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Abstract

We consider the Cauchy problem for the 2� 2 nonstrictly hyperbolic system

at ¼ 0;

ut þ f ða; uÞx � gða; uÞax ¼ 0;

�
ða; uÞðt ¼ 0; �Þ ¼ ða0; u0Þ:

For possibly large, discontinuous and resonant data, the generalized solution to the Riemann

problem is introduced, interaction estimates are carried out using an original change of

variables and the convergence of Godunov approximations is shown. Uniqueness is addressed

relying on a suitable extension of Kružkov’s techniques.

r 2004 Elsevier Inc. All rights reserved.

MSC: 35L65; 65M06; 65M12

Keywords: Balance laws; Nonstrict hyperbolicity; Nonconservative (NC) products; Well-balanced (WB)

Godunov scheme

ARTICLE IN PRESS

$Partially supported by HYKE-EU financed network # HPRN-CT-2002-00282.
�Corresponding author. Fax: 39-0862-433180.

E-mail addresses: amadori@univaq.it (D. Amadori), l.gosse@area.ba.cnr.it (L. Gosse), graziano.

guerra@unimib.it (G. Guerra).

0022-0396/$ - see front matter r 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jde.2003.10.004



1. Introduction

The main concern of the present paper is with the Cauchy problem in R for the
following 2� 2 nonstrictly hyperbolic system of balance laws:

at ¼ 0;

ut þ f ða; uÞx � gða; uÞax ¼ 0;

�
ð1:1Þ

completed with the initial data

að0; �Þ ¼ a0; uð0; �Þ ¼ u0; ð1:2Þ

under the forthcoming assumptions ðP1Þ–ðP5Þ: Like the authors of [8,13–15,19,27],
we are especially interested in nonlinear resonance, that is, when wave speeds
coalesce. Since this is equivalent to the existence of points where fu vanishes, let T
denote their set: T ¼ fða; uÞ : fuða; uÞ ¼ 0g: We shall work in the sequel under some
rather general assumptions which read:

ðP1Þ f ; g are smooth functions; 8a limu-7N f ða; uÞ ¼ þN;
ðP2Þ T is a graph: there exists a C1 map t : R-R such that fuða; tðaÞÞ ¼ 0 for all

aAR;
ðP3Þ fuða; uÞ � ðu � tðaÞÞ40; for all ða; uÞAR2

\T;
ðP4Þ fa � ga0 for all ða; uÞAT;
ðP5Þ for any ða0; u0ÞAR2

\T; the solution to the Cauchy problem

duðaÞ
da

¼ g � fa

fu

; uða0Þ ¼ u0; ð1:3Þ

does not blow up to infinity on bounded intervals.

Let us pause to state a few comments. System (1.1) can be viewed either as a 2� 2
hyperbolic system, not in conservation form, or as a different way to write a general
scalar balance laws with source term,

ut þ f ðaðxÞ; uÞx ¼ a0ðxÞgðaðxÞ; uÞ; ð1:4Þ

as advocated for instance in [4] to derive a simple model of shallow-water
flow. Another case of special interest for (1.1) lies in the modeling of one-
dimensional flow in a nozzle as pointed out in [19]; in this context, f ; g do not
depend on a:

ut þ f ðuÞx ¼ kðxÞgðuÞ; kðxÞ ¼ a0ðxÞX0: ð1:5Þ

We shall develop this case first in Section 2.1: as in [11], we can consider (1.5) within
a limiting process when a0ðxÞ concentrates onto a Dirac comb. The classical
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compensated compactness results, [26], imply strong compactness of the entropy
solutions u but the lack of BV estimates prevents us from defining rigorously the
product gða; uÞax within the framework of [17]. Hence taking advantage of the linear
degeneracy of the nonconservative field, we shall interpret it following integral
curves of the associated eigenvector, see e.g. [3,5].

These equations are endowed with a source term gða; uÞax: Of course, in the
case it vanishes, g 
 0; one recovers a conservation law with the flux function
being space dependent as in [2,7,15,18,21], this dependence being possibly
discontinuous.

Concerning our assumptions, we stress that ðP3Þ is less restrictive than the
usual genuine nonlinearity requirement; however it excludes the linear cases
already investigated in e.g. [6,12,23] for which the theory is quite different,
see also [21]. Observe that condition ðP3Þ is a consequence of ðP1Þ and the
definition of T: Conditions ðP2Þ–ðP5Þ will allow us to define and study
the integral curves of the steady-state problem for (1.1) in Section 2.2. Within the
special framework (1.5) considered in [19], our condition ðP5Þ is equivalent
to the one required there to ensure existence for arbitrary large initial data (see
Remark 2.7).

Our plan is as follows. We aim at first establishing the existence of global
solutions to (1.1)–(1.2). This will be carried out by extending and simplifying
former studies, [13,19,27]. In [13] (see also [27]), the Cauchy problem for (1.1) has
been solved for small data, that is to say, in a neighborhood of some given
point U� ¼ ða�; u�ÞAT In Section 3, we shall consider global solutions of the
Riemann problem (3.1) for (1.1). This raises the problem of interpreting the
nonconservative term a0g; this will be tackled as previously indicated for the special
case (1.5).

Interaction estimates are to be carefully derived in Section 4 by means of an
original change of variables; it sheds light on some computations already
present in [13,19]. Relying on these stepping stones, a Godunov scheme is applied
to build approximate solutions in Section 5; when ignited with a suita-
ble discretization of the initial data, this scheme has the property of preserving
the stationary solutions: this is the so-called Well-Balanced property, see
[4,9,10,14,22]. Compactness of the approximate sequence is then established,
Theorems 5.1, 5.2; the initial data are assumed to be bounded, without any
smallness assumption.

The delicate question of uniqueness is finally to be raised (and partly solved) by
means of Kružkov’s techniques under a refined condition that aðxÞ is absolutely
continuous ða0AL1ðRÞÞ: In this case, the classical weak formulation for (1.1) does
make sense and the limit is found to be a generalized solution in the sense of
Kružkov [16]: see Theorem 6.1.

In Section 7, related stability estimates are also obtained, Theorem 7.1; however,
an additional boundedness assumption is needed: see (7.1) and the counterexample
in Section 8.

Let us finally mention an alternative approach to the treatment of resonance inside
balance laws relying on their kinetic formulations: consult [4,22,29].
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2. Motivation and preliminaries

2.1. A localization process for the a variable

As announced in the introduction, we first restrict ourselves to the special case
(1.5) (the source term could also read gðx; uÞ). We assume furthermore that there

exists a constant MARþ such that ugðuÞp0 for jujXM and that the function
u/f ðuÞ is strictly convex (however, ðP3Þ would even suffice). The condition on the
source term guarantees that blow-up cannot occur for the weak solutions of (1.5).
Following the ideas of [11], we aim at deriving a meaning for gðuÞax when a is

discontinuous relying on [17], i.e. within a limiting process. Let KAC2ðRÞ stand for
an anti-derivative of k and, given a parameter h40; the nondecreasing function aeðxÞ
belongs to W

1;1
loc ðRÞ for e40 and is defined as follows:

aeðxÞ ¼
Kð jhÞ; xA jh; j þ 1

2
� e

2

� �
h

� �
;

K j þ 1
2

� �
h 1� 1

e

� �
þ x

e

� �
; xA j þ 1

2
� e

2

� �
h; j þ 1

2
þ e

2

� �
h

� �
;

Kðð j þ 1ÞhÞ; xA j þ 1
2
þ e

2

� �
h; ð j þ 1Þh

� �
:

8><
>: ð2:1Þ

The Kružkov’s theory (see Theorem 7.1 in this paper) ensures that for each e40;
there exists a unique entropy solution ue of (1.5) and (2.1). But since

ae 	!e-0
ah ¼def

X
j

Kð jhÞ1
xA½ð j�1

2
Þh;ð jþ1

2
Þh½;

the term lying at the right-hand side of (1.5) becomes ambiguous in the limit e-0: As
formerly done, one could establish that for u0; aeABVðRÞ; the total variation in space
of the Riemann invariants for (1.1)

a; wðu; aÞ ¼ f�1ðfðuÞ � aÞ; f0 ¼ f 0=g;

decays as time increases. However, as a consequence of resonance ð fu ¼ 0Þ; this
implies no estimate on ue: Thus we turn to a weaker compactness framework based
on LN estimates. As a special case of (6.1), Kružkov’s entropy inequalities hold for
any e40; kAR: We select k ¼ maxðM; jju0jjLNðRÞÞ and by integration, we obtain

d

dt

Z
R

maxðueðx; tÞ � k; 0Þ dxp
Z
R

maxðsgnðue � kÞ; 0ÞgðueÞðx; tÞae
x dxp0;

together with

d

dt

Z
R

minð0; ueðx; tÞ � kÞ dxX

Z
R

minð0; sgnðue � kÞÞgðueÞðx; tÞae
x dxX0:

This gives a maximum principle which is uniform in e and reads:

jjuejjLNpmaxðM; jju0jjLNðRÞÞ:
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At this level, we observe that under our hypotheses, gðueÞae
x is a bounded measure;

hence we get, following [26], for all entropy–entropy flux pairs Z; q satisfying q0 ¼
Z0fu;

ZðueÞt þ qðueÞxcompact in H�1
loc ðR� RþÞ:

We deduce by the strict convexity of the function u/f ðuÞ that the sequence of
entropy solutions ue is relatively compact in all Lp for poþN: Since ae is constant

in time, it is in BVðRÞ and compact in L1
locðRÞ: This is enough to pass to the limit in

(6.1) and get the limit problem in the sense of measures:

ZðuÞt þ qðuÞxpZ0gah
x; Z0ðueÞgðueÞae

x,Z0gah
x:

Since this holds for Kružkov’s entropies ZðuÞ ¼ ju � kj; kAR; the weak formulation
follows. Unfortunately, we cannot follow the results of [17] to deduce also the
meaning of the right-hand side term.

2.2. The stationary solutions

For smooth solutions, (1.1) corresponds to the quasilinear system

Ut þ AðUÞUx ¼ 0; U ¼ ða; uÞ; AðUÞ ¼
0 0

fa � g fu

� 

: ð2:2Þ

The eigenvalues of A are l1 ¼ 0; l2 ¼ fu; the corresponding eigenvectors are r1 ¼
ð fu; g � faÞ; r2 ¼ ð0; 1Þ: Observe that one of the characteristic fields is linearly
degenerate, while the other one, due to condition ðP3Þ; is, roughly speaking,
genuinely nonlinear ‘‘around resonance points’’ and its integral curves are parallel
straight lines. The strict hyperbolicity is lost along the transonic curve T; and there
the corresponding eigenvectors become parallel to each other. In the case a ¼ %a

constant, the system reduces to the scalar homogeneous conservation law with
parameter %a:

ut þ f ð %a; uÞx ¼ 0:

Let us introduce some notation. Denote by Oþ and O� the following regions:

Oþ ¼ fða; uÞ : fuða; uÞ40g; O� ¼ fða; uÞ : fuða; uÞo0g: ð2:3Þ

We shall consider the case of a positive source along resonant states: g � fajT40; the
other case being symmetric under the transformation a/� a: Let us introduce
some special solutions of system (1.1): the stationary ones, which correspond to the
integral curves of the linearly degenerate field,

f ða; uÞx ¼ axgða; uÞ:
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Regular solutions satisfy fuux ¼ ðg � faÞax; which is locally equivalent either to

du

da
¼ g � fa

fu

ð2:4Þ

or to

da

du
¼ fu

g � fa

: ð2:5Þ

(Observe that, by hypotheses, the two quantities fu and g � fa do not vanish at the
same points.) Denote by fða; a0; u0Þ the solution to (2.4) with Cauchy data
uða0Þ ¼ u0:

du

da
¼ g � fa

fu

; uða0Þ ¼ u0; ða0; u0ÞeT; ð2:6Þ

and denote by ða; bÞ its maximal interval of existence, we will also use the notation

f7ða; a0; u0Þ for ða0; u0ÞAO7: It is clear that

�Npaða0; u0Þoa0obða0; u0ÞpþN:

