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Abstract
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1. Introduction

The main concern of the present paper is with the Cauchy problem in R for the
following 2 x 2 nonstrictly hyperbolic system of balance laws:

=0, 11
{Ll, +f(a7u)x - g(a’ u)ax =0, ( . )

completed with the initial data
(1(0, ) = do, u(07 ) = Uo, (12)

under the forthcoming assumptions (P;)—(Ps). Like the authors of [8,13-15,19,27],
we are especially interested in nonlinear resonance, that is, when wave speeds
coalesce. Since this is equivalent to the existence of points where f, vanishes, let 7
denote their set: 7 = {(a,u) : f,(a,u) = 0}. We shall work in the sequel under some
rather general assumptions which read:

(Py) f, g are smooth functions; Va lim,_, 1, f(a,u) = +o0;

(P2) 7 is a graph: there exists a C' map 7 : R— R such that f;(a,t(a)) = 0 for all
aeR;

(P3) fu(a,u) - (u—1(a))>0, for all (a,u)eR}\T;

(Py) fu—g#0 for all (a,u)eT;

(Ps) for any (ag, uy) € R*\, the solution to the Cauchy problem

du(a) g —ta
da — f,

does not blow up to infinity on bounded intervals.

u(ap) = uy, (1.3)

Let us pause to state a few comments. System (1.1) can be viewed either asa 2 x 2
hyperbolic system, not in conservation form, or as a different way to write a general
scalar balance laws with source term,

u +f(a(x),u), = d(x)g(a(x),u), (1.4)

as advocated for instance in [4] to derive a simple model of shallow-water
flow. Another case of special interest for (1.1) lies in the modeling of one-
dimensional flow in a nozzle as pointed out in [19]; in this context, f, g do not
depend on a:

s+ f(u), =k(x)g(), k(x)=d(x)=0. (1.5)

We shall develop this case first in Section 2.1: as in [11], we can consider (1.5) within
a limiting process when a'(x) concentrates onto a Dirac comb. The classical
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compensated compactness results, [26], imply strong compactness of the entropy
solutions u but the lack of BV estimates prevents us from defining rigorously the
product g(a, u)a, within the framework of [17]. Hence taking advantage of the linear
degeneracy of the nonconservative field, we shall interpret it following integral
curves of the associated eigenvector, see e.g. [3,5].

These equations are endowed with a source term g(a,u)a,. Of course, in the
case it vanishes, g =0, one recovers a conservation law with the flux function
being space dependent as in [2,7,15,18,21], this dependence being possibly
discontinuous.

Concerning our assumptions, we stress that (P3;) is less restrictive than the
usual genuine nonlinearity requirement; however it excludes the linear cases
already investigated in e.g. [6,12,23] for which the theory is quite different,
see also [21]. Observe that condition (P;) is a consequence of (P;) and the
definition of . Conditions (P;)—(Ps) will allow us to define and study
the integral curves of the steady-state problem for (1.1) in Section 2.2. Within the
special framework (1.5) considered in [19], our condition (Ps) is equivalent
to the one required there to ensure existence for arbitrary large initial data (see
Remark 2.7).

Our plan is as follows. We aim at first establishing the existence of global
solutions to (1.1)-(1.2). This will be carried out by extending and simplifying
former studies, [13,19,27]. In [13] (see also [27]), the Cauchy problem for (1.1) has
been solved for small data, that is to say, in a neighborhood of some given
point U* = (a*,u*)e7 In Section 3, we shall consider global solutions of the
Riemann problem (3.1) for (1.1). This raises the problem of interpreting the
nonconservative term a'g; this will be tackled as previously indicated for the special
case (1.5).

Interaction estimates are to be carefully derived in Section 4 by means of an
original change of variables; it sheds light on some computations already
present in [13,19]. Relying on these stepping stones, a Godunov scheme is applied
to build approximate solutions in Section 5; when ignited with a suita-
ble discretization of the initial data, this scheme has the property of preserving
the stationary solutions: this is the so-called Well-Balanced property, see
[4,9,10,14,22]. Compactness of the approximate sequence is then established,
Theorems 5.1, 5.2; the initial data are assumed to be bounded, without any
smallness assumption.

The delicate question of uniqueness is finally to be raised (and partly solved) by
means of Kruzkov’s techniques under a refined condition that a(x) is absolutely
continuous (¢’ eL!(R)). In this case, the classical weak formulation for (1.1) does
make sense and the limit is found to be a generalized solution in the sense of
Kruzkov [16]: see Theorem 6.1.

In Section 7, related stability estimates are also obtained, Theorem 7.1; however,
an additional boundedness assumption is needed: see (7.1) and the counterexample
in Section 8.

Let us finally mention an alternative approach to the treatment of resonance inside
balance laws relying on their kinetic formulations: consult [4,22,29].
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2. Motivation and preliminaries
2.1. A localization process for the a variable

As announced in the introduction, we first restrict ourselves to the special case
(1.5) (the source term could also read g(x,u)). We assume furthermore that there
exists a constant M eR"* such that ug(u)<0 for |u|>M and that the function
ur—f(u) is strictly convex (however, (P3) would even suffice). The condition on the
source term guarantees that blow-up cannot occur for the weak solutions of (1.5).
Following the ideas of [11], we aim at deriving a meaning for g(u)a, when a is
discontinuous relying on [17], i.e. within a limiting process. Let K e C*(R) stand for
an anti-derivative of k and, given a parameter 4> 0, the nondecreasing function &*(x)

belongs to WILCI(R) for >0 and is defined as follows:

K(jh), xe[jh, (j+31=%)h],
¢ = K+ =D +3), xe[(+3-9h (j+i+9n[ @)
K((j+1)h), xe[(j+3+5h (j+ DAl

The Kruzkov’s theory (see Theorem 7.1 in this paper) ensures that for each ¢>0,
there exists a unique entropy solution #* of (1.5) and (2.1). But since

asﬂahgz K(jh)lYE

- (=3

the term lying at the right-hand side of (1.5) becomes ambiguous in the limit e— 0. As

formerly done, one could establish that for uy, @° € BV(R), the total variation in space
of the Riemann invariants for (1.1)

a; W(u7a) = ¢71(¢(H) - a)v ¢/ :f,/g7

decays as time increases. However, as a consequence of resonance (f, = 0), this
implies no estimate on u°. Thus we turn to a weaker compactness framework based
on L™ estimates. As a special case of (6.1), Kruzkov’s entropy inequalities hold for
any >0, ke R. We select k = max(M, [|uo|[; ~ ) and by integration, we obtain

% / max(u’(x,1) — k,0) dx < / max(sgn(u’ — k), 0)g(u’)(x, t)at. dx <0,
R R
together with
d . X . : X ,
7 / min(0, u®(x, 1) — k) dx > / min(0, sgn(u® — k))g(u®)(x, t)as dx=0.
R R

This gives a maximum principle which is uniform in ¢ and reads:

|| <max(M, [|uolly» g))-
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At this level, we observe that under our hypotheses, g(u*)d’. is a bounded measure;
hence we get, following [26], for all entropy—entropy flux pairs #, ¢ satisfying ¢’ =
o

n(u*), + q(u’) compact in H (R x RY).

We deduce by the strict convexity of the function u+f(u) that the sequence of
entropy solutions u* is relatively compact in all L? for p< + co. Since a* is constant
in time, it is in BV(R) and compact in L{ .(R). This is enough to pass to the limit in
(6.1) and get the limit problem in the sense of measures:

n(w), +q(u) <wgdl, n'()g(u)d,—n'gd.

Since this holds for Kruzkov’s entropies #(u) = |u — k|, ke R, the weak formulation
follows. Unfortunately, we cannot follow the results of [17] to deduce also the
meaning of the right-hand side term.

2.2. The stationary solutions

For smooth solutions, (1.1) corresponds to the quasilinear system

U+ AU U, =0, U= (a,u), A(U):(J(I)_q ;) (2.2)

The eigenvalues of 4 are 4, =0, 1, = f,; the corresponding eigenvectors are r; =
(fusg —fa), 12 =(0,1). Observe that one of the characteristic fields is linearly
degenerate, while the other one, due to condition (P3), is, roughly speaking,
genuinely nonlinear “around resonance points” and its integral curves are parallel
straight lines. The strict hyperbolicity is lost along the transonic curve J, and there
the corresponding eigenvectors become parallel to each other. In the case a = a
constant, the system reduces to the scalar homogeneous conservation law with
parameter a:

u +f(a,u), =0.
Let us introduce some notation. Denote by Q" and Q™ the following regions:
QY ={(a,u) : fu(a,u)>0}, Q ={(a,u): fu,(a,u)<0}. (2.3)

We shall consider the case of a positive source along resonant states: g — f;| - >0, the
other case being symmetric under the transformation a+— — a. Let us introduce
some special solutions of system (1.1): the stationary ones, which correspond to the
integral curves of the linearly degenerate field,

Sfla,u), = axg(a,u).
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Regular solutions satisfy f,u, = (g — f,)a., which is locally equivalent either to

du g —/a

= T (2.4)
or to

da  fu

T (2.5)

(Observe that, by hypotheses, the two quantities f, and g — f, do not vanish at the
same points.) Denote by ¢(a;ap,up) the solution to (2.4) with Cauchy data
u(ap) = uy:

du _g—Ja
da  f,

u(ag) = uy, (ao,uo)¢ T, (2.6)

and denote by (o, ) its maximal interval of existence, we will also use the notation
¢ (a; ap, up) for (ay,up) e Q*. It is clear that

— o0 <afag, uy) <ag < f(ap,up) < + 0.

