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Abstract

The aim of this paper is to study the rigorous theory of nonlinear geometric optics for a contact dis-
continuity and a shock wave to the Euler system for one-dimensional gas dynamics. For the problem of a
contact discontinuity and a shock wave perturbed by a small amplitude, high frequency oscillatory wave
train, under suitable stability assumptions, we obtain that the perturbed problem has still a shock wave and
a contact discontinuity, and we give their asymptotic expansions.
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1. Introduction

The topic of nonlinear geometric optics is to study high frequency oscillatory waves in non-
linear problems by using the method of multiple scales, and to rigorously justify the asymptotic
properties of oscillations. Thanks to its width and importance in applied mathematics, there is a
rich literature devoted to the study of this topic (see [3,4,12] and references quoted therein).
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This paper deals with the nonlinear geometric optics for gas dynamics in one space vari-
able with background states being a shock wave and a contact discontinuity. The problem with
background states being shock waves was studied by Corli [1] and Wang [10] for the case of a
single shock in one space variable. Williams [12] established a rigorous theory on the nonlinear
geometric optics for a single multidimensional shock. The case of two shock waves for a 2 × 2
conservation law in one space variable was studied by the second author in [11], and the work
of [11] is generalized to the general N × N conservation law in one space variable by Peng and
Wang [7] recently, which has many prototypes in physics and mechanics such as gas dynamical
systems. Under the assumption of simpler form similar to [8], Corli [2] has established a rigor-
ous result for the case of a contact discontinuity in one space variable. As already mentioned,
until now, most of the analysis has either been concerned with the nonlinear geometric optics
for hyperbolic conservation laws with background states being shock waves, or one with back-
ground being contact discontinuity. In this paper, we first study the case of a shock wave and a
contact discontinuity as background states. For simplicity, this paper is devoted to the study of
one-dimensional gas dynamics. It is not difficult to see that our investigation can be generalized
to the general M × M system by combining the ideas of [2,7] with this article.

Comparing with the other works, the main difficulty that we encounter is that here we are
not only concerned with noncharacteristic problem for shock wave, but also concerned with
characteristic problem due to the presence of a contact discontinuity. In order to overcome this
difficulty, for the noncharacteristic problem, we use the method given by Wang in [11], while
for the characteristic problem, we use the one given by Corli in [2]. What we need to do is how
to technically combine the two methods. It is worth to strengthen, to solve nonlinear problem,
we need stability conditions on shock wave and contact discontinuity, which are always valid for
weak shock and weak contact discontinuity.

Let us now describe the content of this paper. In Section 2, we present the problem of shock
wave and contact discontinuity as well as that of leading profiles by using the method of multiple
scales and state our main result. Then, in Section 3, we shall study the problem of the oscillatory
shock wave and contact discontinuity. We study the problem of leading profiles in Section 4.
Finally, Section 5 is devoted to the proof of the asymptotic expansions of the oscillation problem,
which gives the nonlinear geometric optics.

2. Formulations of the problem and the main results

2.1. Formulations of the problem

We consider the following one-dimensional non-isentropic gas dynamical system

⎧⎪⎨
⎪⎩

∂tρ + ∂x(ρv) = 0,

∂t (ρv) + ∂x(ρv2 + p) = 0,

∂t

(
ρe + ρv2

2

)+ ∂x

(
ρev + ρv3

2 + pv
)= 0,

(2.1.1)

where ρ, v, e and p represent the mass density, the flow velocity, the internal energy per unit
mass and the pressure, respectively. These functions are linked by some constitutive laws, such
as p = p(ρ,S) and e = e(ρ,S) with S being the entropy. Assume that ρ, p, pρ and pS are
strictly positive. If we let u = (ρ, v, S), then (2.1.1) can be written as

∂tg(u) + ∂xf (u) = 0, (2.1.2)
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where g(u) = (ρ,ρv,
ρv2

2 + ρe) and f (u) = (ρv,p + ρv2,
ρv3

2 + ρev + pv). As is well known,
it is strictly hyperbolic with eigenvalues λ1 = v − c, λ2 = v, and λ3 = v + c with c = √

pρ

being the sound speed. Let r1 = (ρ,−c,0)T, r2 = (pS,0,−c2)T and r3 = (ρ, c,0)T be the right
eigenvectors with respect to {λj }3

j=1. Obviously, only the second mode λ2 is linearly degenerate.
A set of Riemann invariants with linearly independent gradients is {v,p} (see [9, Chapter 15]).

