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Abstract

We prove higher integrability of the spatial gradient of weak solutions to parabolic systems with ϕ-
growth, where ϕ = ϕ(t) is a general Orlicz function. The parabolic systems need be neither degenerate nor 
singular. Our result is a generalized version of the one of Kinnunen and Lewis (2000) [34] for the parabolic 
p-Laplace systems.
© 2021 Elsevier Inc. All rights reserved.

MSC: 49N60; 35A15; 35B65; 35J62; 46E35

Keywords: Parabolic system; Higher integrability; Orlicz growth

1. Introduction

Higher integrability results for elliptic problems with Orlicz growth can be easily obtained 
from the ones for p-growth problems, hence they are well-known. On the other hand, higher 
integrability for parabolic problems with Orlicz growth is not simple and, as far as we know, no 
related result has been reported. The main difficulty is that the lower- and the upper-bound of 
exponent of the Orlicz function ϕ, which are denoted by p and q in this paper, may be too far 
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away from each other to apply techniques used in the standard p-growth case. Specifically, in p-
growth problems, known proofs use different techniques in the degenerate case (p > 2) and the 
singular case (p < 2). However, in the general Orlicz setting, neither of these cases apply when 
p < 2 < q , since the problem has characteristics of both the singular and degenerate cases. On 
the other hand, a unified technique for parabolic problems with p(x, t)-growth has been recently 
reported in [2].

We study regularity theory for second-order parabolic systems satisfying a general growth 
condition of Orlicz type. Precisely, we consider the following parabolic system:

∂tui − div(Ai(z,u,Du)) = 0 in �I = � × I ⊂ Rn ×R, i = 1, . . . ,N, (1.1)

where � ⊂Rn (n � 2) is an open set, I ⊂ R is an interval, z = (x, t) ∈ � ×I , u = (u1, . . . , uN) ∈
RN and Du is the spatial gradient of u, i.e., Du = Dxu. Here Ai : �I × RN × RNn → Rn, 
i = 1, . . . , N , satisfies

|Ai(z,u, ξ)| � �
ϕ(|ξ |)

|ξ | and
N∑

i=1

Ai(z,u, ξ) · ξi � ν
ϕ(|ξ |)

|ξ | (1.2)

for all z ∈ �I , u ∈ RN and ξ = (ξ1, . . . , ξN) ∈ Rn × · · · × Rn and for some 0 < ν � �, and 
ϕ : [0, ∞) → [0, ∞) is a weak �-function which satisfies (aInc)p and (aDec)q for some

2n

n + 2
< p � q. (1.3)

We will introduce the definitions of weak �-function, (aInc) and (aDec) in the next section. We 
note that (aInc)p and (aDec)q for some 1 < p � q are equivalent to the ∇2 and 	2 conditions, 
respectively, see [29, Proposition 2.2.6]. The lower bound 2n

n+2 in (1.3) is generally assumed in 
parabolic regularity theory, see [18] and also [34].

The prototype of (1.1) is the so-called parabolic g-Laplace system

∂tui − div

(
g(|Du|)
|Du| Dui

)
= 0, i = 1, . . . ,N.

More generally, we may also consider coefficients:

∂tui − div

(
a(z,u)

g(|Du|)
|Du| Dui

)
= 0, i = 1, . . . ,N, where 0 < ν � a(·, ·) � �.

Here, we may take ϕ(t) = ´ t

0 g(s)ds. In particular, when g(t) = tp−1, this system becomes the 
parabolic p-Laplace system.

The main result of this paper is to prove higher integrability of the gradient of a weak solution 
to the system (1.1) together with a reverse Hölder type estimate. The weak solution to (1.1) with 
structure conditions (1.2)–(1.3) is defined as a function u ∈ L∞(I, L2(�, RN)) ∩L1(I, W 1,1(�))

with ϕ(|Du|) ∈ L1([0, T ], L1(�)) satisfying

−
ˆ

ui ∂t ζi dz +
ˆ

Ai(z,u,Du) · Dζi dz = 0, i = 1, . . . ,N, (1.4)
�I �I
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for all ζ = (ζ1, . . . , ζN) ∈ C∞
0 (�I , RN). We show that there exists a universal constant ε > 0

such that

ϕ(|Du|) ∈ L1+ε
loc (�I ).

Regularity theory for the parabolic p-Laplace systems, p 	= 2, was first systematically studied 
by DiBenedetto and Friedman, see [19,20] and also the monographs [18,21]. Later, Lq -regularity 
theory was established in [1,34]. In particular, in [34], Kinnunen and Lewis first proved higher 
integrability for parabolic p-Laplace systems. We further refer to [4,8,10,35,36,41] and related 
references for regularity results for parabolic p-Laplace systems.

In the calculus of variations, partial differential equations with p-growth can be obtained as 
Euler-Lagrange equations of functionals with a p-growth condition that is related to the power 
function tp . Hence we can naturally generalize tp to an Orlicz function, and a growth condi-
tion related to an Orlicz function is called the Orlicz-growth condition. Regularity results for 
elliptic equations with Orlicz growth, specifically Cα- and C1,α-regularity, were first obtained 
by Lieberman [37]. Later, he generalized these results to parabolic systems with Orlicz growth 
[38]. We also refer to regularity results [5,14,16,17,22,24,49] and [6,15,23,32,33,47,50] for the 
elliptic and parabolic case with Orlicz growth, respectively.

As mentioned above, we shall prove a higher integrability result for parabolic systems with 
Orlicz growth. The higher integrability is the most basic regularity property of weak solutions for 
elliptic/parabolic problems in divergence form, and is a crucial ingredient in studying regularity 
theory, see for instance [28]. It has been obtained first by Elcrat and Meyers [39] for elliptic 
systems with p-growth (see also [26,46]) and by Giaquinta and Struwe [27] for parabolic systems 
with 2-growth (i.e., p = 2). But it was an open problem for about 20 years for parabolic problems 
with p-growth (p 	= 2), and then Kinnunen and Lewis obtained the result [34]. We also refer to 
[43–45] for global higher integrability for parabolic problems with p-growth and [13], [7], [3,9], 
[11] and [12,25] for higher integrability results for obstacle problems, higher order parabolic 
systems, parabolic systems with p(x, t)-growth, doubly nonlinear parabolic systems and porous 
medium systems, respectively.

Now let us state our higher integrability result for parabolic systems with Orlicz growth.