Proposition 2.1. For any (ap,uy) ¢, the maximal interval of existence of ¢(a) =
o(a; ao,uo) is unbounded to the right: f(ag,uy) = + 0.

Proof. Assume that (ag,uo) € 2", the other case being similar. Since we are in QF,
¢(a)>1(a) holds where the solution ¢ exists. If, by contradiction f(ao,up) =
a*< + oo, then standard o.d.e. theorems ensure that (a,¢(a)) approaches the

boundary of Q" as a approaches a* to the left. But (Ps) prevents that ¢(a) aza 0,

hence we necessarily have q’)(a)ﬂﬂ:(a*). Since (g — fu)(a*,t(a")) >0, (2.4) implies

a—a*

¢'(a)—= +oo. Therefore take ay<d' <d’<a* and, using Lagrange theorem,

compute

R 0 e o Dl e ORI R CA N

ae(d a*) a—ad a—da a —d

which, when @ —a*, gives the desired contradiction since 7 is C!. O

On the contrary, the maximal solutions to (2.4) may not be defined as a— — oo:

Proposition 2.2. For any (aop,uo =t(ap))€T, there exist two unique solutions
¢ (a) = ¢T(a;a0,u0), ¢ (a) = ¢~ (a;a0,up) of (2.4) with the following properties:
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¢t, ¢~ are maximally defined on (ay,+0); ¢ (a)eQt, ¢ (a)eQ™,

lim ¢*(a) = uo,
a—ap+

d(f)ir
@

- 4+ 00 asa—a. (2.8)

Proof. Indeed, denote by a(u) = a(u; uy, ap) the solution to the Cauchy problem for
(2.5) with data a(up) = a9. Due to (P4), a(u) is locally defined in a neighborhood of
up with d'(u9) = 0. Then the curves a(u) and t(«a) are transverse at the point (ao, uo)
and a(u)eQ' with @' (u)>0 for u>uy. As a consequence, a(u) is invertible on
[ug, ug + 9], for some §>0. Denote by ¢*(a) the inverse function, which is defined
on the right of ay, [ag, ap + 7]. It is clear that ¢ () is a solution to (2.4) for a>ay and
satisfies (2.8); by Proposition 2.1 it can be prolonged on (ag,+o0). A totally similar
procedure leads to the definition of ¢~ (a). O

Let us introduce the following sets:

Qf = {(a,u)eQ" :a(a,u)> — w0}, QF ={(a,u)eQ :a(a,u)>— w0}, (2.9)

Dy ={(a,u)eQ" :a(a,u) = -0}, D; ={(a,u)eQ :o(a,u)=—w}. (2.10)

It is clear that Qf UD] = Q% and Q; UD; = Q.

The region Q| contains all those integral curves of (2.4), inside the supersonic
region Q*, which are not globally defined on R. On the other hand, D5 contains the
globally defined solutions, and it may be empty, depending on the system under
consideration.

Lemma 2.3. The following holds: either the set Dy (the set D5) is empty, or there
exists a C' curve, t+(a) (1~ (a)), which is a global solution to (2.4) and satisfies

Qf ={(a,u) :1(a)<u<t(a)}, D3 ={(a,u):u=t"(a)},

(@ ={(a,u) : v (e)<u<z(a)}, Dy ={(a,u) :u<t (a)}).

Proof. For any u close to t(0), u>1(0), one has that «(0, u) is finite: (0, u)> — c0.
Indeed, take any ay <0 and consider the solution ¢ (a) = ¢ (a; ap, t(ap)) introduced
by Proposition 2.2, which tends to t(ap) as a—ap+ . Since ¢*(0)>1(0), by
uniqueness, the trajectories passing through the points (0, #), with 7(0) <@z < ¢™(0),
must lie below ¢ (a); then «(0, %) must be finite (greater then ay).

Arguing in the same way, one can observe that «(0, ) is monotone decreasing as u
increases, u>1(0). Let us set

d=sup{u = ¢*(0;a,t(ap)), ap<0} = sup{u;a(0,u)> — o0}.
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If 7 =+oc0, then Dy = 0. On the other hand, if #< + oo, the trajectory of (2.4)
passing through the point (0,#) is globally defined on R and satisfies the required
properties.

A completely similar procedure works for Q~. [

Lemma 2.4. The map (a,u)— a(a,u) defined on the set Q1 =Qf 0T LVQ| has the
following properties:

® itisa C' map;

® i D} is not empty, then as (a,u)— (ao, 7" (ap)) with (a,u)eQ,, one has a(a,u)—
— o0 the analogous holds if Dy #0;

® ursala,u) is a strictly decreasing map for (a,u)€Qy and a strictly increasing map
Sor (a,u)eQy, a(a,u) = a for (a,u)e 7.

Proof. The graphs of ¢ and ¢~ are the integral curves of the degenerate
characteristic field which can be written in a normalized form as

, 1 Ju
h:m(g_ﬁ‘) (2.11)

Hypotheses (P3) and (P4) ensure that / is a smooth vector field with norm 1. Fix
Uy = (ap,up) €Q2; and define U(z; Uy) = (U, (t; Uy), Ua(t; Uy)) as the solution of the
autonomous Cauchy problem

U =hv), (2.12)
U(0) = Up. '

The curve t— U(t; Uy) describes the integral curve of the linearly degenerate field
passing through the point Uj. Standard results of the o.d.e. theory ensure that the

map (t; Up) — U(t; Up) is C'. Since Uj is in Q| the integral curve crosses the graph of
7 in one and only one point, hence we can define the implicit function #(ao, ug) as

G(f(ao, ug); ap, u()) = Uz(f(ag, u()); dp, uo) — T[U] (f(ao, u()); ap, M())] =0. (213)

But (£; a0, up) — G(t; ap, up) is C', moreover

aa—(:(f(ao,uo);ao,uo) = (/’12 — ‘C//’ll)(U(f(do, uo);ao,uo)) = 1, (214)

since /1; = 0 on 7. Therefore the implicit function theorem ensures that 7(-,-) is C!
and consequently also the function

(ao,uo)l—)U](f(ao,uo);a(),u()) = O((a(),u()) (2.15)
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is C'. As regards the other assertions, they follow directly from definition (2.9) and
standard considerations based on the uniqueness of the solutions to (2.6). [

2.3. A new set of variables

It will prove convenient to recast system (1.1) into the following set of coordinates:

2+ [¢(0;a,u) —t7(0)]  if (a,u)eDy,
0=0(a), z=4 +[1—0(x(a,u))] if (a,u)eQf, (2.16)
=2+ [¢p(0;a,u) — 1 (0)] if (a,u)eD;5,

where 0 is a fixed function that satisfies
0:R—(—1,1),C', increasing, surjective. (2.17)

For instance, convenient choices are given by:
2
0(a) = tanh(a) or 6(a) =—arctan(a).
T

Observe that the quantities ¢(0;a,u), a(a,u) are constant along integral curves
of (2.4).

Lemma 2.5. The variables (z,0) are continuous Riemann coordinates for system (1.1)
on the set Q" and on Q™ (defined at (2.3)); the map urs z(a,u) is strictly increasing for
all aeR and is discontinuous on 7 .

Proof. First we observe that V(,,)0-r, = 0, = 0. Concerning z, observe that it is
constant along integral curves of the stationary equation. By Lemma 2.4 and
standard arguments for o.d.e.’s, it turns out that z is continuous on Qli , Dzi. Assume
that D #0; the following holds:

as (a,u)— (ap, v (ap)), (a,u)eQf = z-2.
On the other hand, as (a,u)— (ap, 7" (ap)) from “above”:
$(0;a,u) > ¢(0;a0, 7" (a0)) = $(0;0,77(0)) = v7(0).
This gives the continuity of z across the graph of t* and then on Q. With similar
arguments, one can deduce the continuity of z on Q™. Then, it is easy to check that z

cannot be continuously extended across the transonic curve .7 . Indeed,

lim z(a,u) = £ (1 = 0(ap)) for any (ag,up)€T . (2.18)

(au)— (ag,up),(a,u) eQ*
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Finally, the uniqueness of the solution to (2.6) and Lemma 2.4 imply that u+> z(a, u)
is strictly increasing for aeR fixed. Hence the map (z,0) : Q7 UQ~ —R? is injective
and consequently (z,0) is a coordinate system on QT U Q™. O

In the following, a key role will be played by the function

z(a,u) +0(a)—1=z+0—-1 if (aq,u)eQ™,
w(a,u)=<¢ 0 if (a,u)eT, (2.19)
zla,u) —0(a)+1=z—-0+1 if (aq,u)eQ.

More explicitly, using (2.16) we get

14 0(a) + [¢(0;a,u) —7(0)]  if (a,u)eDy,
w(a,u) = +[0(a) — 0(a(a,u))] if (aqu)eQfus, (2.20)
—1—0(a) + [¢(0;a,u) — 1t (0)] if (a,u)eD;.

Let us now introduce the two maps @, ¥ defined as follows:

@ : R>>R? Y. RA\T > R?
{ B { TR (2.21)

D(a,u) = (w,0), Y(a,u) = (z,0).

Lemma 2.6. Let w(a,u), z(a,u) the maps defined at (2.19) and (2.16) respectively.

(a) w is continuous w.r.t. (a,u). The map u— w(a,u) is monotone increasing, for all a.
(b) The map ®(a,u) is bijective and bi-continuous from R* to Tm ®.
(©) For a suitable choice of 0, the maps ® and 0~ are locally Lipschitz.

Proof. Concerning (a), the first property follows from Lemma 2.5 and (2.18); the
second holds because of the analogous property of z, and implies that @ is injective
on R?. Concerning (b), we have to prove that the inverse of @ is continuous. Assume
that ®(a,,u,) = (wy,,0,)—(w,0) = ®(a,a), then a,—~a as n— oo, since 0 is
continuous and depends only on a.

