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Abstract

‘We rigorously show a large friction limit of hydrodynamic models with alignment, attractive, and repul-
sive effects. More precisely, we consider pressureless Euler equations with nonlocal forces and provide a
quantitative estimate of large friction limit to a continuity equation with nonlocal velocity fields, which is
often called an aggregation equation. Our main strategy relies on the relative entropy argument combined
with the estimate of p-Wasserstein distance between densities.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we are interested in a large friction limit of pressureless Euler equations with
nonlocal forces, referred to as Euler-Alignment models [9], in the domain €2, which is either T4
or R, with d > 1. Let p = p(x, 1) and u = u(x, t) be the density and velocity of the flow at
(x,1) € 2 x R4, respectively. Then our main system is given by
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o+ Ve (pu)=0, (x,1)e xRy,
ed(pu) +eVy - (pu@u) =—ypu— (ViWxp)p+p /¢(x — V) uy) —ux)py)dy.
Q

(1.1)

Here y > 0 is the strength of linear damping, W : @ — R denotes the interaction potential,
¢ : Q2 — R, represents a communication weight function. Throughout this paper, we assume
that ¢ and W satisfy ¢ (—x) = ¢ (x) and W (—x) = W (x) for x € Q, respectively.

The macroscopic model (1.1) can be derived from Newton-type equations, which is a micro-
scopic model, via a kinetic formulation. Consider a system of N particles whose state can be
defined by positions x;(¢) and velocities v; (), respectively, at time ¢ > 0. The evolution of this
system is governed by the following system of ordinary differential equations:

dx;(t) )
=v;(t), i=1,...,N, t>0,
dt
dv; (1) 1 & 1 &
e— T =—yul) -+ ;vxwm(r) —xO) + ;mxi(r) —x; (1) (v (1) — v; (1)).

1.2)

The second term on the right hand side of the above differential equations for v; represents
attractive/repulsive forces, and the third serves as a nonlocal velocity alignment force, see [8] for
more discussion. If we ignore the linear damping and the interactions between particles through
the potential function W, i.e., y =0 and W = 0, then the particle system (1.2) becomes the
celebrated Cucker—Smale model [19,27,28] for flocking behaviors. We refer to [15] for a general
introduction to the Cucker—Smale model and its variants.

As the number of particles N goes to infinity, we can derive a kinetic equation by means
of mean-field limits or BBGKY hierarchies [5,27,28]. More precisely, let f = f(x, v, t) be the
one particle distribution function. Then f solves the following Vlasov-type equation, which is a
mesoscopic model:

O f+v-Vif+Vy - (FIf1f)=0, (1.3)
where the force F[f]= F[f](x, v, t) is given by

1
FIf 1000 =+ —Vv—(VxW*p)(x,tH/ (= VW — ) f (o w, 1) dydw

QxR4

Here p denotes the local particle density, i.e.,

p(x,t)=/f(x,v,t)dv,
R4

and * stands for the convolution operator in spatial variable.
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Our main hydrodynamic equations (1.1) can be obtained by taking care of local moments
in velocity on the above kinetic equation (1.3) together with a mono-kinetic distribution for f.
Indeed, if we define a local particle velocity u = u(x, t) as

u(x,t):/vf(x,v,t)dv//f(x,v,t)dv,

R4 R4

then we can easily check from (1.3) that the local density p and velocity u satisfy

9 p + Vi - (pu) =0,

e0(pu) +eVy - (pu@u) + eV - /(v —u)Q@ W —u)f(x,v,t)dv (1.4)
, .

=—ypu—(VxWxp)p+ p/¢(x = w(y) —ux)p(y)dy.
Q

In order to close the above system, we assume

fO,v, ) = p(x, )8, V),

where § denotes the Dirac measure. Then the system (1.4) becomes our main pressureless Euler-
type system (1.1). Note that the closure based on the mono-kinetic distribution can be justified by
considering an additional force term, for an instance a local velocity alignment force V, - ((u —
v) ), with a singular parameter [4,6,25]. Very recently, in [3], the system (1.1) is rigorously
derived, by means of mean-field limits, from the particle system (1.2) as the number of particles
goes to infinity under suitable assumptions on the initial data, the interaction potential W, and
the communication weight function ¢.

There are several works on the pressureless Euler equations with nonlocal forces. In the ab-
sence of the linear damping and the interaction potential W, the system (1.1) is often called
Euler-Alignment system. For that system, global existence and the long time behavior of reg-
ular solutions are discussed in [9,16,26,36]. In one-dimensional case, there is a sharp critical
threshold between the regime of supercritical finite-time blow-up and a subcritical regime of
global-in-time regularity; compare also the works [2,11,22] on the pressureless damped Euler—
Poisson system. We also refer to [34,35,37] for the qualitative long time behavior of solutions
for the Euler-Alignment system. For the two-dimensional case, the critical threshold is analyzed
in [29,38]. Including the pressure term, we also refer to [12—14] for the existence of weak and
strong solutions.

In the current work, we are interested in the behavior of solutions (p¢, pu®) to the system
(1.1) as € — 0. At the formal level, it is expected to have that the solutions (p¢, p®u®) converge
toward solutions (p, pu) which solve the following continuity equation with nonlocal velocity
fields, which is often called an aggregation equation:

op~+Vyi-(pu)=0, (x,1)eQxRy, (1.5)
where
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pu = —f(vxw xp)+ f /qb(x — Wy — ux)p(y)dy. (1.6)
Q

There are some studies on the large friction limit from Euler-type equations to the aggregation-
diffusion equation or Keller—Segel equation [10,13,18,32,33]. Here the main mathematical tool
is based on the relative entropy method proposed in [20] to study the weak-strong uniqueness
principle. It is worth noticing that in these previous works the pressure term in the Euler equa-
tions plays a crucial role in analyzing the large friction limit since the nonlocal interaction terms
can be dominated by the relative pressure. However, our main system is the pressureless Euler-
type system, thus it is not clear how to estimate the nonlocal interaction forces. To the best of
our knowledge, the large friction limit of pressureless Euler equations with nonlocal interaction
forces has not been studied so far. In the current work, we consider two different types of inter-
action potentials, regular and Coulomb ones. Here the regular interaction potential means that
W is bounded and Lipschitz continuous, and the Coulomb one represents that W is given as
the fundamental solution of Laplace’s equation, i.e., —A, W = 8y, where §y denotes the Dirac
measure giving unit mass to the point 0. For the Coulomb interaction potential case, motivated
from [12,33], we use the particular structure of the Poisson equation carefully to estimate the
nonlocal interaction forces. For the regular case, even though the interaction potential has a good
regularity, it is not clear how to have the benefit from that. In general, this can be controlled by
the relative pressure [7,13,31] under suitable regularity assumptions for the interaction potential
W. In order to resolve the difficulty caused by the absence of the pressure, inspired by recent
works [4,17,25], we use the p-Wasserstein distance with p € [1, co) which is defined by

l/p

= af | [ esryanan|

yel(u,v)
X2
and for p = oo, which is the limiting case as p — oo, the co-Wasserstein distance is defined by

doo(,v) := inf esssup |x — y|
YELWLY) (x,y)esupp(y)

for u,v € P,(£2), where I'(u, v) is the set of all probability measures on €2 x € with first and
second marginals u and v, respectively, i.e.,