Theorem 1.5. Let ϕ : [0, ∞) → [0, ∞) be a weak �-function satisfying (aInc)p and (aDec)q
with constant L � 1 and let u be a local weak solution to (1.1) with structure conditions 
(1.2)–(1.3). There exists ε = ε(n, N, p, q, L, ν, �) > 0 such that ϕ(|Du|) ∈ L1+ε

loc (�I ) with the 
following estimate: for any Q4ρ � �I ,

 

Qρ

ϕ(|Du|)1+ε dz � c

⎡
⎢⎣(ϕ ◦D−1)

(  

Q2ρ

ϕ(|Du|) dz

)⎤
⎥⎦

ε  

Q2ρ

ϕ(|Du|) dz

for some c = c(n, N, p, q, L, ν, �) > 0, where

D(t) := min{t2, ϕ(t)
n+2

2 t−n} (1.6)

and D−1 is the left-inverse of D.
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We remark that when ϕ(t) = tp , we have D(t) = min{t2, t
p(n+2)

2 −n} and so

(ϕ ◦D−1)(t) = max{t p
2 , t

2p
p(n+2)−2n }

Therefore, our result exactly implies the known results for the p-growth case, see for instance 
[9].

We would like to introduce the novelties of our approach used in this paper. The main step is 
to obtain a reverse Hölder type inequality. In this step we cannot take advantage of the approach 
used in the p-growth case, which is why the higher integrability for parabolic problems with 
Orlicz growth has remained unsolved. The first issue is that techniques for p > 2 and p < 2 in 
the p-growth case are different which is problematic in the Orlicz case. In this paper, we present 
a universal approach that is independent of whether the system (1.1) is degenerate, singular or 
neither. The second problem is that the classical Gagliardo–Nirenberg interpolation inequality, 
which is an important ingredient in the p-growth case, is not applicable to the Orlicz setting. In 
order to overcome this problem, we derive an interpolation inequality for the Orlicz case, see 
Lemma 2.13. The remaining part follows the approach used in [1,34,40] with modifications for 
the Orlicz setting using recent tools from [29].

Our paper is organized as follows. In the next section, Section 2, we introduce notation, Or-
licz functions and derive an interpolation inequality. In Section 3, we obtain a reverse Hölder 
inequality. Finally in the last section, Section 4, we prove the main result, Theorem 1.5.

2. Preliminaries

2.1. Notation

For w = (y, τ) ∈ Rn ×R we denote the usual parabolic cylinder by

Qr(w) := Br(y) × (τ − r2, τ + r2),

where Br(y) is the open ball in Rn with center y and radius r , and the intrinsic parabolic cylinder 
(with function ϕ) by

Qλ
r (w) := Br(y) × Iλ

r (τ ) where Iλ
r (τ ) := (τ − r2

ϕ2(λ)
, τ + r2

ϕ2(λ)
),

and, for the function ϕ : [0, ∞) → [0, ∞), we define

ϕ1(t) := ϕ(t)

t
and ϕ2(t) := ϕ(t)

t2 .

Let f, g : [0, ∞) → [0, ∞). The function f is said to be almost increasing if there exists 
L � 1 such that f (t) � Lf (s) for all 0 < t < s < ∞. If L = 1 we say f is increasing. Almost 
decreasing and decreasing are defined analogously. We say that f and g are equivalent, f ≈ g if 
there exists L � 1 such that L−1f (t) � g(t) � Lf (t) for all t � 0.

We define (f )U := ffl
f dz := 1 ´

f dz.

U |U | U
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2.2. Orlicz functions

Let ϕ : [0, ∞) → [0, ∞) and p, q > 0. We introduce some conditions.

(aInc)p The map (0, ∞) � t 
→ ϕ(t)/tp is almost increasing with constant L � 1.
(aDec)q The map (0, ∞) � t 
→ ϕ(t)/tq is almost decreasing with constant L � 1.

Note that (aInc)p implies (aInc)p′ for all p′ < p and (aDec)q implies (aDec)q ′ for all q ′ > q . If 
ϕ satisfies (aInc)p and (aDec)q , then p � q and for any t ∈ (0, ∞) and 0 < c < 1 < C,

cqL−1ϕ(t) � ϕ(ct) � cpLϕ(t) and CpL−1ϕ(t) � ϕ(Ct) � CqLϕ(t).

We shall use these inequalities numerous times later without explicit mention.
These conditions allow us to work easily with weak �-functions, without resorting to tricks 

to ensure convexity.

Definition 2.1. The function ϕ : [0, ∞) → [0, ∞] is said to be a weak �-function if it is increas-
ing with ϕ(0) = 0, limt→0+ ϕ(t) = 0, limt→∞ ϕ(t) = ∞ and it satisfies (aInc)1.

As an example of the robustness of this definition, we note that 
√

ϕ(t2) need not be convex 
if ϕ is, but the (aInc)1 property is conserved. Moreover, the condition (aInc)1 captures some 
essential features of convexity, as it allows us to use the following Jensen-type inequality (cf. 
Lemma 4.3.2, [29]).

Lemma 2.2 (Jensen inequality). If ϕ : [0, ∞) → [0, ∞] is increasing with ϕ(0) = 0 and satisfies 
(aInc)1 with constant L � 1, then

ϕ

(
1

L2

 

U

|f |dz

)
�
 

U

ϕ(|f |) dz.

Also, we can use the conditions effectively with Young-type inequalities and inverse functions 
(see the proof of Lemma 2.9). We recall the definition of the conjugate weak �-function:

ϕ∗(s) := sup
t�0

(st − ϕ(t)).

This definition directly implies Young’s inequality:

st � ϕ(s) + ϕ∗(t), s, t � 0. (2.3)

The exact value of ϕ∗ can usually not be determined, but we have the following useful estimate 
which can be found in the proof of [29, Theorem 2.4.10]:

ϕ∗(ϕ(t)
t

) ≈ ϕ(t). (2.4)

This will be used multiple times in what follows. Moreover, if ϕ is differentiable with ϕ′ satisfy-
ing (aDec)q , then, by [31, Lemma 3.6(2)],
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ϕ(t)
t

≈ ϕ′(t). (2.5)

Remark 2.6. Suppose that ϕ is a weak �-function which satisfies (aInc)p and (aDec)q with 
1 � p � q . We can define

ϕ̃(t) :=
tˆ

0

sp−1 sup
σ∈(0,s]

ϕ(σ)

σp
ds.

Then ϕ̃ ≈ ϕ is differentiable and convex (since its derivative is increasing) and also satisfies 
(aInc)p with L = 1 and (aDec)q . Since ϕ(σ) > 0 when σ > 0, ϕ̃ is also strictly increasing. Since 
the claims that we are proving are invariant under equivalence of weak �-functions, we may thus 
assume when necessary that ϕ is differentiable, strictly increasing and a bijection.

We next introduce the left-inverse of a weak �-function:

ϕ−1(s) := inf{t � 0 : ϕ(t) � s}.

