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1. INTRODUCTION
For the autonomous partial functional differential equation

u(t) = Au(t) + Lu,, t=0, (1
u(t) = (1), —r<t<0, '
there is a well-developed semigroup approach; in particular, a powerful
spectral theory is available. Here we assume that 4 generates a Cy-semigroup
V() on a Banach space X. Further, r>0, ¢ € £E = C(-r,0],X), L€
L(E,X), and we let u,(&) == u(t + &) for £ e[—r,0], t=0, and u : [—r,00) >
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X. Then the operator

A =L D) = (g e O, 00,X) : $(0) € D(A),

d¢
¢'(0) = 4¢(0) + Lo}, (1.2)

generates a Cy-semigroup U;(-) on E and the function

u(t) = { [UL(0¢)(0), >0,

¢(t)7 _r<t<09

solves (1.1) for ¢ € D(4;). We point out that the semigroup U;(-) describes
the time evolution of the history function of the solution; i.e., u; = UL(¢)¢.
The spectrum of 4; is determined by the relation

Aea(d;) = lea(d+ L)), (1.3)

where L; € #(X) is given by L;x == L(¢*x) for /. € C. Moreover, if t+ V() is
continuous in operator norm for >0 (e.g., if V(-) is analytic or compact),
then

a(UL(D)\10} = exp(1o(AL)). (1.4)

For these results we refer the reader to [7, Section VI.6] and also to [28,
Chap. 3] and the references therein. Combining (1.3) and (1.4) with standard
spectral theory, one sees that the solution semigroup U, (+) is exponentially
stable if and only if

sup{Re : Lea(d+L;)} <0
and that U;(-) has exponential dichotomy if and only if
{LeC:led(A+ L)} niR=10

(provided that V(-) is norm continuous for #>0). In this way one
obtains exponential stability and dichotomy of the history function u,.
Thus one can consider (1.3) as a generalized characteristic equation which
extends the classical results for the case X = C" as presented in e.g.
[13, Chap. 7].

In this paper we want to prove analogous characterizations for the non-
autonomous problem

u(t) = A(u(t) + L(t)u,, t=s,
(1.5)

u(t) = ¢t —s), s —r<t<s,
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where the linear operators A(f), t € R, generate an evolution family
Vi(ts), t=s, on X and L(-) belongs to Cy(R, Z(E,X)), the space of
uniformly bounded and strongly continuous operator-valued functions. In
the next section we review the existence theory of (1.5); typically this
problem is solved by an evolution family U, (¢, s) on E which is generated by
operators A, (f) given as in (1.2).

However, even in the case of ordinary differential equations (i.e., X =
C", r=0, and L(r) = 0, thus 4;(¢) = A(?)) it is known that the location of
the spectra of 4;(¢) does not influence the asymptotic behavior of solutions.
This can be seen by, e.g., Example VI.9.9 in [7] where time-periodic
equations are considered. But we note that for a certain class of periodic
problems one can prove a characteristic equation involving the spectrum of
the monodromy operator U(p,0); see [13, Section 8.3; 11] and Corollary
3.7.

In the present work we derive in Theorem 3.5 a generalized characteristic
equation for (1.5) which is formulated on function spaces like Co(R, X)) and
determines the exponential dichotomy of (1.5). As a consequence we obtain
the above-mentioned characteristic equations for autonomous and periodic
problems. Theorem 3.5 further allows us to characterize those delay
perturbations such that U, (-, ) inherits the exponential dichotomy of V(-,);
see Theorem 4.1 and Corollary 4.4 which extend results in [6, 8, 18]. In this
context we also refer the reader to the recent papers [3, 12, 14]. Moreover,
our characteristic equation is closely related to the qualitative behavior of
the solutions to the inhomogeneous problem

u(t) = A@Ou(t) + L(Ou; + g(1), teR. (1.6)

For instance, let L(¢) be periodic and let A(¢) generate a periodic evolution
family with exponential dichotomy. Then the solution u is almost periodic if
the inhomogeneity ¢ is almost periodic; see Theorem 4.6. Here we generalize
results from, e.g., [1,11,28] to the non-autonomous setting. Finally, the
influence of positivity is explored in Theorem 4.10 for a certain class of
periodic problems. In the last section we discuss a retarded parabolic partial
differential equation with time-periodic coefficients.

Our approach is based on the so-called evolution semigroup associated
with (1.5) which is introduced in the next section. Concerning unexplained
concepts and notation we refer the reader to [7].

2. PREREQUISITES

Let Z be a Banach space. A family {W(¢t,s); —oo<s<t<oo} < Z(Z)is
called an evolution family if W(t,s) = W(t,r)W(r,s), W(s,s) =1, and (¢,s)
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— W(t,s) is strongly continuous for —co<s<r<it<oo. Its exponential
growth bound is given by

o(W) = inf{w e R: [|W(1,s)|| <M, " for t>s}.

The evolution family is said to be exponentially bounded if w(W)<oo and
exponentially stable if o(W)<0. We denote by Q =1 — P the complemen-
tary projection of a projection P. An evolution family W(-,-) has an
exponential dichotomy if there are a projection-valued function P(:) e
Cp(R, Z,(X)) and constants N, > 0 such that

(a) P()W(t,s) = W(1,5)P(s),

(b) the restriction Wpy(t,s): O(s)X — Q(1)X of W(t,s) has the inverse
Wo(s, t), and

(© [IW(t,5)P(s)|| <Ne ‘=) and ||Wy(s, Q)| < Ne~=,

for t>=s. We note that the projections P(¢), ¢t € R, are uniquely determined
by (a)—(c); see [26, Corollary 3.3].