Proposition 2.1. For any ða0; u0ÞeT; the maximal interval of existence of fðaÞ ¼
fða; a0; u0Þ is unbounded to the right: bða0; u0Þ ¼ þN:

Proof. Assume that ða0; u0ÞAOþ; the other case being similar. Since we are in Oþ;
fðaÞ4tðaÞ holds where the solution f exists. If, by contradiction bða0; u0Þ ¼
a�oþN; then standard o.d.e. theorems ensure that ða;fðaÞÞ approaches the

boundary of Oþ as a approaches a� to the left. But ðP5Þ prevents that fðaÞ 		!a-a� þN;

hence we necessarily have fðaÞ 		!a-a�
tða�Þ: Since ðg � faÞða�; tða�ÞÞ40; (2.4) implies

f0ðaÞ 		!a-a� þN: Therefore take a0oa0oa00oa� and, using Lagrange theorem,

compute

inf
aAða0;a�Þ

f0ðaÞpfða00Þ � fða0Þ
a00 � a0 p

fða00Þ � tða0Þ
a00 � a0 		!a00-a� tða�Þ � tða0Þ

a� � a0 ð2:7Þ

which, when a0-a�; gives the desired contradiction since t is C1: &

On the contrary, the maximal solutions to (2.4) may not be defined as a-�N:

Proposition 2.2. For any ða0; u0 ¼ tða0ÞÞAT; there exist two unique solutions

fþðaÞ ¼ fþða; a0; u0Þ; f�ðaÞ ¼ f�ða; a0; u0Þ of (2.4) with the following properties:
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fþ; f� are maximally defined on ða0;þNÞ; fþðaÞAOþ; f�ðaÞAO�;

lim
a-a0þ

f7ðaÞ ¼ u0;
df7

da
ðaÞ

����
����-þN as a-a0: ð2:8Þ

Proof. Indeed, denote by aðuÞ ¼ aðu; u0; a0Þ the solution to the Cauchy problem for
(2.5) with data aðu0Þ ¼ a0: Due to ðP4Þ; aðuÞ is locally defined in a neighborhood of
u0 with a0ðu0Þ ¼ 0: Then the curves aðuÞ and tðaÞ are transverse at the point ða0; u0Þ
and aðuÞAOþ with a0ðuÞ40 for u4u0: As a consequence, aðuÞ is invertible on

½u0; u0 þ d�; for some d40: Denote by fþðaÞ the inverse function, which is defined

on the right of a0; ½a0; a0 þ g�: It is clear that fþðaÞ is a solution to (2.4) for a4a0 and
satisfies (2.8); by Proposition 2.1 it can be prolonged on ða0;þNÞ: A totally similar
procedure leads to the definition of f�ðaÞ: &

Let us introduce the following sets:

Oþ
1 ¼ fða; uÞAOþ : aða; uÞ4�Ng; O�

1 ¼ fða; uÞAO� : aða; uÞ4�Ng; ð2:9Þ

Dþ
2 ¼ fða; uÞAOþ : aða; uÞ ¼ �Ng; D�

2 ¼ fða; uÞAO� : aða; uÞ ¼ �Ng: ð2:10Þ

It is clear that Oþ
1 ,Dþ

2 ¼ Oþ and O�
1 ,D�

2 ¼ O�:

The region Oþ
1 contains all those integral curves of (2.4), inside the supersonic

region Oþ; which are not globally defined on R: On the other hand, Dþ
2 contains the

globally defined solutions, and it may be empty, depending on the system under
consideration.

Lemma 2.3. The following holds: either the set Dþ
2 (the set D�

2 ) is empty, or there

exists a C1 curve, tþðaÞ ðt�ðaÞÞ; which is a global solution to (2.4) and satisfies

Oþ
1 ¼ fða; uÞ : tðaÞouotþðaÞg; Dþ

2 ¼ fða; uÞ : uXtþðaÞg;

ðO�
1 ¼ fða; uÞ : t�ðaÞouotðaÞg; D�

2 ¼ fða; uÞ : upt�ðaÞgÞ:

Proof. For any u close to tð0Þ; u4tð0Þ; one has that að0; uÞ is finite: að0; uÞ4�N:

Indeed, take any a0o0 and consider the solution fþðaÞ ¼ fþða; a0; tða0ÞÞ introduced
by Proposition 2.2, which tends to tða0Þ as a-a0 þ : Since fþð0Þ4tð0Þ; by

uniqueness, the trajectories passing through the points ð0; %uÞ; with tð0Þo %uofþð0Þ;
must lie below fþðaÞ; then að0; %uÞ must be finite (greater then a0).

Arguing in the same way, one can observe that að0; uÞ is monotone decreasing as u

increases, u4tð0Þ: Let us set

ũ6supfu ¼ fþð0; a0; tða0ÞÞ; a0o0g ¼ supfu; að0; uÞ4�Ng:

ARTICLE IN PRESS
D. Amadori et al. / J. Differential Equations 198 (2004) 233–274 239



If ũ ¼ þN; then Dþ
2 ¼ |: On the other hand, if ũoþN; the trajectory of (2.4)

passing through the point ð0; ũÞ is globally defined on R and satisfies the required
properties.

A completely similar procedure works for O�: &

Lemma 2.4. The map ða; uÞ/aða; uÞ defined on the set O16Oþ
1 ,T,O�

1 has the

following properties:

* it is a C1 map;
* if Dþ

2 is not empty, then as ða; uÞ-ða0; tþða0ÞÞ with ða; uÞAO1; one has aða; uÞ-
�N; the analogous holds if D�

2 a|;
* u/aða; uÞ is a strictly decreasing map for ða; uÞAOþ

1 and a strictly increasing map

for ða; uÞAO�
1 ; aða; uÞ ¼ a for ða; uÞAT:

Proof. The graphs of fþ and f� are the integral curves of the degenerate
characteristic field which can be written in a normalized form as

h6
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2
u þ ðg � faÞ2

q fu

g � fa

� 

: ð2:11Þ

Hypotheses ðP3Þ and ðP4Þ ensure that h is a smooth vector field with norm 1. Fix
U0 ¼ ða0; u0ÞAO1 and define Uðt;U0Þ ¼ ðU1ðt;U0Þ;U2ðt;U0ÞÞ as the solution of the
autonomous Cauchy problem

’U ¼ hðUÞ;
Uð0Þ ¼ U0:

(
ð2:12Þ

The curve t/Uðt;U0Þ describes the integral curve of the linearly degenerate field
passing through the point U0: Standard results of the o.d.e. theory ensure that the

map ðt;U0Þ/Uðt;U0Þ is C1: Since U0 is in O1; the integral curve crosses the graph of
t in one and only one point, hence we can define the implicit function %tða0; u0Þ as

Gð%tða0; u0Þ; a0; u0Þ6U2ð%tða0; u0Þ; a0; u0Þ � t½U1ð%tða0; u0Þ; a0; u0Þ� ¼ 0: ð2:13Þ

But ðt; a0; u0Þ/Gðt; a0; u0Þ is C1; moreover

@G

@t
ð%tða0; u0Þ; a0; u0Þ ¼ ðh2 � t0h1ÞðUð%tða0; u0Þ; a0; u0ÞÞ ¼ 1; ð2:14Þ

since h1 ¼ 0 on T: Therefore the implicit function theorem ensures that %tð�; �Þ is C1

and consequently also the function

ða0; u0Þ/U1ð%tða0; u0Þ; a0; u0Þ ¼ aða0; u0Þ ð2:15Þ
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is C1: As regards the other assertions, they follow directly from definition (2.9) and
standard considerations based on the uniqueness of the solutions to (2.6). &

2.3. A new set of variables

It will prove convenient to recast system (1.1) into the following set of coordinates:

y ¼ yðaÞ; z ¼
2þ ½fð0; a; uÞ � tþð0Þ� if ða; uÞADþ

2 ;

7½1� yðaða; uÞÞ� if ða; uÞAO7
1 ;

�2þ ½fð0; a; uÞ � t�ð0Þ� if ða; uÞAD�
2 ;

8><
>: ð2:16Þ

where y is a fixed function that satisfies

y : R-ð�1; 1Þ;C1; increasing; surjective: ð2:17Þ

For instance, convenient choices are given by:

yðaÞ ¼ tanhðaÞ or yðaÞ ¼ 2

p
arctanðaÞ:

Observe that the quantities fð0; a; uÞ; aða; uÞ are constant along integral curves
of (2.4).

Lemma 2.5. The variables ðz; yÞ are continuous Riemann coordinates for system (1.1)

on the set Oþ and on O� (defined at (2.3)); the map u/zða; uÞ is strictly increasing for

all aAR and is discontinuous on T:

Proof. First we observe that rða;uÞy � r2 ¼ yu ¼ 0: Concerning z; observe that it is

constant along integral curves of the stationary equation. By Lemma 2.4 and

standard arguments for o.d.e.’s, it turns out that z is continuous on O7
1 ; D7

2 : Assume

that Dþ
2 a|; the following holds:

as ða; uÞ-ða0; tþða0ÞÞ; ða; uÞAOþ
1 ) z-2:

On the other hand, as ða; uÞ-ða0; tþða0ÞÞ from ‘‘above’’:

fð0; a; uÞ-fð0; a0; tþða0ÞÞ ¼ fð0; 0; tþð0ÞÞ ¼ tþð0Þ:

This gives the continuity of z across the graph of tþ and then on Oþ: With similar
arguments, one can deduce the continuity of z on O�: Then, it is easy to check that z

cannot be continuously extended across the transonic curve T: Indeed,

lim
ða;uÞ-ða0;u0Þ;ða;uÞAO7

zða; uÞ ¼ 7ð1� yða0ÞÞ for any ða0; u0ÞAT: ð2:18Þ
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Finally, the uniqueness of the solution to (2.6) and Lemma 2.4 imply that u/zða; uÞ
is strictly increasing for aAR fixed. Hence the map ðz; yÞ : Oþ,O�-R2 is injective

and consequently ðz; yÞ is a coordinate system on Oþ,O�: &

In the following, a key role will be played by the function

wða; uÞ6
zða; uÞ þ yðaÞ � 1 ¼ z þ y� 1 if ða; uÞAOþ;

0 if ða; uÞAT;

zða; uÞ � yðaÞ þ 1 ¼ z � yþ 1 if ða; uÞAO�:

8><
>: ð2:19Þ

More explicitly, using (2.16) we get

wða; uÞ ¼
1þ yðaÞ þ ½fð0; a; uÞ � tþð0Þ� if ða; uÞADþ

2 ;

7½yðaÞ � yðaða; uÞÞ� if ða; uÞAO7
1 ,T;

�1� yðaÞ þ ½fð0; a; uÞ � t�ð0Þ� if ða; uÞAD�
2 :

8><
>: ð2:20Þ

Let us now introduce the two maps U;W defined as follows:

U : R2-R2;

Uða; uÞ ¼ ðw; yÞ;

(
W : R2

\T-R2;

Wða; uÞ ¼ ðz; yÞ:

(
ð2:21Þ

Lemma 2.6. Let wða; uÞ; zða; uÞ the maps defined at (2.19) and (2.16) respectively.

(a) w is continuous w.r.t. ða; uÞ: The map u-wða; uÞ is monotone increasing, for all a.
(b) The map Uða; uÞ is bijective and bi-continuous from R2 to ImU:
(c) For a suitable choice of y; the maps U and y�1 are locally Lipschitz.