Clearly, ϕ−1(ϕ(t)) � t and, if ϕ is continuous, ϕ(ϕ−1(s)) � s. Note that in view of Remark 2.6, 
we have (ϕ ◦ ϕ−1)(t) ≈ (ϕ−1 ◦ ϕ)(t) ≈ t if ϕ satisfies (aDec)q with q � 1. By [29, Propo-
sition 2.3.7], ϕ−1 satisfies (aInc) 1

q
or (aDec) 1

p
if and only if ϕ satisfies (aDec)q or (aInc)p , 

respectively. From these facts and Lemma 2.2 we conclude the Jensen-inequality

 

U

ϕ(|f |) dz � cϕ

( 

U

|f |dz

)
(2.7)

when ϕ satisfies (aDec)1.
Let us quote for later use a version of the standard iteration lemma which is particularly 

adapted to the Orlicz case [30, Lemma 4.2]. Recall that doubling means that X(2s) � CX(s), 
which is equivalent to (aDec)q for some q < ∞.

Lemma 2.8. Let Z be a bounded non-negative function in the interval [r, R] ⊂R and let X be a 
doubling function in [0, ∞). Assume that there exists θ ∈ [0, 1) such that

Z(t) � X( 1
s−t

) + θZ(s)

for all r � t < s � R. Then

Z(r) � X( 1
R−r

),

where the implicit constant depends only on the doubling constant and θ .

We end this subsection with the following lemma and notation which will be used often.
930
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Lemma 2.9. Assume that ϕ : [0, ∞) → [0, ∞) is a weak �-function satisfying (aInc)p and 
(aDec)q with 1 < p � q and that

 

U

ϕ(|f |) dz � ϕ(λ),

where f : U →Rd , d ∈N , and λ > 0. Then, for any θ0 ∈ [1 − 1
q
, 1] and δ ∈ (0, 1),

A0 �
{

δλ + cδϕ
−1(�0)

cλ

for some cδ = c(p, q, L, δ) > 0, where

A0 := 1

ϕ2(λ)

 

U

ϕ1(|f |) dz and �0 :=
( 

U

ϕ(|f |)θ0 dz

) 1
θ0

. (2.10)

Proof. Since ϕ1(ϕ
−1(t)) ≈ t

ϕ−1(t)
satisfies (aDec)1− 1

q
, we find that t 
→ (ϕ1 ◦ ϕ−1)(t1/θ0) satis-

fies (aDec)1. Then we obtain by (2.7) and Hölder’s inequality that

 

U

ϕ1(|f |) dz � c(ϕ1 ◦ ϕ−1)(�0) � c(ϕ1 ◦ ϕ−1)

( 

U

ϕ(|f |) dz

)
� cϕ1(λ).

We use only the first inequality to estimate 1
q

-part of the integral, and the whole inequality for 

the remaining (1 − 1
q
) of the integral. Thus

1

ϕ2(λ)

 

U

ϕ1(|f |) dz � c[(ϕ1 ◦ ϕ−1)(�0)]
1
q

ϕ2(λ)

( 

U

ϕ1(|f |) dz

)1− 1
q

� cλ

ϕ1(λ)
1
q

[(ϕ1 ◦ ϕ−1)(�0)]
1
q .

Let us define H by

H(t) := G−1(tq), where G(t) := tq+1

ϕ(t)
.

Observe that, since G satisfies (aInc)1 and (aDec)q+1−p , H satisfies (aInc) q
q+1−p

and (aDec)q
and

H−1(t) ≈
( tq+1

ϕ(t)

) 1
q = t

ϕ1(t)1/q
.

From H−1(t)(H ∗)−1(t) ≈ t , we see that (H ∗)−1(t) ≈ t
H−1(t)

≈ ϕ1(t)
1
q . Then by Young’s in-

equality we have that for any δ > 0,
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1

ϕ2(λ)

 

U

ϕ1(|f |) dz � δH
( λ

ϕ1(λ)1/q

)
+ cδH

∗([(ϕ1 ◦ ϕ−1)(�0)]
1
q ) ≈ δλ + cδϕ

−1(�0).

For the upper bound cλ, we simply fix δ = 1 and use Hölder’s inequality for �0 as before. �
2.3. Gagliardo–Nirenberg type interpolation inequality for Orlicz functions

In this subsection, we obtain a Gagliardo–Nirenberg type interpolation inequality involving 
Orlicz functions which will be a crucial ingredient in the proof of a reverse Hölder type estimate. 
Let us recall a usual scaling invariant version of the Gagliardo–Nirenberg interpolation inequality 
in balls (see [42]): for γ > 0, p ∈ [1, n), q � 1 and θ ∈ [0, 1],

( 

Br

∣∣f
r

∣∣γ dx

) 1
γ

� c

( 

Br

[
|Df |p + ∣∣f

r

∣∣p]
dx

) θ
p
( 

Br

∣∣f
r

∣∣q dx

) 1−θ
q

(2.11)

for some c = c(n, p) > 0, provided that

1

γ
� θ

p∗ + 1 − θ

q
,

where p∗ = np
n−p

. Let us prove that this inequality also holds for q ∈ (0, 1). This may be known, 
but we have not found a proof (e.g. it is not mentioned in [48] which deals with extensions of the 
parameter ranges).

Lemma 2.12 (Gagliardo–Nirenberg inequality). Let p ∈ [1, n), γ, q > 0 and θ ∈ [0, 1]. Then

( 

Br

∣∣f
r

∣∣γ dx

) 1
γ

� c

( 

Br

[
|Df |p + ∣∣f

r

∣∣p]
dx

) θ
p
( 

Br

∣∣f
r

∣∣q dx

) 1−θ
q

for some c = c(n, p) > 0, provided that

1

γ
� θ

p∗ + 1 − θ

q
.

Proof. For q � 1, the claim is just the Gagliardo–Nirenberg inequality (2.11) quoted above. For 
q ∈ (0, 1), choose θ̃ ∈ (0, 1) such that

θ̃p∗ + (1 − θ̃ )q = 1.

Then by Hölder’s inequality we have

 

Br

∣∣f
r

∣∣dx �
( 

Br

∣∣f
r

∣∣p∗
dx

)θ̃( 

Br

∣∣f
r

∣∣q dx

)1−θ̃

and by the Sobolev–Poincaré inequality
932



P. Hästö and J. Ok Journal of Differential Equations 300 (2021) 925–948
 

Br

∣∣f
r

∣∣p∗
dx � c

( 

Br

[
|Df |p + ∣∣f

r

∣∣p]
dx

) p∗
p

.

We use the Gagliardo–Nirenberg inequality (2.11) for (γ, p, q, θ) = (γ, p, 1, θ0) and the es-
timates from the previous paragraph to conclude that

( 

Br

∣∣f
r

∣∣γ dx

) 1
γ

� c

( 

Br

[
|Df |p + ∣∣f

r

∣∣p]
dx

) θ0
p

( 

Br

∣∣f
r

∣∣dx

)1−θ0

� c

( 

Br

[
|Df |p + ∣∣f

r

∣∣p]
dx

) θ0+(1−θ0)θ̃p∗
p

( 

Br

∣∣f
r

∣∣q dx

)(1−θ̃ )(1−θ0)

provided that

1

γ
� θ0

p∗ + 1 − θ0.