/ (0(0) + ¥ () (dx, dy) = / () u(dx) + / ¥ () v(dy)
Q Q

QxQ

for each ¢, ¥ € C(€2). Here P,(£2) is the set of probability measures in 2 with p-th moment
bounded. Note that P, (£2) is a complete metric space endowed with the p-Wasserstein distance,
and in particular, 1-Wasserstein distance is equivalent to the bounded Lipschitz distance in the
metric space P1(£2). We refer to [1,40] for detailed discussions of various topics related to the
Wasserstein distance.

We employ the Wasserstein distance to estimate the term related to the nonlocal interaction
force under the regularity assumptions on the interaction potential function W and the commu-
nication weight function ¢. We also show that the p-Wasserstein distance with p € [1, 2] can be

199



Y.-P. Choi Journal of Differential Equations 299 (2021) 196-228

also bounded from above by the relative entropy functional for the pressureless Euler equations,
see Section 3 for more details.

Remark 1.1. The large friction limit of the particle system (1.2) can be considered. By Tikhonov
theorem [39], under suitable assumptions on the interaction potential W, the communication
weight function ¢, and the initial data, we can derive from (1.2) the following system of ordinary
differential equations as ¢ — 0:

dx;(t)
dt

=vi(t), i=1,...,N, t>0,

N N
Y+ % Z¢>(xi(t) —xj(0) |vi(t) = —% ;VXW(xi(t) —x;(1))

j=1 j=

1
+

=4

N
D b(xi(t) = x;(1)v; (1)
j=1

Note that if we send N — oo in the above system, at the formal level, we can derive the continuity
equation (1.5).

Remark 1.2. The large friction limit of the kinetic equation (1.3) with ¢ = 0 is studied in [23,30]
by using PDE analysis and the method of characteristics. These results are also extended to the
case with the velocity alignment force [24], i.e., the kinetic equation (1.3) with y = 0. More
recently, the quantitative estimate for the large friction limit is also discussed in [4].

We now introduce several simplified notations that will be used throughout the paper. For a
function f(x), || f|lL» denotes the usual L?(£2)-norm. We also denote by C a generic positive
constant which may differ from line to line. We also drop x-dependence of differential operators,
ie., Vf:=V,f and Af := A, f. For any nonnegative integer k and p € [, 00], Wk? :=
Wk-P(Q) stands for the k-th order L? Sobolev space. Furthermore, we set C*(1; B) be the set of
k-times continuously differentiable functions from an interval / to a Banach space 5.

The rest of this paper is organized as follows. In Section 2, we introduce definitions of so-
lutions to the equations (1.1) and (1.5)—(1.6), and we also present our main results on the large
friction limits ¢ — 0 in (1.1). In Section 3, we develop a general theory for the relation between
p-Wasserstein distance and the relative entropy-type functional. Section 4 is devoted to provide
the details of the large friction limit when the interaction potential W is regular. As mentioned
above, in this case, we combine the relative entropy functional and the p-Wasserstein distance
to have the quantitative estimate between two solutions to the equations (1.1) and (1.5)—(1.6).
Finally, in Section 5, we present the details of proof for the Coulomb interaction potential case.

2. Main results
In this section, we present our main results on the large friction limit from the pressureless
Euler equations with nonlocal interaction forces (1.1) to the continuity equation (1.5). For this,

we first introduce some notion of solutions to the equations (1.1) and (1.5) [13,32,33].
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Definition 2.1. For a given T € (0, 00), we say that (p°, p°u®) is a weak solution to the system
(1.1) if the following conditions are satisfied:

(i) p®€C([0, T); LL(Q)) and p®|u®|* € C([0, T); L' (Q2)) when VW € W' (Q),

1) p® eC(0,T); L#(Q)), VW xpf € C([0, T); L%(2)), and p¢|uf|? € C([0, T); L' (R)), when
—AW =y,

(i) (p®, p®u®) satisfies the system (1.1) in the sense of distributions, and

>iii) (p®, p?u®) satisfies the following weak formulation of energy equality:

T T
-2 / / PF 1 Py (1) dxdi + y / / Pl Py (0) dxd
0 Q 0 Q

T
1
s / / & (x — VI (x) — 1 ()P (¥)p° (1Y (1) dxdydi @.1)
0 QxQ
T
-2 / (P11 D) o (0) dx — / / (VW % p°)p Uy (1) dxdt
Q 0 Q

for any nonnegative function ¥ (r) € C[0, T]N W!>(0, T') with ¥ (T) = 0.

Here LL(Q) represents the set of nonnegative L! (2) functions.

Definition 2.2. For given T € (0, 00) and p € [1, 2], we say that (p, u) is a strong solution to the
equation (1.5) if the following conditions are satisfied

(i) p €C(0,T); (LY NPp)(RQ)),
(i) u e L>®0, T; WH°(Q)) and d,u € L>®(Q x (0, T)), and
(iii) p satisfies the system (1.5) in the sense of distributions.

Since the total mass is conserved in time, without loss of generality, we may assume
lof GOl =llpC Dl =1 forallz >0.

Remark 2.1. If there is no velocity alignment force, i.e., ¢ = 0, then the condition (ii) in the
Definition 2.2 can be replaced by

(i) du, Vu € L®(Q x (0, T)).

That is, the boundedness condition on u can be removed.

Remark 2.2. In the regular interaction case, i.e., VW € W1’°°(Q), the condition (ii) in the Defi-
nition 2.2 can be removed. On the other hand, in the Coulomb interaction case, the condition (ii)
can be replaced by
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@) peL>®,T;: W'P(Q))and Vp € L®(0, T; L*(Q2)) ford > 2and p € L>(0, T; W"1(Q))
ford =1.

See Remark 2.7 below for details.