Assume that the Riemann problem for (2.1.1) with piecewise constant initial data

u(0, x) =
{

u− = (ρ−, v−, S−), x < 0,

u+ = (ρ+, v+, S+), x > 0,
(2.1.3)

admits a weak solution

u =
⎧⎨
⎩

u−, −∞ < x < q0t ,

u�, q0t < x < σ t ,

u+, σ t < x < ∞,

(2.1.4)

where u� = (ρ�, v�, S�), q0 and σ are constants, (u−, u�, q0) and (u�, u+, σ ) are a contact dis-
continuity and a shock wave, respectively. Thus, one has that

v� = v−, p(ρ�, S�) = p(ρ−, S−), q0 = v− = v�, (2.1.5)

v+ + c+ < σ < v� + c�, σ > v�, (2.1.6)

with c� =√pρ(u�) denoting the sound speed at the state u� for � ∈ {−, �,+}, and u satisfies
the Rankine–Hugoniot condition

σ
(
g(u+) − g(u�)

)= f (u+) − f (u�). (2.1.7)

Denote by r
�
k = rk(u�) and l

�
k = lk(u�) (k = 1,2,3) with lk(u�) being the left eigenvectors

associated with λk(u�) for (2.1.1) satisfying the normalization r
�
k · l�j = δkj . The purpose of this

article is to study the stability and asymptotic behavior of (2.1.4) under the perturbation of highly
oscillatory waves. For this, first we suppose that the following stability conditions on the contact
discontinuity and the shock (2.1.4).

(H1) The matrix

M = (r�
1 , r�

2 ,
(∇g(u�)

)−1(
g(u+) − g(u�)

))
(2.1.8)

is nonsingular.
(H2) For the standard unit vector �e2 = (0,1,0), we have

0 < �e2M
−1r�

3 < 1. (2.1.9)

Remark 2.1. When u are weak enough, hypotheses (H1) and (H2) hold always. (H1) is the
one-dimensional stability condition given by Majda in [5], while (H2) is similar to the stability
condition given by Métiver in [6].
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By perturbing the initial data u± with some small amplitude oscillating functions εuε
±,0, we

are lead to the following Cauchy problem

⎧⎨
⎩

∂tg(Uε) + ∂xf (Uε) = 0, t > 0, x ∈ R,

Uε(0, x) =
{

u+ + εuε
+,0(x), x > 0,

u− + εuε
−,0(x), x < 0,

(2.1.10)

where ε > 0 is small enough, and uε
±,0 ∈ C1 satisfy some compatibility conditions, which will

be given precisely.
Before giving assumptions on problem (2.1.10), we first introduce some notations as in [10].

Given a small closed neighborhood ω ⊂ {t = 0} of the origin, suppose Ω is the closure of a
determinacy domain of ω for the Cauchy problem of (2.1.2) when |u − u| < δ for a fixed small
constant δ > 0. Let u ∈ Ck(Ω), we define

‖u‖ε
k,Ω =

∑
|α|�k

εα
∥∥∂α

t,xu
∥∥

L∞(Ω)
.

A family uε ∈ Ck(Ω) are bounded in Ck
ε (Ω) if the norms ‖uε‖ε

k,Ω are bounded, and φε(t)

are bounded in C̃k
ε ([0, T ]) if φε ∈ Ck([0, T ]) and ‖dtφ

ε‖ε
k−1,[0,T ] are bounded for k � 1.

Let C0
p(Rq) be the space of continuous almost periodic functions in θ ∈ R

q . Denote by

C0(Ω : Rq) = C0(Ω :C0
p(Rq)) the space of continuous functions from Ω into C0

p(Rq). For

k ∈ N, define the space Ck(Ω : Rq) of those functions U ∈ C0(Ω : Rq) whose derivatives
∂α
(t,x;θ)

U belong to C0(Ω : Rq) for any |α| � k.

For problem (2.1.10), we assume that there are U±,0 ∈ C1(ω± : R) such that

∥∥∥∥uε
±,0(x) − U±,0

(
x,

x

ε

)∥∥∥∥
ε

1,ω±
= o(1), when ε → 0, (2.1.11)

where ω+ = ω ∩ {x > 0} and ω− = ω ∩ {x < 0}, which immediately implies the boundedness of
uε

±,0 in C1
ε (ω±).

We are going to study whether the structures of contact discontinuity and shock wave are
conserved under such perturbations, i.e., whether there exists a local solution which contains a
contact discontinuity and a shock wave

Uε(t, x) =

⎧⎪⎨
⎪⎩

u− + εuε−(t, x), x < q0t + εqε(t),

u� + εuε
�(t, x), q0t + εqε(t) < x < σt + εϕε(t),

u+ + εuε+(t, x), x > σ t + εϕε(t),

(2.1.12)

to problem (2.1.10). Under the suitable conditions (H1) and (H2) of the background state u, the
answer to this problem is in the affirmative.

Under the assumption of (2.1.11), uε+(t, x) can be easily determined by (2.1.10). Obviously,
Ω+ = {x > σ t +εϕε(t)} is the determinacy domains ω+. Using the same way as in [11, p. 1626],
we obtain the solution Uε+(t, x) = u+ + εuε+(t, x) to (2.1.10) in Ω+ and the asymptotic expan-
sion
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uε+(t, x) = U+
(

t, x; t

ε
,
x

ε

)
+ o(1), in C1

ε

(
Ω+

T

)
, (2.1.13)

where U+ ∈ C1(Ω+
T : R

2) satisfies an integro-differential system (see [11, (2.18)]), with Ω+
T =

Ω+ ∩ {t < T }.
The next aim is to study the local existence of Uε in the form of (2.1.12) to problem (2.1.10),

and to study the asymptotic properties of (uε−(t, x), uε
�(t, x), qε(t), ϕε(t)) with respect to ε.