We also deal with p-periodic evolution families W(-,-) which means that
there exists a constant p > 0 such that W(t + p,s + p) = W(t,s) for t=s. In
this case it is known that

a(W(p, OO0} = a(W(t+ p,D)\{0},

for t € R, that (W) = Lln#(W(p,0)), and that W(-,-) has an exponential
dichotomy if and only itT A o(W(p,0)) =0, where T = {1 e C: |1] = 1}; see
[15, Section 7.2].

Given an exponentially bounded evolution family W(-,-) on Z, we define
the associated evolution semigroup Ty(-) on Cyp(R,Z) by setting

(Tw @) )(s) = W(s,s —t)f(s — 1), t=0, seR, feCR,2).
Note that w(Ty) = w(W). This semigroup is not strongly continuous on
Cp(R,X). We are thus looking for closed subspaces of C,(R,Z) which are
invariant under 7y (-) and the group of translations and on which Ty (-) is
strongly continuous. It is easy to see that the space Cy(R, Z) satisfies these
requirements for each exponentially bounded evolution family. This
situation is thoroughly studied in the monograph [5]; see also the survey
given in [7, Section VI.9].

If W(.,-) is p-periodic, we can also choose the subspaces P,(R,Z) of
p-periodic functions and AP(R, Z) of almost periodic functions; i.e.,

AP(R,Z) = lin{e"z: n e R,z e Z},

where the closure is taken in C(R, Z). In the case P,(R, Z) one can verify the
required properties in a straightforward way; for AP(R, Z) we refer to e.g.
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[19, Lemma 2]. We further recall that each f € AP(R,Z) has a unique
representation

o0
f) = Z ez with zy € Z, n, € R, and sp(f) = {n;: keN}, (2.1)
k=0

where the series converges uniformly in ¢ € R; see [17, Sec. 2.3] and [2, Prop.
2.3]. Here the spectrum of a function f € L™®(R, Z) is defined by

sp(f) = {n € R: V&> 03¢ € L'(R) with supp(@) < [n — &1 + ¢]
and g% f'#0},

where @ denotes the Fourier transform of ¢ and ¢ f denotes the
convolution of ¢ and f. Note that sp(f) gZ—;Z if f is p-periodic; cf. [22,
(0.48)]. We can now introduce the subspaces

APy, (R, 2) = 1f € AP[R,Z): sp(f) Ay}
for a non-empty closed subset A, of R with A, + 27”2 =A, and
APA (R, 2) = {f € AP[R, 2): sp(f) < A}

for a non-empty closed subset A, of R. In particular, P,(R,Z) = 4P, (R, 2)
ifA, = 27”2 and AP(R,Z) = APx (R, Z) if A, = R. Due to [22, Theorem 0.8],
the space APy (R, Z) is closed in AP(R, Z). It is invariant under translations
and Ty (f) because of [22, Propositions 0.4 & 0.5] and [4, Lemma 3.6] (or
Lemma 3.3 below) provided that W(.,-) is p-periodic. Similarly, one verifies
these assertions for the space APy (R,Z) if W(t,s)= W(t—s) for a
Co-semigroup W(-).

Convention. Throughout this paper F(R, Z) stands for Cy(R, Z) if we deal
with an exponentially bounded evolution family W(-,-) on Z, for AP, (R, Z)
if W(-,-)is p-periodic, and for APx_(R,Z) if W(-,-) is a semigroup. In these
cases the restriction of the evolution semigroup to F(R, Z) is also denoted by
Tw(-) and its generator by Gy.

The spectrum of the generator Gy can be used to characterize certain
asymptotic properties of the evolution family W(-,-) as stated in the
following proposition. Part (a) is due to R. Rau, Y. Latushkin, and S.
Montgomery-Smith; see [5, Theorems 3.13 & 3.17] or [7, Theorems VI.9.15
& V1.9.18]. For part (b) we refer the reader to [16, Props. 3.1 & 3.2] or [19,
Prop. 1], for part (c) to [19, Lemmas 2 and 4], and for part (d) to [4,
Corollary 3.9]. Part (e) can be proved following the arguments in the proof
of [4, Theorem 3.8].
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ProPOSITION 2.1.  For an exponentially bounded evolution family W(.,-)
on the Banach space Z the following assertions hold.

(a) W(.,-) has an exponential dichotomy if and only if Gy is invertible on
Co(R, Z). Moreover, o(W) = s(Gy).

(b) Let W(-,-) be p-periodic. Then 1€ p(W(p,0)) if and only if Gy is
invertible on P,(R, Z). Moreover, (W) = s(Gy).

(c) Let W(-,-) be p-periodic. Then W(-,-) has an exponential dichotomy if
and only if Gy is invertible on AP(R, X).

(d) Let W(-,-) be p-periodic. If a(W(p,0)) n {e"?: ne A,} =0, then Gy
is invertible on APy (R, Z).

(e) Let W(t,s)y=W(t—s) for a Cy-semigroup W(). If
o(W(ty)) N {e: ne Ay}t =0 for some ty>0, then Gy isinvertibleon
APy (R, Z).

Using basic semigroup theory one sees that, given u, f € F(R,Z) and 1 €
C, one has u € D(Gy) and (1 — Gy )u = f if and only if

t
e HTy(u —u = — / e Ty (o) fdo, 1=0. (2.2)
0

Further, the resolvent of Gy is given by

t

o0
GG =| [~ ePnroralo= [ e maoon @)
0 —00
for Re > w(W), teR, and f € F(R, Z).
Throughout this paper we use the following assumptions, where F =
C([—r,0],X) for a fixed »=0.

(A1) V(-,-) is an exponentially bounded evolution family on a Banach
space X and L(:) € Cp(R, Z((E, X)).

(A2) V() is a p-periodic evolution family on X and L(-) € (R, &,
(E, X)) is p-periodic.