Let θ := θ0 + (1 − θ0)θ̃p∗ = 1 − (1 − θ0)(1 − θ̃ )q . Then the exponent of the first term on the 
right-hand side is θ

p
and the exponent of the second term is 1−θ

q
. Thus we have the Gagliardo–

Nirenberg inequality for parameter value θ . It remains to check that the bound for γ is correct. 
For this we calculate

θ

p∗ + 1 − θ

q
= θ0

p∗ + θ̃ (1 − θ0) + (1 − θ̃ )(1 − θ0) = θ0

p∗ + 1 − θ0. �
We conclude this subsection by deriving a Gagliardo–Nirenberg type inequality for Orlicz 

functions.

Lemma 2.13. Suppose that ψ : [0, ∞) → [0, ∞) is a weak �-function and satisfies (aDec)q1 for 
some q1 � 1. For p ∈ [1, n), γ, q2 > 0 and θ ∈ [0, 1] we have

( 

Br

ψ
(∣∣f

r

∣∣)γ
dx

) 1
γ

� c

( 

Br

[
ψ(|Df |)p + ψ

(∣∣f
r

∣∣)p
]

dx

) θ
p

ψ

(( 
Br

∣∣f
r

∣∣q2 dx
) 1

q2

)1−θ

for some c = c(n, L, q1, q2) > 0, provided that

1

γ
� θ

p∗ + (1 − θ)q1

q2
.

Proof. In view of Remark 2.6, if suffices to consider ψ that is strictly increasing and differen-
tiable with ψ ′(t) � 0. Then using Young’s inequality (2.3), (2.5) and (2.4) we have that

|D(rψ(|f |))| = ψ ′(|f |)|Df | � ψ(|Df |) + ψ∗(ψ ′(|f |)) � ψ(|Df |) + cψ(|f |).

r r r r
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Hence applying Lemma 2.12 with q = q2
q1

to the function rψ(

∣∣∣f
r

∣∣∣), we conclude that

( 

Br

ψ
(∣∣f

r

∣∣)γ
dx

) 1
γ

� c

( 

Br

[
ψ(|Df |)p + ψ

(∣∣f
r

∣∣)p
]

dx

) θ
p
( 

Br

ψ
(∣∣f

r

∣∣)q
dx

) 1−θ
q

� c

( 

Br

[
ψ(|Df |)p + ψ

(∣∣f
r

∣∣)p
]

dx

) θ
p

ψ

(( 
Br

∣∣f
r

∣∣q2 dx
) 1

q2

)1−θ

;

here the last inequality follows from Lemma 2.2 since t 
→ ψ−1(t1/q)q2 satisfies (aInc)1. �
3. Poincare and reverse Hölder type inequalities

In this section, we derive a reverse Hölder type inequality for the gradients of weak solutions 
to (1.1) on regions satisfying a balancing condition, (3.13). We suppose that ϕ : [0, ∞) → [0, ∞)

is a weak �-function and satisfies (aInc)p and (aDec)q with constant L � 1 and that p and q
satisfy (1.3). We start with a Caccioppoli type inequality.

Lemma 3.1 (Caccioppoli inequality). Let u be a weak solution to (1.1) with (1.2) and Qλ
R � �I

with λ, R > 0. For r ∈ [R
4 , R) and a = (a1, . . . , aN) ∈ RN , we have

ϕ2(λ) sup
s∈Iλ

r

 

Br

∣∣∣∣u(s) − a

r

∣∣∣∣2

dx +
 

Qλ
r

ϕ(|Du|) dz

� c

 

Qλ
R

[
ϕ2(λ)

∣∣∣ u − a

R − r

∣∣∣2 + ϕ
(∣∣∣ u − a

R − r

∣∣∣)]
dz

for some c = c(n, N, p, q, L, ν, �) > 0, where u(s) = u(x, s).

Proof. We assume without loss of generality that Qλ
R is centered at the origin. Let η ∈ C1

0(BR)

with η ≡ 1 in Br and |Dη| � c/(R − r) and τ ∈ C1(R) with τ ≡ 0 in (−∞, −R2/ϕ2(λ)], τ ≡ 1
in [−r2/ϕ2(λ), ∞) and 0 � τ ′ � ϕ2(λ)/(R − r)2. Define

ζ(x, t) := η(x)qτ (t)2(u(x, t) − a)

and σ := −R2/ϕ2(λ). Using ζ as a test function, we have that for s ∈ Iλ
R ,

sˆ

σ

ˆ

BR

[∂tuiζi + Ai(x, t, u,Du) · Dζi] dx dt = 0, i = 1, . . . ,N, (3.2)

see Remark 3.3, below. Since ∂ta = 0, we note that
934



P. Hästö and J. Ok Journal of Differential Equations 300 (2021) 925–948
sˆ

σ

ˆ

BR

∂tuiζi dx dt =
sˆ

σ

ˆ

BR

1

2
∂t [ηqτ 2(ui − ai)

2] − η
q
i ττ ′(ui − ai)

2 dx dt

= 1

2

ˆ

BR

ηqτ(s)2(ui(s) − ai)
2 dx −

sˆ

σ

ˆ

BR

ηqττ ′(ui − ai)
2 dx dt,

where ui(s) = ui(x, s). Then, summing (3.2) for i = 1, . . . , N and using (1.2), we have

1

2

ˆ

BR

ηqτ(s)2|u(s) − a|2 dx + ν

sˆ

σ

ˆ

BR

ηqτ 2ϕ(|Du|) dx dt

� −q

sˆ

σ

ˆ

BR

ηq−1τ 2
N∑

i=1

(ui − ai)Ai(x,u,Du) · Dηdx dt +
sˆ

σ

ˆ

BR

ηqττ ′|u − a|2 dx dt

� c

sˆ

σ

ˆ

BR

τ 2ηq−1 ϕ(|Du|)
|Du|

∣∣∣ u − a

R − r

∣∣∣dx dt +
sˆ

σ

ˆ

BR

ϕ2(λ)

∣∣∣ u − a

R − r

∣∣∣2
dx dt.

Moreover, by Young’s inequality (2.3) and (2.4) and since ϕ∗ satisfies (aInc) q
q−1

[29, Proposi-

tion 2.4.13], we have that for any ε > 0

ηq−1 ϕ(|Du|)
|Du|

∣∣∣ u − a

R − r

∣∣∣ � εϕ∗
(

ηq−1 ϕ(|Du|)
|Du|

)
+ cεϕ

(∣∣∣ u − a

R − r

∣∣∣)
� cεηqϕ(|Du|) + cεϕ

(∣∣∣ u − a

R − r

∣∣∣).