Proof. Concerning (a), the first property follows from Lemma 2.5 and (2.18); the
second holds because of the analogous property of z; and implies that U is injective

on R2: Concerning (b), we have to prove that the inverse of U is continuous. Assume

that Uðan; unÞ ¼ ðwn; ynÞ-ð %w; %yÞ ¼ Uð %a; %uÞ; then an- %a as n-N; since y is
continuous and depends only on a:

Let us prove that also un- %u; this necessarily follows from the continuity of U if un

is bounded. On the other hand, assume that, possibly passing to a sub-sequence,

un-þN: If ðan; unÞAOþ
1 (because Dþ

2 is empty), then aðan; unÞ-�N; which

implies the contradiction ðwn; ynÞ-ð1þ %y; %yÞeImU: On the other hand, if Dþ
2

is not empty, then fð0; an; unÞ-þN; which again is impossible because it
implies wn-þN:

(c) Lemma 2.4 ensures that the map

AðuÞ6
að0; uÞ for uAðt�ð0Þ; tð0Þ�;
�að0; uÞ for uA½tð0Þ; tþð0ÞÞ

�
ð2:22Þ
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is C1; strictly increasing and surjective on R: In (2.22) we have posed t�ð0Þ ¼ �N if

D�
2 ¼ | and tþð0Þ ¼ þN if Dþ

2 ¼ |: Observe that A0ðtð0ÞÞ ¼ 0: Now define

yðaÞ ¼ �1þ c

Z a

�N

dx

A0½A�1ð�xÞ� þ A0½A�1ðxÞ� þ x2 þ 1
; ð2:23Þ

where c40 is a normalization constant which makes y satisfy (2.17). Definition

(2.20), Lemma 2.4 and standard results on o.d.e. ensure that w is C1 when restricted

to the closed set Dþ
2 ,D�

2 or to the open set O1 ¼ Oþ
1 ,T,O�

1 : Since w is also

continuous on all R2; to have local Lipschitz continuity we have only to show that its

derivatives are bounded near the boundary of O1: Therefore suppose Dþ
2 a| and take

ða0; tþða0ÞÞA@O1; if d40 is sufficiently small, the map ða; uÞ/fð0; a; uÞ is well

defined and C1 on Bdða0; tþða0ÞÞ; the closed neighborhood of the point ða0; tþða0ÞÞ
with radius d: Hence the map ða; uÞ/fð0; a; uÞ has bounded first derivatives on the

set O1-Bdða0; tþða0ÞÞ: The conclusion follows from the identity

y½aða; uÞ� ¼ y½að0;fð0; a; uÞÞ� ð2:24Þ

since by construction, the map u/y½að0; uÞ� has bounded first derivative. Finally

from y040 it follows that y�1 is locally Lipschitz continuous. &

Now assume that the sets Dþ
2 ; D�

2 are both non-empty (see Lemma 2.3). As a

consequence, w and z are unbounded from above and below, then ImU ¼
R� ð�1; 1Þ: Let us define

R ¼ fðz; yÞAR2 : yAð�1; 1Þ; jzjX1� yg; ð2:25Þ

where, in order to have a unique representation for T; we identify the points

ð�1þ y; yÞBð1� y; yÞ; yAð�1; 1Þ; ð2:26Þ

moreover we define

Wða; uÞ ¼ ð�1þ yðaÞ; yðaÞÞBð1� yðaÞ; yðaÞÞ for any ða; uÞAT:

We have then

R ¼ WðR2
\TÞ, *T ¼ WðR2Þ; *T6fðz; yÞAR; jzj ¼ 1� yg:

If cA *T; we will denote by cþ the representative with z positive and by c� the one

with z negative. The representatives of points cAR\ *T are unique. Moreover, we will
use the notation

Rþ ¼ WðOþÞ, *T; R� ¼ WðO�Þ, *T:
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Finally observe that, if either Dþ
2 or D�

2 is empty, or both are empty, w and z become

bounded from above, below or both, respectively. For instance,

Dþ
2 ¼ D�

2 ¼ | ) R ¼ fðz; yÞ : yAð�1; 1Þ; jzjX1� y; jzjo2g:

Remark 2.7. In the special case of (1.5) already considered in [11,19], with f ð0Þ ¼
f 0ð0Þ ¼ 0; assume that gðuÞ never vanishes (note that we require only gð0Þa0; ðP4Þ).
If C denotes the anti-derivative of f 0=g with Cð0Þ ¼ 0; it is easy to see that

aða; uÞ ¼ a �CðuÞ ¼ const: ð2:27Þ

along the integral curves of the stationary equation. In [19] it was required that

lim
juj-þN

jCðuÞj ¼ þN ð2:28Þ

to ensure the existence of the solution for arbitrarily large initial data. In this context,
(2.28) is equivalent to ðP5Þ: Indeed, take an integral curve of the stationary equation,
i.e. a solution uðaÞ to (1.3). Whenever uðaÞ is defined, we have

a �CðuðaÞÞ ¼ const: ð2:29Þ

If ðP5Þ does not hold, then there exists an integral curve uðaÞ and a value a1 such that
(for instance) lima-a�

1
uðaÞ ¼ þN; therefore taking the limit as a tends to a1 from

the left in (2.29) we obtain that C has to be bounded as u-þN and hence
condition (2.28) cannot hold.

On the other hand, let ðP5Þ hold and take an integral curve uðaÞ defined on
ða0;þNÞ: Now we can let a go to þN in (2.29). It is easy to see that CðuðaÞÞ and
consequently uðaÞ must be unbounded and therefore (2.28) holds.

3. The Riemann problem

3.1. The general self-similar solution

Let us consider the Riemann problem for (1.1),

Uðx; 0Þ ¼
U1 ¼ ða1; u1Þ; xo0;

U2 ¼ ða2; u2Þ; x40;

�
ð3:1Þ

for any U1;U2AR2: It will be solved, as usual, connecting the two states with waves
of increasing speed. We will focus on the ðz; yÞ coordinates since in these variables
the characteristic curves of the 1st (standing waves) and 2nd family (homogeneous

waves) are straight lines with the variable z and y constant, respectively. We will
denote by c ¼ ðz; yÞ the points of the set R:

In this section, our goal is to find at least one solution of the Riemann problem.
However, in general the solution is not unique and one may have multiple solutions
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depending on the shape of the graphs of the functions %z and z̃ defined below. In [13],
some assumptions on f ; g are discussed concerning uniqueness/non-uniqueness of
the solution.

Anyway, in the case when a is absolutely continuous, we will prove, in Section 5,
the uniqueness and continuous dependence of the exact solution of the Cauchy
problem, even if the approximate solutions (constructed with the Riemann problem
as building block) are not uniquely defined,1 under some additional assumptions on
the source term a0g:

We consider a number of cases, which cover all the possible situations, depending
on the relative location of the left and right states c1 ¼ ðz1; y1Þ and c2 ¼ ðz2; y2Þ: A
set of consecutive homogeneous waves, which have increasing velocities and connect

two states with the same y; will be denoted by Oþ; O0 and O� if all the velocities of
the waves in the set are respectively positive, zero and negative (remember that away
from the resonance the flux may be non convex and hence more then one wave may
be needed to solve the homogeneous Riemann problem). While a standing wave,
which always has velocity zero, will be denoted by s if subsonic (zo0) and by S if
supersonic (z40).

Observe that hypothesis ðP3Þ implies that any homogeneous wave which connects

states in region Rþ has strictly positive velocity whereas any homogeneous wave
which connects states in region R� has strictly negative velocity.

1. c1ARþ: The hypotheses on f imply that there exists a unique continuous
function %zðyÞ such that

%zðyÞo0; y4maxf1� z1;�1g;
ð f 3W�1Þð%zðyÞ; yÞ ¼ ð f 3W�1Þðz1; yÞ:

�
This function describes what in [13] is called the 0-speed shock curve corresponding to
the standing wave y/ðz1; yÞ: All the homogeneous waves with increasing velocities
connecting the point ðz1; yÞ to the point ðz; yÞ with zoz1 have positive, zero or
negative speeds if respectively z4%zðyÞ; z ¼ %zðyÞ or zo%zðyÞ: Indeed all the velocities of
the waves in the set must have the same sign of the shock which crosses the resonance
(condition ðP3Þ ensures that the resonance can be crossed only by a shock). If the
shock which crosses the resonance has zero velocity, then it turns out to be the only
component of the set of waves. We now consider five regions, which depend on the
state c1:

R1ðc1Þ ¼ fðz; yÞARþ : yX1� z1g;

R2ðc1Þ ¼ fðz; yÞAR� : zp%zðy1Þg;

R3ðc1Þ ¼ fðz; yÞAR� : zX%zðyÞ; y4maxf1� z1;�1gg;

R4ðc1Þ ¼ ½R��\½R2ðc1Þ,R3ðc1Þ�;

R5ðc1Þ ¼ ½Rþ�\R1ðc1Þ: ð3:2Þ
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The Riemann problem has qualitatively different solutions depending on which
region c2 lies. The five cases are discussed referring to Fig. 1.

* c2AR1ðc1Þ,R3ðc1Þ:

ðz1; y1Þ!
S ðz1; y2Þ!

Oþ
ðz2; y2Þ:

* c2AR2ðc1Þ:

ðz1; y1Þ!
O�
ðz2; y1Þ!

s ðz2; y2Þ:

* c2AR4ðc1Þ:

In this case one has z24%zðy1Þ; and either z2o%zðy2Þ or y2p1� z1:
Hence there exists y� between y1 and y2 such that z2 ¼ %zðy�Þ: So the solution of the

Riemann problem is given by:

ðz1; y1Þ!
S ðz1; y�Þ!

O0

ðz2; y�Þ!
s ðz2; y2Þ:

* c2AR5ðc1Þ ¼ fðz; yÞARþ : yo1� z1g:

If z1X2; this region is empty. If not, note that ð�1þ y2; y2ÞeR3ðc1Þ: Then
the waves, in the solution of the Riemann problem, that connect c1 to the
state ð�1þ y2; y2Þ have nonpositive velocity. Hence we have only to add homo-
geneous waves with positive velocity connecting ð�1þ y2; y2ÞBð1� y2; y2Þ to
ðz2; y2Þ:

2. c1AR�: The hypotheses on f imply that there exists a continuous function z̃ðyÞ
such that

z̃ðyÞo0; yXy1;

ð f 3W�1Þðz̃ðyÞ; yÞ ¼ ð f 3W�1Þð1� y1; yÞ:

�
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This function describes the 0-speed shock curve which corresponds to the standing
wave y/ð1� y1; yÞ: The homogeneous waves with increasing velocities connecting
the point ð1� y1; yÞ to the point ðz; yÞ with zo1� y1 have positive, zero or negative
speed if respectively z4z̃ðyÞ; z ¼ z̃ðyÞ or zoz̃ðyÞ:

We now consider six regions depending on the state c1:

%R1ðc1Þ ¼ fðz; yÞAR� : zpy1 � 1g;

%R2ðc1Þ ¼ fðz; yÞARþ : ypy1g;

%R3ðc1Þ ¼ fðz; yÞARþ : yXy1; zX1� y1g;

%R4ðc1Þ ¼ fðz; yÞARþ : yXy1; zp1� y1g;

%R5ðc1Þ ¼ fðz; yÞAR� : yXy1; zXmaxðz̃ðyÞ; y1 � 1Þg;

%R6ðc1Þ ¼ ½R��\½ %R1ðc1Þ, %R5ðc1Þ�: ð3:3Þ

The Riemann problem has qualitatively different solutions depending on which
region c2 lies. The six cases are discussed referring to Fig. 2.

* c2A %R1ðc1Þ:

ðz1; y1Þ!
O�
ðz2; y1Þ!

s ðz2; y2Þ:

* c2A %R2ðc1Þ:

ðz1; y1Þ!
O�
ðy2 � 1; y1Þ!

s ðy2 � 1; y2ÞBð1� y2; y2Þ!
Oþ
ðz2; y2Þ:

* c2A %R3ðc1Þ, %R4ðc1Þ, %R5ðc1Þ:

ðz1; y1Þ!
O�
ðy1 � 1; y1ÞBð1� y1; y1Þ!

S ð1� y1; y2Þ!
Oþ
ðz2; y2Þ:
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* c2A %R6ðc1Þ:

In this case one has z24y1 � 1 ¼ z̃ðy1Þ; and z2oz̃ðy2Þ; hence there exists y�

between y1 and y2 such that z2 ¼ z̃ðy�Þ: So the solution of the Riemann problem is
given by

ðz1; y1Þ!
O�
ðy1 � 1; y1ÞBð1� y1; y1Þ!