Let us prove that also u,, — i; this necessarily follows from the continuity of @ if u,
is bounded. On the other hand, assume that, possibly passing to a sub-sequence,
uy— + 00. If (ay,u,)€Qf (because Dj is empty), then o(ay,u,)— — oo, which
implies the contradiction (w,,0,)— (1 +0,0)¢Im @®. On the other hand, if Dy
is not empty, then ¢(0;a,,u,)—> + oo, which again is impossible because it
implies w, —> + o0.

(c) Lemma 2.4 ensures that the map

A(u) = { o(0,u)  for ue(r(0),7(0)],

—a(0,u) for uelz(0),77(0)) (2.22)
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is C!, strictly increasing and surjective on R. In (2.22) we have posed 77(0) = —c0 if
D; =0 and t7(0) = 00 if DI = 0. Observe that 4'(7(0)) = 0. Now define

e d
=1+ AT+ A AT D+ E 4T (2:23)

where ¢>0 is a normalization constant which makes 6 satisfy (2.17). Definition
(2.20), Lemma 2.4 and standard results on o.d.e. ensure that w is C! when restricted
to the closed set Dy UD; or to the open set Q; = QU7 UQ;. Since w is also
continuous on all R?, to have local Lipschitz continuity we have only to show that its
derivatives are bounded near the boundary of Q;. Therefore suppose Dj #0 and take
(ag,t"(ap)) €09y, if 6>0 is sufficiently small, the map (a,u)r— ¢(0;a,u) is well
defined and C' on Bs(ag, *(ap)), the closed neighborhood of the point (ag, t* (o))
with radius J. Hence the map (a,u)— ¢(0; a, u) has bounded first derivatives on the
set Q1N Bs(ag, v (ap)). The conclusion follows from the identity

Ola(a,u)] = 0[a(0, p(0; a,u))] (2.24)

since by construction, the map u— 0[x(0,u)] has bounded first derivative. Finally
from 6’ >0 it follows that 0~ is locally Lipschitz continuous. [

Now assume that the sets Dy, D; are both non-empty (see Lemma 2.3). As a
consequence, w and z are unbounded from above and below, then Im @ =
R x (—1,1). Let us define

R ={(z,0)eR*: Oe(—1,1), |z[=1-0}, (2.25)
where, in order to have a unique representation for .7, we identify the points
(-1+6,0)~(1-0,0), 0e(—1,1), (2.26)
moreover we define
Y(a,u) = (—1+0(a),0(a))~(1 —0(a),0(a)) for any (a,u)eT .
We have then

RA=PR\T)LT =¥Y(R?), T ={(z,00eR,|z|=1-0}.

If ye .7, we will denote by " the representative with z positive and by i~ the one
with z negative. The representatives of points iy € 2\ are unique. Moreover, we will
use the notation

AT =YQNVT, A =PQ)UT.
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Finally observe that, if either D or D5 is empty, or both are empty, w and z become
bounded from above, below or both, respectively. For instance,

Dy=D;=0 = 2={(z,0):0e(-1,1),|z|>1 - 0,|z|]<2}.

Remark 2.7. In the special case of (1.5) already considered in [11,19], with f(0) =
f'(0) = 0, assume that g(u) never vanishes (note that we require only g(0)#0, (P4)).
If ¥ denotes the anti-derivative of f//g with ¥(0) = 0, it is easy to see that

a(a,u) = a— ¥(u) = const. (2.27)
along the integral curves of the stationary equation. In [19] it was required that

lim |¥(u)| = +oo (2.28)

[u| > 400

to ensure the existence of the solution for arbitrarily large initial data. In this context,
(2.28) is equivalent to (Ps). Indeed, take an integral curve of the stationary equation,
i.e. a solution u(a) to (1.3). Whenever u(a) is defined, we have

a— ¥ (u(a)) = const. (2.29)

If (Ps) does not hold, then there exists an integral curve u(a) and a value a; such that
(for instance) limg- 4 u(a) = + oo, therefore taking the limit as @ tends to a; from
the left in (2.29) we obtain that ¥ has to be bounded as u— + oo and hence
condition (2.28) cannot hold.

On the other hand, let (Ps) hold and take an integral curve u(a) defined on
(ap,+00). Now we can let a go to +oo in (2.29). It is easy to see that ¥(u(a)) and
consequently #(a) must be unbounded and therefore (2.28) holds.

3. The Riemann problem
3.1. The general self-similar solution

Let us consider the Riemann problem for (1.1),

U = (alaul)v X<0,
U2 = (az,uz), )C>07

U(x,0) = { (3.1)

for any U, U>e R?. It will be solved, as usual, connecting the two states with waves
of increasing speed. We will focus on the (z, §) coordinates since in these variables
the characteristic curves of the Ist (standing waves) and 2nd family (homogeneous
waves) are straight lines with the variable z and 0 constant, respectively. We will
denote by = (z,0) the points of the set £.

In this section, our goal is to find at least one solution of the Riemann problem.
However, in general the solution is not unique and one may have multiple solutions
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depending on the shape of the graphs of the functions z and £ defined below. In [13],
some assumptions on f', g are discussed concerning uniqueness/non-uniqueness of
the solution.

Anyway, in the case when « is absolutely continuous, we will prove, in Section 5,
the uniqueness and continuous dependence of the exact solution of the Cauchy
problem, even if the approximate solutions (constructed with the Riemann problem
as building block) are not uniquely defined,' under some additional assumptions on
the source term d'g.

We consider a number of cases, which cover all the possible situations, depending
on the relative location of the left and right states /; = (z1,01) and ¥, = (22,0,). A
set of consecutive homogeneous waves, which have increasing velocities and connect
two states with the same 0, will be denoted by O, 0° and O~ if all the velocities of
the waves in the set are respectively positive, zero and negative (remember that away
from the resonance the flux may be non convex and hence more then one wave may
be needed to solve the homogeneous Riemann problem). While a standing wave,
which always has velocity zero, will be denoted by s if subsonic (z<0) and by S if
supersonic (z>0).

Observe that hypothesis (P3) implies that any homogeneous wave which connects
states in region £ has strictly positive velocity whereas any homogeneous wave
which connects states in region £~ has strictly negative velocity.

1. Y, e%": The hypotheses on f imply that there exists a unique continuous
function () such that

{2(9)<07 0>max{l — z;,—1},
(/¥ )((6),0) = (/¥ ")(z1.,0).

This function describes what in [13] is called the 0-speed shock curve corresponding to
the standing wave 0+ (z1,0). All the homogeneous waves with increasing velocities
connecting the point (z;,0) to the point (z,0) with z<z; have positive, zero or
negative speeds if respectively z>Z(0), z = z(0) or z<z(0). Indeed all the velocities of
the waves in the set must have the same sign of the shock which crosses the resonance
(condition (P3) ensures that the resonance can be crossed only by a shock). If the
shock which crosses the resonance has zero velocity, then it turns out to be the only
component of the set of waves. We now consider five regions, which depend on the
state y:

Ri(fy) = {(z,0)e Rt : 0=1 -z},

Ro(yy) = {(z,0)e ™ : 2<2(01)},

Ri(Yy) = {(z,0)e % : z>2(0),0>max{l — z;, —1}},

Ra(¥) = 2 N[Ro(¥1) © Rs ()],

Rs(¥y) = [ZN\Ri (). (3:2)

"This highlights one big difficulty in simulating numerically (1.1) in a resonant setting; consult also [28].
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Fig. 1. The Riemann problem for a supersonic left state ;.

The Riemann problem has qualitatively different solutions depending on which
region Y, lies. The five cases are discussed referring to Fig. 1.

® YheR (V) VR (Y,):

(z1,01) 2(z1,02) S(22, 02).

® Yr,eR(Y)):

(z1,00) S(22, 01) (22, 02).

® YreRy(Y)):

In this case one has z, >Z(6;), and either z, <Z(6,) or 6, <1 — z;.
Hence there exists 0% between 0, and 0, such that z; = Z(0"). So the solution of the
Riemann problem is given by:

0 S
(21,00) 2(21,07) S(22,07) (22, 05).

L4 lﬁ2€R5(l//1) = {(279)6.%+ :0<1 —Zl}.

If z;>2, this region is empty. If not, note that (—1+6,,6,)¢ Rs3(y;). Then
the waves, in the solution of the Riemann problem, that connect y; to the
state (—1 + 6,,0,) have nonpositive velocity. Hence we have only to add homo-
geneous waves with positive velocity connecting (—1+ 05,0,)~ (1 — 0,,0,) to
(22,02).

2.y, e #": The hypotheses on f imply that there exists a continuous function Z(6)
such that

{5(9)<0, 0>0;,
(f¥~)(2(0),0) = (f~¥")(1 - 01,0).
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This function describes the 0-speed shock curve which corresponds to the standing
wave 6 (1 — 0y, 6). The homogeneous waves with increasing velocities connecting
the point (1 — 61, 0) to the point (z, 0) with z<1 — 6 have positive, zero or negative
speed if respectively z> Z(0), z = £(0) or z<£(0).
We now consider six regions depending on the state i:

Ry, ={(z,0)ez :z<0, — 1},

Rz(lpl) = {(Za 0)69?+ : ngl}v

R3(lﬁl) = {(Za 0)6‘%+ : 020“ z=21 - 01}5

R4(W1) = {(Za 0)€%+ 1020y, z<1 - 61},

Rs(W) = {(z,0) e~ : 030, z>max(2(0), 0, — 1)},

Rs(¥) = [ N\[Ri (1) © Rs(¥,)]. (3.3)

The Riemann problem has qualitatively different solutions depending on which
region Y/, lies. The six cases are discussed referring to Fig. 2.