We choose ε so small that the first term can be absorbed in the left-hand side. Therefore, com-
bining the above inequalities and using the fact that τ ≡ 1 in Iλ

r and η ≡ 1 in Br , we have

ˆ

Br

|u(s) − a|2 dx+
sˆ

− r2
ϕ2(λ)

ˆ

Br

ϕ(|Du|) dx dt � c

ˆ

Qλ
R

[
ϕ2(λ)

∣∣∣ u − a

R − r

∣∣∣2 + ϕ
(∣∣∣ u − a

R − r

∣∣∣)]
dz

for all s ∈ Iλ
r . Finally, we obtain the claim by dividing both sides by rn+2ϕ2(λ) and taking into 

consideration that |Br | ≈ rn while |Qλ
R| ≈ rn+2ϕ2(λ). �

Remark 3.3. When we consider parabolic problems and want to obtain useful estimates such as 
Caccioppoli inequalities, we have to use test functions depending on the weak solution u in the 
weak formulation (1.4). However, the weak solution u to the parabolic system (1.1) may not be 
differentiable in the time variable. In fact, we do not need differentiability with respect to the time 
variable when we prove the existence of weak solution to parabolic problems. In order overcome 
this difficulty, one way is to consider Steklov averages, see [18] and also [6]. However, since this 
argument is now quite standard, we shall abuse the notation ∂tu without further explanation.
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Let η ∈ C∞
0 (Bρ) be a cut-off function such that 0 � η � 1, η ≡ 1 in Bρ/2, |Dη| � 4

ρ
. We note 

that ‖η‖1 ≈ |Bρ |. Define

(u)λρ := 1

‖η‖1

 

Iλ
ρ

ˆ

Bρ

uη dx dt and 〈u〉η(s) := 1

‖η‖1

ˆ

Bρ

u(x, s)η dx for s ∈ Iλ
ρ .

Let us start with a complicated “Sobolev–Poincaré” inequality.

Lemma 3.4. Let u be a weak solution to (1.1) with (1.2) and Qλ
4ρ � �I with λ > 0 and ρ � r <

R � 4ρ. For a weak �-function ψ satisfying (aInc)p1 and (aDec)q1 , 1 � p1 � q1, we have

 

Qλ
r

ψ

(∣∣∣∣u − (u)λρ

r

∣∣∣∣
)

dz � cψ(A0) + cψ
(
T (r,R)

1
2
)(1−θ0)

 

Qλ
r

ψ(|Du|)θ0 dz,

for some c = c(n, N, p, q, p1, q1, θ0, L, ν, �) > 0 provided that

θ0p1 ∈ [1, n) and
nq1

nq1 + 2p1
� θ0 � 1.

Here, A0 is from (2.10) with U := Qλ
r and f = Du, and

T (r,R) :=
 

Qλ
R

[∣∣∣∣u − (u)λρ

R − r

∣∣∣∣2

+ 1

ϕ2(λ)
ϕ

(∣∣∣∣u − (u)λρ

R − r

∣∣∣∣
)]

dz + A2
0.

Proof. By the triangle inequality,

 

Qλ
r

ψ

(∣∣∣∣u − (u)λρ

r

∣∣∣∣
)

dz =
 

Qλ
r

ψ

(∣∣∣∣u(z) − 〈u〉η(t) + 〈u〉η(t) − (u)λρ

r

∣∣∣∣
)

dz

� c

 

Iλ
r

ψ

(∣∣∣∣ 〈u〉η(t) − (u)λρ

r

∣∣∣∣
)

dt + c

 

Qλ
r

ψ

(∣∣∣∣u(z) − 〈u〉η(t)
r

∣∣∣∣
)

dz.

(3.5)

We first take care of the first term. By the definition of 〈u〉η and using the weak formulation (1.4)
with test-function ζ(x, t) := η(x), we find that for each i = 1, . . . , N and t ∈ Iλ,
r

936



P. Hästö and J. Ok Journal of Differential Equations 300 (2021) 925–948
|〈ui〉η(t) − (ui)
λ
ρ | � sup

σ∈Iλ
r

|〈ui〉η(t) − 〈ui〉η(σ )| = sup
σ∈Iλ

r

∣∣∣∣
tˆ

σ

∂t 〈ui〉η(s) ds

∣∣∣∣
= sup

σ∈Iλ
r

∣∣∣∣
tˆ

σ

1

‖η‖1

ˆ

Br

∂tui(x, s)η(x) dx ds

∣∣∣∣

≈ sup
σ∈Iλ

r

∣∣∣∣
tˆ

τ

 

Br

Ai(x, s, u,Du) · Dηdx ds

∣∣∣∣
� cr

ϕ2(λ)

 

Qλ
r

ϕ1(|Du|) dz = rA0.

(3.6)

This gives the first term on the right-hand side of the claim.
We next use the Gagliardo–Nirenberg inequality (Lemma 2.13) with (ψ, γ, p, q1, q2) given 

by (ψ1/p1, p1, θ0p1, 
q1
p1

, 2) to conclude that

 

Br

ψ
(∣∣f

r

∣∣)dx � c

 

Br

[
ψ(|Df |)θ1 + ψ

(∣∣f
r

∣∣)θ0
]
dx ψ

([ 
Br

∣∣f
r

∣∣2
dx

] 1
2
)1−θ0

provided θ0p1 ∈ [1, n) and

1

p1
� θ0

(θ0p1)∗
+ 1 − θ0

2

q1

p1
= 1

p1
− θ0

n
+ 1 − θ0

2

q1

p1
.

This can be written as θ0 � nq1
nq1+2p1

.
The previous inequality for f := u − 〈u〉η on each time slice gives

 

Qλ
r

ψ
(∣∣∣u(z) − 〈u〉η(t)

r

∣∣∣)dz =
 

Iλ
r

 

Br

ψ
(∣∣f (x,t)

r

∣∣)dx dt

� c

 

Qλ
r

[ψ(|Df |)θ0 + ψ(
f
r
)θ0 ]dzψ

((
sup
t∈Iλ

r

 

Br

∣∣f (x,t)
r

∣∣2
dx

) 1
2
)1−θ0

.

(3.7)

In the first term we then use the following weighted Poincaré inequality for each time slice:

 

Br

ψ
(∣∣f (x,t)

r

∣∣)θ0 dx =
 

Br

ψ
(∣∣∣u(x, t) − 〈u〉η(t)

r

∣∣∣)θ0
dx

� c

 
ψ(|Du(x, t)|)θ0 dx = c

 
ψ(|Df (x, t)|)θ0 dx,
Br Br
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see [29, Lemma 6.2.5 and Corollary 7.4.1(b)] (here we need θ0p1 � 1). Finally, from the Cac-
cioppoli inequality (Lemma 3.1) and (3.6) we conclude that

sup
t∈Iλ

r

 

Br

∣∣f (x,t)
r

∣∣2
dx � c sup

t∈Iλ
r

 

Br

∣∣∣∣u(x, t) − (u)λρ

r

∣∣∣∣2

dx + c sup
t∈Iλ

r

 

Br

∣∣∣∣ (u)λρ − 〈u〉η(t)
r

∣∣∣∣2

dx

� c

 

Qλ
R

[∣∣∣∣u − (u)λρ

R − r

∣∣∣∣2

+ 1

ϕ2(λ)
ϕ

(∣∣∣∣u − (u)λρ

R − r

∣∣∣∣
)]

dz + cA2
0.