S ð1� y1; y
�Þ!O

0

ðz2; y�Þ!
s ðz2; y2Þ:

Remark 3.1. Concerning invariant domains, it is easy to note the following property.
For any pair of states c1; c2; consider the closed rectangle D; in the z–y plan, that
has the two states as vertices and each edge parallel to one of the axes. If all vertices
of D belong to R; then D is invariant w.r.t. the solution of the Riemann problem; if

not, it can happen that D is not invariant (for instance if c1ARþ; c2AR5ðc1Þ).

In this second case, an invariant domain is given by the smallest rectangle D̃; with
each edge parallel to one of the axes, which contains c1 and c2 and has all four

vertices in R: This larger rectangle D̃ does not increase the sup-norm: if ðz; yÞAD̃;
then

minfy1; y2gpypmaxfy1; y2g; jzjpmaxfjz1j; jz2jg:

In the original variables a; u; the invariant domains are described by the regions
bounded by the graphs of two standing waves, see Fig. 3. Such domains are not
necessarily convex w.r.t. both variables, but their sections for a fixed are intervals.
Observe that there are invariant domains which are not bounded in the original
variables ða; uÞ; this corresponds to allow the vertices belong to fy ¼ 71g: In
particular, the domains

Iz1;z2 ¼ fða; uÞ; z1pzða; uÞpz2g; z1; z2AR ð3:4Þ

are invariant if and only if: either jz1j; jz2jX2; or jz1jo2 and z2 ¼ �z1:

3.2. Entropy dissipation across the standing wave

Going back to the original variables, let us focus on the jump relation on the fluxes
at x ¼ 0: For any U1; U2; let Uðx; tÞ ¼ Wðx=tÞ be a self-similar solution solving the
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Riemann problem. Denote by U� ¼ Wð0�Þ and Uþ ¼ Wð0þÞ the left and right
trace at x ¼ 0; respectively. In the simplest case, a single standing wave connects
U� to Uþ; and

f ðUþÞ � f ðU�Þ ¼
Z aþ

a�

gða;fða;U�ÞÞ da:

(f was defined in Section 2.2). More generally, there exist two intermediate states
U�

7 ¼ ða�; u�
7Þ; with a� possibly coinciding with a� or aþ; such that

U� !S ða�; u�
�Þ!

O0

ða�; u�
þÞ!

s
Uþ:

Since f ðU�
þÞ ¼ f ðU�

�Þ; the jump relation becomes

f ðUþÞ � f ðU�Þ ¼ f ðUþÞ � f ðU�
þÞ þ f ðU�

�Þ � f ðU�Þ

¼
Z aþ

a�

gða; *fða;U�;UþÞÞ da; ð3:5Þ

where *f is the function, possibly discontinuous at one point, defined by (assume
a�oaþ; the definition for a�4aþ is similar)

*fða;U�;UþÞ ¼

fða�;U�Þ ¼ U�; apa�;

fða;U�Þ; a�papa�;

fða;UþÞ; a�oapaþ;

fðaþ;UþÞ ¼ Uþ; aXaþ:

8>>><
>>>: ð3:6Þ

We stress that such a function *f matches the ‘‘asymptotic profiles’’ computed by the
authors of [20] as the long-time behavior of a scalar conservation law of type (1.5) in
a bounded domain. The jump relation (3.5) is closely related to the ones derived in
[17] relying on the ‘‘families of locally Lipschitz paths’’. However this theory does
not apply directly to our resonant problem because of the discontinuities appearing

in *f:
We end this section with a result about the entropy dissipation along the zero

waves, as we call the discontinuities located at fx ¼ 0g: This generalizes a previous
work (see Remark 3.1 in [9]) where convenient hypotheses forbid resonance.

Proposition 3.2. Let ZðuÞ be a smooth convex function and qða; uÞ the corresponding

entropy flux:

qða; uÞ ¼
Z u

k

Z0ð %uÞfuða; %uÞd %u;
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where kAR is arbitrary. Then, along fx ¼ 0g; we have the inequality:

qðUþÞ � qðU�Þp
Z aþ

a�

½qa þ Z0ðg � faÞ�ða; *fða;U�;UþÞÞ da: ð3:7Þ

Proof. Following [9], we compute the jump of the entropy flux:

qðUþÞ � qðU�Þ ¼
Z aþ

a�

qa þ qu

g � fa

fu

� �
ða; *fða;U�;UþÞÞ da þ qðU�

þÞ � qðU�
�Þ

¼
Z aþ

a�

½qa þ Z0ðg � faÞ�ða; *fða;U�;UþÞÞda þ qðU�
þÞ � qðU�

�Þ:

The proposition is proved by the following inequality:

qðU�
þÞ � qðU�

�Þ ¼ qða�; u�
þÞ � qða�; u�

�Þp0;

which can be shown observing that u�
� and u�

þ are connected by an entropic shock

with velocity zero and that u/qða�; uÞ is an entropy flux for the scalar law
ut þ f ða�; uÞx ¼ 0: &

4. Interaction estimates

In this section we introduce a suitable definition of wave-strength, which is
equivalent to the total variation measured in the singular variables w; y: Moreover
we will prove that the sum of all the wave-strengths is non increasing in time. These
two properties guarantee that Helly’s compactness theorem can be applied to
approximate solutions.

If the two states c1 and c2 are connected by a single zero wave (z constant) or a set
of consecutive homogeneous waves (y constant), we define the size s of the jump in
the following way:

s ¼

jz1 � z2j for homogeneous waves with z1z240;

jz1 � z2j � 2þ 2y1 for homogeneous waves with z1z2o0;

jy1 � y2j for standing waves with z1ðy2 � y1Þ40;

3jy1 � y2j for standing waves with z1ðy2 � y1Þo0:

8>>><
>>>: ð4:1Þ

Recalling the definition of w; (2.19), we have that s ¼ jwðc1Þ � wðc2Þj in the first
three cases above, and s ¼ 3jwðc1Þ � wðc2Þj in the last one.

Observe that the size of homogeneous waves is the variation of the z variable
across R; while the size of the standing waves is given by the variation of the y
variable with a weight of 1 for supersonic waves with increasing y and subsonic
waves with decreasing y and a weight of 3 in the other two cases. Temple (see for
instance [13,27]) chooses respectively the weights 2 and 4. Here we follow Liu [19]
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and observe that in the choice of the weight the key point is that the second must be
equal to the first increased by 2. This condition is easily understood in the ðz; yÞ
coordinates. For instance, referring to Fig. 4, consider the four points in R: c1 ¼
ðz1; y1Þ; c2 ¼ ðz2; y2Þ; c0 ¼ ðz1; y2Þ and c00 ¼ ðz2; y1Þ with z140; z2o0 and y24y1:
The size of the jump connecting c0 to c2 is equal to the size of the jump connecting

c1 to c00 plus 2ðy2 � y1Þ ¼ Dy: Hence if we want the sum of the sizes of the waves
connecting c1 to c2 not to depend on the path, the size of the standing wave

connecting c00 to c2 has to be equal to the size of the standing wave connecting c1 to

c0 plus 2Dy: Obviously, the same is not true if one wants to go from c2 to c1: But the
entropy condition on the homogeneous conservation law implies that we cannot go
with a single set of waves with positive (negative) velocities from a subsonic state to a
supersonic one.

To get interaction estimates, the next step is now to show rigorously that three
states c1; cm and c2 being given, the sum of the sizes of the waves which solve the
Riemann problem with left and right states c1 and c2 are less or equal to the sum of
the sizes of the waves which solve the Riemann problem with left and right states c1

and cm plus the sum of the sizes of the waves which solve the Riemann problem with
left and right states cm and c2: The rigorous proof involves the study of several cases
and is carried out by Temple [27]. However the introduction of the ‘‘Riemann
coordinates’’ ðz; yÞ simplifies the proof and reduces the number of cases to be
considered, hence we give here a new proof in this coordinate system.

We base our proof on the set G of continuous and piecewise C1 oriented curves in
R with at most a finite number of intersection with T: We denote these curves by
using the Greek letter g:Given two states c1;c2AR we denote by Gðc1;c2Þ the set of
curves in G which connect c1 to c2: Observe that the solutions of Riemann problems
with left and right states c1 and c2 are elements of Gðc1;c2Þ:

In the ðz; yÞ-plane we define the two norms

jcj� ¼ jzj þ jyj; jcjw ¼ jzj þ 2jyj:

Then we give the following two definitions of curve length:

c�ðgÞ ¼
Z b

a

jc0
gðtÞj� dt; cwðgÞ ¼

Z b

a

jc0
gðtÞjw dt;
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where cðtÞ is any regular (continuous and piecewise C1) parameterization of g:
Finally we define the functional

FðgÞ ¼ cwðgÞ �
Z
g
sgn z dy:

Observe that if g is a curve made of consecutive simple waves, then the sum of the
sizes of all the waves is given by FðgÞ:

Given two states c1;c2AR we define the functional

Lðc1;c2Þ ¼ inf FðgÞ : gAGðc1;c2Þf g: ð4:2Þ

If we are able to show that the sum of the sizes of the waves that solve the Riemann
problem with left and right states c1 and c2 is given by Lðc1;c2Þ then we are done
since from (4.2) it follows directly that

Lðc1;c2ÞpLðc1;cmÞ þ Lðcm;c2Þ; 8cmAR: ð4:3Þ

For the proof of this assertion, some other auxiliary functionals are needed. We

define a metric d� and the two functionals Lþ;L� in the following way:

d�ðc1;c2Þ ¼ inffc�ðgÞ : gAGðc1;c2Þg; 8c1;c2AR;

Lþðc1;c2Þ ¼ inf FðgÞ : gAGðc1;c2Þ and gCRþf g; 8c1;c2ARþ;

L�ðc1;c2Þ ¼ inffFðgÞ : gAGðc1;c2Þ and gCR�g; 8c1;c2AR�: ð4:4Þ

From the definitions it is easy to see that Lþ; L� and 3d� are upper bounds for the
functional L; while the metric d� is a lower bound, in particular

d�ðc1;c2ÞpLðc1;c2Þp3d�ðc1;c2Þ; 8c1;c2AR: ð4:5Þ

Moreover, since sgn z dy is an exact differential form when restricted toRþ or toR�;

we have the following expression for the functionals L7:

Lþðc1;c2Þ ¼ jc1 � c2jw þ y1 � y2;

L�ðc1;c2Þ ¼ jc1 � c2jw þ y2 � y1: ð4:6Þ

Now we state two theorems which give explicit values of the metric d� and the
functional L (their proofs are developed in Appendix A).

Theorem 4.1. Given two states c1 ¼ ðz1; y1Þ; c2 ¼ ðz2; y2Þ in R; define ym ¼
minðy1; y2Þ and cm ¼ ð1� ym; ymÞA *T:Then

d�ðc1;c2Þ ¼
jc1 � c2j� if z1z240;

d�ðc1;cmÞ þ d�ðcm;c2Þ if z1z2o0:

�
ð4:7Þ
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Moreover, having set Dw6wðc1Þ � wðc2Þ; Dy6y1 � y2;

1
2
ðjDwj þ jDyjÞpd�ðc1;c2Þp2ðjDwj þ jDyjÞ: ð4:8Þ

Theorem 4.2. Let the two states c1 ¼ ðz1; y1Þ; c2 ¼ ðz2; y2Þ be given in R: Then the

functional L has the following properties:

(a) If c1AR� and c2ARþ

Lðc1;c2Þ ¼ d�ðc1;c2Þ: ð4:9Þ

(b) If c1;c2ARþ

Lðc1;c2Þ ¼
Lþðc1;c2Þ for 1� z1 � y2p0;

Lþðc1;c2Þ � 2½1� z1 � y2� for 1� z1 � y240;

�
ð4:10Þ

(c) If c1;c2AR�

Lðc1;c2Þ ¼
L�ðc1;c2Þ for 1þ z2 � y1p0;

L�ðc1;c2Þ � 2½1þ z2 � y1� for 1þ z2 � y140:

�
ð4:11Þ

(d) If c1ARþ and c2AR�; define ym ¼ minðy1; y2Þ and yM ¼ maxðy1; y2Þ: Then

Lðc1;c2Þ ¼ Lðc1;cÞ þ Lðc;c2Þ for any c ¼ ð1� y; yÞ; yA½ym; yM �: ð4:12Þ

Now to conclude the interaction estimates, it is enough to check that the sum of
the wave sizes in the solutions of the Riemann problem described in the previous
section is equal to the value of the functional L given in the previous theorem. We
shall omit this proof since it is straightforward.