® YreRi ()

(z1,01) S22, 01) (22, 05).

® yeR(Y):

(z1,01) (05 — 1,00) (05 — 1,05) ~ (1 — 03, 05) Z5(z5, 05).

® YreRs(Y)VR(Y ) URs(Yy):

(21’91)0_;(91 —-1,01)~(1 —91,91)i(1 - 91792)0:’(22,92)-

Fig. 2. The Riemann problem for a subsonic left state ;.
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® yeRs(Y):

In this case one has z,>0; — 1 =£(0), and z;<Z(0,), hence there exists 0"
between 0; and 0, such that z, = 2(0"). So the solution of the Riemann problem is
given by

(z1,01) (0, — 1,0) ~ (1 — 01,0,) 2(1 — 01,0°) L(z5,07) (22, 05).

Remark 3.1. Concerning invariant domains, it is easy to note the following property.
For any pair of states ¥/, ,, consider the closed rectangle D, in the z—0 plan, that
has the two states as vertices and each edge parallel to one of the axes. If all vertices
of D belong to #, then D is invariant w.r.t. the solution of the Riemann problem; if
not, it can happen that D is not invariant (for instance if ¥, e 2", ¥, € Rs({)).

In this second case, an invariant domain is given by the smallest rectangle D, with
each edge parallel to one of the axes, which contains ¥, and y, and has all four
vertices in . This larger rectangle D does not increase the sup-norm: if (z,0)e D,
then

min{0,, 0>} <O0<max{0,,0,}, |z|<max{|z]|,|z2|}

In the original variables a,u, the invariant domains are described by the regions
bounded by the graphs of two standing waves, see Fig. 3. Such domains are not
necessarily convex w.r.t. both variables, but their sections for a fixed are intervals.
Observe that there are invariant domains which are not bounded in the original
variables (a,u); this corresponds to allow the vertices belong to {0 = +1}. In
particular, the domains

I ={(au); z1<z(a,u) <2}, z1,22€R (3.4)
are invariant if and only if: either |z;|, |z2|>2, or |z;|<2 and z; = —z;.
3.2. Entropy dissipation across the standing wave

Going back to the original variables, let us focus on the jump relation on the fluxes
at x =0. For any U, U,, let U(x,t) = W(x/t) be a self-similar solution solving the

Fig. 3. Some invariant domains in the original variables (a, u).
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Riemann problem. Denote by U_ = W(0—) and U; = W(0+) the left and right
trace at x = 0, respectively. In the simplest case, a single standing wave connects
U_to Uy, and

f) - = | " ga, ¢la; U)) da.

(¢ was defined in Section 2.2). More generally, there exist two intermediate states
Ui = (a*,u’y), with a* possibly coinciding with a_ or a,, such that

0
U i(a*, u) 2>(a*, w) > U

Since f(U7}) = f(U?), the jump relation becomes
SUL) = f(U-) =f(Us) —f(UF) +/(U2) = f(U-)
- [ dada v v da (3

where ¢ is the function, possibly discontinuous at one point, defined by (assume
a_<a,, the definition for a_>a, is similar)

$pla_;U_)=U_, a<a_,

~ o(a; U-), a_<a<da*,

MU, U,) = : (3.6)
¢(a7 U+)7 a <a<a+7
Pplar; Ur) =Uy, aza..

We stress that such a function ¢ matches the “asymptotic profiles” computed by the
authors of [20] as the long-time behavior of a scalar conservation law of type (1.5) in
a bounded domain. The jump relation (3.5) is closely related to the ones derived in
[17] relying on the “families of locally Lipschitz paths”. However this theory does
not apply directly to our resonant problem because of the discontinuities appearing
in §.

We end this section with a result about the entropy dissipation along the zero
waves, as we call the discontinuities located at {x = 0}. This generalizes a previous
work (see Remark 3.1 in [9]) where convenient hypotheses forbid resonance.

Proposition 3.2. Let (u) be a smooth convex function and q(a,u) the corresponding
entropy flux:

glau) = /k " @, @),
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where keR is arbitrary. Then, along {x = 0}, we have the inequality:

+

000~ (U< [ laatlo =)@ bl U- V) da (3.7)

Proof. Following [9], we compute the jump of the entropy flux:

+

Q(U+)—q(U):/aa [qa+qug —fa

Ju

= [ o+ Sl Blas U U+ (U3 — (V).

]w,d?(a; U, UL)) da+ q(U") — g(U")

The proposition is proved by the following inequality:
q(UL) = q(UZ) = q(a”,u}) — q(a’, u’) <O,

which can be shown observing that #* and u’_ are connected by an entropic shock
with velocity zero and that u+>g(a*,u) is an entropy flux for the scalar law
u+f(a*,u), =0 O

4. Interaction estimates

In this section we introduce a suitable definition of wave-strength, which is
equivalent to the total variation measured in the singular variables w, 6. Moreover
we will prove that the sum of all the wave-strengths is non increasing in time. These
two properties guarantee that Helly’s compactness theorem can be applied to
approximate solutions.

If the two states ¥, and , are connected by a single zero wave (z constant) or a set
of consecutive homogeneous waves (6 constant), we define the size ¢ of the jump in
the following way:

|21 — 23] for homogeneous waves with z;z, >0,

|z1 — z2] =2+ 20; for homogeneous waves with z;z; <0, @1
|0) — 6] for standing waves with z;(6, — 6,) >0,

316, — 05| for standing waves with z;(6, — 6,) <0.

Recalling the definition of w, (2.19), we have that ¢ = |w(y;) — w(¥,)| in the first
three cases above, and ¢ = 3|w(y,) — w(i,)| in the last one.

Observe that the size of homogeneous waves is the variation of the z variable
across #, while the size of the standing waves is given by the variation of the 0
variable with a weight of 1 for supersonic waves with increasing 0 and subsonic
waves with decreasing 6 and a weight of 3 in the other two cases. Temple (see for
instance [13,27]) chooses respectively the weights 2 and 4. Here we follow Liu [19]
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0
R AB AB 1l
AB AB
g’ Y

Fig. 4. Explanation of the weights choice.

and observe that in the choice of the weight the key point is that the second must be
equal to the first increased by 2. This condition is easily understood in the (z,0)
coordinates. For instance, referring to Fig. 4, consider the four points in Z: | =
(21,01), l//z = (22,92), lﬂ/ = (21,02) and lp” = (22,01) with Z1 >0, 2, <0 and 02>91.
The size of the jump connecting ' to ¥, is equal to the size of the jump connecting
W, to Y plus 2(0, — 0;) = AO. Hence if we want the sum of the sizes of the waves
connecting ¥, to ¥, not to depend on the path, the size of the standing wave
connecting /" to y/, has to be equal to the size of the standing wave connecting i/, to
/' plus 2A0. Obviously, the same is not true if one wants to go from v, to ;. But the
entropy condition on the homogeneous conservation law implies that we cannot go
with a single set of waves with positive (negative) velocities from a subsonic state to a
supersonic one.

To get interaction estimates, the next step is now to show rigorously that three
states ¥, ¥, and ¥, being given, the sum of the sizes of the waves which solve the
Riemann problem with left and right states ¥, and y, are less or equal to the sum of
the sizes of the waves which solve the Riemann problem with left and right states ¥,
and y,, plus the sum of the sizes of the waves which solve the Riemann problem with
left and right states ,, and y,. The rigorous proof involves the study of several cases
and is carried out by Temple [27]. However the introduction of the “Riemann
coordinates” (z,0) simplifies the proof and reduces the number of cases to be
considered, hence we give here a new proof in this coordinate system.

We base our proof on the set % of continuous and piecewise C' oriented curves in
2 with at most a finite number of intersection with . We denote these curves by
using the Greek letter y. Given two states Y/, ¥, € Z we denote by % (¥, ,) the set of
curves in ¢ which connect i to y,. Observe that the solutions of Riemann problems
with left and right states Y, and y, are elements of 4(yr;,,).

In the (z, 0)-plane we define the two norms

Wl =zl 10l Wl =Ilz1+2]0].

Then we give the following two definitions of curve length:

b b
o= Wl de a6 = [l
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where Y(f) is any regular (continuous and piecewise C') parameterization of 7.
Finally we define the functional

F () =10+() - / sgn z do.

Observe that if y is a curve made of consecutive simple waves, then the sum of the
sizes of all the waves is given by 7 (y).
Given two states ¥/, ¥, e Z we define the functional

AWy, 4,) =inf{F(y) : ye9 (Y1, ¥,)} (4.2)

If we are able to show that the sum of the sizes of the waves that solve the Riemann
problem with left and right states ¥, and v, is given by A(y,¥,) then we are done
since from (4.2) it follows directly that

A(l//hlpZ)gA(lplvl//m) +A(lpmaw2)7 vwme%' (43)

For the proof of this assertion, some other auxiliary functionals are needed. We
define a metric d, and the two functionals A", A~ in the following way:

d.(Yy, ) =inf{Z.(y) : ye9(1,¥0)}, Y, Y€,
A+(lplvl//2) = lnf{'g;(y) 2y€g(l//1,lp2) and VC‘@+}7 v‘/lhlpZe‘%Jrv
A"y ¥,) =inf{F(y) :ye9(Y1.¥y) and y= 2™}, Wi heZ™. (44)

From the definitions it is easy to see that A", A~ and 3d, are upper bounds for the
functional A, while the metric d, is a lower bound, in particular

A1) SAW 1Y) <3d (1, ¥2), YW, Yhe . (4.5)

Moreover, since sgn z df) is an exact differential form when restricted to £ or to ™,
we have the following expression for the functionals A*:

AT, n) = [y — ol + 01 — 02,
A (Y1, ¥,) = ¥, _Wz‘fﬁ-@z—@]- (4.6)

Now we state two theorems which give explicit values of the metric d, and the
functional A (their proofs are developed in Appendix A).