(A3) V(t,s)=V(t—s), t=s, for a Cy-semigroup V() on X and
L()=Le XE,X).

Then we can define operators U(,s) on E by setting

o— V(t + é) S)¢(0)a s — t< é,
(U“”@@”_{¢o+¢—@, I, (2.4)

for t=s, £ €[—r,0], and ¢ € E. Note that U(:,-) is an evolution family on
E with o(U) = o(V) and that U(-,-) is p-periodic in the case (A2) and is
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given by a semigroup in the case (A3). We are looking for a function
ue C([s — r,00),X) such that

ut) = V(t,)p0) + [ V(t,)L(Du.dr, t=s, 2.5
u(t) =t —s), s—r<t<s, '

for ¢ € E and s € R, where u, = u(t + -) € E. Assume for a moment that there
are operators A(f), t € R, such that V(¢ s)D(A(s)) < D(A(t)) and V(-,s)x €
C'([s, 00), X) with derivative A(¢)V'(t,s)x for x € D(A(s)) and ¢>s. (In this case
we say that A(-) generates V(-,-). Assumptions implying this property can be
found in most monographs on evolution equations; see [7, Sect. VI.9.a] for
references.) Then a solution u of (1.5) belonging to C!([s, 00), X) also satisfies
(2.5) as can be seen by a standard argument. We therefore call u the mild
solution of (1.5) (or (2.5)). Conversely, imposing appropriate conditions on
A(}), L(-), and ¢, one can deduce that a solution of (2.5) is differentiable and
fulfills (1.5); cf. [23; 28, Chap. 2] or Section 5.

The problem (2.5) can easily be solved if (Al) holds. In fact, by a
straightforward fixed-point argument one obtains a unique exponentially
bounded evolution family U;(-,-) on E such that

(t+8)vs
(UL(t,9)$)(C) = (U, 9)p)(&) + / V(t+ & )LU)UL(z, s)pdT,  (2.6)

for (£ e[-r,0], ¢ €E, and t=s, where a v b :=max{a, b} and a A b =
min{a, b} for a,b € R. By uniqueness, U;(:,) is p-periodic in the case (A2)
and is given by a semigroup U(:) in the case (A3). Moreover, Ur(:) is
generated by the operator 4, defined in (1.2); cf. Lemma VI.6.2 and VI.6.5
in [7]. Observe that Gronwall’s inequality yields

UL, )| <M exp[(w + ML)z = )] 2.7)

for t>s, where w> w(V), M = Mye™", and ||V (¢, s)|| < Moe"". Given ¢ €
E and s € R, we now set

(o) = { V6Bl 0).  t>s,

ot — ), s —r<t<s.

Then (2.6) shows that u, = U,(t,s)¢ and that u solves (2.5). These facts are
proved in [10, Theorem 3.2] or [27, Proposition 3.2]. Related results are
contained in [6, 8, 21, 23, 24]. We note that in [6, 21, 24] the evolution family
Ur(-,-) is constructed by using general well-posedness results for the
operators Az(¢) given as in (1.2) and that in [6, 8, 24] nonlinear problems are
treated. The proof given in [23] is based on the perturbation theory for
Hille-Yosida operators whose basic result is stated below.
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A linear operator 4 on Z is called a Hille-Yosida operator if there are
constants w € R and K >0 such that

(w, 0) < p(4) and [[(A — w)'R(A,A)"||<K for A>w, neN.

It is known that the part 4y of 4 in Z = D(4) generates a Cy-semigroup So(-)
on Zy and that p(4y) = p(4); see e.g. [20, Theorem 3.1.10] and [7, Prop.
1V.2.17]. The proof of the following perturbation result can be found in
[20, Sect. 4.1] (see also the references therein for related approaches).

PROPOSITION 2.2.  Let A be a Hille—Yosida operator on a Banach space Z
and Be ¥(Zy,Z). Then A+ B with D(A+ B) = D(A) is a Hille—Yosida
operator on Z. The Cy-semigroup Sg(-) generated by the part of A+ B in Zy is
the unique solution of

t
Sp(t)z = So(t)z + )lim / So(t — 1)AR(A, A)BSp(t)zdt, t=0, z € Z. (2.8)
=00 0

3. THE CHARACTERISTIC EQUATION

Assume that (A1), (A2), or (A3) holds. We want to study the asymptotic
behavior of the evolution family U.(-,-) obtained in the previous section.
Proposition 2.1 indicates that it will be useful to employ the evolution
semigroups

(T 1) (s) = Upls,s — 1) f(s — 1), /e FR,E),
and
(TV(I)CP)(S) = V(S,S - t)QD(S - t)’ ¢ E F(R’X)a

and their generators G; on F(R,E) and Gy on F(R,X), respectively. In
Proposition 3.4 below we express G; in terms of Gy and L(-). This relation
leads to a generalized characteristic equation determining o(G.); see
Theorem 3.5.

At first we deduce the desired representation of G, in a heuristic way.
Assume for a moment that the evolution family V(.,-) is generated by
operators A(-) on X. Then the evolution family U,(-,-) should be generated
by A;(¢) given as in (1.2). We recall that the evolution semigroup on Cy(R, Z)
corresponding to a well-posed Cauchy problem u(z) = B(t)u(t), u(s) = x, on
Z is generated by the closure of —% + B(-) defined on the intersection of the
maximal domains of the derivative —% and the multiplication operator B(-)
on Cy(R, 2); see [5, Theorem 3.12] or [27, Prop. 1.14]. In our case this means
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that
Guf =-Sr42f  and (S7)00) = A0S0+ LOS@ G
P e T ae’ )T ’ '
for functions f contained in a core of G;. In view of the first identity we
define
o 0,
or = (=g

D) ={f:Rx[-r,0] - X: feF(R,E) is differentiable in
direction <711> and 0f e F(R,E)}.