Remark 4.3. Observe that if c0;y;cn are the intermediate states in the solution
of a Riemann problem with left and right state respectively equal to c0 and cn;
one has

Lðc1;cnÞ ¼
Xn

i¼1

Lðci�1;ciÞ:

5. Convergence of approximate solutions

In this section we are about to define a family of approximate solutions to our
system (1.1) with Cauchy data (1.2). Let y be a function satisfying (2.17) and denote
by y0 ¼ yða0Þ; w0 ¼ wða0; u0Þ the corresponding initial data in the y–w variables. The
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assumptions on a0; u0 are the following:

a0; u0ALNðRÞ; Tot:Var:ðw0; y0ÞoþN: ð5:1Þ

We remark that, in general, the total variation of ðw0; y0Þ is not equivalent to the one
of the original variables ða0; u0Þ: If y is chosen to satisfy (2.23), then (c) of Lemma 2.6
holds; as a consequence, assumption (5.1) is met if we require a more explicit
condition on the initial data: Tot:Var:ða0; u0ÞoþN:

Let us fix a spatial mesh length Dx40 and define for all jAZ: xj6jDx;

aDxðx; 0Þ ¼ a0ðxjþÞ; uDxðx; 0Þ ¼ u0ðxjþÞ xjoxoxjþ1: ð5:2Þ

Observe that, assuming (5.1), aDx; uDx are well defined. Moreover, with this choice of
the approximated initial data, the stationary solutions are preserved. If (5.1) holds,

there exists a compact set K1CR2 that contains ða0; u0ÞðxÞ; ðaDx
0 ; uDx

0 ÞðxÞ for all x; it is

not restrictive to assume that K1 is an invariant domain (see Remark 3.1 and Fig. 3).

Then ðz0; y0Þ and ðzDx
0 ; yDx

0 Þ take the values in the invariant rectangle K ¼ WðK1ÞCR:

In the w; y variables, K1 corresponds to the compact set K̃ ¼ UðK1ÞCImU: Now,
we define

l62 sup
ða;uÞAK1

@f

@u

����
����; Dt ¼ lDx

and discretize R� ½0;þNÞ by introducing the points of a grid, ðxj; tnÞ; tn ¼ nDt:

Denote by Rj;n ¼ ½xj ; xjþ1Þ � ½tn; tnþ1Þ the unit cell.

Then, proceeding as in [13] with the only difference of the choice of the initial data

(we use (5.2) instead of (27) in [13]), a family ðaDx; uDxÞðx; tÞAK1 is defined by the

Godunov method. Note that K1 is not necessarily convex as a subset of R2 but for
any constant a it is an interval, which is invariant under the average w.r.t. u: Since

the corresponding ðzDx; yDxÞðx; tÞAK ; we can always solve the Riemann problems at
every time step, hence the approximate solutions are defined for all times.

At each time tn; the approximate solution is discontinuous at the points xj: We

introduce the functional

FðtÞ ¼ FðtnÞ ¼
X
jAZ

Lðcj�1;cjÞðtnÞ; tnptotnþ1; ð5:3Þ

where cj ¼ ðzDx; yDxÞðtn; xÞ; xAðxj; xjþ1Þ: By using (4.5), (4.8) and Remark 4.3

we find

1
2
Tot:Var:fðwDx; yDxÞðtÞgpFðtÞp6Tot:Var:fðwDx; yDxÞðtÞg:
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and consequently from (5.2):

Fð0Þp6Tot:Var:fðwDx; yDxÞð0Þgp6Tot:Var:fðw0; y0Þg: ð5:4Þ

We have the following theorem.

Theorem 5.1. Assume ðP1Þ–ðP5Þ and (5.1). Then for all Dx40; ðaDx; uDxÞðx; tÞ is

defined for all times and

Tot:Var:fðwDx; yDxÞðtÞgp2FðtÞp2Fð0Þ:

Moreover, for a sub-sequence Dxj-0; we have that ðwDxj ; yDxj Þ-ðw; y0Þ and

ðaDxj ; uDxj Þ-ða0; uÞ in L1
locðR� ½0;þNÞÞ;

where w and u are bounded measurable functions satisfying:

(a) ða0; uÞ ¼ U�1ðw; y0Þ;
(b) the maps t/wð�; tÞ; t/uð�; tÞ are continuous in L1

locðRÞ and wð�; 0Þ ¼ w0;
uð�; 0Þ ¼ u0;

(c) the following estimate holds:

Tot:Var:fðw; y0ÞðtÞgp12Tot:Var:fðw0; y0Þg: ð5:5Þ

Proof. From the previous analysis, ðwDx; yDxÞAK̃; hence the LN norm is uniformly
bounded for all Dx40: The proof that FðtÞ is nonincreasing follows from the
analogous one in [18, Theorem 1, p. 833], because of the property that u/wða; uÞ is
strictly increasing, for all a (see (a) of Lemma 2.6).

Moreover, the uniform bound on the total variation implies that ðwDx; yDxÞ are

(approximately) L1-Lipschitz continuous in time, uniformly in Dx:

Then, by Helly’s theorem, a sub-sequence ðwDxj ; yDxj Þ converges in L1
locðR�

½0;þNÞÞ to a measurable function ðw; yÞ with values in K̃: Helly’s theorem ensures

also that the map t/ðw; yÞð�; tÞ is L1-Lipschitz continuous. Moreover by
construction we have yðx; tÞ ¼ y0ðxÞ and wðx; 0Þ ¼ w0ðxÞ for any ðx; tÞAR�
½0;þNÞ: Now, by using (5.4) and the continuity of U�1 (see Proposition B.1), all
the other conclusions follow. &

In the previous result the coefficient a was assumed to be bounded. However, it is
also interesting to consider the case of possibly unbounded a; for instance, if aðxÞ ¼
x; a very general framework is achieved:

ut þ f ðx; uÞx ¼ gðx; uÞ;
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but at the price of dealing with an unbounded variable. Let us make a further
assumption:

ðP6Þ for any compact K in R; fuða; uÞ is uniformly bounded on R� K :
Condition ðP6Þ is trivially satisfied if f does not depend on a: It ensures that signals

evolve with a finite speed of propagation in time (see [24, p. 44], of the French
version).

We have the following theorem.

Theorem 5.2. Assume ðP1Þ–ðP6Þ;

* a0ALN

locðRÞ; u0ALNðRÞ; Tot:Var:ðw0; y0ÞoþN;
* ða0; u0Þ takes its values in an invariant domain I having the form I ¼

fða; uÞ; z1pzða; uÞpz2g (see Remark 3.1);
* I is uniformly bounded w.r.t. u.

Then the same conclusion of Theorem 5.1 holds.

Proof. Define l62supða;uÞAIj@f
@u
j; which is finite because of ðP6Þ and the assumptions

on I: Then define ðaDx; uDxÞ as in the proof of Theorem 5.1; by construction,

ðaDx; uDxÞðx; tÞAI for all ðx; tÞAR� ½0;þNÞ:
The corresponding sequence ðwDx; yDxÞ satisfies the assumptions of Helly’s

theorem; therefore, there exists a sub-sequence ðwDxj ; yDxj Þ that converges to a

function ðw; yÞ in L1
loc as j-N; and (5.5) is satisfied.

For any compact subset H of R� ½0;þNÞ; ðaDx; uDxÞðHÞ is contained in a
compact set KCI independent of Dx; then we can proceed as before and get a
function ða; uÞ in the limit, with uðx; tÞ bounded. &

6. Entropy inequalities and consistency

In this section we show that, under some additional regularity assumptions on
a ¼ a0; the limit function ða; uÞ of Theorem 5.1 satisfies Kružkov entropy inequalities
and hence is a weak solution of (1.1) (or, equivalently, of (1.4)).

Assume that aAW
1;1
loc ðRÞ; then a is absolutely continuous on compact sets and the

classical Kružkov entropy inequality [16] makes sense; within our hypotheses, it can
be written as

Z
R

Z þN

0

fjuðx; tÞ � kjjtðx; tÞ

þ sgn½uðx; tÞ � k�½ f ðaðxÞ; uðx; tÞÞ � f ðaðxÞ; kÞ�jxðx; tÞ

þ sgn½uðx; tÞ � k�½gðaðxÞ; uðx; tÞÞ � faðaðxÞ; kÞ�a0ðxÞjðx; tÞg dx dtX0; ð6:1Þ
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where j is a nonnegative C1 function with compact support in R� ð0;þNÞ
and k is a real constant (for definiteness we assume sgnð0Þ ¼ 0). Recall that
the validity of (6.1) for jkj sufficiently large implies that u is a distributional solution
of (1.4).

We have the following theorem:

Theorem 6.1. In the assumption of Theorem 5.1, if a6a0AW
1;1
loc ðRÞ; then the limit

functions ða; uÞ satisfy the Kružkov entropy inequalities (6.1) for any nonnegative C1

function j with compact support in R� ð0;þNÞ and for any constant kAR:

Proof. Fix a constant k and a nonnegative C1 function j with compact support in
R� ð0;þNÞ: For notational purpose define

%ZðvÞ ¼ jv � kj; %qðb; vÞ ¼ sgnðv � kÞ½ f ðb; vÞ � f ðb; kÞ�:

Let EAC2ðRÞ be such that: E00
X0; EðvÞ ¼ jvj for jvjX1 and E0ð0Þ ¼ 0: Then the

sequence ZeðvÞ ¼ eEðv�k
e Þ converges to %ZðvÞ in C0ðRÞ; as e-0:

If we fix

Z ¼ Ze; q ¼ qeðb; vÞ ¼
Z v

k

Z0ð%vÞfuðb; %vÞ d %v; ð6:2Þ

then, for any constant b; ðZ; qðb; �ÞÞ is an entropy–entropy flux pair for the
homogeneous scalar law ut þ f ðb; uÞx ¼ 0:

Let ðan; unÞ be an approximating sequence that converges to ða; uÞ
in L1

loc; as n-þN; let Dxn be the corresponding mesh size and consider the

quantity

Ie;n ¼
Z
R�Rþ

½ZðunÞjt þ qðan; unÞjx þ Z0ðuÞ½gða; uÞ � faða; kÞ�a0j� dx dt:

Clearly, as n-þN; the Lipschitz continuity of Z and q implies:

Ie;n-Ie ¼
Z
R�Rþ

½ZðuÞjt þ qða; uÞjx þ Z0ðuÞ½gða; uÞ � faða; kÞ�a0j� dx dt: ð6:3Þ

Now we restrict our attention on the integration over each cell Rj;n ¼ ½xj ; xjþ1Þ �
½tn; tnþ1Þ: Since an is constant over Rj;n; the couple ðZ; qðan; �ÞÞ is an entropy–entropy

flux pair for the scalar law ut þ f ðan; uÞx ¼ 0 in that cell, moreover, by construction,

un is an entropy solution of the scalar law in the same cell. Therefore, observing that
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anðxjþÞ ¼ anðxjþ1�Þ ¼ aðxjÞ and integrating by parts, we can computeZ
Rj;n