Theorem 4.1. Given two states Y, = (z1,01), Y, = (22,02) in R, define 0, =
min (0, 0,) and \,, = (1 — 0,,,0,,) €T . Then

Yy — ol if z2122>0,

4,
Aoy Y) + oY) if 2172<0, (47)

(v = {
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Moreover, having set Aw=w(r;) — w(,), Ab=0; — 0,

(1Aw] +[A0]) <. (o) <2(|Aw] + [A]). (4.8)

Theorem 4.2. Let the two states Y, = (z1,01), W, = (z2,02) be given in R. Then the
Sfunctional A has the following properties:

@) Ify, e and e R*

AW, ) = d(Yy, ). (4.9)
0) If Yy pre
AT Y) Jor 1 —z1 —0,<0,
AW ¥2) = {A+(lpl,¢2> 21—z, — 6] for 1—z —0,>0, (4.10)

© If by, Y€

A (Y, 4) Jor 1+ 2, —0,<0,

A" (Y, 0,) = 2[1 + 20— 04] for 142z, —0;>0. (4.11)

At = {

d) If y,eR” and e R, define 0,, = min(6,,0,) and 0y = max(0;,0,). Then
AWy, ¥) = AW, ¥) + AW, hy) - for any = (1-0,0),  0€[0,,0m]. (4.12)

Now to conclude the interaction estimates, it is enough to check that the sum of
the wave sizes in the solutions of the Riemann problem described in the previous
section is equal to the value of the functional A given in the previous theorem. We
shall omit this proof since it is straightforward.

Remark 4.3. Observe that if v, ..., are the intermediate states in the solution
of a Riemann problem with left and right state respectively equal to , and ,,,
one has

n

AW p,) =D AW, ).

i=1

5. Convergence of approximate solutions

In this section we are about to define a family of approximate solutions to our
system (1.1) with Cauchy data (1.2). Let 6 be a function satisfying (2.17) and denote
by 0y = 0(ay), wo = w(ay, up) the corresponding initial data in the 6—w variables. The
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assumptions on ay, uy are the following:
ag, upeL”(R), Tot.Var.(wy,0)< + o0. (5.1)

We remark that, in general, the total variation of (wy, fy) is not equivalent to the one
of the original variables (ay, ug). If 6 is chosen to satisfy (2.23), then (c) of Lemma 2.6
holds; as a consequence, assumption (5.1) is met if we require a more explicit
condition on the initial data: Tot.Var.(ag, up) < + o0.

Let us fix a spatial mesh length Ax>0 and define for all je Z: x;=jAx,

a®¥(x,0) = ap(xj+), ™ (x,0) = up(xj+) X <X<Xj41. (5.2)
Observe that, assuming (5.1), a®*, u®* are well defined. Moreover, with this choice of
the approximated initial data, the stationary solutions are preserved. If (5.1) holds,
there exists a compact set K; = R* that contains (ag, tg)(x), (a5*, uy*)(x) for all x, it is
not restrictive to assume that K is an invariant domain (see Remark 3.1 and Fig. 3).
Then (zo,0) and (z3¥, 05™) take the values in the invariant rectangle K = ¥(K;) < %.
In the w, 0 variables, K; corresponds to the compact set K = @(K;) =Im @. Now,
we define

A=2 sup
(a,u)e K,

g‘, At = JAx

and discretize R x [0,400) by introducing the points of a grid, (x;,1,), t, = nAt.
Denote by R;, = [Xj, Xj41) X [tn, ty+1) the unit cell.

Then, proceeding as in [13] with the only difference of the choice of the initial data
(we use (5.2) instead of (27) in [13]), a family (a®*,u®¥)(x,t)€ K, is defined by the
Godunov method. Note that K is not necessarily convex as a subset of R? but for
any constant « it is an interval, which is invariant under the average w.r.t. u. Since
the corresponding (22, 0*%)(x, 1) e K, we can always solve the Riemann problems at
every time step, hence the approximate solutions are defined for all times.

At each time f,, the approximate solution is discontinuous at the points x;. We
introduce the functional

F(t) = F(t,) = Z A(lpj—lvlpj)<tn)7 L <t<tyil, (5.3)

Jjez

where ; = (2%, 0%%) (1, X), xe(xj,xj41). By using (4.5), (4.8) and Remark 4.3
we find

ITot.Var.{(w™", 0*) (1)} < F (1) < 6Tot.Var.{(w**, 0% (1)}.
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and consequently from (5.2):
F(0)<6Tot.Var.{(w™", 0°%)(0)} <6Tot.Var.{(wy, 0o)}. (5.4)
We have the following theorem.

Theorem 5.1. Assume (P1)—(Ps) and (5.1). Then for all Ax>0, (a®*,u®¥)(x,t) is
defined for all times and

Tot.Var.{(w™*, 0°%) (1)} <2F (1) <2F(0).
Moreover, for a sub-sequence Ax;—0, we have that (w9, 09) - (w, 0y) and
(@™, u) > (ag,u) in Lige(R x [0, +00))

where w and u are bounded measurable functions satisfying:

@) (ag,u) = @' (w,0);

() the maps t+—w(-,t), t—u(-,t) are continuous in L] (R) and w(-,0) = wy,
u(+,0) = uy;

(c) the following estimate holds:

Tot.Var.{(w, 0y)(¢)} <12Tot.Var.{(wo, 6) }. (5.5)

Proof. From the previous analysis, (wAY,0*¥)e K, hence the L* norm is uniformly
bounded for all Ax>0. The proof that F(#) is nonincreasing follows from the
analogous one in [18, Theorem 1, p. 833], because of the property that ur>w(a, u) is
strictly increasing, for all a (see (a) of Lemma 2.6).

Moreover, the uniform bound on the total variation implies that (w2, #*¥) are
(approximately) L'-Lipschitz continuous in time, uniformly in Ax.

Then, by Helly’s theorem, a sub-sequence (W™, 0> ) converges in L}OC(R X
[0,+00)) to a measurable function (w, ) with values in K. Helly’s theorem ensures
also that the map ¢ (w,0)(-,#) is L'-Lipschitz continuous. Moreover by
construction we have 0(x,7) =0(x) and w(x,0) =wo(x) for any (x,7)eR x
[0,4c0). Now, by using (5.4) and the continuity of @' (see Proposition B.1), all
the other conclusions follow. [

In the previous result the coefficient ¢ was assumed to be bounded. However, it is

also interesting to consider the case of possibly unbounded a; for instance, if a(x) =
x, a very general framework is achieved:

g+ f (xu), = g(x,u),
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but at the price of dealing with an unbounded variable. Let us make a further
assumption:

(Pg) for any compact K in R, f,(a,u) is uniformly bounded on R x K.

Condition (Pg) is trivially satisfied if f* does not depend on a. It ensures that signals
evolve with a finite speed of propagation in time (see [24, p. 44], of the French
version).

We have the following theorem.

Theorem 5.2. Assume (P;)—(Pg),

® qyeL; (R), upe L™ (R), Tot.Var.(wy, 0y) < + o0;

® (ag,uy) takes its values in an invariant domain ¥ having the form J =
{(a,u); z1<z(a,u) <z} (see Remark 3.1);

® 7 is uniformly bounded w.r.t. u.

Then the same conclusion of Theorem 5.1 holds.

Proof. Define /Iﬁ2supw,)ej|g—’;|, which is finite because of (Pg) and the assumptions
on .#. Then define (¢*¥,u*) as in the proof of Theorem 5.1; by construction,
(@™, ub¥) (x,t) e for all (x,)eR x [0, +0).

The corresponding sequence (WAX,GAX) satisfies the assumptions of Helly’s
theorem; therefore, there exists a sub-sequence (WAXJ‘,HAXI') that converges to a
function (w, 0) in L,lOc as j— oo, and (5.5) is satisfied.

For any compact subset H of R x [0,4+ ), (a®,u’)(H) is contained in a

compact set K<.# independent of Ax; then we can proceed as before and get a
function (a,u) in the limit, with u(x, ) bounded. O

6. Entropy inequalities and consistency

In this section we show that, under some additional regularity assumptions on
a = ay, the limit function (&, u) of Theorem 5.1 satisfies Kruzkov entropy inequalities
and hence is a weak solution of (1.1) (or, equivalently, of (1.4)).

Assume that ae Wloc( ); then a is absolutely continuous on compact sets and the
classical Kruzkov entropy inequality [16] makes sense; within our hypotheses, it can

be written as

//+Oo{uxt — Ko, (x, 1)

+ senfu(x, 1) — K|[f (a(x), u(x, 1)) = f(a(x), K)o (x, 1)
+sgnlu(x, 1) — kllg(a(x), u(x, 1)) = fu(a(x), K)ld (x)@(x, 1)} dx dt=0,  (6.1)
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where ¢ is a nonnegative C' function with compact support in R x (0,4 0)
and k is a real constant (for definiteness we assume sgn(0) = 0). Recall that
the validity of (6.1) for |k| sufficiently large implies that u is a distributional solution
of (1.4).

We have the following theorem:

Theorem 6.1. In the assumption of Theorem 5.1, if a=age WILCI([F\?), then the limit

Sunctions (a,u) satisfy the KruzZkov entropy inequalities (6.1) for any nonnegative C!
Sfunction @ with compact support in R x (0,+00) and for any constant k € R.

Proof. Fix a constant k and a nonnegative C' function ¢ with compact support in
R x (0,+00). For notational purpose define

1) = |o—kl, g(b,v) = sgn(v = k)[f (b, v) = f (b, k)].