Denote by Ω− = {x < q0t + εqε(t)} and Ω� = {q0t + εqε(t) < x < σt + εϕε(t)}. From the
Rankine–Hugoniot condition, we know that (uε−, uε

�, ϕ
ε) satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu
ε
� + A(u� + εuε

�)∂xu
ε
� = 0, (t, x) ∈ Ω�, � = −, �,+,

vε−(t, x) = vε
�(t, x), on x = q0(t) + εqε(t),

p(ρ� + ερε
� , S� + εSε

� ) = p(ρ− + ερε−, S− + εSε−), on x = q0t + εqε(t),

(σ + εdtϕ
ε(t))(g(u+ + εuε+) − g(u� + εuε

�)) = f (u+ + εuε+) − f (u� + εuε
�),

on x = σ t + εϕε(t),

ϕε(0) = 0, uε−(0, x) = uε
−,0(x),

(2.1.14)

where A(u� + εuε
�) = (∇g(u� + εuε

�))
−1∇f (u� + εuε

�).

In order to transform problem (2.1.14) into one with fixed boundaries, we introduce the trans-
formations

T−:

{
y = t,

z = x − q0t − εqε(t),

for uε−(t, x) in Ω−, and

T�:

{
y = t,

z = t
x−q0t−εqε(t)

σ t+εϕε(t)−q0t−εqε(t)
,

for uε
�(t, x) in Ω�.

By computation for (2.1.14), it is easy to see that ũε
�(y, z) = uε

�(t, x) (� = −, �) satisfy the

following boundary value problem on Ω�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Lε
�(u

ε
�, ϕ

ε)uε
� = 0, (y, z) ∈ Ω�,

γ1v
ε−(t) = γ1v

ε
�(t), on z = 0,

p(ρ� + εγ1ρ
ε
� (t), S� + εγ1S

ε
� (t)) = p(ρ− + εγ1ρ

ε−(t), S− + εγ1S
ε−(t)), on z = 0,

Fε(t, γ2u
ε
�, dtϕ

ε, ϕε) = 0, on z = t ,

ϕε(0) = 0, uε−(0, z) = uε
−,0(z),

(2.1.15)

where tildes are dropped, γ1v
ε
� (t) = vε

� (t,0), γ2v
ε
� (t) = vε

� (t, t),

Fε
(
t, γ2u

ε
�, dtϕ

ε, ϕε
)= 1

ε

((
σ + εdtϕ

ε(t)
)(

g
(
u+ + εuε+

(
t, σ t + εϕε(t)

))− g
(
u� + εγ2u

ε
�(t)
))

− f
(
u+ + εuε+

(
t, σ t + εϕε(t)

))+ f
(
u� + εγ2u

ε
�(t)
))

, (2.1.16)
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and Lε
�(u

ε
�, ϕ

ε) = ∂y + N�∂z, where

N− = A
(
u− + εuε−

)− λ2
(
u− + εuε−

)
I, N� =

(
∂z

∂t

)
�

I +
(

∂z

∂x

)
�

A
(
u� + εuε

�

)
, (2.1.17)

with (
∂z

∂t

)
�

= −qε(t) + εzdt θ
ε(y)

σ − q0 + εθε(y)
,

(
∂z

∂x

)
�

= 1

σ − q0 + εθε(y)
, (2.1.18)

and θε(t) = t−1(ϕε(t) − qε(t)) with qε(t) satisfying

{
dtq

ε(t) = 1
ε
(λ2(u� + εγ1u

ε
�) − λ2(u�)),

qε(0) = 0.
(2.1.19)

At first, we give a result for the coefficients of Lε
� as in [11, Lemma 2.1].

Lemma 2.1.

(1) The matrices N− and N� are smooth with respect to arguments εuε− (εuε
�, εdtϕ

ε, εθε,

εzdt θ
ε) around the origin, and at the origin, respectively,

N−(0) = A− − q0I, N�(0) = (σ − q0)
−1(A� − q0I ). (2.1.20)

(2) For any given (qε, ϕε) ∈ C̃2
ε ([0, T ]) with qε(0) = ϕε(0) = 0, it follows that {θε(y),

zdt θ
ε(y)}ε>0 are bounded in C1

ε (Ω�).