As mentioned in Introduction, the existence of weak solutions for the system (1.1) with pres-
sure is established in [12] based on the methods of convex integration [21]. This strategy also
works for the pressureless case under more regular assumptions on the interaction potential W
and communication weight ¢, for instance W € C%(©) and ¢ € C1(R), see [12, Remark 2.1] and
[12, Section 6], when d = 2 or 3. Moreover, when the interaction potential W and the communi-
cation weight ¢ are bounded and Lipschitz continuous, we can also use a similar argument as in
[24, Theorem 2.4] to obtain the global-in-time existence and uniqueness of solutions (p, pu) to
the equation (1.5)—(1.6) in the sense of Definition 2.2. In fact, in this case, we only need to have
the weak solution p to the equations (1.5)—(1.6). Concerning the condition Definition 2.2 (ii), see
Remark 2.7 below.

We next state our first main result showing the convergence of weak solutions (p?, p®u®) of
(1.1) to a strong solution (p, pu) of the equations (1.5)—(1.6) as ¢ — 0 when the interaction
potential W is sufficiently regular.

Theorem 2.1. Let T > 0, p € [1,2], and d > 1. Let (p®, p°u®) be a weak solution to the system
(1.1) in the sense of Definition 2.1 and (p,u) be a strong solution to the equation (1.5) in the
sense of Definition 2.2. Suppose that the interaction potential W and the communication weight
¢ are bounded and Lipschitz continuous. Moreover we assume that

S/p8|u6|2dx§C Ve>0
Q

for some C > 0 independent of ¢ > 0, and the strength of damping vy > 0 is large enough. Then
we have

T

//pS(x,r)KuS—u)(x,r>|2dxdr+ sup_d2(p°(-.1), p(-.1))
Q

0<t<T
0

<Ce / p6CO | — u0) () > dx + Cd (pf (), po()) + Ce?
Q
and

S /p8<x,r)|<u€—u)(x,t>|2dx+d§,<p8(-,t),p(-,r>)
<r=<

C
<C / PH(OI(uh — ) ()2 dx + —d (05(), po()) + Ce,
Q

where C > 0 is independent of ¢ > 0. In particular, if we assume that
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//OS(X)I(MS — o)) dx +dp(pG (), po()) = Oe),
Q

then we have

<t<T

St~

/ps(x,m(ug —uw)(x,0)*dxdt + sup dy(p°(-.1), p(-.1)) < Ce?
s 0
and

sup /pS(x, DIW® —w)x, D> dx +dp(p° (1), p(-, 1) | < Ce, (2.2)

0<t<T

where C > 0 is independent of € > 0.

Our second result is on the Coulomb interaction case, i.e., the interaction potential W satisfies
—AW =p.

Theorem 2.2. Let T > 0 and d > 1. Let (0%, ptu®) be a weak solution to the system (1.1) in the
sense of Definition 2.1 and (p, u) be a strong solution to the equations (1.5)—(1.6) in the sense of
Definition 2.2. Suppose that the communication weight ¢ is bounded and Lipschitz continuous
and the interaction potential W satisfies — AW = §g. Moreover we assume that

oSl =1, 8/,05|u8|2dx§C, and /(W*pé)pédxfc Ve>0
Q Q

for some C > 0 independent of ¢ > 0, and the strength of damping y > 0 is large enough. In
case d =2, we further suppose

/p3|x|2dxgc Ve>0
Q

for some C > 0 independent of ¢ > 0. Then we have
T

//pg(x,t)|(u5—u)(x,t)|2dxdt+ sup /|VW*(,o—p8)(x,t)|2dx
Q Q

0<t<T
0

< Cs/pé(x)l(ué — u0)(x)|*dx + C/IVW* (o — ) (¥)* dx + C&*
Q Q

and

203



Y.-P. Choi Journal of Differential Equations 299 (2021) 196-228

0<t<T

sup /p's(x,t)l(u*’—u)(x,t)lzder%/IVW*(p—p‘E)(x,t)lzdx
Q

C
< C/pg(xn(ug — uo)(¥)[dx + ;/IVW* (00 — P5)(¥)* dx + Ce,
Q Q

where C > 0 is independent of ¢ > 0. In particular, if we assume that
/ Po (01 — o) (x) P dx = O(e)
Q

and

/IVW* (o — PE) ()P dx = O(2),
Q

then we have

T

//ps(x,tn(ug—u)(x,r)|2dxdt+ sup /WW*(p—p€)<x,z)|%lxsCe2
0<t<T
0 Q TToQ

and

1
sup /pg(x,t)l(us—u)(x,t)lzdx+—/IVW*(p—ps)(x,t)lzdx <Ce.
0<t<T &
- Q Q

Remark 2.3. Inspired by [13,32,33], even for the Coulomb interaction case, we provide quan-
titative error estimates in Theorem 2.2 by using the weak formulation of energy equality (2.1).
However, we can also directly estimate by using the classical solutions to the system (1.1).

Remark 2.4. The upper bound estimate of relative entropy in Theorem 2.2 also provides the
bound estimate in p-Wasserstein distance with p € [1,2], see Section 3 for details, or simply
see (4.11). Moreover, the bound estimate of |[VW x (o — p®)(x, 1)]|;2 also gives the bound of
llo — p?|| g-1. Indeed, for any ¥ € HY(T?) with Il g1 < 1, by using the integration by parts
and Holder’s inequality, we find

/w(X)(p—pg)(X)dx = /W(X)(AW*(p—pg))(X)dx
Q Q

= /v¢(x) (VW x (p — p%))(x)dx

Q
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=< / IV OII(VW x (p — p*)) (x)] dx
Q

SIVW (o — o) (x, D)l 12,
that is,
lo—pll -1 < IVW (o — p°)(x, 1) 2.

Remark 2.5. The estimate (2.2) in Theorem 2.1 gives

sup dpr((p°u®)(-,1), (pu)(-,1)) = 0

0<t<T

as ¢ — 0. Here dp denotes the bounded Lipschitz distance. Indeed, for any ¢ € (L°° N Lip) ()
we estimate

/((pgus)(X) — (pu)(x)) p(x) dx

Q
= /(pg(x)(ug —u)(X)p(x)dx + /(ps = p)X)u(x)p(x)dx
Q Q
1/2 1/2
<llgllre /pg(x)dx /ps(X)Ius(x)—u(X)de
Q Q
+ llugllLeonLip di(p® (), p ()
1/2
=C /pg(x)lus(x)—u(x)lzdx +Cdi(p° (), p(*))
Q
< CV/e,

where C > 0 is independent of ¢ > 0. This together with Theorem 2.1 provides the limit from
(1.1) to (1.5).

Remark 2.6. In the periodic domain case, Q2 = T?, the solution ¢ to the following Poisson
equation

—Ap=p (2.3)

cannot be expressed as VW * p for some potential function W with —AW = §y. Thus, in the
case 2 = T? the term —VW * p can be replaced with Vg, where ¢ solves (2.3). According
to this change, we have the results in Theorem 2.2 with the substitution ||V (¢ — ¢° )||i2 for

IVWx(p—p®)(x,1) ||i2, where ¢ is the solution to (2.3) with p?. However, in order to simplify

205



Y.-P. Choi Journal of Differential Equations 299 (2021) 196-228

the presentation of our work, not to write the pressureless Euler—Poisson equations in the periodic
domain separately, we only consider the form of system (1.1).