Combining (3.5), (3.6) and (3.7), we obtain the claim. �
If we choose θ0 = p1 = 1 in the previous lemma, we obtain the following result, since the 

complicated term involving T vanishes as its exponent is zero.

Corollary 3.8 (Poincaré inequality). Let u be a weak solution to (1.1) with (1.2) and Qλ
r � �I

with λ > 0. For a weak �-function ψ satisfying (aDec)q1 we have

 

Qλ
r

ψ

(∣∣∣∣u − (u)λρ

r

∣∣∣∣
)

dz � c

 

Qλ
r

ψ(|Du|) dz + cψ(A0),

where A0 is from (2.10) with U := Qλ
2ρ and f = Du.

Over the course of the next two results we will show how the extra terms in the previous 
lemma can be estimated by suitable quantities when we are in suitable intrinsic cylinders.

Lemma 3.9. We assume the assumptions of Lemma 3.4, and additionally that
 

Qλ
4ρ

ϕ(|Du|) dz � ϕ(λ).

Then, for some c = c(n, N, p, q, p1, q1, θ0, L, ν, �) > 0,

 

Qλ
2ρ

ψ

(∣∣∣∣u − (u)λρ

ρ

∣∣∣∣
)

dz � cψ(A0) + cψ(λ)1−θ0

 

Qλ
2ρ

ψ(|Du|)θ0 dz,

where A0 is from (2.10) with U := Qλ
2ρ and f = Du.

Proof. The claim follows once we show that T from Lemma 3.4 satisfies T (2ρ, 3ρ) � cλ. We 
first note from Lemma 2.9 with U = Qλ

r that

1

ϕ2(λ)

 

Qλ
r

ϕ1(|Du|) dz � cϕ(λ) for all r ∈ [ρ,4ρ]. (3.10)

Using this and Corollary 3.8 with ψ := ϕ, we find that for any ρ � r < R � 4ρ,
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Qλ
R

ϕ

(∣∣∣∣u − (u)λρ

R

∣∣∣∣
)

dz � c

 

Qλ
R

ϕ(|Du|) dz + cϕ

(
1

ϕ2(λ)

 

Qλ
R

ϕ1(|Du|) dz

)
� cϕ(λ)

and hence

1

ϕ2(λ)

 

Qλ
R

ϕ

(∣∣∣∣u − (u)λρ

R − r

∣∣∣∣
)

dz �
(

R
R−r

)q 1

ϕ2(λ)

 

Qλ
R

ϕ

(∣∣∣∣u − (u)λρ

R

∣∣∣∣
)

dz � c
(

R
R−r

)q
λ2.

With the previous inequalities, we have the following estimate for T from Lemma 3.4: for any 
ρ � r < R � 4ρ,

T (r,R) �
(

R
R−r

)2
 

Qλ
R

∣∣∣∣u − (u)λρ

R

∣∣∣∣2

dz + c
(

R
R−r

)q
λ2. (3.11)

Let p0 := 2n
n+2 , ψ(t) := t2 and θ0 := p0

2 . Then by Lemma 2.2 for the map t 
→ ϕ(t1/p0),

 

Qλ
r

ψ(|Du|)θ0 dz =
 

Qλ
r

|Du|p0 dz � cϕ−1
( 

Qλ
r

ϕ(|Du|) dz

)p0

� cλp0

for all r ∈ [ρ, 4ρ]. With the last two estimates, (3.10) and Young’s inequality, Lemma 3.4 gives 
us in this case that

 

Qλ
r

∣∣∣∣u − (u)λρ

r

∣∣∣∣2

dz � cλ2 + cλp0

((
R

R−r

)2
 

Qλ
R

∣∣∣∣u − (u)λρ

R

∣∣∣∣2

dz + (
R

R−r

)q
λ2

)1−θ0

� c
(

R
R−r

) 2q
n+2 λ2 + cλp0

(
R

R−r

) 4
n+2

(  

Qλ
R

∣∣∣∣u − (u)λρ

R

∣∣∣∣2

dz

) 2
n+2

� ε

 

Qλ
R

∣∣∣∣u − (u)λρ

R

∣∣∣∣2

dz + c
(

R
R−r

) 2q
n+2 λ2 + cε

(
R

R−r

) 4
n λ2,

for any ε ∈ (0, 1). Then, since ρ � r < R � 4ρ, we have

 

Qλ
r

∣∣∣∣u − (u)λρ

ρ

∣∣∣∣2

dz

︸ ︷︷ ︸
=Z(r)

� 1

2

 

Qλ
R

∣∣∣∣u − (u)λρ

ρ

∣∣∣∣2

dz

︸ ︷︷ ︸
=Z(R)

+ c
[( 4ρ

R−r

) 2q
n+2 + ( 4ρ

R−r

) 4
n

]
λ2︸ ︷︷ ︸

=X(1/(R−r))

.

Therefore, by applying a standard iteration Lemma 2.8, we obtain Z(r) � cX(1/(R − r)), i.e.
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Qλ
r

∣∣∣∣u − (u)λρ

ρ

∣∣∣∣2

dz � c
[(

ρ
R−r

) 2q
n+2 + (

ρ
R−r

) 4
n

]
λ2

for any ρ � r < R � 4ρ. We choose here (r, R) = (3ρ, 4ρ) and use it in (3.11) with (r, R) =
(2ρ, 3ρ) to conclude T (2ρ, 3ρ) � cλ2. �

Now, we derive a reverse Hölder inequality.

Lemma 3.12. Let u be a weak solution to (1.1) with (1.2) and Qλ
4ρ � �I with λ, ρ > 0. Suppose 

that

ϕ(λ) �
 

Qλ
ρ

ϕ(|Du|) dz and
 

Qλ
4ρ

ϕ(|Du|) dz � ϕ(λ). (3.13)

Then there exist θ = θ(n, p, q) ∈ (0, 1) and c = c(n, N, p, q, L, ν, �) > 0 such that

 

Qλ
ρ

ϕ(|Du|) dz � c

(  

Qλ
4ρ

ϕ(|Du|)θ dz

) 1
θ

.