Setting R� = (r
�
1, r

�
2, r

�
3),L� = (l

�
1, l

�
2, l

�
3)

T and Λ� = diag[λ�
1, λ

�
2, λ

�
3], we have L�R� = I and

L�A(u�)R� = Λ�. Suppose that the solutions (uε−, uε
�, ϕ

ε) of problem (2.1.15) have the forms

{
uε

�(y, z) = R�U�

(
y, z; y

ε
, z

ε

)+ εR�V�

(
y, z; y

ε
, z

ε

)+ o(ε),

ϕε(t) = ϕ
(
t, t

ε

)+ εφ
(
t, t

ε

)+ o(ε),
(2.1.21)

where U�(y, z; ξ, η), V�(y, z; ξ, η) and (ϕ(t, τ ),φ(t, τ )) are almost periodic in (ξ, η) ∈ R
2 and

τ ∈ R, respectively. For convenience, let qε(t) admit the formal expansion

qε(t) = q

(
t,

t

ε

)
+ εQ

(
t,

t

ε

)
+ o(ε), (2.1.22)

with (q,Q) being almost periodic in τ ∈ R. Obviously, the profiles of qε(t) can be obtained
by those of uε

� from problem (2.1.19). As in [11, pp. 1630–1635], we can formally deduce the
problem of (U−,U�,ϕ) from (2.1.15).

Set ξ = y/ε, η = z/ε and τ = t/ε. Plugging the formal expressions (2.1.21) into the boundary
conditions in (2.1.15), grouping each power of ε and using the Rankine–Hugoniot condition, it
follows

∂τϕ = 0, (2.1.23)
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which means the leading term ϕ of shock front ϕε do not oscillate. Moreover, from (2.1.19), we
can obtain

∂τ q = 0. (2.1.24)

In order to formulate the problem of U�, let us define E� = diag[E1
�,E

2
�,E

3
�] by

{
E

k−u(y, z; ξ, η) = limρ→∞ 1
2ρ

∫ ρ

−ρ
u(y, z; ξ + s, η − (q0 − λ−

k )s) ds,

E
k
�u(y, z; ξ, η) = limρ→∞ 1

2ρ

∫ ρ

−ρ
u(y, z; ξ + s, η − 1

σ−q0
(q0 − λ�

k)s) ds,
(2.1.25)

the mean value operators for any u ∈ C0(Ω : R2).

Denote by

{
P−(∂ξ , ∂η) = ∂ξ + (Λ− − q0I )∂η,

P�(∂ξ , ∂η) = ∂ξ + 1
σ−q0

(Λ� − q0I )∂η.
(2.1.26)

Then, as usual, we have

(1) E�U� = U� is equivalent to P�(∂ξ , ∂η)U� = 0, and

(2) for any V� ∈ C1(Ω� : R
2), E�P�(∂ξ , ∂η)V� = 0.

(2.1.27)

By formal analysis, it follows that the leading terms of (uε−, uε
�, ϕ

ε) satisfy the problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E�U� = U�,

E−(P−(∂y, ∂z)U− + L−B−(R−U−,R−∂ηU−) − χ1∂ηU−) = 0,

E�(P�(∂y, ∂z)U� + 1
σ−q0

L�B�(R�U�,R�∂ηU�) + (dI + hΛ�)∂ηU�) = 0,

S(γ1U�,3, γ1U−,1)
T = J (γ1U�,1, γ1U−,3)

T, on z = η = 0,

χ2(g(u+) − g(u�)) + σ(∇g(u+)U+ − ∇g(u�)R�γ2u�)

= ∇f (u+)U+ − ∇f (u�)R�γ2U�, on z = t, η = τ,

U−|y=ξ=0 = U−,0(z;η),

(2.1.28)

where χ1(t, τ ) = dtq(t) + ∂τQ(t, τ ) and χ2(t, τ ) = dtϕ(t) + ∂τφ(t, τ ) are leading terms of
the contact discontinuity speed ∂tq

ε(t) and the shock speed ∂tϕ
ε(t), respectively, U+(t, τ ) =

U+(t, σ t; τ, στ + ϕ(t)), (d,h) ∈ C1 is given by the following formula:

⎧⎨
⎩

d = (q0y+σz−q0z)(ϕ−q)

(σ−q0)
2y2 − (y−z)χ1+zχ2

(σ−q0)y
,

h = q−ϕ

(σ−q0)
2y

(2.1.29)

and

S =
(

c� c−
ρ c −ρ c

)
, J =

(
c� c−

−ρ c ρ c

)
. (2.1.30)
� � − − � � − −
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Similar to the computation in [11, p. 1634], we know that (2.1.28) is equivalent to the follow-
ing problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E�U� = U�,

P−(∂y, ∂z)U− + E−(L−B−(R−U−,R−∂ηU−)) − dtq∂ηU− = 0,

P�(∂y, ∂z)U� + 1
σ−q0

E�(L�B�(R�U�,R�∂ηU�)) + (d̃I + hΛ�)∂ηU� = 0,

S(γ1U�,3, γ1U−,1)
T = J (γ1U�,1, γ1U−,3)

T, on z = η = 0,

χ2(g(u+) − g(u�)) + σ(∇g(u+)U+ − ∇g(u�)R�γ2U�)

= ∇f (u+)U+ − ∇f (u�)R�γ2U�, on z = t, η = τ,

U−|y=ξ=0 = U−,0(z;η),

(2.1.31)

where

d̃ = (q0y + σz − q0z)(ϕ − q)

(σ − q0)2y2
− (y − z)dtq + zdtϕ

(σ − q0)y
(2.1.32)

is independent of (ξ, η).