½ZðunÞjt þ qðan; unÞjx� dx dt

X

Z tnþ1

tn

½qðaðxjÞ; unðxjþ1�; tÞÞjðxjþ1; tÞ � qðaðxjÞ; unðxjþ; tÞÞjðxj; tÞ� dt

þ
Z xjþ1

xj

½Zðunðx; tnþ1�ÞÞjðx; tnþ1Þ � Zðunðx; tnÞÞjðx; tnÞ� dx: ð6:4Þ

Now integrating over every cell Rj;n and then rearranging the summations we getZ
R�Rþ

½ZðunÞjt þ qðan; unÞjx� dx dt ¼
X
jAZ

X
nX0

Z
Rj;n

ydx dt

X�
X
nX1

X
jAZ

Z xjþ1

xj

½Zðunðx; tnÞÞ � Zðunðx; tn�ÞÞ�jðx; tnÞ dx

�
X
jAZ

Z þN

0

½qðaðxjþ1Þ; unðxjþ1þ; tÞÞ � qðaðxjÞ; unðxjþ1�; tÞÞ�jðxjþ1; tÞdt

6J1
e;n þ J2

e;n: ð6:5Þ

The first term: J1
e;n By Jensen’s inequality and the definition of unðx; tnÞ in the

Godunov scheme, one has for any %xAðxj; xjþ1Þ:

Zðunð %x; tnÞÞ ¼ Z
1

Dxn

Z xjþ1

xj

unðx; tn�Þ dx

 !
p

1

Dxn

Z xjþ1

xj

Zðunðx; tn�ÞÞ dx;

and hence for some %xAðxj; xjþ1Þ:Z xjþ1

xj

½Zðunðx; tnÞÞ � Zðunðx; tn�ÞÞ�jðx; tnÞ dx

pjjjjjC1 jjZjjC1Dxn

Z xjþ1

xj

junðx; tnÞ � unðx; tn�Þj dx

þ jðxj ; tnÞ DxnZðunð %x; tnÞÞ �
Z xjþ1

xj

Zðunðx; tn�ÞÞ dx

" #

pjjjjjC1 jjZjjC1

1

l

Z
Rj;n�1

junðx; tnÞ � unðx; tn�Þj dt dx:

Finally, if we sum this last inequality over nX1 and jAZ we get

J1
e;nX� jjjjjC1 jjZjjC1

1

l

Z
A

jũnðx; tÞ � %unðx; tÞj dt dx;
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where A is a suitable bounded open set containing the support of j and ũn; %un are
defined by

ũnðx; tÞ ¼ unðx; tnÞ
%unðx; tÞ ¼ unðx; tn�Þ

for ðx; tÞARj;n�1; jAZ; nX1:

Proposition B.2 ensures that ũn and %un converge to u in L1
locðR� RþÞ; since, for any

ðx; tÞARj;n�1; ũnðx; tÞ and %unðx; tÞ belong to the convex hull of unð½xj; xjþ1�; tn�Þ;
hence we have for instance for all ðt;xÞARj;n�1

jwðanðxÞ; ũnðx; tÞÞ � wnðx; tn�ÞjpTot:Var:fwnð�; tn�Þ; ½xj; xjþ1�g:

Therefore we get

lim inf
n-þN

J1
e;nX0: ð6:6Þ

The second term: J2
e;n We first observe that the two states

U n�
j ðtÞ6ðaðxjÞ; unðxjþ1�; tÞÞ and U nþ

j ðtÞ6ðaðxjþ1Þ; unðxjþ1þ; tÞÞ

are connected by a zero wave. Recalling (3.6), the map a/fða;U n�
j ;U nþ

j Þ is a Borel

function. Hence, applying Proposition 3.2 and the (absolutely continuous) change of
variable a ¼ aðxÞ (see [25]), we obtain

qðaðxjþ1Þ; unðxjþ1þ; tÞÞ � qðaðxjÞ; unðxjþ1�; tÞÞ ¼ qðU nþ
j ðtÞÞ � qðU n�

j ðtÞÞ

p
Z xjþ1

xj

½qa þ Z0ðg � faÞ�ðaðxÞ; *fðaðxÞ;U n�
j ðtÞ;U nþ

j ðtÞÞÞ � a0ðxÞ dx

¼
Z xjþ1

xj

½qa þ Z0ðg � faÞ�ðaðxÞ; ûnðx; tÞÞ � a0ðxÞ dx; ð6:7Þ

where we have defined

ûnðx; tÞ ¼ *fðaðxÞ;U n�
j ðtÞ;U nþ

j ðtÞÞ for ðx; tÞA½xj; xjþ1Þ � Rþ:

Now, we define also

#jnðx; tÞ ¼ jðxjþ1; tÞ forðx; tÞA½xj; xjþ1Þ � Rþ

and, using (6.7), we get

J2
e;nX�

Z
R�Rþ

a0ðxÞ½qa þ Z0ðg � faÞ�ðaðxÞ; ûnðx; tÞÞ #jnðx; tÞ dx dt:
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We claim that ûn-u in L1
loc: This, together with the fact that #jn-j uniformly,

allows us to obtain

lim inf
n-þN

J2
e;nX�

Z
R�Rþ

a0ðxÞ½qa þ Z0ðg � faÞ�ðaðxÞ; uðx; tÞÞjðx; tÞ dx dt: ð6:8Þ

It remains to prove the claim regarding ûnðx; tÞ: If xA½xj; xjþ1� and aðxjÞpaðxjþ1Þ;
define

%a
nðxÞ ¼

aðxÞ if aðxjÞpaðxÞpaðxjþ1Þ;
aðxjÞ if aðxÞpaðxjÞ;
aðxjþ1Þ if aðxÞXaðxjþ1Þ:

8><
>:

The definition of %anðxÞ if aðxjÞXaðxjþ1Þ is analogous. Clearly one has

jj %anujj
N
pjjanujj

N
and %anu-a in L1

locðRÞ (note that j %anðxÞ � aðxÞjpjanðxÞ � aðxÞjÞ:
Moreover, recalling (3.6), we observe that

*fðaðxÞ;U n�
j ;U nþ

j Þ ¼ *fð %anðxÞ;U n�
j ;U nþ

j Þ; xA½xj; xjþ1�:

Fix now ðx; tÞARj;n; from definition (3.6) we know that *f; as a function of a; has at

most one discontinuity point located between aðxjÞ and aðxjþ1Þ: Suppose hence that
*f is continuous on the interval with aðxÞ and aðxjþ1Þ as extrema (if it is not

continuous in this interval, we take the other interval which has as extrema aðxÞ and
aðxjÞ). Hence we can compute

jwð %anðxÞ; ûnðx; tÞÞ � wnðxjþ1þ; tÞj

¼ jwð %anðxÞ; *fð %anðxÞ;U n�
j ðtÞ;U nþ

j ðtÞÞÞ � wðU nþ
j ðtÞÞj

¼ jyð %anðxÞÞ � yð %anðxjþ1ÞÞj

pjyðaðxjÞÞ � yðaðxjþ1ÞÞj ¼ Tot:Var:fyn; ½xj; xjþ1�g ð6:9Þ

since along a simple standing wave one has jDzj ¼ 0 and hence jDwj ¼ jDyj: The last
inequality shows that we can apply Proposition B.2 and obtain that ûn-u in L1

loc as

n-þN:
Concluding the estimates: Now, putting (6.8), (6.6) and (6.5) into (6.3), we obtain

Ie ¼ lim
n-þN

Ie;nX lim inf
n-þN

J1
e;n þ lim inf

n-þN

J2
e;n

þ
Z
R�Rþ

Z0ðuÞ½gða; uÞ � faða; kÞ�a0j dx dt

X

Z
R�Rþ

fZ0ðuÞ½ faða; uÞ � faða; kÞ� � qaða; uÞga0j dx dt: ð6:10Þ
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But we have the inequality:

jZ0ðuÞ½ faða; uÞ � faða; kÞ� � qaða; uÞj ¼
Z u

k

½Z0ðuÞ � Z0ðxÞ�fauða; xÞ dx
����

����
p 2ejjEjjC1 jj f jjC2 ð6:11Þ

because Z0ðuÞ ¼ Z0ðxÞ for u; xe½k � e; k þ e�: Therefore the following inequality holds:

IeX� 2ejjEjjC1 jj f jjC2

Z
R�Rþ

ja0jj dx dt:

which implies

lim inf
e-0

IeX0:

Finally, the integrand in (6.3) converges pointwise as e-0; hence by the dominated
convergence theorem we can pass to the limit and complete the proof of Theorem
6.1. &

7. Uniqueness for aAW
1;1
loc ðRÞ

We are now in the position to study uniqueness and stability for (1.4), in the spirit
of Kružkov ([16, Theorems 1 and 2]. To apply directly these results, the coefficient a

should be assumed to be more regular, aAC1ðRÞ: However, by refining the proof, the

estimate for uniqueness can be recovered for aAW
1;1
loc in the case of a0guða; uÞ

bounded from above. Notice that in this case, a0 has no atoms; hence the product

a0gða; uÞð:; tÞ is a well-defined L1ðRÞ function for t40 (cf. with [11,17,29]).

Theorem 7.1. Assume that f ; g are smooth. Let M;R40 be two positive constants; let

aAW 1;1
loc ðRÞ satisfy

g6supfa0ðxÞguðaðxÞ;wÞ : xA½�R;R�; jwjpMgoþN ð7:1Þ

and define

L6supf fuðaðxÞ;wÞ : xA½�R;R�; jwjpMg: ð7:2Þ

If uðt; vÞ; vðt; xÞALNðR� ½0;þNÞÞ are such that

* jjujj
N
; jjvjj

N
pM;

* they satisfy (6.1) for all kAR and jAC1
cðR� ð0;þNÞÞ; jX0;

* t/uð�; tÞ; t/vð�; tÞ are continuous in L1
loc;
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then for any tA½0;R=L� the Kružkov estimate holds:

Z R�Lt

�RþLt

juðx; tÞ � vðx; tÞj dxpegt

Z R

�R

juðx; 0Þ � vðx; 0Þj dx: ð7:3Þ

Proof. We assume the reader familiar with the proof and notations of [16, Theorem

1]. Let fX0 be C1 with compact support in R� ð0;þNÞ; the proof aims at deriving
the inequality

0p
Z
R�ð0;þNÞ

fjuðx; tÞ � vðx; tÞjftðx; tÞ þ sgn½uðx; tÞ � vðx; tÞ�

� ½ f ðaðxÞ; uðx; tÞÞ � f ðaðxÞ; vðx; tÞÞ�fxðx; tÞ � sgn ½uðx; tÞ � vðx; tÞ�

� ½gðaðxÞ; vðx; tÞÞ � gðaðxÞ; uðx; tÞÞ� � a0ðxÞfðx; tÞg dx dt: ð7:4Þ

From (7.4), we use (7.1) to get a Gronwall-type estimate and obtain (7.3) following
exactly [16], since those computations are not affected by the lower regularity of a0:
In the rest of the proof, assumption (7.1) is not needed.