Remark 2.7. Let us comment on the regularity assumptions on u appeared in Definition 2.2 (ii).
In fact, we show that [[u|| ;009 7.)41.00y and [|0;u][ L can be bounded from above by some con-
stant which depends only on [[VW x p|l 1.0 (0, 7:01.00)5 1@y |21l oo (0,7 1.1)> and y > O when
the strength of damping y > 0 is sufficiently large. Since those estimates are rather lengthy and
technical, for the smooth flow of reading we leave them in Appendix A. Note that if the inter-
action potential W satisfies VW € W1(Q), then it readily follows |[VW x p”Loc(O‘T;Wl,oo) <
IVWihyrellpllpeo,7:21y- On the other hand, for the Coulomb interaction potential, if d > 2,
we estimate

/VW(x—y),o(y)dy <C / / ﬁp()’)d}’

Q x—y|>1 |x—y[<1
<C(lplir +lplie)

and

1
[ywa-yvemas|<c| [+ [ |o—=ivomias

Q x—y|=1  |x—y|=]

1 1
x —y| 2 lx — yl
lx—yl=1 lx—yl<l1
<C(IVpl2+1VplLr)

for some p > d. This yields

INW % pll oo, 7. w100y < C (0l pooo.7:11) + IVP I Lo, 7:22) + 101 oo 0, 71.0))

when W satisfies —AW =g withd >2.Inthecased =1, ||[VW]||L~ < 1 and thus

IVW * pll Lo, 700100y < 1ol Looo, 7011
3. p-Wasserstein distance and relative entropy functional

In this section, we provide some relation between the p-Wasserstein distance and the relative
entropy-type functional. In particular, if p € [1, 2], p-Wasserstein distance can be bounded from
above by our relative entropy functional.

We state our main result of this section.

Proposition 3.1. Let T > 0, p € [1,00], and p : [0, T] = P(2) be a narrowly continuous solu-
tion of
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&p+V-(pu) =0,

that is, p is continuous in the duality with continuous bounded functions, for a Borel vector field
u satisfying

T

//|12(x,t)|p,6(x,t)dxdt<oo. 3.1)

0 Q
Let p € C([0, T']; P, (K2)) be a solution of the following continuity equation:
op+V-(pu)=0 3.2)

with the velocity fields u € L*°(0, T WL-2(Q)). Then there exists a positive constant C depend-
ing only on T such that for all t € [0, T']

dp(ﬁ('v [)s p(v t))
I/p

t
< CeIVl | d, (50), p(0)) + //|ﬁ<x,s)—u(x,s)|Pﬁ<x,s>dxds
0 Q

for p €[1, 00), and

doo(P(,1), p (1) < CeCIVMIex [ do (5(0), p(0) + sup  esssup Jii(x,s) —u(x, s)| ] .
s€[0,T]xesupp(p(s))

In particular, if p € [1,2], we have

dp(ﬁ('v t)7 p(v t))
1/2

t
< CeCVul 1 d,(5(0), p(0)) + //|ﬁ(x,s)—u(x,s)|2,6(x,s)dxds ,
0 Q

where C > 0 depends onlyon T.
Proof. Since the proof is rather lengthy, we divide it into three steps for the sake of the reader.

e In Step A, we define the forward characteristics X () := X (¢; 0, x) associated to the conti-
nuity equation (3.2), that is, X solves the following differential equations:

X (1) =u(X1),1) (3.3)
with the initial data X (0) = x € Q. By using the above characteristic X, we introduce a

density p which is determined by the push-forward of p(0) through the flow map X. Then
we show

dy(p G, 1), P, 1)) < eVuleeT g, (p(0), 5(0)).
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e In Step B, we provide the quantitative bound for the error between p(¢) and o6(¢) in the
p-Wasserstein distance. More precisely, we show

dp([)(3t)vﬁ(st))
t 1/p
< Ct!17Vp LIVl //|ﬁ(x,s)—u(x,s)|p,6(x,s)dxds ,
0 Q

where C > 0 depends only on 7.
e In Step C, we combine the estimates in the previous steps to conclude our desired results.

Step A.- We first notice that the characteristic equations (3.3) are well-defined on the time
interval [0, T] since u is bounded and Lipschitz continuous on [0, T']. To be more specific, there
exists a unique solution p, which is determined as the push-forward of its initial density p(0)
through the flow maps X, i.e., p(t) = X (¢; 0, -)#p(0). Here - #- stands for the push-forward of a
probability measure by a measurable map, more precisely, v = T #u for probability measure u
and measurable map 7 implies

/ o) dv(y) = / (T () dpu(x)

Q Q

for all ¢ € Cp(£2). Moreover, by using the regularity of u, we can estimate the Lipschitz continuity
of X inx as

t
[X(#;0,x) — X0, y)| < |x —y| +/Iu(X(sz 0,x)) —u(X(s;0,¥))lds
0

t
<Ix =yl + | Vullp~ / X (510, %) — X (5: 0, y)| ds.
0

This together with applying Gronwall’s lemma gives

1X(1;0,x) = X (10, y)| < eVl T —y). (34)
This shows that the characteristic X(#;0,x) is Lipschitz in x with the Lipschitz constant
elVullLT 1 et us now consider the density 5 which is given as the push-forward of 5(0) through
the flow map X, i.e., 5(t) = X (; 0, x)#p(0). We then choose an optimal transport map for d,

denoted by To(x) between p(0) and p(0) such that p(0) = To#0(0). Then since p = X#0(0) and
0 = X#p(0), we find

d,’;(p(-,t),ﬁ(',t))S/IX(I;O,X)—X(t;O,%(x))lpﬁ(x,O)dX-
Q

Then this together with the Lipschitz estimate of X appeared in (3.4) asserts
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dy (o (1), p(-, 1) < ePIVuliT / = To ()17 p(x, 0)dx = eIV 1T df (p(0), 5(0)).
Q

that is,

dy(p (1), pC, 1) < eVuleeT g (p(0), 5(0)).