To solve (2.1.31), we should first determine (q,ϕ). By acting the mean value operator

ū(y, z) = E0u(y, z; ξ, η) = lim
ρ→∞

1

(2ρ)2

ρ∫
−ρ

ρ∫
−ρ

u(y, z; ξ, η) dξ dη,

on (2.1.31), it follows that (Ū−, Ū�) and (q,ϕ) satisfy the following linear problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P�(∂y, ∂z)Ū� = 0,

S(γ1Ū�,3, γ1Ū−,1)
T = J (γ1Ū�,1, γ1Ū−,3)

T, on z = 0,

dtϕ(g(u+) − g(u�)) + (σ∇g(u+) − ∇f (u+))Ū+
− (σ∇g(u�) − ∇f (u�))R�γ2Ū� = 0, on z = t,

ϕ(0) = 0, U−|y=0 = U−,0(z)

(2.1.33)

and

{
dtq(t) = ∫ t

0 (−c−γ1Ū−,1 + c−γ1Ū−,3) ds,

q(0) = 0,
(2.1.34)

where γ1Ū�,j (t) = Ū�,j (t,0) (j = 1,3), γ2Ū�(t) = Ū�(t, t) and Ū+ = U+(t, σ t).

Finally, for functions h and d̃ given by (2.1.29) and (2.1.32), respectively, similar to
[11, Lemma 2.2]. We have:

Lemma 2.2. If q,ϕ ∈ C2([0, T ]) and q(0) = ϕ(0) = 0, then d̃, h ∈ W 1,∞(Ω�
T ).
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2.2. Compatibility conditions and main results

As mentioned above, compatibility conditions of (2.1.15), (2.1.31) and (2.1.33) are needed.
Note that (2.1.33) is deduced from (2.1.31) with χ2(t, τ ) = dtϕ(t)+ ∂τφ(t, τ ), the compatibility
conditions of (2.1.33) immediately follow from those of (2.1.31).

Two compatibility conditions for problem (2.1.15) are:
(1) There exists uε

�(0,0) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uε
−,2(0,0) = uε

�,2(0,0),

p(ρ� + εuε
�,1(0,0), S� + εuε

�,3(0,0)) = p(ρ− + εuε
−,1(0,0), S− + εuε

−,3(0,0)),

(σ + εdtϕ
ε(0))(g(u+ + εuε+(0,0)) − g(u� + εuε

�(0,0))) − f (u+ + εuε+(0,0))

+ f (u� + εuε
�(0,0)) = 0.

(2.2.1)

(2) There exist ∂zu
ε
�(0,0) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(N−(0)uε ′
−,0)2 = (N�(0)∂zu

ε
�(0,0))2,

∇p(ρ− + εuε
−,1(0,0), S− + εuε

−,3(0,0))((N−(0)uε ′
−,0)1, (N−(0)uε ′

−,0)3)
T

= ∇p(ρ� + εuε
�,1(0,0), S� + εuε

�,3(0,0))((N�(0)∂zu
ε
�(0,0))1, (N�(0)∂zu

ε
�(0,0))3)

T,

d2
t ϕε(0)(g(u+ + εuε

+,0(0)) − g(u� + εuε
�(0,0))) − f (u+ + εuε

+,0(0))

+ f (u� + εuε
�(0,0)) + (σ + εdtϕ

ε(0))
{
(∇g(u+ + εuε

+,0(0))

− ∇f (u+ + εuε
+,0(0)))uε ′

+,0(0) − (∇g(u� + εuε
�(0,0))

− ∇f (u� + εuε
�(0,0)))(I − Nε(0))∂zu

ε
�(0,0)

}= 0,

(2.2.2)

where (.)k denote the kth component of (.), uε
�(0,0) and dtϕ

ε(0) are determined by (2.2.1).
From (2.1.27), we know that U−(y, z; ξ, η) = Ũ (y, z, θ) with θ = (q0I − Λ−)ξ + η and

U�(y, z; ξ, η) = Ũ�(y, z, θ) with θ = (q0I − Λ�)ξ + (σ − q0)η. Thus two compatibility condi-
tions for problem (2.1.31) are:

(1) There exists Ũ�(0,0; (q0I − Λ�)ξ) and Ũ�(0,0; (q0I − Λ�)ξ + (σ − q0)η) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S(Ū�,3(0,0; (q0 − λ�
3)ξ), Ū−,1(0,0; (q0 − λ−

1 )ξ))T

= J (Ū�,1(0,0; (q0 − λ�
1)ξ), Ū−,3(0,0; (q0 − λ−

3 )ξ))T,

χ2(0, η)(g(u+) − g(u�)) + (σ∇g(u+) − ∇f (u+))U+,0(η, ση)

− (σ∇g(u�) − ∇f (u�))R�Ū�(0,0; (q0I − Λ�)ξ + (σ − q0)η) = 0.