Let EeC?(R) be such that: E”>0, E(v) = || for |v|>1 and E'(0) = 0. Then the
sequence 1°(v) = ¢E(=K) converges to 7j(v) in C°(R), as ¢—0.
If we fix

n=rfs q=qb) = /k A (B)alb,5) o, (6.2)

then, for any constant b, (1,q(b,-)) is an entropy—entropy flux pair for the
homogeneous scalar law u, + f (b, u), = 0.

Let (a',u") be an approximating sequence that converges to (a,u)
in Llloc, as v— + oo, let Ax, be the corresponding mesh size and consider the
quantity

L= [ 000, + a0+ ) fgan) = ol k)l ] d .
Clearly, as v— + oo, the Lipschitz continuity of # and ¢ implies:
Lomto= [ 1o+ gla.no+ 1/ Glala.n) ~ fa. D)ol dvdr. (6.3)

Now we restrict our attention on the integration over each cell R;, = [xj, Xj11) X
[tn, tas1). Since @ is constant over R; ,, the couple (1, ¢(a",-)) is an entropy—entropy
flux pair for the scalar law u, + f(a",u), = 0 in that cell, moreover, by construction,
u’ is an entropy solution of the scalar law in the same cell. Therefore, observing that
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a'(xj+) = a'(x;;1—) = a(x;) and integrating by parts, we can compute

[ o +at@ s dva
g /f”“ [g(a(x;), " (i1 =, 1)) (xj41, 1) — qla(xz), u" (xj+, 1)) @ (x5, 1)) dt

Xj+1
+ / (" (%, ts1 =) (X, tusr) — 0(u(x, 1)) (X, 1)) dx. (6.4)
Now integrating over every cell R;, and then rearranging the summations we get

/ ()0, + g(a i p.] i di = / dvdi
RxR* jGZ 70

/ n

-y 3 0 () — 0 a0 6 1)

n=l jeZ J
+J>
/ (a(xje1),u" (Xje1+, 1)) = qla(x;), w' (xp1—, )@ ()41, £)dt
JjezZ
=J, + 2. (6.5)

&,V

The first term: .L“ By Jensen’s inequality and the definition of u'(x,?,) in the
Godunov scheme, one has for any X e (x;, Xj41):

1 Xj+1 i 1 Xj+1 ,
n(u%x,rm:n(m / u‘(x,zn—mx)s a | ) dx

J ]

and hence for some X e (x;, xj41):

[ i )~ ot )

A

Xj+1
<|\w|lcl\lf1llclev/ | (x, 1) — " (x, 1y —)| dx
Xj

+ @(x), 1)

Aoy (' (%, 1)) — / T (s t,,—))dx]

Aj
1 , ,
<|\90||cl\|’7||clj/ | (x, tn) — u" (x, t,—)| dt dx.
Y JRip-1

Finally, if we sum this last inequality over n>1 and jeZ we get

—||<p||cl||n||cl-/| (x,0) — &(x, 0)| dt d,
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where 4 is a suitable bounded open set containing the support of ¢ and @', @’ are
defined by

a'(x, 1) = u'(x,t,)

for (x,1)eR;,_1, jeZ, n=1.
V(X,l) ( ) J 1 ]

<

u'(x, t,—)
Proposition B.2 ensures that #' and @’ converge to u in L} (R x R"), since, for any
(x,t)€R; 1, @' (x,t) and @'(x,t) belong to the convex hull of u([x;, xj41], t,—),
hence we have for instance for all (#,x)eR;,—

w(a"(x),d" (x,1)) — w'(x, t,—)| <Tot.Var.{w'(-, t,—), [xj, Xj31]}.

Therefore we get

lim inf J;, >0. (6.6)

V— 400
The second term: J;, We first observe that the two states
Ui ()= (a(x),u" (1=, 1)) and - U (1) = (a(xg40), 0" (414, 1))

are connected by a zero wave. Recalling (3.6), the map a— ¢(q; v, U]‘+) is a Borel
function. Hence, applying Proposition 3.2 and the (absolutely continuous) change of
variable a = a(x) (see [25]), we obtain

qa(xi), u' (g1, 1) = qla(x;), u’ (xj1 =, 1) = q(U;7 (1)) = q(U}~ (1))

< [ o SN0, Ba: U (0. U 0) o )

A

- /x/ﬂ (90 +1'(9 = fa)l(a(x), " (x, 1)) - d(x) dx, (6.7)

where we have defined
i (x, 1) = ¢(a(x); Ui~ (1), Uj”(t)) for (x,1)e[x;, x;11) x RF.
Now, we define also
@' (x,1) = p(xj11,1) for(x,1)€x;, xj41) x RT

and, using (6.7), we get

= [ ol o~ f)(abo. )9 (e v,
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We claim that @' —u in Llloc. This, together with the fact that ¢"— ¢ uniformly,
allows us to obtain

V—>—4+o0

lim inf Ji,} - /R N d(X)|qa +1' (g —f))(a(x),u(x, ) p(x, 1) dxdt.  (6.8)

It remains to prove the claim regarding " (x, 7). If xe[x;, x;41] and a(x;) <a(x;i1),
define

a(x) i a(y)<a(x) <alun),
2 ={ alx) if alx)<a(x),
a(xje1) if a(x)Za(xj)

The definition of a'(x) if a(x;)=a(xj+1) is analogous. Clearly one has
@ul, <lla'ul] , and @u—a in L,(R) (note that [a*(x) — a(x)]| <|a"(x) - a(x))).
Moreover, recalling (3.6), we observe that

$lax): U, U = $@ () U, U, xelngxsl.

Fix now (x,?) € R;,, from definition (3.6) we know that $, as a function of a, has at
most one discontinuity point located between a(x;) and a(x;41). Suppose hence that

¢ is continuous on the interval with a(x) and a(x;y) as extrema (if it is not
continuous in this interval, we take the other interval which has as extrema a(x) and
a(x;)). Hence we can compute

w(@" (x),d"(x, 1) = w" (X114, 1)
= |w(@ (x), (@ (x); U}~ (1), Uy (1)) = w(U (1))
=10(@"(x)) = 0(a"(x+1))]
<|0(a(x;)) — 0(a(xj+1))| = Tot.Var{0", [x;, x;+1]} (6.9)

since along a simple standing wave one has |Az| = 0 and hence |Aw| = |A0)|. The last
inequality shows that we can apply Proposition B.2 and obtain that ¢’ - u in Llloc as
Vo + 0.

Concluding the estimates: Now, putting (6.8), (6.6) and (6.5) into (6.3), we obtain

I, = lim I,,> liminf J! +liminf J?
votow v—+00 ’ V=400 ’

+ [ Wl - fia Rldg drds
RxR*

>/ {n' (W[ fula,u) — fula, k)] — qa(a,u)}d ¢ dx dt. (6.10)
RxR™
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But we have the inequality:

' (u) [ fala,u) = fa(a, k)] = qa(a, u)| = ’/ku[n’(u) =1 (O)faul(a, &) d&
< 2ellEller LS e (6.11)

because i’ (u) = n' (&) for u, E¢ [k — ¢,k + ¢]. Therefore the following inequality holds:

1> -~ 2lElalf e [ ldlodvdr

X
which implies

liminf 7, >0.

e—0

Finally, the integrand in (6.3) converges pointwise as ¢ —0, hence by the dominated
convergence theorem we can pass to the limit and complete the proof of Theorem
6.1. O

7. Uniqueness for ac W,>! (R)

loc

We are now in the position to study uniqueness and stability for (1.4), in the spirit
of Kruzkov ([16, Theorems 1 and 2]. To apply directly these results, the coefficient a
should be assumed to be more regular, ae C' (R). However, by refining the proof, the

estimate for uniqueness can be recovered for ae Wll)c] in the case of d'g,(a,u)
bounded from above. Notice that in this case, @’ has no atoms; hence the product
dg(a,u)(.,t) is a well-defined L'(R) function for #>0 (cf. with [11,17,29]).

Theorem 7.1. Assume that [, g are smooth. Let M, R>0 be two positive constants; let
ae WENR) satisfy

loc
y=sup{d (x)g,(a(x),w): xe[-R, R}, |[w|<M}< + «© (7.1)
and define
L=sup{f,(a(x),w): xe[—R, R], |w|<M}. (7.2)

If u(t,v), v(t,x) L (R x [0, +00)) are such that

® |fufl o, [fvl] o < M;
® they satisfy (6.1) for all ke R and (/)eCi(IR x (0,400)), =0;
® tu(-t), trso(-,t) are continuous in L] ;



262 D. Amadori et al. | J. Differential Equations 198 (2004) 233-274

then for any t€[0, R/L] the Kruzkov estimate holds:

/R_L[ [u(x, 1) — v(x, )] dx<e"”/R lu(x,0) — v(x,0)]| dx. (7.3)
R

—R+Lt

Proof. We assume the reader familiar with the proof and notations of [16, Theorem

1]. Let ¢ >0 be C' with compact support in R x (0, +o0); the proof aims at deriving
the inequality

0< / {Ju(x,t) — v(x, 0)|d,(x, 1) + sgnfu(x, ) — v(x, )]
Rx(0,+00)
[f(a(x),u(x, 1)) = f(a(x),v(x, 1))]d.(x, 1) — sgn [u(x, ) — v(x,1)]
“lg(a(x), v(x, 1)) — g(a(x), u(x,1))] - ' (x)p(x, 1)} dx dt. (7.4)

From (7.4), we use (7.1) to get a Gronwall-type estimate and obtain (7.3) following
exactly [16], since those computations are not affected by the lower regularity of o’
In the rest of the proof, assumption (7.1) is not needed.