Proof. We denote p0 := 2n
n+2 , and A0 and �0 as in (2.10) with U := Qλ

2ρ . By the Caccioppoli 
inequality (Lemma 3.1) with a := (u)λρ , we find that

 

Qλ
ρ

ϕ(|Du|) dz � cϕ2(λ)

 

Qλ
2ρ

∣∣∣∣u − (u)λρ

ρ

∣∣∣∣2

dz + c

 

Qλ
2ρ

ϕ

(∣∣∣∣u − (u)λρ

ρ

∣∣∣∣
)

dz. (3.14)

We then estimate the last two integrals.
By Lemma 3.9 for ψ := ϕ, considering also Lemma 2.9 with U = Qλ

2ρ and Young’s inequal-
ity, we have that for any δ ∈ (0, 1)

 

Qλ
2ρ

ϕ

(∣∣∣∣u − (u)λρ

ρ

∣∣∣∣
)

dz � cϕ(A0) + cϕ(λ)(1−θ0)�
θ0
0 � cδ�0 + cδϕ(λ). (3.15)

Using the same steps in the case ψ(t) := t2 and θ0 := p0
2 , we conclude that for any δ ∈ (0, 1)

(  

Qλ
2ρ

∣∣∣∣u − (u)λρ

ρ

∣∣∣∣2

dz

) 1
2

� cA0 + c

(
λ2−p0

 

Qλ
2ρ

|Du|p0 dz

) 1
2

� cδ

(  

Qλ

|Du|p0 dz

) 1
p0 + cA0 + δλ.
2ρ
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In particular, we also have

(  

Qλ
2ρ

∣∣∣∣u − (u)λρ

ρ

∣∣∣∣2

dz

) 1
2

� cλ.

Multiplying the previous two inequalities, and using Young’s inequality with (2.4) for the second 
step and Lemma 2.9, we obtain that for any δ ∈ (0, 1)

ϕ2(λ)

 

Qλ
2ρ

∣∣∣∣u − (u)λρ

ρ

∣∣∣∣2

dz � cϕ1(λ)

[
cδ

(  

Qλ
2ρ

|Du|p0 dz

) 1
p0 + A0 + δλ

]

� cδϕ

((  

Qλ
2ρ

|Du|p0 dz

) 1
p0

)
+ cδϕ(A0) + cδϕ(λ)

� cδ�0 + cδϕ(λ),

(3.16)

where the last step follows from Jensen’s inequality (Lemma 2.2) when θ0 � p0
p

so that ϕ(t1/p0)θ0

satisfies (aInc)1.
Finally, inserting (3.15) and (3.16) into (3.14), we find that

 

Qλ
ρ

ϕ(|Du|) dz � cδ�0 + cδϕ(λ).

Choosing δ so small that cδ = 1
2 and absorbing the term in the left-hand side by (3.13) we have 

the reverse Hölder inequality. �
4. Proof of higher integrability

Now we prove the main result, Theorem 1.5.
Step 1. Let ϕ : [0, ∞) → [0, ∞) be a weak �-function and satisfy (aInc)p and (aDec)q with 

(1.3). In view of Remark 2.6, we can assume without loss of generality that ϕ is differentiable, 
strictly increasing and satisfies (aInc)p with L = 1. We also recall

D(t) := min{t2, ϕ(t)
n
2 +1t−n} = min{1, ϕ2(t)

n+2
2 }t2 (4.1)

from (1.6). Then D is increasing and from (aInc)p of ϕ we have

Cmin{2,
p(n+2)−2n

2 }D(t) = min
{
C2,C

p(n+2)−2n
2

}
D(t) � D(Ct) (4.2)

for all t > 0 and C � 1.
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Step 2. Fix Q2ρ � �I . We define

λ0 := D−1
(  

Q2ρ

ϕ(|Du|) dz

)
(4.3)

and, for 0 < s � 2 and λ > 0,

E(s,λ) := {z ∈ Qsρ : |Du(z)| > λ}.
We next fix any 1 � s1 < s2 � 2 and any λ satisfying

λ � λ1 :=
( 40

s2 − s1

)(n+2)max{ 1
2 , 2

p(n+2)−2n
}
λ0. (4.4)

With this λ we also define

rλ := min{1, ϕ2(λ)
1
2 }(s2 − s1)ρ. (4.5)

We notice that Qλ
r (w) ⊂ Qs2ρ for w ∈ E(s1, λ) and r � rλ. Then we prove a Vitali type covering 

of the super-level set E(s1, λ) satisfying a balancing condition on each set.

Lemma 4.6. For each 1 � s1 < s2 � 2 and λ � λ1, there exist wi ∈ E(s1, λ) and ri ∈ (0, rλ20 ), 
i = 1, 2, 3, . . . , such that Qλ

4ri
(wi) are mutually disjoint,

E(s1, λ) \ N ⊂
∞⋃
i=1

Qλ
20ri

(wi) (4.7)

for some a Lebesgue measure zero set N ,

 

Qλ
ri

(wi)

ϕ(|Du|) dz = ϕ(λ) and
 

Qλ
r (w)

ϕ(|Du|) dz � ϕ(λ) for all r ∈ (ri , rλ). (4.8)

Proof. For w ∈ E(s1, λ) and r ∈ [ rλ
20 , rλ), using (4.3) we have

 

Qλ
r (w)

ϕ(|Du|) dz � |Q2ρ |
|Qλ

r |
 

Q2ρ

ϕ(|Du|) dz � |Q2ρ |
|Qrλ/20|ϕ2(λ)D(λ0).

By (4.5), (4.2), (4.4) and (4.1),

|Q2ρ |
|Qrλ/20|ϕ2(λ)D(λ0) �

(
40

s2 − s1

)n+2

max{1, ϕ2(λ)−
n+2

2 }ϕ2(λ)D(λ0)

� D(λ)max{1, ϕ2(λ)−
n+2

2 }ϕ2(λ)
n+2

2 2 − n+2
2
= min{1, ϕ2(λ) }λ max{1, ϕ2(λ) }ϕ2(λ) = ϕ(λ).
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Therefore we obtain that
 

Qλ
r (w)

ϕ(|Du|) dz � ϕ(λ) for all r ∈ [ rλ
20 , rλ).

On the other hand, by the parabolic Lebesgue differentiation theorem we see that for almost 
every w ∈ E(s, λ)

lim
r→0+

 

Qλ
r (w)

ϕ(|Du|) dz = ϕ(|Du(w)|) > ϕ(λ).

Therefore, since the map r 
→ ffl
Qλ

r (w)
ϕ(|Du|) dz is continuous, one can find rw ∈ (0, rλ20 ) such 

that
 

Qλ
rw

(w)

ϕ(|Du|) dz = λ, and
 

Qλ
r (w)

ϕ(|Du|) dz � λ for all r ∈ (rw, rλ].