1. Let N;T40 be two constants such that the support of f is contained in

O6ð�N;NÞ � ð0;TÞ: Define the C1 function j as

jðx; t; y; tÞ ¼ f
x þ y

2
;
t þ t
2

� �
lh

x � y

2
;
t � t
2

� �
; ð7:5Þ

where lhða; bÞ ¼ dhðaÞ � dhðbÞ;

dhðaÞ ¼
1

h
d

a

h

� �
; d : R-½0; 1�ACN;

Z
N

�N

dðxÞ dx ¼ 1; dðxÞ ¼ 0 8xA½�1; 1�:

Observe that if h is sufficiently small, j has compact support contained in the open
set G ¼ O� O:

The analogous to inequality (3.4) in [16] is given by

X4
i¼1

Z
G

Ph
i ðx; t; y; tÞ dx dt dy dtX0 ð7:6Þ

with

Ph
i ðx; t; y; tÞ ¼Fiðx; t; y; t; uðx; tÞ; vðy; tÞÞ

� lh

x � y

2
;
t � t
2

� �
; i ¼ 1; 2; 4 ð7:7Þ
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(the term Ph
3 will be considered later on) and

F1ðx; t; y; t; u; vÞ ¼ ju � vjft

x þ y

2
;
t þ t
2

� �
;

F2ðx; t; y; t; u; vÞ ¼ sgn½u � v�½ f ðaðxÞ; uÞ � f ðaðyÞ; vÞ�fx

x þ y

2
;
t þ t
2

� �
;

F4ðx; t; y; t; u; vÞ ¼ sgn½u � v�½gðaðxÞ; uÞa0ðxÞ � gðaðyÞ; vÞa0ðyÞ�f x þ y

2
;
t þ t
2

� �
:

Now, if juj; jv1j; jv2jpM; then easy computations show that there exists a constant
C40 depending on f ; g;f;M and jjajjLNðð�N;NÞÞ such that for i ¼ 1; 2; 4 we have

jFiðx; t; y; t; u; v1Þ � Fiðx; t; x; t; u; v2Þj

pC½ð1þ ja0ðxÞj þ ja0ðyÞjÞ � ðjt � tj þ jx � yj þ jaðxÞ � aðyÞj þ jv1 � v2jÞ

þ ja0ðxÞ � a0ðyÞj�6Fðx; t; y; t; v1; v2Þ:

2. We claim that

lim
h-0

Z
G

Fðx; t; y; t; vðy; tÞ; vðx; tÞÞlh

x � y

2
;
t � t
2

� �
dx dt dy dt ¼ 0: ð7:8Þ

If (7.8) holds, following [16] we obtain for i ¼ 1; 2; 4;

lim
h-0

Z
G

Ph
i ðx; t; y; tÞ dx dt dy dt ¼ 4

Z
O

dx dtFiðx; t; x; t; uðx; tÞ; vðx; tÞÞ: ð7:9Þ

To prove (7.8), we make the change of variables:

x ¼ x;

s ¼ t;

Z ¼ ðx � yÞ=2;
s ¼ ðt � tÞ=2;

8>>><
>>>:

x ¼ x;

t ¼ s;

y ¼ x� 2Z;

t ¼ s � 2s:

8>>><
>>>: ð7:10Þ

Because of the presence of lh in integral (7.8), in the new variables, integral is
restricted to the set ðx; s; Z; sÞAO� ½�h; h� � ½�h; h�: Now we can analyze the various
terms in (7.8):

* The continuity of the translations in L1 implies:

Z
O

dx ds

Z h

�h

dZ
Z h

�h

dsja0ðxÞ � a0ðx� 2ZÞjlhðZ; sÞ

¼
Z h

�h

dZdhðZÞjja0ð�Þ � a0ð� � 2ZÞjjL1ðð�N;NÞÞ 	!h-0
0:
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* The uniform continuity of a implies

Z
O

dx ds

Z h

�h

dZ
Z h

�h

ds 1þ ja0ðxÞj þ ja0ðx� 2ZÞjð Þ

� ðj2sj þ j2Zj þ jaðxÞ � aðx� 2ZÞjÞlhðZ; sÞ

p2T

Z Nþh

�N�h

ð1þ 2ja0ðxÞjÞ dx � 4h þ sup
jxjpN; jZjph

jaðxÞ � aðx� 2ZÞj
 !

	!h-0
0:

* Concerning the last term

Z
O

dx ds

Z h

�h

dZ
Z h

�h

dsð1þ ja0ðxÞj þ ja0ðx� 2ZÞjÞ

� jvðx; sÞ � vðx� 2Z; s � 2sÞjlhðZ; sÞ;

simple changes of variables show that it can be written as the sum of integrals of
the form

Z h

�h

dZ
Z h

�h

dsdhðZÞdhðsÞ
Z
R2

cðx; sÞjwðx; sÞ � wðx� 2Z; s � 2sÞj dx ds

with cAL1ðR2Þ and wALNðR2Þ: The continuity of the translations in L1
loc ensures

that there exists a sub-sequence ðZi; siÞ-ð0; 0Þ such that wðx� 2Zi; s �
2siÞ-wðx; sÞ a.e. ðx; sÞAR2: Hence the dominated convergence theorem and the
uniqueness of the real limit c ¼ 0 imply

lim
ðZ;sÞ-ð0;0Þ

Z
R2

cðx; sÞjwðx; sÞ � wðx� 2Z; s � 2sÞj dx ds-c ¼ 0: ð7:11Þ

Therefore also the last term in (7.8) tends to zero as h-0:

3. Now we consider the term Ph
3 and want to show that

Z
G

Ph
3ðx; t; y; tÞ dx dt dy dt 	!h-0

0; ð7:12Þ
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this fact, together with (7.6) and (7.9), gives finally (7.4). The term Ph
3 can be written

as (see (3.4) in [16])

Ph
3ðx; t; y; tÞ

¼ sgn½uðx; tÞ � vðy; tÞ� � @

@x
fjðx; t; y; tÞ½ f ðaðyÞ; vðy; tÞÞ � f ðaðxÞ; vðy; tÞÞ�g

þ sgn½uðx; tÞ � vðy; tÞ� � @
@y

fjðx; t; y; tÞ½ f ðaðyÞ; uðx; tÞÞ � f ðaðxÞ; uðx; tÞÞ�g:

Consider now the two functions

Qh
1ðx; t; y; tÞ6 sgn½uðx; tÞ � vðy; tÞ�f x þ y

2
;
t þ t
2

� �
� ½ faðaðxÞ; uðx; tÞÞ � faðaðxÞ; vðy; tÞÞ� @

@y

� ½aðyÞ � aðxÞ�lh

x � y

2
;
t � t
2

� �h i
;

Qh
2ðx; t; y; tÞ6 sgn½uðx; tÞ � vðx; tÞ�fðx; tÞ

� ½ faðaðxÞ; uðx; tÞÞ � faðaðxÞ; vðx; tÞÞ� @
@y

� ½aðyÞ � aðxÞ�lh

x � y

2
;
t � t
2

� �h i
:

Since, for h sufficiently small, Qh
2 is a total derivative (with respect to the variable y)

of a function with compact support in G; then one hasZ
G

Qh
2ðx; t; y; tÞ dx dt dy dt ¼ 0: ð7:13Þ

Now we can estimate

jQh
1ðx; t; y; tÞ � Qh

2ðx; t; y; tÞjpC1½h þ jvðy; tÞ � vðx; tÞj�

� ja0ðyÞjlh

x � y

2
;
t � t
2

� �
þ jaðyÞ � aðxÞj

�

� dh

t � t
2

� � 1
h2
1½�h;h�

x � y

2

� ��
;

where C140 depends only on f ; g;f;M; jjajjLNðð�N;NÞÞ and jjdjjC1 but not on h: We

have already seen that the integral of the term which has lh as a factor tends to zero
as h-0: The other two terms can be analyzed with the change of variables (7.10):
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* Using the Fubini theorem we compute:

Z
G

hjaðyÞ � aðxÞjdh

t � t
2

� � 1
h2

1½�h;h�
x � y

2

� �
dx dt dy dt

p4

Z
O

dx ds

Z h

�h

dZ
Z h

�h

dsdhðsÞ
1

h

Z x�2Z

x
a0ðzÞ dz

����
����

p
4T

h

Z N

�N

dx
Z h

�h

dZ
Z xþ2h

x�2h

ja0ðzÞj dz

p8T

Z N

�N

dx
Z 2h

�2h

ja0ðxþ zÞj dzp32hT

Z Nþh

�N�h

ja0ðxÞj dx 	!h-0
0:

* Using the L1 continuity of translations, (7.11) and again the Fubini theorem we
get

Z
G

jvðx; tÞ � vðy; tÞj � jaðyÞ � aðxÞjdh

t � t
2

� � 1
h2
1½�h;h�

x � y

2

� �
dx dt dy dt

p
4

h2

Z
O

dx ds

Z h

�h

dZ
Z h

�h

dsdhðsÞjvðx; sÞ � vðx� 2Z; s � 2sÞj
Z 2h

�2h

ja0ðxþ zÞj dz

p
1

h

Z h

�h

dZ
Z h

�h

dsdhðsÞ
Z
R2

dx ds1Oðx; sÞja0ðxÞj � jvðx; sÞ � vðx� 2Z; s � 2sÞj

þ 8MT

h

Z N

�N

dx
Z 2h

�2h

dzja0ðxþ zÞ � a0ðxÞj 	!h-0
0:

Therefore we have proved:

Z
G

jQh
1ðx; t; y; tÞ � Qh

2ðx; t; y; tÞj dx dt dy dt 	!h-0
0; ð7:14Þ

which, recalling (7.13), implies that

Z
G

Qh
1ðx; t; y; tÞ dx dt dy dt 	!h-0

0: ð7:15Þ

With the help of the inequality

j f ða2; uÞ � f ða1; uÞ � ½ f ða2; vÞ � f ða1; vÞ� � ½ faða1; uÞ � faða1; vÞ� � ½a2 � a1�j

pjj f jjC3 ja2 � a1j2 � ju � vj
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and carrying out the derivatives in the definitions of Ph
3; Qh

1 we compute

jPh
3ðx; t; y; tÞ � Qh

1ðx; t; y; tÞj

pC2 ½ð1þ ja0ðyÞjÞjaðyÞ � aðxÞj þ ja0ðyÞ � a0ðxÞj� � lh

x � y

2
;
t � t
2

� ��

þ jaðxÞ � aðyÞj2 � dh

t � t
2

� � 1
h2
1½�h;h�

x � y

2

� ��
; ð7:16Þ

where, as usual the constant C240 does not depend on h: We have already proved
that the integral of the first term in the right-hand side of (7.16) tends to zero as
h-0: Concerning the last term we compute

Z
G

jaðxÞ � aðyÞj2 � dh

t � t
2

� � 1
h2
1½�h;h�

x � y

2

� �
dx dt dy dt

¼ 4T

h2

Z N

�N

dx
Z h

�h

dZjaðxÞ � aðx� 2ZÞj2

p
4T

h2
sup

jxjpN; jZjph

jaðxÞ � aðx� 2ZÞj �
Z N

�N

dx
Z h

�h

dZ
Z 2h

�2h

dzja0ðxþ zÞj

p4T

Z Nþh

�N�h

dxja0ðxÞj � sup
jxjpN; jZjph

jaðxÞ � aðx� 2ZÞj 	!h-0
0:

Therefore, recalling (7.15), we get (7.12), completing the proof. &

8. Concluding remarks

We close this paper with some final remarks.
1. When the coefficient a is discontinuous, by means of Theorem 5.1 we deduce the

existence of a limit function that we can regard as a solution, in some sense, of (1.1),
(1.2); however, this case is not covered by our Kružkov-type results, hence we cannot
obtain uniqueness.

2. Condition (7.1) in Theorem 7.1 is necessary to have the bare uniqueness of the
entropic solutions, as can be seen by the following Cauchy problem:

ut þ
u2

2

� 

x

¼ uffiffiffiffiffiffi
4x

p � 1ð0;1ÞðxÞ;

uð0; xÞ ¼ 0

8<
: ð8:1Þ
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which has the following two entropic solutions for ðx; tÞAR� ½0; 3�:

u1ðx; tÞ ¼ 0; u2ðx; tÞ ¼
0 for xe 0;

t2

16

� 

;

ffiffiffi
x

p
for xA 0;

t2

16

� 

:

8>>><
>>>:

This example is very simple but does not satisfy our condition ðP4Þ: To obtain a
counterexample satisfying all our conditions ðP1Þ–ðP5Þ; it is enough to substitute u in
the source with 1þ u which does not vanishes on the resonance point u ¼ 0: Then for
the initial data uð0; xÞ ¼ 1� 2 � 1ð0;þNÞðxÞ there are again two entropic solutions. We

do not describe in details this counterexample since it only requires some
straightforward technicalities.