1. Let N,T>0 be two constants such that the support of ¢ is contained in

Q=(—N,N) x (0,T). Define the C' function ¢ as

q)(x,l;y,f):dJ(x;Ly,t;T)ih(x;y,t;T), (7.5)

where A, (a,b) = o,(a) - o5(b),

5;1(a):%5(%), 5:R—-[0,1]eC”, [ d(x)dx=1,0(x)=0 Vxe[-1,1].

— 0

Observe that if % is sufficiently small, ¢ has compact support contained in the open
set ¥ =0Q x Q.
The analogous to inequality (3.4) in [16] is given by

4
Z /Ph X, t;y,7) dxdtdy dv=0 (7.6)

with

Pi(x,t;y,7) = Fi(x, t; y, 7 u(x, 1), 0(y, 7))

xih(xgy,t;T>, i=1,24 (7.7)
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(the term P’; will be considered later on) and

Fi(x, t;y,t;u,0) = |u_v‘¢[(XT+y7l‘Jgr),
Pyl 5, 7.2) = sgnlu - ][/ (a(e). ) — f(ay) o) (12 5T,
Fy( 2y, 7510,0) = sgnfu — efa(). w)a () — g(a(3).0)a 09} (32 1),

Now, if |ul, |v1], |v2] < M, then easy computations show that there exists a constant
C>0 depending on f, g, ¢, M and ||a||Lm<(_N7N)) such that for i = 1,2,4 we have

|Fi(x, t; v, t;u,v1) — Fi(x, t;x, t;u,02)|
ST+ d () +1d ) - ([t =<l + |x =y + la(x) — a(y)| + [v1 — va])
+1d (x) = d (W] =F(x, ;y,7501,02).
2. We claim that

X—yt—r1
272

fim | F(x, 13,7000, 7), 006, 0)) A

h—-0 @G

) dxdidyde=0.  (7.8)
If (7.8) holds, following [16] we obtain for i = 1,2, 4,

]lin}) Pﬁ‘(x,t;y,r)dxdtdydr:4/ dx dtF;(x, t; x, t;u(x, t),v(x,t)).  (7.9)
=0 Jg Q

To prove (7.8), we make the change of variables:

é:x, x:é7
s=t, t=s,
n=x=-y)/2 |y=<-2n,
o= (t—1)/2, T=1s5-—20.

(7.10)

Because of the presence of A, in integral (7.8), in the new variables, integral is
restricted to the set (¢,5;7,0) € Q x [—h, h] x [—h, h]. Now we can analyze the various
terms in (7.8):

® The continuity of the translations in L' implies:
h h
/ dé ds/ dn/ dold (&) — d (& — 2n)|An(n, o)
Q —h —h

h
h—-0
:/}wmmmwm—dc—ﬁmyme—eo
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The uniform continuity of a implies

h
/ dé ds / dn [ do(1 +1a(©) + 1 (¢ = 2n)
(1201 + 129] + |a(8) — a(é — 20))7a(n, o)

N+h
<2T/ (1+2[d"()]) d&- <4h+ sup Ia(é)—a(£—2n)l>

~N—h JEI<N, Inl<h

h—0
=0.

Concerning the last term

h h
/deds/_h dn/_h do(1 +|d (&) + |d (¢ — 2n)])

X |U(€,S) - U(é - 27’],.5' - 20)”%(’77 O-)a

simple changes of variables show that it can be written as the sum of integrals of
the form

/dn/ dady(n)on(o /lk $)|w(&,s) —w(& — 25,5 — 20)| dE ds

with y e L' (R?) and we L” (R?). The continuity of the translations in L|,_ ensures
that there exists a sub-sequence (n;,0;)—(0,0) such that w(¢—2y;,s
20;) —»w(,s) a.e. (£ 5)eR% Hence the dominated convergence theorem and the
uniqueness of the real limit Z = 0 imply

lim / w(&, 8)|w(é,s) —w(&—2n,5s—20)|déds—¢ = 0. (7.11)
1n,6)—(0,0) JRr2
Therefore also the last term in (7.8) tends to zero as 1—0.
3. Now we consider the term P and want to show that

/P{;(x, b5 y,7) dx di dy dz"=20; (7.12)
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this fact, together with (7.6) and (7.9), gives finally (7.4). The term P’; can be written
as (see (3.4) in [16])

Pg’(x, 5Y,7)
= sgnu(x, 1) — v(y, 7)] '%{fp(n 6y, f(a(y),v(r. 7)) —f(alx),v(y,7))]}
+ sgnfu(x, ) — v(y,7)] 'a%{ﬁo(x, ty, ) f(a(y),u(x, 1)) — f(a(x),u(x, 1))]}.

Consider now the two functions

Q’l’(x7 t;y,7) = sgnfu(x, 1) — v(y,1)]¢ (X ;y, ! —; T)

% Ufala(), u(x, 1)) — fula(x), o7, r))]a%
< [lat) = at)as (555

O3 (x, 1;,7) = sgnu(x, 1) — v(x, )](x, 1)
: : 0
X [fll(a(x)7 M(X, Z)) _fa(a(x)’ U(X, Z))]a_y

x [l — atla (25 |

Since, for A sufficiently small, Qg is a total derivative (with respect to the variable y)
of a function with compact support in %, then one has

/ Ol (x, t;y,1) dx dt dy dt = 0. (7.13)

Now we can estimate

|01(x,153,7) = Q3 (x, 15y, 1)| < Cilh + |o(v, 7) — v(x, 1))

X—yt—r

[0 (25 + ) - atw)

(35

where C;>0 depends only on f, g, ¢, M, ||al|,=(_y ) and [[d]|c1 but not on /. We

have already seen that the integral of the term which has /; as a factor tends to zero
as h—0. The other two terms can be analyzed with the change of variables (7.10):
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® Using the Fubini theorem we compute:

/h|a ~alx \5,1( ) hh](x;y) dx dt dy dt
1| &2
<4/dé ds/ dn/ daéh(a)f/ d(z)dz
¢
h f+2h
<—/ dﬁ/ dn/ (z)] dz
14

2h N+h ho0
<8T/ df/ |dz<32hT/ ld (&) d"=20.

2h N—h

® Using the L! continuity of translations, (7.11) and again the Fubini theorem we
get

r—1\ 1 X—y
[gh)()@ 1) —ov(y,7)| - laly) — a(x)|5h( 5 )/21 —h i ( ) dx dt dy dt
h h
S%/Qdéds/_h dn/_h dody(a)|v(S,s) —v(& = 2n,5 — 20) \/ \d (& +2)| d=
h h
<% / L / dady(o) / dé dslg(&,s)|d (8)] - [v(¢,5) — v(¢ — 20,5 — 20)|

ST e [ a2 - aorto
hJ- =y
Therefore we have proved:
L|Qll’(x, y,7) — Oh(x, 3, 7)| dxdtdydrh;? 0, (7.14)
which, recalling (7.13), implies that
L Q]f (x,t;y,7) dx dtdy drt =00. (7.15)

With the help of the inequality

S (az,u) = f(ar,u) = [f (a2, 0) = far,0)] = [falar, u) = fa(ar,0)] - [az — a]]

2
Sl lleslar = an|” - |u — o]
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and carrying out the derivatives in the definitions of P’3’ , O we compute

|P131(X, f;y,’L') - Qllz(xa t;y,‘c)|

<G {0+ 1d0Ia) - at)] +100) - ) s (521 5)

+la(x) — a() - o (l . T>hi21[—h,h] (5% } (7.16)

where, as usual the constant C, >0 does not depend on 4. We have already proved
that the integral of the first term in the right-hand side of (7.16) tends to zero as
h—0. Concerning the last term we compute

/\a —aly 5,,( );21[ i ](x_y) dx dt dy dt

%/ di/ dnla(&) — a(é - 2n)f

h 2h
ST s @ —ac-2l [ o [ [ i)

[EI<N, [nl<h

N+h
<47 / dZld (). sup  |a(é) — a(é —2m)| "0 0.
—N—h [E|<N, In|<h

Therefore, recalling (7.15), we get (7.12), completing the proof. [

8. Concluding remarks

We close this paper with some final remarks.

1. When the coefficient « is discontinuous, by means of Theorem 5.1 we deduce the
existence of a limit function that we can regard as a solution, in some sense, of (1.1),
(1.2); however, this case is not covered by our Kruzkov-type results, hence we cannot
obtain uniqueness.

2. Condition (7.1) in Theorem 7.1 is necessary to have the bare uniqueness of the
entropic solutions, as can be seen by the following Cauchy problem:

u? u
e <7>x: T o), (8.1)
u(0,x) =0
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which has the following two entropic solutions for (x,f)eR x [0, 3]:

2
0 for x¢ (0’16)’

2
vx for xe (O’Z_6>'

u(x,1) =0, w(x,t)=

This example is very simple but does not satisfy our condition (P4). To obtain a
counterexample satisfying all our conditions (P;)—(Ps), it is enough to substitute u in
the source with 1 + u which does not vanishes on the resonance point u = 0. Then for
the initial data u(0,x) = 1 — 2 - 1194 ,)(x) there are again two entropic solutions. We
do not describe in details this counterexample since it only requires some
straightforward technicalities.

3. Another way to find a solution is to approximate a by smooth functions &
which also satisfy (5.1) with a uniform upper bound on the total variation of the
transformed variables. The corresponding solutions u° are compact in the sense
described in our paper, hence we can extract a converging sub-sequence to a
“solution” u. If moreover a,g,(a,w) is bounded from above and we can choose an
approximating sequence a° with a%g,(a’,w) uniformly bounded from above, then
(7.3) holds for the approximate solutions with the same e. Therefore with a
diagonalization argument (as described for instance in [1]) one can show the
existence of a Lipschitz (with respect to the initial data) semigroup of “solutions” for
a discontinuous a. But this implies neither uniqueness for the semigroup nor for the
entropy solutions. To have uniqueness one should also characterize the semigroup’s
trajectories, as done in [1].