It is reasonable to expect that D(G;) = D(9). Unfortunately, the boundary
condition in (3.1) does not make sense for all f € D(0). To circumvent this
problem, we subtract g 1(¢,0) on both sides of the boundary condition and
use the expression for Gy indicated above. Then the second identity in (3.1)
becomes

000f = Gydof +L()f, where 9o f = f(-,0).
This boundary condition makes sense for
feD={feD): of € D(Gy)}

even if we only assume that (A1) holds. In fact, it turns out to be the correct
one, but instead of the above heuristic arguments we have to develop a
completely different method partly inspired by [23].

As a preliminary step we compute the generator Gy of the evolution
semigroup 7p(-) on F(R, E) associated with the evolution family U(-,-) given
in (2.4). Observe that w(7y) = o(U) = (V).

LemmA 3.1. The generator Gy on F(R,E) is given by Gof = 0f with
D(Go) = {f € D: 600f = Gyoof} =: Dy.

Proof. Let 2> w(V) and f = R(4, Gy)g for g € F(R, E). Then

1(.6) = / MU, Dg(e, N
(3.2)

t

t+& X
= / e Y (1 4 &, 1)g(1,0)dT + / e gz, t 4+ & — 1)dt

0 1+
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fort € R and & € [—r,0] due to (2.3) and (2.4). This equality implies f € D(0)
and 0f = Af — g = Gy f. Moreover, (2.3) and (3.2) yield oy f = R(4, Gy)dog
so that f € D and

000f = Ado f — dog = AR(A, Gy)dog — dog = GyR(4, Gy)dog = Gydo f.

Thus, D(Gy) < Dy and Gy = 0 on D(Gy). It remains to show that 1 — 0 is
injective on Dy. If Af =0f for f € Dy, then 1dpf = d0f = Grdo f, and
hence dg f = 0. Now, considering the function A(s) = f(t —s,& + ) for s €
[0,—¢], te R, and & € [—r,0), one easily deduces f =0. 1

On ¥ =F(R,X X E) = F(R,X) x F(R,E), we define the operator

<o Gy — 800

. ; ) with D(%) == {0} x D. (3.3)

Lemma 3.1 shows that %, = D(9) = {0} x F(R,E) ~ F(R, E) and that the
part 4, of ¥ in F(R, E) coincides with Gy,. We need some preparations in
order to determine the resolvent of %. Note that R(4, Gy) leaves F(R,X)
invariant. Let ¢ € F(R,X) and 4> (V). In the cases (A2) and (A3) the
identity (2.1) shows that

o0
[R(Z, Gy)op]l(t) = Z e x; for appropriate n, € R, x; € X.
k=0

This series converges in X uniformly for ¢t € R. Set e, (¢) = et for u e C and
¢ e[—r,0]. Then

o0
R, Gr)pl, =Y | €™es i xi,
k=0

and the series converges in £ uniformly for ¢ € R. Thus we can define in all
the cases (A1), (A2), and (A3) the bounded operator

E;:FR,X) > F(RE),  [Ep)t,&) = “(R(LGp)o)t+&), (3.4)

for t e R and & € [—r,0]. Observe that

E,p €D, OE,p = .E;¢ and doE;¢ = R(4, Gy)o. (3.5)
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LEMMA 3.2.  The operator 9 defined in (3.3) is a Hille—Yosida operator on
7 = F(R,X x E) with resolvent

) ( 0 0
R(1,9) =

E. RO Go)) =R, for A>w).

Proof. Let A>w(V). Lemma 3.1 and (3.5) imply £%,% < D(¥%)
and (A—9) #,=1. 1If (A— {4)(3) =0, then feD(Gy) and (A —0)f =
(A—Gy)f =0. Hence, f=0. This yields A€ p(9) and R(L,9) =%,

Since
0 0
RO, G)" = 1 for ne N.
R(4,Go)"'E;, R(4,Gop)"

% is a Hille-Yosida operator. 1

We now perturb ¢4 by the bounded multiplication operator

L FRE)>F, %= (L(8f>.

In the cases (A2) and (A3), the representation (2.1) of almost-periodic
functions and the following lemma actually imply that L(-) maps F(R, E)
into F(R, X). The lemma is a slight extension of [4, Lemma 3.6] and can be
proved in the same way.

LeMMA 3.3. Let g >0 and let A, be a closed subset of R such that A, =
Ay + 2“Z For two Banach spaces 21 and 7, let h € APy (R,Z,) and let S
[RE - J(Zl,Zz) be strongly continuous and q-periodic. T hen the spectrum of
S()A(:) is contained in A,.

By Proposition 2.2 the sum 4, := % + ¢ is again a Hille-Yosida operator
and its part G, in Fo = F(R, E) generates a Cp-semigroup T:(). In the next
result we see that G, = Gy.

ProroOSITION 3.4. Assume that (Al), (A2), or (A3) holds. Then the
generator Gy of the evolution semigroup T.(-) on F(R, E) is given by

G.f =0f for feD(G) = {feD: Gydof —300f +L(-)f = 0}.

