r

(λ2−a)/2, r ∈ (0, et0 ].

Therefore, limr→0 u(r) = ∞. �
Finally we consider the case c = 0, that is,

r−(N−1)(rN−1+αφp(u′))′ + rβφq(u) = 0, r > 0. (9.5)

Then (9.5) has an exact positive singular solution Ar−a , where A = (−dap−1)1/(q−p), a and d
are defined in (9.2) and (9.3), respectively. Franca [8] considered the equation


pu + K(|x|)|u|q−2u = 0

and showed the existence of infinitely many positive singular solutions, where 
pu =
div(|∇u|p−2∇u), p > 1. Troy and Krisner [30] also found a continuum of singular solutions 
to


u + |u|q−2u = 0.

Franca and Garrione [11] proved the existence of infinitely many positive singular solutions for


u + c
u

|x|2 + K(|x|)|u|q−2u = 0,

where c < (n − 2)2/4.

Theorem 9.1. Assume that (9.1) holds and E1 < q − 1 < E2. Then there exists a continuum U
of singular solutions such that each u ∈ U is a positive singular solution of (9.5) and satisfies

lim
r→0

u(r)

u∗(r)
= 1, lim

r→∞
u(r)

u∗(r)
= 0,

where u∗(r) := Ar−a is the exact positive singular solution of (9.5).

Proof. Since c = 0, the characteristic equation

f (λ) = φp(λ − a)[(p − 1)λ − d] = 0

for (1.7) has real roots λ1 := d/(p − 1) < 0 and λ2 := a > 0. Since D < 0 and (9.4) holds, by 
Theorem 1.4, there exists a solution (x(t), y(t)) of (1.7) such that (x(t), y(t)) → (0, 0) as t → ∞
and

lim
φp∗(y(t)) = λ1 − a = − d + a > 0.
t→∞ x(t) b p − 1
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Since (−x(t), −y(t)) is also a solution of (1.7), we can assume that x(t) > 0 and y(t) > 0 for 
all sufficiently large t . Let I := (σ, ∞) be the maximal interval of the existence for (x(t), y(t)). 
Now we define the function Q(x, y) by

Q(x,y) = 1

q
|x|q −

(
a

p∗ − d

p

)
xy − b

p∗ |y|p∗
.

We set

P(t) = e−T tQ(x(t), y(t)).

Then

P ′(t) = q − p

pq
T e−T t |x(t)|q .

From T > 0, it follows that P(t) → 0 as t → ∞ and P(t) is nondecreasing, which means that 
P(t) ≤ 0 for t ∈ I . Now we set

C = a

p∗ − d

p
.

Since a > 0 and d < 0, we note that C > 0. We consider the sets �0 and �1 defined by

�0 = {(x, y) : Q(x,y) ≤ 0, x ≥ 0, y ≥ 0}

and

�1 =
{
(x, y) : (qC)−1xq−1 ≤ y ≤ (p∗C)p−1xp−1, x ≥ 0

}
,

respectively. Then (x(t), y(t)) ∈ �0 for t ∈ I . Now we will show that �0 ⊂ �1. Note that b =
−1. Let (x, y) ∈ �0. Then

1

q
xq + 1

p∗ yp∗ = Q(x,y) + Cxy ≤ Cxy.

Hence we have xq/q ≤ Cxy which implies that (qC)−1xq−1 ≤ y. Moreover we obtain yp∗
/p∗ ≤

Cxy, that is, y ≤ (p∗C)p−1xp−1. Therefore �0 ⊂ �1. Since �1 is bounded, by a standard argu-
ment on a general theory on ordinary differential equations, we conclude that I = R.

System (1.7) has equilibriums (0, 0), (A, y∗) and (−A, −y∗), where y∗ = (−daq−1)
p−1
q−p . 

Since

Q(A,y∗) = −
(

1

p
− 1

q

)
|d| q

q−p a
(p−1)q
q−p < 0,

we find that (0, 0), (A, y∗) ∈ �0. By
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∂

∂x
(ax − φp∗(y)) + ∂

∂y
(cφp(x) + dy + φq(x)) = T > 0,

the Bendixson-Dulac theorem shows that (1.7) has no nonconstant periodic solution. Therefore, 
Poincaré-Bendixson theorem implies that either

(x(t), y(t)) → (0,0) as t → −∞ (9.6)

or

(x(t), y(t)) → (A,y∗) as t → −∞. (9.7)

If (9.6) holds, then the orbit of (x(t), y(t)) is homoclinic. However, by the same argument as in 
the proof of Bendixson-Dulac theorem, we conclude that (1.7) has no homoclinic orbit. Hence 
(9.7) holds.

Now we have a solution (x(t), y(t)) of (1.7) such that x(t) > 0, y(t) > 0 for t ∈ R and

lim
t→−∞(x(t), y(t)) = (A,y∗), lim

t→∞(x(t), y(t)) = (0,0).

We define the set

U = {u : u(r) = r−ax(log r + γ ), γ ∈ R}.
Then u ∈ U is a positive solution of (9.5) with

u(1) = x(γ ), u′(1) = −aφp∗(y(γ ))

and satisfies

lim
r→0

u(r)

u∗(r)
= 1, lim

r→∞
u(r)

u∗(r)
= 0. �

Remark 9.1. The proof of Theorem 9.1 is based on the method introduced by Miyamoto and 
Takahashi [19, Lemma 2.2]. On the other hand, we need Theorem 1.4 to ensure the existence of 
a solution (x(t), y(t)) to (1.7) going to (0, 0) as t → ∞.
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