Step B.- Let E7 : [0, T] — 2 denote the space of continuous curves. It follows from [1,
Theorem 8.2.1], see also [25, Proposition 3.3], that there exists a probability measure n on E7 x
Q satisfying the following properties:

(1) n is concentrated on the set of pairs (£, x) such that £ is an absolutely continuous curve
satisfying

E(t)y=u(£(),1) (3.5)

for almost everywhere t € (0, T') with £(0) =x € Q.
(ii) p satisfies

/fp(X)ﬁdx = // &) dn(§, x) (3.6)
Q 2rxTd
forall p € Cp(2),t €[0, T].
Then we use the disintegration theorem of measures (see [1] for instance) to write
dn(é,x) =n.(d§) ® p(x,0)dx,

where {1, }xcq is a family of probability measures on E7 concentrated on solutions of (3.5). We
then introduce a measure v on E7 X E7 X 2 defined by

dv(§,x,0) =n(d§) ® 8x(;0,x)(do) ® p(x,0)dx.
We also introduce an evaluation map E; : Er X Br x Q — Q x Q defined as E;(§,0,x) =

(&(¢), 0 (¢)). Then we readily show that measure 7r; := (E;)#v on 2 x Q has marginals p(x, t) dx
and p(y,t)dy for t € [0, T], see (3.6). This implies

AL (5 (1), B 1)) < // I — yIP doy(x, )

QxQ

= /// lo () —E@®)IP dv(§, o, x)

ETXETXQ

- // X (130, x) — £ [P dn (. x). 3.7)
1 X
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In order to estimate the right hand side of (3.7), we use (3.3) and (3.5) to have

t

|X(@#:0,x) —&§(0)] = /M(X(S; 0,x)) —u(5(s),s)ds

0

t t
S/IM(X(S;O,X))—u(é(S),S)Ids+/IM(S(S),S)—ﬁ(é(S),S)Ids
0 0

t t
< IIVMIILOO/IX(S;O,X)—E(S)Ids-i-/lu(é‘(S),S)—ﬁ(E(S),S)Ids,
0 0

and subsequently, this yields

t

1X (150, x) — £(1)| < CeCNVullLee /|u<s<s>,s) —i(£(s), s)|ds,

0
where C > 0 is independent of ¢ > 0. Combining this with (3.7), we have

t p

db(p(, 1), p( 1)) < CeCPIVulLe // /m(as),s)—u(s(s),snds dn (&, x)

ErxQ 10

t
SCtpfleCp”V””Lw/ // liu(g(s),s) —u(&(s), )| dn(&, x)ds
0 BrxQ

t

§Ctp—leCPHWIILw//|ﬁ(x,s)—u(x,s)v’ﬁ(x,s)dxds.
0 Q

Here C > 0 is independent of ¢ > 0 and p, and we used the relation (3.6). This asserts

t 1/p

dp(p(-,1), p(-, 1)) < Ct1=1/PeCIVullLe //m(x,s)—u(x,sw’ﬁ(x,s)dxds ,
0 @

where C > 0 depends only on 7.
Step C.- Combining the estimates in Step A & Step B yields

dp(ﬁ(', t)v p(7 t))
= dp(ﬁ(’ t)v )5(! t)) +dp(10(s t)v Ia(v t))
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1/p

t
< SVl | a,(5(0), p(0)) + //Iﬁ(x,s)—u(x,s)lpﬁ(x,s)dxds :
0 Q

where C > 0 depends only on 7. This provides the first assertion. Since the constant C > 0
which appears in the above does not depend on p, after taking the supremum over the support
of p and the time interval [0, T'], we can pass to the limit p — oo to derive the second assertion.
Finally, if p € [1, 2], then by using Holder inequality the integral term on the right hand side of
the above inequality can be estimated as

t t p/2

//|L_¢(x,s)—u(x,s)PD,o(x,s)dxdsStlfp/2 //|L_t(x,s)—u(x,s)|2p(x,s)dxds
Q Q

0 0

Hence we have

dp(p(t), p(1))
1/2

t
< SVl 1 q,(5(0), p(0)) + //Iﬁ(x,S)—M(x,S)Izp(x,S)dde
0 Q

This completes the proof. O
4. Proof of Theorem 2.1: regular interaction case

In this section, we provide the details of proof for Theorem 2.1. For this, we first estimate the
relative entropy by using the weak formulation.

Proposition 4.1. Let (p°, pfu®) be a weak solution to the system (1.1) in the sense of Defini-
tions 2.1 and (p, u) be a strong solution to the equation (1.5)—(1.6) in the sense of Definition 2.2.

Then we have
=t y !
+—//pg|u8—u|2dxdt
=0 €
0 Q

1
§/p€|u5—u|2dx
t 1 t
:—//pSVu:(us—u)®(u8—u)dxdr——//pg(us—u)~VW*(p8—p)dxdf
£
0 Q 0 Q

Q

t t
1
_//pg(us—u).edxdr—i—g// ¢ (x — y)pf ()’ (x) — u(x))
0 Q

0 QxQ
(@ () = u ()" (y) — (u(y) — u(x))p(y)) dxdydr,
“.1

where e = 0,u + (u - V)u.
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Proof. Although this proof is very similar to [13,32,33], for the completeness of our work, we
provide the details. Let us take the following test function

1 forO<t <t

t—t

Y(t) = +1 fort<t<t+k

0 fort>t+k
in (2.1) to obtain

t+k

//p|u|dxdr+y//p|u|dxdr

1
+§/ // b (x — U (x) —uf () *p° (0)p° (y) dxdydr
0 QxQ
t+k

+)///<t_TT+1),os|u£|2dxdt
rQ
t+k
1 t—1
+5///( K

+ 1) ¢ (x — Wt (x) — uf (V)|*0° (x)p° (v) dxdydz

r QxQ
t
=§ / (0°uf ) |r=o dx — / / (VW * p%)p°u’ dxdt
Q 0 Q
t+k

+ 1) (VW x p%)p°uf dxdr.

it

We then send kK — 0+ and divide the resulting equation by ¢ to derive the kinetic energy estimate:

1
2/,oluldx //,o|u|dxdt

1 / // 6 (x — Wl (¥) — 1 ()P0 (¥)0° () dxdyd 4.2)

0 QxQ

t
1
=" //NW*pS) pfuf dxd.
0 Q
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For the limiting system (1.5), we multiply the equation (1.6) by (y/¢)u and integrate the resulting
equation over 2 x [0, t], and add the following identity

1 =t !
—/p|u|2dx =//pe~udxdr,
2 =0

0 Q

Q

to have

t
1 =t
—/,0|u|2dx +Z//p|u|2dxdr
2 =0 £
0 Q

Q
t
+%/ //¢(X—y)lu(x)—u(y)lz,o(x),o(y)dxdydt 4.3)
0 2xQ
! t
:_l//(VW*,O)pudxdt—{-//pe.udxdr,
“0 @ 0 o

where ¢ = 0;u + (u# - V)u. On the other hand, it follows from (1.1) and (1.5)—(1.6) that