Proof. We have to show that G, = G, or that the corresponding
semigroups 77(-) and T;(-) coincide. Combining (2.8) with Lemma 3.2, we
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see that 7;(-) is uniquely given by

Tu0f = To0f + im [ - LOTi s G6)

for f € F(R,E) and t>0. On the other hand, (2.6) and the definition of 7;(¢)
yield

(t+E)vs
(UL(t,9)$)(C) = (U, 9)p)(&) + / Vit + & OILOTL(z — ) f1(v)dx,

for ¢ = f(s)eE, feF(R,E), t=s, and ¢ €[—r,0]. Since AR(4, Gy) con-
verges strongly to [ in F(R,X) as 1 — 0o, we can write

(UL(t,9)9)(&) = (U1, 5)9)(C)

(t+&vs

+ lim V(t + & ORG, Gy)L()Ti(z — 5) f1(v)dx,

A0 s

where the limit is uniform for & € [—r,0] and for ¢, s with 0<t — s<¢). Note
that

H/ PEIRG, GOLOTL( — 5)f 1 + Ode
t+&vs

t

¢ i ¢ € oW

<" llx / 2 e <o " [,
—-w +¢ AW

for A >w>w(V) with A>0 and for suitable constants ¢, w>=0. As a result,

(UL(t,9)9)(&) = (U, 5)$)(E)

(t+&) vs
whim [V & OURG GOLOT — 910
+ lim t IR, Gy)L()T(t — 5) f1(t + E)dr

A0 t+&vs

for t=s and & € [—r,0]. Using (2.4) and (3.4), this leads to

ULt,s)p = U(t,9)¢ + lim /[ U(t, DIAEL()T(x — 5) f1(7)d,
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or equivalently
UL(S’S - ZL)}(‘(s - t) = U(S,S - t)f(s - t)

+ lim / UG OUELOTL( + © — 5) (o)

for s € R and ¢ >0. Here both limits exist in £ and the second one is uniform
for s € R. Using the definition of the evolution semigroups, we obtain

nof =107+ lim [ Ge-wEOLO@ 6

so that 7;(f) = T.(r) by (3.6). 1

We can now compute the resolvent of G; and thereby establish the desired
characteristic equation. We set

0
HiFRE) > FRE.  [HA0.9 = [ &607¢ e
¢
L FR.X) - F(R.X),  [Lipl(t) = L(t)(e;9,), (3.8)
where 4 e C and [e;,](&) = e*“o(t + é)ﬂ for & e[—r,0] and £=0. (Use (2.1)
and Lemma 3.3 to check that A, and L; are well-defined in the cases (A2)
and (A3).)

THEOREM 3.5. Assume that (Al), (A2), or (A3) holds. Let Gy be the
generator of the evolution semigroup on F(R, X) associated with V(-,-) and let
Gy be the generator of the evolution semigroup on F(R,E) induced by the
evolution family U.(-,-) on E given by (2.6). Then

lea(G) < Aeo(Gy+ L)), (3.9)

for A e C. Moreover, for 1 € p(Gyp) the resolvent of Gy, is given by
[R(4, GL)g)(t) = e;[R(A, Gy + L;)(Sog + L()H,9)), + [Hig)(®), (3.10)

for ge F(R,E).

Proof. 1In view of Proposition 3.4, A — Gy is invertible if and only if for
every g € F(R, E) there exists a unique

feD  with 80f = Gydof +L()f and Aif —0f =g. (3.11)
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Considering h(s) = f(t — s, +s) for s €[0,—¢], teR, and & € [—r,0), we
see that f satisfies (3.11) if and only if there exists a unique ¢ € D(Gy) such
that

0
@, =e o+ + / (¢ — 1+ t,1)dT

¢
and
9 = Gro — Lip = g(,0) + LOH;g =: Sig. (3.12)
In other words, /4 € p(Gy) is equivalent to the condition
Vg € F(R,E) 3l € D(Gy) such that (1 — Gy — L;)e = S;g.

Thus (3.9) follows from the surjectivity of S; : F(R, E) —» F(R, X). To verify
that §; is onto, take functions of the form [e/](z, &) = e*y(¢) for t € R and
& e[-r,0], where € F(R,X) and p> A. Since S;(eyy) = + L()H;(en))
and

—Ar
IEOH el < IO

the operator y—S;(ef) is invertible on F(R,X) for sufficiently large p.
Finally, (3.10) is an immediate consequence of (3.12). 1

Theorem 3.5 and Proposition 2.1(a) imply the following characterization
of exponential stability and dichotomy, where we take F = C.

COROLLARY 3.6. Assume that (A1) holds. T lAzen Ui(:,+) is exponentially
stable if and only if sup{Rei: 1e€a(Gy+ éz)} <0, and Ui(-,-) has
exponential dichotomy if and only if 0 € p(Gy + Ly).

We point out that the above result allows us to study the exponential
dichotomy of the retarded non-autonomous problem (2.5) on X by means of
a spectral condition on Cy(R,X). As mentioned in the Introduction, a
spectral condition on the space X itself is possible only in certain situations.
We now show that (3.9) implies the known characteristic equations on X.
We first study the following special case of (A2).

(A2") V(-,-) is a p-periodic evolution family on X and L(t)¢ =B
O p(—p), ¢ €E, for B(- + p) = B(-) € C(R, Z((X)). Let r = p.

Since in this case the evolution family U(-,-) on E solving (2.5) is
p-periodic, its exponential behavior is determined by the spectrum of the



CHARACTERISTIC EQUATION FOR PFDE 453

monodromy operator U(p,0). To exploit this fact, we consider the p-
periodic evolution family V/(-,-) on X solving

VAt s)x = V(t,s)x + / t V(t,0)e *PB(o)V/(a,s)xda, (3.13)

for AeC, xeX, and ¢>s. (Observe that (3.13) is of the form (2.6) with
r =0.) The next corollary (partially) extends [13, Theorem 8.3.1], where
finitely many delay terms By(H)u(t — kp), k=0,1,...,m, are considered for
X = C". Moreover, in [11, Theorem 5.9] the case A(f) = 4 is treated for a
general Banach space X.

COROLLARY 3.7. Assume that the condition (A2") holds, and let J. e C.
Then

e € a(U(p,0)) if and only if &' € G(VL)'(p, 0)). (3.14)

In particular, o(U.) = sup{Re i: e*? € a(V/(p,0))} ‘and U.(-,") has an
exponential dichotomy if and only if {i e C: ' € a(V}(p,0))} N iR = 0.