Consequently, applying Vitali’s covering lemma for {Qλ
rw

(w)}, we have the conclusion. �
Step 3. By (4.8), we can apply Lemma 3.12, so that we have that for sufficiently small δ ∈

(0, 1),

ϕ(λ) =
 

Qλ
ri

(wi)

ϕ(|Du|) dz � c

(  

Qλ
4ri

(wi)

ϕ(|Du|)θ dz

) 1
θ

� cϕ(δλ) + c

(
1

|Qλ
4ri

|
ˆ

Qλ
4ri

(wi)∩E(s2,δλ)

ϕ(|Du|)θ dz

) 1
θ

� cδpϕ(λ) + c

|Qλ
4ri

|
ˆ

Qλ
4ri

(wi)∩E(s2,δλ)

ϕ(|Du|)θ dz

(  

Qλ
4ri

ϕ(|Du|) dz

)1−θ

� 1

2
ϕ(λ) + c

ϕ(λ)1−θ

|Qλ
4ri

|
ˆ

Qλ
4ri

(wi)∩E(s2,δλ)

ϕ(|Du|)θ dz.

Then we absorb ϕ(λ) into the left-hand side. Using (4.8) again we have

 

Qλ
20ri

(wi)

ϕ(|Du|) dz � ϕ(λ) � c
ϕ(λ)1−θ

|Qλ
4ri

|
ˆ

Qλ
4ri

(wi)∩E(s2,δλ)

ϕ(|Du|)θ dz

and so
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ˆ

Qλ
20ri

(wi)

ϕ(|Du|) dz � cϕ(λ)1−θ

ˆ

Qλ
4ri

(wi)∩E(s2,δλ)

ϕ(|Du|)θ dz.

Therefore, since {Qλ
20ri

(wi)} is a covering of E(s1, λ) according to (4.7) and Qλ
4ri

(wi) are mu-
tually disjoint,

ˆ

E(s1,λ)

ϕ(|Du|) dz �
∞∑
i=1

ˆ

Qλ
20ri

(wi)

ϕ(|Du|) dz � cϕ(λ)1−θ

ˆ

E(s2,δλ)

ϕ(|Du|)θ dz.

In addition,

ˆ

E(s1,δλ)\E(s1,λ)

ϕ(|Du|) dz �
ˆ

E(s1,δλ)\E(s1,λ)

ϕ(λ)1−θϕ(|Du|)θ dz

�
ˆ

E(s2,δλ)

ϕ(λ)1−θϕ(|Du|)θ dz.

Combining these and replacing δλ by λ, we have

ˆ

E(s1,λ)

ϕ(|Du|) dz � c

ˆ

E(s2,λ)

ϕ(λ)1−θϕ(|Du|)θ dz for all λ > δλ1. (4.9)

Step 4. Let us set

|Du|k := min{|Du|, k} for k � 0,

Ek(s, λ) := {z ∈ Qsρ : |Du|k(z) > λ}.
From now on, we assume that k > λ1. Then we have from (4.9) that for ε > 0, which will be 
determined later,

I :=
∞̂

λ1

ϕ(λ)ε−1ϕ′(λ)

ˆ

Ek(s1,λ)

ϕ(|Du|k)1−θϕ(|Du|)θ dz dλ

�
kˆ

λ1

ϕ(λ)ε−1ϕ′(λ)

ˆ

E(s1,λ)

ϕ(|Du|) dz dλ

� c

∞̂

λ1

ˆ

Ek(s2,λ)

ϕ(λ)ε−θϕ′(λ)ϕ(|Du|)θ dz dλ =: II,

where we have used the facts that Ek(s, λ) = ∅ if λ > k and E(s, λ) = Ek(s, λ) if λ � k. We then 
apply Fubini’s theorem to I and II , so that
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I =
ˆ

Ek(s1,λ1)

ϕ(|Du|k)1−θϕ(|Du|)θ
|Du|kˆ

λ1

ϕ(λ)ε−1ϕ′(λ) dλdz

= 1

ε

ˆ

Ek(s1,λ1)

[
ϕ(|Du|k)1−θ+εϕ(|Du|)θ − ϕ(λ1)

εϕ(|Du|k)1−θϕ(|Du|)θ
]

dz

and

II = c

ˆ

Ek(s2,λ1)

ϕ(|Du|)θ
|Du|kˆ

λ1

ϕ(λ)ε−θϕ′(λ) dλdz

= c

1 − θ + ε

ˆ

Ek(s2,λ1)

(
ϕ(|Du|k)1−θ+ε − ϕ(λ1)

1−θ+ε
)

ϕ(|Du|)θ dz

� c

1 − θ

ˆ

Ek(s2,λ1)

ϕ(|Du|k)1−θ+εϕ(|Du|)θ dz.

Therefore we have

ˆ

Ek(s1,λ1)

ϕ(|Du|k)1−θ+εϕ(|Du|)θ dz � ϕ(λ1)
ε

ˆ

Ek(s1,λ1)

ϕ(|Du|k)1−θϕ(|Du|)θ dz

+ cε

ˆ

Qs2ρ

ϕ(|Du|k)1−θ+εϕ(|Du|)θ dz.

At this stage, we choose ε = ε(n, N, p, q, L, ν, �) > 0 so small that cε � 1
2 . On the other hand,

ˆ

Qs1ρ\Ek(s1,λ1)

ϕ(|Du|k)1−θ+εϕ(|Du|)θ dz � ϕ(λ1)
ε

ˆ

Qs1ρ

ϕ(|Du|k)1−θϕ(|Du|)θ dz.

Combining the last two estimates, we have

ˆ

Qs1ρ

ϕ(|Du|k)1−θ+εϕ(|Du|)θ dz � 1

2

ˆ

Qs2ρ

ϕ(|Du|k)1−θ+εϕ(|Du|)θ dz

+ cϕ(λ0)
ε

(s2 − s1)α0

ˆ

Q2ρ

ϕ(|Du|k)1−θϕ(|Du|)θ dz,

where α0 := εq(n + 2) max{ 1
2 , 2

p(n+2)−2n
}; here we used (4.4) which yields ϕ(λ1) �

c
α0 ϕ(λ0). Applying the standard iteration Lemma 2.8 to this inequality, we find that
(s2−s1)
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ˆ

Qρ

ϕ(|Du|k)1−θ+εϕ(|Du|)θ dz � cϕ(λ0)
ε

ˆ

Q2ρ

ϕ(|Du|k)1−θϕ(|Du|)θ dz

� cϕ(λ0)
ε

ˆ

Q2ρ

ϕ(|Du|) dz.

Finally, letting k → ∞ and recalling (4.3), we have

 

Qρ

ϕ(|Du|)1+ε dz � cϕ(λ0)
ε

 

Q2ρ

ϕ(|Du|) dz

� c

[
ϕ

(
D−1

(  

Q2ρ

ϕ(|Du|) dz

))]ε  

Q2ρ

ϕ(|Du|) dz.
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