(2.2.3)

(2) There exists ∂zŪ�(0,0, (q0I − Λ�)ξ) and ∂zŪ�(0,0, (q0I − Λ�)ξ + (σ − q0)η) such that

⎧⎪⎨
⎪⎩
S(��,3,�−,1)

T = J (��,1,�−,3)
T,

∂tχ2(0, η)(g(u+) − g(u�)) + (σ∇g(u+) − ∇f (u+))U ′+,0(η, ση)

− (σ∇g(u�) − ∇f (u�))R�(∂y + ∂z)Ū�(0,0; (q0I − Λ�)ξ + (σ − q0)η) = 0,

(2.2.4)
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where

�− = (Λ− − q0I )∂zŪ− + E−
(
L−B−(R−Ū−,R−∂θ Ū−)

)− dtq|y=z=0∂θ Ū−,

�� = Λ� − q0I

σ − q0
∂zŪ� + 1

σ − q0
E�

(
L�B�

(
R�Ū�,R�(σ − q0)∂θ Ū�

))+ (d̃I + hΛ�)|y=z=0∂θ Ū�,

with Ū� = Ū�(0,0; (q0I − Λ�)ξ), ∂zŪ� = ∂zŪ�(0,0; (q0I − Λ�)ξ), ∂θ Ū� = ∂θ Ū�(0,0;
(q0I − Λ�)ξ), ��,j (j = 1,3) denote the j th component of ��, and

∂yŪ�

(
0,0; (q0I − Λ�)ξ + (σ − q0)η

)
= −Λ� − q0I

σ − q0
∂zŪ� − 1

σ − q0
E�

(
L�B�

(
R�Ū�,R�(σ − q0)∂θ Ū�

))
− (d̃I + hΛ�)|y=z=0(σ − q0)∂θ Ū−�,

with Ū� = Ū�(0,0; (q0I − Λ�)ξ + (σ − q0)η), ∂zŪ� = ∂zŪ�(0,0; (q0I − Λ�)ξ + (σ − q0)η),
∂θ Ū� = ∂θ Ū�(0,0; (q0I − Λ�)ξ + (σ − q0)η).

The following proposition explains that there indeed exist a class of functions such that the
compatibility conditions for problem (2.1.15) up to order one are satisfied. Before giving the
proposition, for convenience, let us introduce some notations:

r
�,ε
k := rk

(
u� + εaε

�,0

)
, λ

�,ε
k := λk

(
u� + εaε

�,0

)
, p�

ρ := pρ

(
ρ� + εaε

�,0,1, S� + εaε
�,0,3

)
,

A =
⎛
⎝ ρ−p−

ρ (λ−
1 − q0) − (λ�

3−q0)

σ−q0
ρ�p

�
ρ

−(λ−
1 − q0)c− − (λ�

3−q0)c�

σ−q0

⎞
⎠ , B =

⎛
⎝−ρ−p−

ρ (λ−
3 − q0)

(λ�
1−q0)

σ−q0
ρ�p

�
ρ

−(λ−
3 − q0)c− − (λ�

1−q0)c�

σ−q0

⎞
⎠ ,

gε+(0) := (σ + εσ ε
)(∇g

(
u� + εaε

�,0

))−1(∇g
(
u+ + εuε

+,0(0)
)− ∇f

(
u+ + εuε

+,0(0)
))

uε′
+,0(0),

Mε =
(
−(σ + εσ ε

)(
1 − λ

�,ε
1

)
r
�,ε
1 ,−(σ + εσ ε

)(
1 − λ

�,ε
2

)
r
�,ε
2 ,
(∇g

(
u� + εaε

�,0

))−1

× (g(u+ + εuε
+,0(0)

)− g
(
u� + εaε

�,0

)− f
(
u+ + εuε

+,0(0) + f
(
u� + εaε

�,0

))))
.

Proposition 2.1. Suppose that uε
�(0,0) = aε

�,0 and dtϕ
ε(0) = σ ε satisfying the zeroth order

compatibility condition (2.2.1) with {aε
�,0, σ

ε}ε∈(0,ε0] being bounded. Then the first order com-
patibility (2.2.2) is equivalent to the following fact:

ũε ′
−,0,1(0) = �e1A

−1B
(
ũε ′

−,0,3(0), ∂zũ
ε
�,1(0,0)

)T
, (2.2.5)

i.e., there is a special relation between ũε ′
−,0,1(0) and gε+(0), where

∂zũ
ε
�,1(0,0) = �e1C

−1((−αε
1β

ε
2 ,−αε

2β
ε
2

)T
ũε ′

−,0,3(0) + (�e1
(
Mε
)−1

, �e2
(
Mε
)−1)T

gε+(0)
)
. (2.2.6)

Here

C =
(

1 − αε
1βε

1 0

−αεβε 1

)

2 1
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with

αε
1 := �e1

(
Mε
)−1(

σ + εσ ε
)(

1 − λ
�,ε
3

)λ�,ε
3 − q0

σ − q0
r
�,ε
3 , βε

1 := �e2A
−1 λ�

1 − q0

σ − q0

(
ρ�p

�
ρ

−c�

)
,

αε
2 := �e2

(
Mε
)−1(

σ + εσ ε
)(

1 − λ
�,ε
3

)λ�,ε
3 − q0

σ − q0
r
�,ε
3 , βε

2 := �e2A
−1(λ−

3 − q0
)(ρ−p−

ρ

−c−

)
.