(P —p)+ V- (pu® —pu)y=0 4.4)
and
3 (p°u® — pu) +V - (p°u’ @ u® — pu @ u)
y e & 1 & &
== " —pu) — - (VW % p%)p® = (VW * p)p)
1
+ ;pa /¢(x — VW (y) —u’(x))p*(y)dy (4.5)
Q
1
- gp/qﬁ(x = uly) —ux)p(y)dy — pe.
Q
Then we apply a test function ¢ € C([0, T]; W' (R)) with ¢(-, T) = 0 to (4.4) to get

T

T
—//(ps—p)arcpdxdr—//w-(pw—pu)dxdrz/w(pﬁ—p)dx
0 Q Q

0 Q

=0

Similarly, we also consider a test function ¢ € C([0, T]; WL (Q)) with ¢(-, T) =0 for (4.5) to
yield
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O\ﬂ

T
/3,<p (pfu ,ou)dxdr—//V@:(,o'su*:@us—pu@u)dxdr
Q 0 Q

T
:/Q'(pgue_p”)dx Z//95 (0°u’ — pu) dxdx
@ “9 4
T
é// (VW % p%)p® — (VW * p)p) dxdt
0 @
T
+§/ // P ()P (x = y)@(x) - (y) — u®(x))p* (y) dxdydt
0 QxQ
T
_%/ // p(X)¢(x — y)@(x) - (u(y) —u(x))p(y)dxdydt
0 QxQ2

We then choose the following specific test functions:

|ul?

o=y ad =y (u.

Then similarly as before, we find

2 T=t 2
/<—%(p8—p)>dx +//af<|u| ) * —p)dxdr
A =0 P

+//V<|T> pfu® — pu)dxdt =0

Q

(4.6)

and

T=t
/u -(p°u’ — pu)dx —
=0

Q

t
//afw(pgug—pu)dxdr
0 Q

—//Vu:(p£u8®u8—pu®u)dxdr
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&

1 '
=—Z//u-(pgu6—,ou)dxdr—é//u-((VW*ps)ps—(VW*p)p)dxdr
Q

t
1
* E/ // PF ()P (x — yu(x) - @ (y) —u’ (x)p" (v) dxdydr

0 QxQ

——/ // p(X)¢(x — y)u(x) - (M(y)—M(X))p(y)dxdydT—//,06 udxdr.
0 QxQ
(4.7)

In order to derive the relative entropy inequality, we notice that the velocity field u of the equation
(1.5) satisfies

1 1
du+u-Vu= —%u — E(VW*;O) + /qb(x =) uy) —u@x)p(y)dy +e,

where ¢ = d;u + u - Vu. We then multiply the above by p°(u® — u) and integrate the resulting
equation over 2 x [0, T'] to have

t 2 t
—//(,05—,0)8r (%) dxdt—l—//afu-(psus—pu)dxdr
// < )(,oaug—pu)dxdt—i—//Vu (p°u® @u® — pu @ u)dxdr

://,oSVu:(ue—u)@(ug—u)dxdt—é//pg(VW*py(ug—u)dxdt(4.8)
0 Q

t t
—Z//p€u~(u€—u)dxdr+//pge~(u‘s—u)dxdr
&
0 Q 0 Q

1
1
+E///,of(x)(uf(x)—u(x))-d)(x—y)(u(y)—u(x)),o(y)dxdydf,

0 QxQ

We finally sum the estimates (4.3), (4.6), (4.7), and (4.8), and then subtract it from (4.2) to
conclude the desired result. O
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Remark 4.1. If VW € L°°(Q), then we estimate

t

'
//(VW*p5)~p8u5dxdT <||IVW]| L= //p5|u‘9|dxd‘r
Q 0 Q

0
1/2

t
< |[VW|i~T //pﬂuﬂzdxdf
0 Q

t
§C+%//p8|u8|2dxdr
0 Q

due to || pgll =1, where C > 0 depends only on [[VW]||y, T, and y > 0. This together with
(4.2) yields

t
//p£|u8|2dxdr§C£/p8|u8|2dx+C,
0 Q Q

where C > 0 is independent of €.
In the Coulomb interaction case, we estimate

t t
—//(VW*,OS)-,osusdxdrzf/(W*pS)(V-(pgug))dxdt=—%/(W*p8)p£dx
Q Q Q

0 0

=t

=0

Thus we obtain from (4.2) that
t
y//,05|u8|2dxdr5Cs/,of)lu8|2dx+/(W*,o8)p8dx—/(W*pa)padx. 4.9)
0 Q Q Q Q

Note that the third term on the right hand side of the above inequality is nonpositive when d > 3.
If d =1, then W = |x| and thus |[VW/||L~ < 1. Hence by the above estimates we find

t
//p8|u8|2dxdr§Cs/p8|u8|2dx+C.
0 Q

Q

In case d = 2, we have
1
- /(W*ps)pe dx < 7 // log|x — y|p®(x)p®(y)dxdy < 4/ |x|%p¢ dx
b1
Q lx—y|=1 Q
since logs < s2 for s > 1. On the other hand, we can easily estimate
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t
/|x|2,ogdx§C/|x|2p8dx+C//,oe|u8|2dxdt,
Q Q 0 Q

and thus choosing y > 0 large enough and combining this with (4.9) give

t
y//,o8|u8|2dxdr5CS/p8|u8|2dx+/(W*p8)p8dx+C/|x|2p8dx
0 Q Q Q Q

We now provide the details of proof of Theorem 2.1.

Proof of Theorem 2.1. We first estimate the last term on the right hand side of (4.1) as

t
/ / P (x — y)p* )W’ (x) —u @) - (@ () —u® () (y) — W(y) — u(x)p(y)) dxdydr

0 QxQ

t
1
== / / ¢ (x — ) () p° MW (x) — u(x)) — (U (y) — u(y)|* dxdydt

0 QxQ

t
+/ / ¢ (x — )P () (p° — P) (MW (x) —u(x)) - (u(y) —u(x))dxdydr.