Proof. Let A, 2”2 and consider G; on F(R,E) = P,(R,E). Using a
rescaling argument we derive from Proposition 2.1(b) that e*? € a(Uy( (P, 0))
if and only if 1 € 6(G.). Moreover, / € o(G;) if and only if 1 € o(Gy + L) by
Theorem 3.5. Observe that Gy + L, generates a strongly continuous
semigroup T/() on P,(R,X) which is uniquely given by

THOW = Ty(Oy + / t Ty(t — o)L, T} (o)Wdo (3.15)

for t=s and € P,(R,X). But from (3.13) we deduce that the evolution
semigroup on P,(R,.X) corresponding to V/(-,+) also satisfies (3.15). Hence
T/(-) coincides with this evolution semigroup. Proposition 2.1(b) now
implies that 1 € a(Gy + L;) if and only if e*? € a(V/(p,0)), so that (3.14) is
established. The final assertions follow from [15, Sect. 7.2]. 1

If we restrict ourself to the autonomous situation in (A3), we recover
[7, Prop. VI.6.7]. Related results can be found in [28, p. 82] if V(¢) is compact
for each >0 and in [13, Lemma 7.2.1] if X = C". Recall that L; € Z(X) is
given by L;x = Le)x.

COROLLARY 3.8. Assume that the condition (A3) holds. Let A generate
V(-) and define the operator Ay on E as in (1.2). Then A € a(Ay) if and only if
Aea(d+ L) for 2eC.



454 GUHRING, RABIGER, AND SCHNAUBELT

Proof. Let Ay = {0}. Then AP, (R, X) is simply the space of constant
X-valued functions and hence can be identified with X. Therefore L, =
L;,, Gy = A4, and G, = 4;. Theorem 3.5 now implies the assertion. 1

Using the standard spectral theory of semigroups, one can deduce
asymptotic properties of U;(-) from the above corollary under additional
hypotheses on 4 or X; see [7, Sect. VI.6].

4. APPLICATIONS

Theorem 3.5 allows to study robustness of exponential dichotomy under
delay perturbations. Recall from Proposition 2.1(a) that Gy is invertible on
Co(R,X) if V(-,-) has exponential dichotomy on X.

THEOREM 4.1. Assume that the condition (A1) holds and let Uy(-,-) be
given by (2.6). If V(-,-) has an exponential dichotomy on X, then the following
assertions are equivalent:

(@) Ui(:,-) has an exponential dichotomy on E,
(b) 1€ p(LoR(0,Gy)) on Co(R, X),
(©) 1€ p(R(0,Gy)Lo) on Cy(R,X).

Proof. Assertion (a) is equivalent to 0 e p(Gy + Lo) by Theorem 3.5.
Since Gy + Ly = - LOR(O Gy))Gy, the operator Gy + Ly is invertible if
and only if (b) holds. The second equivalence follows from the general fact
that 1 — 7S has the inverse 1 + 7(1 — ST)"'S if 1 € p(ST) for two bounded
operators 7 and S. 1

Of course, condition (b) or (c) is satisfied if
HLoR(O,Gyp)) <1 or r(R(Z,Gy)Ly) <1, (4.1)

respectively, or if ||Lo|| is small; see Corollary 4.4. In these cases we can also
show that the dimension of the unstable subspace of V() is inherited by
Ur(-,-). We first need the following result whose straightforward proof is
omitted; see [10, Lemma 3.11].

LEmMMA 4.2.  Assume that (A1) holds and that V(-,-) has an exponential
dichotomy on X with projections Qy(t) on the unstable subspaces. Then U(:,-)
defined in (2.4) has an exponential dichotomy on E with projections
[Qu(DPI(&) = Vo(t + &, 00r()P(0) for deE, teR, and Ce[-r,0]. In
particular, dim Qu(t)E = dim Qyp(£)X. Moreover, Ug(s, )Qu(t)p = V(s + -, 1)
Oy ()9(0).
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ProroSITION 4.3. Assume that (Al) holds and that V(-,-) has an
exponential dichotomy on X with projections Qy(t) on the unstable subspaces.
If one of the conditions in (4.1) holds, then Ui(-,-) has an exponential
dichotomy on E with projections Q;(t) on the unstable subspaces and dim
O, (HE = dim Qp(s)X for t,s € R.

Proof. Due to Theorem 4.1, Property (b) in the definition of ex-
ponential dichotomy, and Lemma 4.2, it remains to show that
dim O, (0)E = dim Qy(0)E. Let ¢€[0,1]. Clearly, (4.1) still holds if we
replace L(¢) with eL(t), t € R. So due to Theorem 4.1 the evolution family
U.(:,-) given by (2.6) for eL(¢) has exponential dichotomy with projections
Q.(¢) on the unstable subspaces, where Qy(f) = Qu(¢) and Q;(t) = O.(¢). In
view of [9, Lemma I1.4.3], it suffices to prove the continuity of [0, 1]
e Q0:(0) e Z(E).

Let 7.(-) be the evolution semigroup on Cy(R, E) corresponding to U,(-,-).
Note that T,(¢) is uniformly bounded for ¢,¢ € [0, 1] by (2.7). The identity
(3.7) yields

TS =0 f == i [T — 2B LT fe

+njim | 11— DRELONTAD) - Ty i

for fe Cy(R,E) and t,¢,n€e[0,1]. Since ||AE;||<c for a constant ¢ >0
independent of A=w(V)+ 1, Gronwall’s Lemma shows that e¢+— T,(1) is
continuous in the operator norm. The assertion now follows from the
formula

1
0.0) =1 -5 | RAT,

see e.g. [5, Theorem 6.41] and (the proof of) [7, Theorem VI1.9.18]. 1
Proposition 4.3 is applicable to the following situation, cf. [6, Theorem 4;
8, Theorem 2; 18, Lemma 2.1]. It is not difficult to establish refined versions

of the next corollary using the same arguments.