3. Another way to find a solution is to approximate a by smooth functions ae

which also satisfy (5.1) with a uniform upper bound on the total variation of the
transformed variables. The corresponding solutions ue are compact in the sense
described in our paper, hence we can extract a converging sub-sequence to a
‘‘solution’’ u: If moreover axguða;wÞ is bounded from above and we can choose an
approximating sequence ae with ae

xguðae;wÞ uniformly bounded from above, then

(7.3) holds for the approximate solutions with the same e: Therefore with a
diagonalization argument (as described for instance in [1]) one can show the
existence of a Lipschitz (with respect to the initial data) semigroup of ‘‘solutions’’ for
a discontinuous a: But this implies neither uniqueness for the semigroup nor for the
entropy solutions. To have uniqueness one should also characterize the semigroup’s
trajectories, as done in [1].

Appendix A. Interaction estimates: technical proofs

Proof of Theorem 4.1. Suppose first z1z240: If g0 is the segment joining c1 and c2

one has c�ðg0Þ ¼ jc1 � c2j� hence d�ðc1;c2Þpjc1 � c2j�: For the converse inequality
take gAGðc1;c2Þ and a parametrization cgðtÞ ¼ ðzgðtÞ; ygðtÞÞ: We call %gAGðc1;c2Þ
the curve which has as a parametrization the function c%gðtÞ ¼ ðz%gðtÞ; ygðtÞÞ where

z%gðtÞ is defined by

z%gðtÞ ¼
zgðtÞ if zgðtÞz140;

�zgðtÞ if zgðtÞz1o0:

�

Clearly one has c�ðgÞ ¼ c�ð%gÞ and since %g is entirely contained in Rþ or R�; the
length c�ð%gÞ is greater or equal then jc1 � c2j�; proving the first equality in (4.7).

Concerning the other equality, suppose that c1ARþ and c2AR�; the other case

being similar. Take gAGðc1;c2Þ; one must have g- *Ta| (we use the Greek letter g
also to denote the support of the curve). Hence take %c ¼ ð1� %y; %yÞAg- *T and
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g1AGðc1; %cÞ and g2AGð %c;c2Þ such that g ¼ g1,g2: Applying the first in (4.7) we get

c�ðgÞ ¼ c�ðg1Þ þ c�ðg2ÞXd�ðc1; %cÞ þ d�ð %c;c2Þ ¼ jc1 � %cþj� þ j %c� � c2j�:

Therefore we can write

c�ðgÞX jc1 � %cþj� þ j %c� � c2j�

¼ jz1 � ð1� %yÞj þ jy1 � %yj þ j � 1þ %y� z2j þ j%y� y2j6hð%yÞ:

Observe that hðyÞ is continuous, piecewise linear; since y1X1� z1 and y2X1þ z2;
the function hðyÞ is minimized on an interval which has ym ¼ minðy1; y2Þ as an
extremum. So we have

c�ðgÞXhðymÞ ¼ d�ðc1;cmÞ þ d�ðcm;c2Þ

which yields the desired equality. Finally, let us prove (4.8). If we take a C1 function
ðzðtÞ; yðtÞÞ; by (2.19) we easily find

1
2
ðjy0ðtÞj þ jw0ðtÞjÞpjz0ðtÞj þ jy0ðtÞjp2ðjw0ðtÞj þ jy0ðtÞjÞ:

Then, using the definition of d� and simple inequalities, we get (4.8) &

Proof of Theorem 4.2. (a) Take ym ¼ minðy1; y2Þ and set cm ¼ ð1� ym; ymÞ: Since
ympy1 and ympy2; then the equalities L�ðc1;cmÞ ¼ d�ðc1;cmÞ and Lþðcm;c2Þ ¼
d�ðcm;c2Þ hold. Hence applying (4.7) we get

Lðc1;c2ÞpLðc1;cmÞ þ Lðcm;c2ÞpL�ðc1;cmÞ þ Lþðcm;c2Þ

¼ d�ðc1;cmÞ þ d�ðcm;c2Þ

¼ d�ðc1;c2Þ ðA:1Þ

which, together with (4.5), proves (4.9).

(b) If y2Xy1; (4.10) follows from the equality d�ðc1;c2Þ ¼ Lþðc1;c2Þ:
Take now y2oy1 and hence 1� y1pminðz1; z2Þ: Then take a path gAGðc1;c2Þ: If

gCRþ; then FðgÞXLþðc1;c2Þ: If instead ggRþ then there exists a state %c ¼
ð1� %y; %yÞA *T-g and two curves g1AGðc1; %cÞ and g2AGð %c;c2Þ satisfying g ¼ g1,g2
and g1CRþ: Since %cA *TCR� we can apply (4.9) to obtain:

FðgÞ ¼ Fðg1Þ þFðg2ÞXLþðc1; %cÞ þ Lð %c;c2Þ ¼ Lþðc1; %cÞ þ d�ð %c;c2Þ ¼ hð%yÞ;

where the function h is defined by

hðyÞ ¼ jz1 � ð1� yÞj þ 2jy1 � yj þ y1 � yþ j1� y� z2j þ jy� y2j:
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The function h is minimized on an interval which has y1 as an extremum, hence we
can write

FðgÞXhðy1Þ ¼ z1 � ð1� y1Þ þ z2 � ð1� y1Þ þ y1 � y2

¼ jz1 � z2j þ 2min
i¼1;2

fzi � ð1� y1Þg þ y1 � y2: ðA:2Þ

We have two cases:

* 1� z1 � y2p0: then

z1 � ð1� y1ÞXy1 � y2; z2 � ð1� y1ÞX1� y2 � ð1� y1Þ ¼ y1 � y2

which implies

FðgÞXjz1 � z2j þ 3jy1 � y2j ¼ Lþðc1;c2Þ:

* 1� z1 � y240: then z2X1� y24z1 and

min
i¼1;2

fzi � ð1� y1Þg ¼ z1 � ð1� y1Þ ¼ y1 � y2 þ z1 � 1þ y2

which implies

FðgÞXjz1 � z2j þ 3jy1 � y2j � 2½1� z1 � y2� ¼ Lþðc1;c2Þ � 2½1� z1 � y2�:

Putting together all these inequalities we have for any gAGðc1;c2Þ:

FðgÞX Lþðc1;c2Þ for 1� z1 � y2p0;

Lþðc1;c2Þ � 2½1� z1 � y2� for 1� z1 � y240:

�
ðA:3Þ

Finally (4.10) is obtained observing that there exists a path %gAGðc1;c2Þ (i.e. the

solution of the Riemann problem described in Section 3 for the cases c1ARþ;
c2AR1ðc1Þ and c2AR5ðc1Þ) for which inequality (A.3) becomes actually an equality.

(c) The proof of this point can be carried out in exactly the same way than
point (b).

(d) Take gAGðc1;c2Þ; the hypothesis implies that there exists a state %c ¼
ð1� %y; %yÞA *T-g and two curves g1AGðc1; %cÞ and g2AGð %c;c2Þ satisfying g ¼ g1,g2:
Hence we obtain

FðgÞ ¼ Fðg1Þ þFðg2ÞXLðc1; %cÞ þ Lð %c;c2Þ ¼ hð%yÞ:
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Since c1; %cARþ and %c;c2AR� we can apply (4.10) and (4.11) to explicit the
function h:

hðyÞ ¼ jz1 � ð1� yÞj þ 2jy1 � yj þ y1 � y� 2ð1� z1 � yÞY½1� z1 � y�

þ jy� 1� z2j þ 2jy� y2j þ y2 � y� 2ð1þ z2 � yÞY½1þ z2 � y�; ðA:4Þ

where we have denoted by Y the Heaviside function. Using the identity 2xYðxÞ ¼
x þ jxj for all xAR; we find that hðyÞ ¼ const:þ 2jy� y1j þ 2jy� y2j; which is

minimized for yA½ym; yM �: Therefore for any gAGðc1; %cÞ; c ¼ ð1� y; yÞ with
yA½ym; yM �; we have

FðgÞXhðyÞ ¼ Lðc1;cÞ þ Lðc;c2Þ

which proves (4.12). &

Appendix B. Technicalities for the Godunov scheme

Proposition B.1. Let ðX ;S; mÞ be a measure space, let F : KCRn-Rm be a

continuous function with K compact and let a sequence fn : X-Rn of integrable

functions satisfy:

* fn-f in L1ðX ;RnÞ;
* fnðxÞAK a.e. on X ;

then, if aAL1ðX ;RÞ; one has that f ðxÞAK a.e. on X and aFð fnÞ-aFð f Þ
in L1ðX ;RmÞ:

Proof. Take a sub-sequence aFð fni
Þ; we can extract a sub-sequence fnik

converging

almost everywhere to f ; hence f ðxÞAK a.e. xAX : Moreover the continuity of F

implies that aFð fnik
Þ converges almost everywhere to aFð f Þ: Since FðKÞ is compact,

jFð fnik
Þj is uniformly bounded a.e. by a constant R; hence jaFð fnik

ÞjpRjaj a.e.

and the dominated convergence theorem ensures that aFð fnik
Þ-aFð f Þ in

L1ðX ;RmÞ: The arbitrariness of the choice of the initial sub-sequence concludes
the proof. &

Proposition B.2. In the assumptions of Theorem 5.1, consider a sequence ðan; unÞ that

converges to ða0; uÞ in L1
loc as n-þN; and let ðwn; ynÞ ¼ Uðan; unÞ:

Let ð %anðxÞ; %unðx; tÞÞ be a sequence of measurable functions, such that

(a) %an-a0 in L1
loc as n-þN;

(b) Tot:Var:fyð %anÞgpC � Tot:Var:fy0g; for all n;
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(c) there exists a positive integer N such that, for any nAN; jAZ; nAN and for all

ðx; tÞARj;n; one has

inf
ðy;sÞA½xj�N ;xjþN ��½tn;tnþ1�

jwð %anðxÞ; %unðx; tÞÞ � wnðy; sÞj

pC Tot:Var:fðwn; ynÞð�; %tnÞ; ½xj�N ; xjþN �g;

where %tn ¼ tnþtnþ1

2 ;

for a suitable constant C40: Then

%un-u in L1
loc as n-þN:

Proof. In the proof of Theorem 5.1 we showed that wnðx; tÞ-wðx; tÞ
6wða0ðxÞ; uðx; tÞÞ in L1

loc: Now we prove the same property for %wnðx; tÞ
6wð %anðxÞ; %unðx; tÞÞ:

Let KCR� ½0;T � be a compact set and computeZ
K

j %wnðx; tÞ � wnðx; tÞj dx dt ¼
X
jAZ

X
nX0

Z
K-Rj;n

j %wnðx; tÞ � wnðx; tÞj dx dt: ðB:1Þ

Fix d40; for all ðx; tÞARj;n; by hypothesis, there exists ðy�; s�Þ (possibly depending

on ðx; tÞ) such that jy� � xjjpNDxn; s�A½tn; tnþ1Þ and satisfying:

j %wnðx; tÞ � wnðy�; s�ÞjpC � Tot:Var:fðwn; ynÞð�; %tnÞ; ½xj�N ; xjþN �g þ
d

2j jjþn
:

By construction, there exists a point ðx�; s�ÞARj;n such that wnðx; tÞ ¼ wnðx�; s�Þ;
hence we can compute

j %wnðx; tÞ � wnðx; tÞjp j %wnðx; tÞ � wnðy�; s�Þj þ jwnðy�; s�Þ � wnðx�; s�Þj

p ðC þ 1ÞTot:Var:fðwn; ynÞð�; %tnÞ; ½xj�N ; xjþN �g þ
d

2j jjþn
:

Putting this inequality in (B.1), because of the arbitrariness of d; we obtainZ
K

j %wnðx; tÞ � wnðx; tÞj dx dtp ðC þ 1Þ
X

nX0;%tnpT

DxnDtn 2NTot Var:fðwn; ynÞð�; %tnÞg

p ðC þ 1Þ4NFð0Þ � TDxn-0:

Therefore %wn-w in L1
loc as n-þN: Finally, we apply twice Proposition B.1, first to

show that yð %anÞ-y0; and again to prove the convergence of ð %an; %unÞ ¼ U�1ð %wn; yð %anÞÞ
to ða0; uÞ: &
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