0 QxQ

This together with (4.1) yields

t
1
§/p€|u€—ulzdx+z//p€|u5—u|2dxdt
g
Q 0 Q

t
1
+ 2—8/ // ¢ (x — ¥)p° ()" MW (x) — u(x)) — @ (y) — u(y))|* dxdydz

0 QxQ

1
2/p0|u0—uo| dx—// EVu: (uf —u)® u® —u)dxdr

——//,o W —u)- VW % (p° —p)dxdr—//p W —u)-edxdr

1
+ g/ ﬂ P(x — )’)/OS(X)(/OS _ p)(y)(ug(x) —u(x))- (u(y) _ M(X))dxdydr

0 QxQ
5
=: ZL’
i=1
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¢ Estimate of I: We simply use the strong regularity assumptions on the solution (p, u) to

the limiting system (1.5)—(1.6) to get
t
L <||Vu| //,oslug —ul>dxdr.
0 Q

¢ Estimate of I3: Note that

IVW % (0° = p)liee < IVWlLipdi (%, p) < IVWllLip dp(p®, p)

for p € [1, 2]. This gives

‘ 12 12
VW Li
e DR [ [t —upax| | [otar] a0t
0 Q Q
t 12,y 172
VW Li
<R (] [ptue —upasar || [aior par
0 Q 0

t t
C C
5—//,06|u5—u|2dxdr+—/d12,(pg,p)dt.
& &
0 Q 0

¢ Estimate of I4: Recall ¢ = 0;u + (u - V)u, and we estimate

t t
Iy < ||3zu||L°°///08|M€—M|dX+//p8|u8—uIIu-Vu|dxdr =1+ 13
0 Q 0 Q

Similarly to the estimate of I3, we get

1/2 172

t
Ii < ||atu||L°0/ /pelue —ul®dx /psdx dr

0 \Q Q
1/2

t
< |8ull LT //p8|u£—u|2dxdr
0 Q

t
C
5—//p8|u8—u|2dxdt+C8,
€
0 Q

where C > 0 only depends on ||9;ul[z, || ogll .1, and T
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For 142, we find

=//,08|u8—u||(u—u5+u8)‘Vu|dxdt
0 Q

t
< IVl //p8|u8—u|2dxdr
0 Q
t 1/2 t
//p8|ug—u|2dxdt //p8|u8|2dxdt
0 Q 0 Q

We then combine this estimate with the uniform bound estimate in Remark 4.1 to yield

t
C
Iff—//p8|u8—u|2dxdr+C£
&
0

for some C > 0 independent of ¢ > 0. This implies

t
C
I4§—//p£|u5—u|2dxdt+C8.
&
0 Q

¢ Estimate of I5: We divide /5 into two terms:

1/2

t
1
22/ / / ¢ (x = Nu)(° = p)(W)dy | - (u —u)@)p* (x)dxdt

t
1
+g// /¢(x_y)(p£_p)(Y)dy (u®(x) —u(x)) - u(x)p®(x)dxdr

Q
=1+ 2.

Here we use the regularity of u and ¢, Holder’s inequality, the inequality d, < d, for 1 < p <
g < o0 to estimate

172

t
1< ||¢M||Lip/d1(pg’p) /p8|u€—u|dx dr
&€
0 Q
12
”(bu”Lw/dp(,os,,O) /p8|u8_u|dx dt
0 Q
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‘ 12 , 1/2
< Igulzip /df,(ﬂs,p)dr //Pglug —ul*dxdt
&
0 0 Q
and
t
12 < @/dp(pﬂp) /p8|u8 —ulluldx | dt
0 Q
‘ 12 , 1/2
< Jetlzee Nl ip /df,(ps,p)dr //psluf—ulzdxdz
&
0 0 Q
This asserts
' 1/2

C
i5=S /d,%(pa,p)dr //p uf —uP dxdz
&
<—/d2(p p)dr—i——//,o lu® — u? dxdr,

where C depends only on || gl 1. [¢llyy1.c. and [lullypr.cc.
Now we combine all of the above estimates to have

/,0 t —uPdx+ L C)// — udxdt

1
+ g/ // ¢ (x — y)pf () pE (M)W’ (x) — u(x)) — W (y) — u(y))|* dxdydr (4.10)

0 QxQ

t

1
2/,00|u0—u0| dx + — /dz(,o p)dt +Ce
Q 0

for ¢ < 1, where C > 0 is independent of ¢ > 0.

Note that our solution (p®, p°u®) has a bounded kinetic energy p|u®|> € L®(0, T; L' (RQ)),
that is, the integrability condition (3.1) holds with p = 2, thus by using the interpolation inequal-
ity, we can use Proposition 3.1 with (p, 1) = (p®, u®) to estimate the p-Wasserstein distance with
pell,2]as

1/2

(0 (1), p(ot) = C | (ot po) + //pﬂug—uﬁdxdr , @.11)
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where C > 0 depends on T and ||u||yy1,, but independent of ¢. Putting (4.11) into (4.10) yields

t

1 1 -C

E/pw—u|2dx+;di(p8(~,t),p<-,t)>+(Vg—)//pﬂua—u|2dxdr
Q 0 Q

t
1
+ g/ // b (x — )" (1) pf MW (x) —u(x)) — @ (y) — u(y)|* dxdydr

0 QxQ

1 C
< 3 /p8|u8 —uo?dx + ;df,(pé, po) + Ce,
Q

where C > 0 is independent of ¢ > 0. Then we again use the above estimate with (4.11) to have

t
1 -C
§/p8|u€—u|2dx+u//,oe|ue—u|2dxd1'
e
0 Q

Q

t
1
+ g/ // ¢ (x — ¥)p° () 0" MW (x) — u(x)) — W (y) — u(y)|* dxdydt

0 QxQ

1 C
<3 [ sblus = o ax + S5 0 + e
Q

Here C > 0 is independent of ¢ > 0. This completes the proof. O
5. Proof of Theorem 2.2: Coulomb interaction case

In this section, we are interested in the interaction potential function W given as the funda-
mental solution of Laplace’s equation, i.e., —AW = §j. In order to handle this case, we only
need to estimate /3 term in (4.1) in a different way because of lack of regularity of VW. We
notice that the estimate of /4 has already estimated even for the Coulomb interaction case in the
proof of Theorem 2.1. Motivated from [12,33], we provide the following lemma which allows us
to change some part of the term I3 to the time derivative of L? norm of VW * (o — p%).

Lemma 5.1. Suppose that the interaction potential W satisfies — AW = §y. Then we have

1d o2 . .
& Q

Proof. Using the equation for p® — p in (4.4), we find
1d &2 £ &
T VW (p—p)I"dx= [ (VWx(p—p")) - (VW (3:(p — p°)))dx
Q Q
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=— /(AW* (0 = p*)) (W% (8;(p — p°))) dx
Q
=/<p—p8>(W*(at<p—p€>))dx. 5.1)
Q
We then use the symmetry of W to get
/(p — %) (W (3(p — p°)))dx
Q

=— / (p— )W (x —y) (Vy - (pu)(y) — Vy - (p°u®)(y)) dxdy
QxQ

- // (b — PY Oy Wix — 1) - ((P)(y) — (p°u) () dxdy
QxQ
(5.2)
=- // (p— PO VLW (x —y) - ((pu)(y) — (p°u®)(y)) dxdy

QxQ

= / (p = PPNV W(x —y) - ((pu)(x) — (p°u®)(x)) dxdy
QxQ

=/VW*(,0—,0£)‘((/0M)— (p°u®)) dx.
Q

We finally combine (5.1) and (5.2) to conclude the proof. O

Proof of Theorem 2.2. As mentioned above, we only need to estimate /3 in (4.1).