COROLLARY 4.4. Assume that (A1) holds. Let V(-,-) have an exponential
dichotomy on X with projections Py(t) such that

V(P <Me % and Vo5, 0000l <Me 7O
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for t=s and some M =1 and o € C(R) with a(t)=0 > 0. If ||IL(0)||<B(¢), t e R,
and
2M (1)
= su
o)

<1,

then Uy(-,-) has exponential dichotomy with projections Qr(t) on the unstable
subspaces satisfying dim Qr(f)E = dim Qy(s)X for t,s € R.

Proof. By Proposition 4.3 it suffices to show that ||R(0, Gy)Lo||<1 on
Co(R, X). The inverse of Gy is given by

t

[R(0, G )l(t) = /

—00

V(t, 0)Py(0)p(o)do — /  plt, )0 (0)p(0)do,

fort € Rand ¢ € Cy(R, X); see e.g. [5, Remark 4.26] or [7, Theorem VI.9.18].
Hence,

RO, Gy)Lop) )]

t ' o0 T
<M / O BNl odo + M / o I ol do
—00

_ ! —f o(t)dt ﬁ( ) j; o(t)dt ﬁ( )
M / o f oldo + 1 / a@re Dol da

<dllplly. B

We now turn our attention to the inhomogeneous problem (1.6) on R.
Again we study an integrated version of it: Given g € C,(R,X), we are
looking for a continuous function u : R — X such that

u(t) = V(t,s)u(s) + / t Ve, )L(Du: + g(1)dt,  1=5. (4.2)

Here we do not fix an initial function ¢ € E or an initial time s € R, and we
refer the reader to [I11] and also to [13, Sect. 6.2; 28, Sect. 4.2] for
further information and references. We want to show that there is a unique
u e F(R,X) solving (4.2) if g € F(R, X); i.e., the solution inherits properties
like almost periodicity. It turns out that (3.9) allows us to characterize this
assertion by the exponential dichotomy of U,(-,-). For undelayed problems
such results have a long history going back to a paper by O. Perron from
1930; see Sections 4.3 and 7.3 and the corresponding notes in [5].
Concerning almost periodic solutions to inhomogeneous problems we refer
the reader to [1,2,4,11,13,19,22,25,28], and the references therein. In
particular, in [1, Theorem 8] and [28, Theorem 4.3.3] (for the autonomous
case) and [11, Sect. 5] (if A(tr) = A) it was shown that the exponential
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dichotomy of U,(:,-) implies the above-mentioned inheritance of almost
periodicity in the case of slightly differing retarded problems.

THEOREM 4.5. Assume that (A1) holds. Then Ui(-,-) has an exponential
dichotomy on E if and only if for every g€ Cy(R,X) there exists a unique
Sfunction u € Cy(R, X) solving (4.2).

Proof. From Corollary 3.6 we know that Ur(-,-) has an exponential
dichotomy if and only if G, + Ly is invertible on Co(R, X). This is the case if
and only if for every g € Cop(R,X) there exists a unique u € D(Gy) satisfying
(Gy + Lo)u = —g. By (2.2) this is equivalent to

T
u=Ty(t)u+ / Ty(o)(Lou + g)do, 7=0.
0

We now obtain the assertion by evaluating this formula at re R for
t=t—s=20. |1

In the same way the following two theorems can be derived from
Proposition 2.1 and Theorem 3.5 by varying the function spaces F(R, X) and
F(R,E).

THEOREM 4.6. Assume that (A2) holds. Then:

(a) UL(-,-) has an exponential dichotomy if and only if for every g e
AP(R, X) there exists a unique u € AP(R, X) satisfying (4.2).

() 1€ p(Ur(p,0)) if and only if for every g€ P,(R,X) there exists a
unique u € Py(R, X) satisfying (4.2).

(¢) If a(Ur(p,0)) n{eP: neA,} =0, then for every ge AP, (R,X)
there exists a unique u € APy (R, X) satisfying (4.2), where 0#A, =A,+
%"Z c R is closed.

THEOREM 4.7. Assume that (A3) holds and let ) # As < R be closed. If
a(UL(ty)) N {eo: ne A} = 0 for some ty > 0, then for every g € APy (R, X)
there exists a unique u € APy (R, X) satisfying (4.2).

Observe that the spectral conditions in Theorems 4.6(c) and 4.7 allow for
a non-empty intersection of the spectrum of the monodromy operator and
the unit circle provided that a “‘non-resonance” condition holds.

Finally, we study the influence of positivity on stability properties of
Ui(-,-) in the case (A2'). To that purpose we assume that X is a Banach
lattice. Thus £ = C([—r, 0], X) with the canonical order is a Banach lattice as
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well. The same holds for F(R, Z), where F' = Cy, P, and Z = X, E. We first
establish that U(z,s) is positive.

PROPOSITION 4.8.  Assume that (A1) holds and that V(t,s) >0 and L(t)=0
for 0o >t=s> —00. Then the operators U(t,s) given by (2.6) are positive.

Proof. Clearly, the evolution semigroup 7(-) on Cy(R, X) corresponding
to V() is po§itive. Thus R(4,Gy)=0 for 2> w(V) by, e.g., [7, Theorem
VI.1.8]. Since L, >0 and

R(A, Gy + L;) = R(.Gy) Y [LiRG. Gp))'
n=0

for large A > w(V), the operator R(1, Gy + L) is positive. Now (3.10) shows
that R(4, Gr)>=0 for these A and so the evolution semigroup 7;(-) is positive
by, e.g., [7, Theorem VI.1.8]. Hence, U;(t,s)=0. |1

The following result can be proved exactly as were Lemma VI.6.12—
Corollary VI.6.16 in [7].