Proof. Let us diagonalize condition (2.2.2). Setting Rε
� = (r1(u� + εaε

�,0), r2(u� + εaε
�,0),

r3(u� + εaε
�,0)), obviously we have (Rε

� )
−1 = (l1(u� + εaε

�,0), l2(u� + εaε
�,0), l3(u� + εaε

�,0))
T.

In (2.2.2), by taking the transformation

ũε
�(y, z) = (Rε

�

)−1
uε

�(y, z),

it follows that (2.2.2) is equal to the following equation

⎧⎪⎪⎨
⎪⎪⎩

A(ũε ′
−,0,1(0), ∂zũ

ε
�,3(0,0))T = B(ũε ′

−,0,3(0), ∂zũ
ε
�,1(0,0))T,

Mε(∂zũ
ε
�,1(0,0), ∂zũ

ε
�,2(0,0), d2

t ϕε(0))T

= (σ + εσ ε)(1 − λ
�,ε
3 )

λ
�,ε
3 −q0
σ−q0

r
�,ε
3 ∂zũ

ε
�,3(0,0) + gε+(0).

(2.2.7)

The matrices A and Mε are nonsingular, thus, from (2.2.7), it follows

C
(
∂zũ

ε
�,1(0,0), ∂zũ

ε
�,2(0,0)

)T
= (−αε

1βε
2 ,−αε

2βε
2

)T
ũε ′

−,0,3(0) + (ē1
(
Mε
)
, ē2
(
Mε
)−1)T

gε+(0). (2.2.8)

Thanks to (2.1.6) and (H2), by computation, we know that the matrix C is nonsingular. Thus,
from (2.2.8), we obtain (2.2.6). Moreover, from (2.2.7), we prove (2.2.5). �

In the same way, we can give another proposition, which implies that there indeed exist a class
of functions such that the compatibility conditions for problem (2.1.31) up to order one are also
satisfied. For simplicity, we omit it here.

In the following, we state the main assumption of this paper.

(MA). Given the initial data uε
±,0(x) ∈ C1(ω±) satisfying the compatibility conditions (2.2.1)

and (2.2.2) for problem (2.1.15) for any ε ∈ (0, ε0], then there are U±(x, η) ∈ C1(ω± : R) satis-
fying the compatibility conditions (2.2.3) and (2.2.4), such that the asymptotic property (2.1.11)
holds.

The main results of this paper are stated as follows.

Theorem 2.1. Under the above assumption (MA), we have:

(1) there are constants T , ε0 > 0 such that problem (2.1.15) has unique solutions (uε−, uε
�, ϕ

ε)

bounded in C1
ε (Ω−) × C1

ε (Ω� ) × C̃2
ε ([0, T ]) for any ε ∈ (0, ε0];
T T
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(2) there are unique solutions (U−,U�,χ2) ∈ C1(Ω−
T : R2) × C1(Ω�

T : R2) × C1([0, T ] : R) and
ϕ(t) ∈ C2([0, T ]) to problems (2.1.31) and (2.1.33);

(3) when ε → 0, the asymptotic expansions

∥∥∥∥uε
�(y, z) − R�U�

(
y, z; y

ε
,
z

ε

)∥∥∥∥
ε

1,Ω�
T

= o(1) (2.2.9)

and

∥∥∥∥dtϕ
ε(t) − χ2

(
t,

t

ε

)∥∥∥∥
ε

1,[0,T ]
= o(1),

∥∥ϕε(t) − ϕ(t)
∥∥

L∞([0,T ]) = o(1) (2.2.10)

hold.

Remark 2.2.

(1) From this theorem and (2.1.34), it follows that there exists χ1 ∈ C1([0, T ] : R) such that

∥∥∥∥dtq
ε(t) − χ1

(
t,

t

ε

)∥∥∥∥
ε

1,[0,T ]
= o(1),

∥∥qε(t) − q(t)
∥∥

L∞[0,T ] = o(1). (2.2.11)

(2) From this theorem, we can easily obtain the asymptotic expansions of the perturbed contact
discontinuity x = q0t + εqε(t) and the perturbed shock front x = σ t + εϕε(t).

(3) From this theorem and the results of uε±, we can also obtain the existence of the perturbed
contact discontinuity and shock solution Uε in the form of (2.1.12) to problem (2.1.10) as
well as their asymptotic properties.

3. Existence of oscillatory waves

This section concerns the local existence of solutions (uε−, uε
�, ϕ

ε) to problem (2.1.15)
by using an iterative scheme. It is necessary to construct the first approximate solution
(u

ε,0
− , u

ε,0
� , ϕε,0) ∈ C1

ε (Ω−
T ) × C1

ε (Ω�
T ) × C̃2

ε ([0, T ]) to this problem by the following proposi-
tion, whose proof can be given similar to [7, Proposition 2.1] by using compatibility conditions.