t
1
I3=—//VW*(,o—p8)-p€(ug—u)dxdt
3
0 Q

t t
_l _ & _ & _1 _ & _ & &
= VW (p—p°)-ulp—p°)dxdr A VW (p—p°) - (pu — p°u”)dxdr,
0 Q 0 Q

(5.3)
where the second term on the right hand side of the above equality can be rewritten as

t

! d /|VW ( OPdx | d
- — — *(p — X T
2¢e dt p=p

0 Q
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1 eni2 1 ey(2
=—— [ [VWx(p—p)7dx+ — [ [VW x(po — pp)|~dx
2¢ 2¢e

due to Lemma 5.1. On the other hand, by using the integration by parts, the first term on the right
hand side of (5.3) can be estimated as

t
é//VW*(p—pg)-u(p—ps)dxdr

——//VW*(,O %) - u(AW*(p p))dxdr

1 &2
=—2—//|VW*(,o—p )V -udxdr
0 Q
t
+g//VW*(p—p8)®VW*(p—p8):Vudxdr.

Combining all of the above observations implies

1 1
b= [I9Weo—p0Rdr+ - [19W e o0 — pi) P
2¢e 2¢e
Q Q

t
3
+ZIIVMIILOO//IVW*(p—p8)|2dxdr.
0

This together with the estimates in the proof of Theorem 2.1 asserts

1 C
§/p8|u —ul?dx+ — /lVW*(,o )2 dx + v = )// —ul*dxdt

Q Q

t
1
5 / // ¢ (x — ¥)p° (x) 0 MW (x) — u(x)) — W (y) — u(y))|* dxdydz

0 QxQ
1
5/ olug — uol dx+—/|VW*(,00—,Oo)| dx
Q
C t
+;//|VW*(p—pg)|2dxdt+C8 (5.4)
0 Q
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for ¢ < 1, where C > 0 is independent of ¢ > 0. This gives

[ 19w to— 0P ax <o [ il —uoPdx+ [ 199« o0~ )P dx
Q Q Q
t

+C//|VW*(p—p€)|2dxdt+C82
0 Q

for y > O sufficiently large, and by applying Gronwall’s lemma to the above we obtain

/|VW*(,0—,08)|2dx5Ce/,o8|u8—uolzdx-I—C/|VW*(po—p8)|2dx+C£2
Q Q Q

for ¢ < 1, where C > 0 is independent of ¢ > 0. We again put this into (5.4) to conclude

'
1 1 -C
E/p€|ug—u|2dx+2—/|VW*(p—p€)|2dx+u//pg|u8—u|2dxd1:
& &
Q Q 0 Q

t
1
+ g/ // ¢ (x — ¥)p° ()" I (x) — u(x)) — (U (y) — u(y)|* dxdydt

0 QxQ

C
5C/p5|u8—u0|2dx+;/|VW*(p0—p8)|2dx+C8
Q Q

for e < 1, where C > 0 is independent of ¢ > 0. This completes the proof. O
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Appendix A. Remark on the regularity assumptions on u

Since p > 0, it follows from (1.6) that

yue, 1) = —(VW % p)(x, 1) + /¢<x W) —ux D)oy, 1) dy
o (A1)

=—(VWxp)(x,1) + (¢ * (pu))(x, 1) —u(x, 1) (¢ * p)(x,1).
We first start with the estimate of |||z ~. From (A.1), we easily get
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1
lu(x, )| = m (=(VW xp)(x, 1) + (¢ x (pu))(x,1))

1
= " (IVW % pliree + gl llpll i llullree)

and subsequently this implies

oo < VW * Pl (A2)
Y —léllLellpllp

for y > 0 large enough. We next estimate || Vu /| L. Taking the differential operator dy; to (A.1)
gives
. 1
Yy +oxp
1
S (Y +oxp)?

This together with (A.2) yields

8x_,'ui (_8xj8x[W*P+ax_,-¢*(,0ui))

(3 W % p + & % (o)) (B, % ).

1
Vullpoe < " (IVCYW % p)llze + IV@llzo<ll pull 1)

1
+ 2 (IVW % plizee + Il pull 1) VLol ol

IV@lz<lpol 1
§<1++ ;(HVW*anl,m+||p||L1||¢||W1.oo||u||Loo)

V| e 1 o [VW % o
§<1+ 199 ||p||Ln>_(WW*p”WW+ ol 9l [VW % o1l )
y y 7 = lgl=lplL

We finally estimate ||0;u || Loo. Similarly as before, we differentiate the equation (A.1) with respect
to time 7 to find

1
oru = m (=VW x0;0 4 ¢ * (9;(pu)))

1
- m(—vw*0+¢*(l)u))(¢*atp)~

(A.3)

Here by using the continuity equation (1.5) we can estimate
IVW 8 p| = [V2W % (pu)| < [|V(VW # p)l| o< [lul L
and
lp* 0ol < [VOllLellullellplz-
Moreover, we also obtain

225



Y.-P. Choi Journal of Differential Equations 299 (2021) 196-228

|¢p * (10 0)| 5/p(y)lu(y)-W)(x—y)llu(y)ldy+/p(y)lu(y)-Vu(y)|¢(x—y)dy

Q Q
2
< lullzIVollL=llplipr + 1@l VullLoe llullze ol
2
=2plreclluliyyclloliprs

which further yields

[f* (3 (pu))| = @ * (ud;p) + ¢ * (pd;u)]
<2l plyyrec lullpro o1+ llzoelloll 1 119;u ] Loc.

Then we now combine all of the above estimates with (A.3) to get
1
0rulloe < " (VW x 3 pllLee + ¢ * (8 (pu)) [l L)
1
+ 2 (VW pllLe + ll¢p * (pu)lize) 1§ * 0 pll oo
1

<= (IVW o)zl + 219 byl o1 )

1
+ ;II<15||L<><>|IPIIL1 1| 972e| oo

1
+ﬁ(||VW*P||L°°+||¢||L°°”u||L°°||P||L1)”V¢||L°°||’4||L°°||p”L1-
Hence we finally have
ll0ruell oo < ! (IIV(VW MizoellullLoe +2lloll 1@l llully
UjlLe = * )L |[U]| Lo pPlipt Loo||U ,oo)
f y = ll<lol. VT

el lIVellLeelullzee
y(r —leliz=lpliL)

(IVW s pliree + llpll 1 llgllzoellullzee) .

As observed above, since ||u|lyy1.00 can be bounded from above by some constant which depends
only on [[VW % pllyyieo, [@llyyr.e0, [0l 1, and y, so does ||0;u||oc.
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