LeEmMMA 4.9. Assume that (Al) or (A2) holds. Let Gy and Gp be the
generators of the evolution semigroups on F(R,X) and F(R,E) induced by
V(-,-) and UL(-,-), respectively, where F = Cy in Case (Al) and F = P, in Case
(A2). Suppose that V(t,s)=0 and L(t) =0 for t =s. Then s(G;) <0 if and only if
s(Gy + Lg) <0.

We can now show in the case (A2') that w(U;) = w(¥;) for the evolution
family 7;(-,-) on X given by

Vi(t,s)x = V(t,s)x + /t V(t,o)B(o)V,(a,s)xdo. 4.3)

N

A corresponding result for autonomous problems is due to W. Kerscher and
R. Nagel; see [7, Example VI.6.18].

THEOREM 4.10.  Assume that (A2') holds and let V (¢, s) and B(f) be positive
for oc0o>t=s>—00. Then the evolution family Ui(-,-) given by (2.6) is
exponentially stable on E if and only if the evolution family V(-,-) given by
(4.3) is exponentially stable on X.

Proof. We have already seen in the proof of Corollary 3.7 that G, + Ly
generates the evolution semigroup on P,(R,X) corresponding to Vi(t,s).
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Proposition 2.1(b) then yields s(Gy + Lo) = w(V;) and s(G.) = w(Uy) so that
the assertion follows from Lemma 4.9. 1

In order to illustrate the consequences of Theorem 4.10, consider the non-
autonomous retarded Cauchy problem

d

740 = A@u() + Bt = p), 1>,

us, = ¢ € C([— p, 0], X), 4.4
where the operators A(¢), t € R, generate a positive evolution family V(-,)
on X, p>0, and 0<B(-+ p) = B(-) € C(R, Z,(X)). Then Theorem 4.10

says that the solution of (4.4) is uniformly exponentially stable if and only if
the solution of the undelayed Cauchy problem

%v(f) = A(Hv(t) + B(t)v(t), t=s, v(s) =x,

on X is uniformly exponentially stable. In other words, the delay does not
influence the stability if positivity is present.

5. A PERIODIC PARTIAL DIFFERENTIAL EQUATION WITH
DELAY

We investigate the retarded parabolic differential equation

9 u(t,x) = k(z) 6—2 u(t,x) — a(Hu(t,x) — b()u(t — 1,x) + g(t,x), t,xeR,
ot ox? 5.0

on X =LY(R), 1<g<oo, for l-periodic coefficients a,b,k € C(R) with
k>=0>0 and an inhomogeneity g € C»(R, X). Clearly, the operators

A(D)p = k(t)¢" — a(t)p with D(A(t)) = W(R), teR,

generate the evolution family

t t
V(t,s) = effs a@de g (/ k(t)d‘c) , t=s,

on X, where S(-) is the analytic semigroup generated by the second derivative
A¢p = ¢" on X. We further define E = C([—1,0],.X) and

L) E - X, LO¢ = bH)p(—1), teR.
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Note that V(-,-) and L(-) satisfy (A2"). Mild solutions of (5.1) are defined as
in (4.2). By the standard regularity theory of analytic semigroups one sees
that a mild solution is continuously differentiable and solves (5.1) if
g(t) e D((1 — A)*) and t+— (1 — A)*g(r) € X is continuous for 7 € R and some
ae(0,1).

We compute the spectrum of the monodromy operator U;(1,0), where we
set a = fo a(t)dt, b= fo b(t)dr, and k = fo k(t)d.

PROPOSITION 5.1. " € a(UL(1,0)) if and only if there exist 1€ Z and
p € Ry such that

)+ 2nil = —e b —a— pk. (5.2)

Proof. The evolution family (V/(z, 5));>¢ defined in (3.13) is given by

Vit,s)=e Ji e b V(t,s), fort=s.

Corollary 3.7 shows that e* € ¢(Uy(1,0)) if and only if ¢* € a(e=¢ "¥(1,0)).
Since S(-) satisfies the spectral mapping theorem, we deduce from a(4) = R
that a(V(1,0)) = {e~%#*: p e R, }. This yields the assertion. I

Assume that (z + pk, b) belongs to the interior of the shaded region in
Fig. 1 for some p >0, where the upper boundary is given by

o= —fcosz, fsinz=2z 0<z<m.

Then Theorem A.5 in [13] shows that all 1 € C satisfying (5.2) have negative
real part; cf. [13, p. 135]. This yields Re A <0 for each / satisfying (5.2) for
some p € R, provided that (a,b) is contained in the interior of the shaded
region in Fig. 1. Hence Ui(,-) is exponentially stable and, in particular, has
an exponential dichotomy. As an example one may take @a =0 and b = 1.
Note that in this situation V(:,-) does not have an exponential dichotomy.

In view of the above discussion, our next theorem is an immediate
consequence of Theorem 4.5 and Theorem 4.6(a).

THEOREM 5.2. Assume that (a,b) belongs to the interior of the shaded
region shown in Fig. 1. Then the following holds.

(@) If ge Co(R,LI(R)), then there exists exactly one mild solution
u € Co(R, L1(R)) of (5.1).

(b) If g€ AP(R, LY(R)), then there exists exactly one mild solution
u e AP(R, L1(R)) of (5.1).
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FIGURE 1

Similarly, Proposition 5.1 and Theorem 4.6(b) lead to a condition for the
existence of a unique periodic solution.

THEOREM 5.3. If g € P(R,LY(R)) and b+ a > 0, then there exists exactly
one mild solution u € P|(R, L4(R)) of (5.1).
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