Appendix A. Interaction estimates: technical proofs

Proof of Theorem 4.1. Suppose first zyz; >0. If y’ is the segment joining y, and ¥/,
one has 7, (y') = |y, — ¥,|, hence d. (Y, ¥,) < || — |, For the converse inequality
take ye%(Y,¥,) and a parametrization ., (1) = (z,(2),0,(2)). We call 7e4(, )
the curve which has as a parametrization the function (1) = (z;(¢),0,(¢)) where
z;(t) is defined by

z,(t)  if z,(t)z1 >0,
Zy'(l) = .
—z,(¢) if z,(#)z1 <O.
Clearly one has 7.(y) = /.(7) and since 7 is entirely contained in #% or #~, the
length /. (7) is greater or equal then |y, — ,|,, proving the first equality in (4.7).
Concerning the other equality, suppose that y, e 27 and ,e %™, the other case
being similar. Take ye % (¥, ), one must have v T #0 (we use the Greek letter y
also to denote the support of the curve). Hence take = (1 — 0,0)eyn.7 and
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9,€9(W,, V) and y,€9( ), y,) such that y = y, U7,. Applying the first in (4.7) we get
£(7) = () + La(p2) Ay ) + de(Pohn) = [y =9 L+ [0 =,

Therefore we can write
L2 W =0T+ T =l
=lz1=(1=0)+101 =0+ | =140 — z2] + |0 — 02| =h(0).

Observe that /(6) is continuous, piecewise linear; since 6; =1 —z; and 0> 1 + zo,
the function /(6) is minimized on an interval which has 6,, = min(6;,6,) as an
extremum. So we have

/*(V>>h( 177) = (lphlpm) + d (lﬁmvlpZ)

which yields the desired equality. Finally, let us prove (4.8). If we take a C' function
(z(1),0(2)), by (2.19) we easily find

;0@ + W (@O <2 ()] + 10" ()] <2(w ()] + 0" (1)]).
Then, using the definition of d, and simple inequalities, we get (4.8) [

Proof of Theorem 4.2. (a) Take 6,, = min(0,,6,) and set ,, = (1 — 6,,,6,,). Since
0,,<0; and 0,,<0,, then the equalities A~ (Y, ¥,,) = d.(¥,,¥,,) and AT (,,,,) =
d.(,,, W) hold. Hence applying (4.7) we get

A(lplal//2)</1(lpl7lpm) + A(lpm?lpZ)S A7(¢1>¢n1) + A+(l//m= lﬁz)
:d*(‘//hlpm) + d*(‘//mv WZ)
=d.(1,) (A.1)

which, together with (4.5), proves (4.9).
(b) If 6,=6,, (4.10) follows from the equality d.(,,¥,) = AT (Y, ¥,).
Take now 0, <0, and hence 1 — 0, <min(z;,z>). Then take a path ye 4y, ¢,). If

y< A", then F(P)=A" (Y, ¥,). If instead yz#" then there exists a state } =
(1—0,0)e7 Ny and two curves y, €%(\;, W) and y,€ 4(, y,) satisfying y = 7y, U7,
and y, =#*. Since W e <R we can apply (4.9) to obtain:

F)=F ) +F ()2 A W) + AW ) = AT (W) + du(P, 1) = h(0

~—

where the function /4 is defined by

h(0) = |z — (1= 0)[ +2[0; — 0] + 01 — 0+ |1 — 0 — 23| + |0 — 0s].
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The function £ is minimized on an interval which has 0; as an extremum, hence we
can write

F)zh(0) =21 —(1=01)+z— (1 =01)+ 0, — 0,
=|z1 — 2| +2glig{zf —(1=01)}+ 01— 0. (A2)
We have two cases: |
® | —z; —0,<0: then
21— (=020 -0, z—(1-0)=21-0,—(1—-0,)=0,—0,
which implies

F ()= |z1 — 22| 43|01 — 0o = AT (Y, 1)

® | —z;—0,>0:then z0>1— 0,>z; and
r{llir%{zi—(l—el)}:zl—(1—01)291—02—1-21—14—02
which implies

F(y)Zlz1 = 22| + 3100 = 02 = 2[1 — 21 = 2] = AT (Y, %) = 2[1 — 21 = 02].

Putting together all these inequalities we have for any ye % (y, ¥,):

N

()))Z{A+(l//1,¢2) for 1 —z; — 6, <0, (A3)

/1+(l//1,lp2)—2[] —21—02] for 1 —z; — 6,>0.

Finally (4.10) is obtained observing that there exists a path 7e%(y,,¥,) (i.e. the
solution of the Riemann problem described in Section 3 for the cases y, e,
WV, € R (Y,) and Y, € Rs(,)) for which inequality (A.3) becomes actually an equality.

(c) The proof of this point can be carried out in exactly the same way than
point (b).

(d) Take ye%(y,¥,), the hypothesis implies that there exists a state i =
(1—0,0)eJ nyand two curves y, € 4(y,, V) and y, € 9(, s, ) satisfying y = 7y, U7p,.
Hence we obtain

F () = F (1) + F (0) 2 A1, %) + AW, ;) = h(0).
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Since ¥,y eZ" and ,y,e#  we can apply (4.10) and (4.11) to explicit the
function A:

h(0)=1]z1 — (1 =0)|+2]0, — 0|+ 6, —0—2(1l —z; — 0)O[1l —z; — 0]
+10—1—2|+2[0—=0:]+0,—0—-2(1 4z, — 0)O[1 + z, — 0], (A.4)

where we have denoted by @ the Heaviside function. Using the identity 2x0(x) =
x+ |x| for all xeR, we find that A(0) = const. + 2|0 — 60,| + 2|0 — 6,|, which is

minimized for 0e€[0,,0]. Therefore for any ye%(y,,¥), ¥ = (1 —0,0) with
0€ (0,02, we have

F(7)=2h(0) = AW, ) + A, )

which proves (4.12). [

Appendix B. Technicalities for the Godunov scheme

Proposition B.1. Let (X,%,u) be a measure space, let F:KcR'->R" be a
continuous function with K compact and let a sequence f,: X > R" of integrable
Sfunctions satisfy:

o f—finL'(X R");
® f(x)eK ae on X;

then, if acL!'(X,R), one has that f(x)eK ae on X and oF(f,)—oF(f)
in L'(X,R™).

Proof. Take a sub-sequence aF( f,,), we can extract a sub-sequence f‘,.,.k converging

almost everywhere to f, hence f(x)eK a.e. xe X. Moreover the continuity of F
implies that aF(f,, ) converges almost everywhere to oF(f). Since F(K) is compact,

|F(f,)| is uniformly bounded a.e. by a constant R, hence |aF(f,, )|<R|x| a.e.
and the dominated convergence theorem ensures that oF(f,, )—oF(f) in

L!(X,R™). The arbitrariness of the choice of the initial sub-sequence concludes
the proof. O

Proposition B.2. In the assumptions of Theorem 5.1, consider a sequence (a',u") that
converges to (ap,u) in Ll as v— + co, and let (w',0") = ®(a*,u").
Let (a"(x),@"(x, 1)) be a sequence of measurable functions, such that

(@) @ —agin L, asv— + o,
(b) Tot.Var.{0(a")}<C - Tot.-Var.{0y}, for all v,
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(c) there exists a positive integer N such that, for any veN, jeZ, neN and for all
(x,2)€R;,, one has

inf lw(@ (x),a"(x, 1)) = w'(y, )]
(158) € [N XN X [t sty1]

< CTot.Var{(w",0")(-, 1), [Xj-n, Xjn]},

b I+t
where t, = —”+2”“,

for a suitable constant C>0. Then

' —u in L, as v— + 0.

Proof. In the proof of Theorem 5.1 we showed that w'(x,t)—>w(x,1)
=w(ap(x),u(x,t)) in L. Now we prove the same property for W' (x,?)
=w(a"(x),a"(x,1)).

Let KR x [0, 7] be a compact set and compute

/KW(x, 0 — w0 dedi =Y Z/Km;,.,, 5 (x, £) — w'(x, )| dxdr.  (B.1)

jeZ n=0

Fix 6>0, for all (x, ) eR;,, by hypothesis, there exists (y*,s*) (possibly depending
on (x,?)) such that |y* — x;| <NAx,, s*€[ty, t,+1) and satisfying:

0

¥ (x, 1) —w'(y*,s")|<C-Tot.Var{(w",0")(-, 1), [Xj—n, Xj3n]} + I

By construction, there exists a point (x*,s*)eR;, such that w"(x,?) = w"(x*,s*),
hence we can compute

9, 1) — (e, )] < [0, ) = 0 (0 ) 4 (0 8°) — ' ()]

0

< (C + I)Tot.Var.{(wv, 9")(-7 fn)7 [Xj,]v, Xj+N]} + m

Putting this inequality in (B.1), because of the arbitrariness of J, we obtain

/ [ (x, 1) — w'(x,1)|dx dt< (C+ 1) Z Ax,At, 2NTot Var.{(w",0")(-, 7,) }
K

n=0,,<T

< (C+ 1)4NF(0) - TAx, —0.

Therefore w’ — w in LlloC as v— + oo. Finally, we apply twice Proposition B.1, first to
show that 0(a") — 0, and again to prove the convergence of (@', ") = @' (W', 0(a"))
to (ap,u). O
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