Proposition 3.1. Under the assumption (MA) in Section 2.2, there are approximate solutions
(u

ε,0
− , u

ε,0
� , ϕε,0) to problem (2.1.15), such that they are bounded in C1

ε (Ω−
T ) × C1

ε (Ω�
T ) ×

C̃2
ε ([0, T ]) and satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lε
�(u

ε,0
� , ϕε,0)u

ε,0
� = 0, (y, z) ∈ Ω�,

γ1u
ε,0
−,2

∣∣
y=t=0 = γ1u

ε,0
�,2

∣∣
y=t=0,

dk
t Gε(t, γ1u

ε,0
− , γ1u

ε,0
� )
∣∣
y=t=0, k = 0,1,

dk
t Fε(t, γ2u

ε,0
� , dtϕ

ε,0, ϕε,0)
∣∣
y=z=t=0, k = 0,1,

u
ε,0

(0, z) = uε (z),

(3.1)
− −,0
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where

Gε
(
t, γ1u

ε−, γ1u
ε
�

)= p
(
ρ� + εγ1ρ

ε
� , S� + εγ1S

ε
�

)− p
(
ρ− + εγ1ρ

ε−, S− + εγ1S
ε−
)
. (3.2)

For any fixed uε
� ∈ C1

ε (Ω
�
T ) and ϕε ∈ C̃2

ε ([0, T ]), define the Fréchet derivative of Gε and Fε

with respect to (γ1u
ε−, γ1u

ε
�) and (γ2u

ε
�, dtϕ

ε)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Gε
(γ1u

ε−,γ1u
ε
�)

(w−,w1
�)

= pρ(ρ� + εγ1ρ
ε
� , S� + εγ1S

ε
� )w1

�,1 + pS(ρ� + εγ1ρ
ε
� , S� + εγ1S

ε
� )w1

�,3

− pρ(ρ− + εγ1ρ
ε−, S− + εγ1S

ε−)w−,1 − pS(ρ− + εγ1ρ
ε−, S− + εγ1S

ε−)w−,3,

F ε
(γ2u

ε
�,dt ϕε)

(w2
�, τ ) = (g(u+ + εuε+) − g(u� + εγ2u

ε
�))τ

− ((σ + εdtϕ
ε)∇g(u� + εγ2u

ε
�) − ∇f (u� + εγ2u

ε
�))w

2
�,

(3.3)

where uε+(t) = uε+(t, σ t + εϕε(t)).

For problem (2.1.15), we take the following iteration scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lε
�(u

ε,ν
� , ϕε,ν)u

ε,ν+1
� = 0, (y, z) ∈ Ω�,

γ1u
ε,ν+1
−,2 = γ1u

ε,ν+1
�,2 , on z = 0,

Gε
(γ1u

ε,ν
− ,γ1u

ε,ν
� )

(γ1u
ε,ν+1
− , γ1u

ε,ν+1
� )

= −Gε(t, γ1u
ε,ν
− , γ1u

ε,ν
� ) + Gε

(γ1u
ε,ν
− ,γ1u

ε,ν
� )

(γ1u
ε,ν
− , γ1u

ε,ν
� ), on z = 0,

F ε
(γ2u

ε,ν
� ,dt ϕε,ν )

(γ2u
ε,ν+1
� , dtϕ

ε,ν+1)

= −Fε(t, γ2u
ε,ν
� , dtϕ

ε,ν) + Fε
(γ2u

ε,ν
� ,dt ϕε,ν )

(γ2u
ε,ν
� , dtϕ

ε,ν), on z = t,

ϕε,ν+1(0) = 0, u
ε,ν+1
− (0, z) = uε

−,0(z),

(3.4)

where the first approximate solutions (u
ε,0
− , u

ε,0
� , ϕε,0) are given by Proposition 3.1.

To study the iterative problem (3.4), we first consider the linear problem:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Lε
�(u

ε
�, ϕ

ε)wε
� = f ε

� , (y, z) ∈ Ω�,

γ1w
ε
−,2(t) = γ1w

ε
�,2(t), on z = 0,

Gε
(γ1u

ε−,γ1u
ε
�)

(γ1w
ε−, γ1w

ε
�) = gε

1(t), on z = 0,

Fε
(γ2u

ε
�,dt ϕε)

(γ2w
ε
�, dtφ

ε) = gε
2(t), on z = t ,

φε(0) = 0, wε−(0, z) = wε
−,0(z).

(3.5)

Let us diagonalize problem (3.5). Denote by Rε
� = (r1(u�+εuε

�), r2(u�+εuε
�), r3(u�+εuε

�)), and

its inverse (Rε
� )

−1 = (l1(u� + εuε
�), l2(u� + εuε

�), l3(u� + εuε
�))

T. By taking the transformation

w̃ε
� = (Rε

�

)−1
wε

� (3.6)

in problem (3.5), and using the fact (Rε)−1(∂Rε) = −(∂(Rε)−1)Rε, it follows that w̃ε satisfy
� � � � �
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

L̃ε
�(u

ε
�, ϕ

ε)w̃ε
� = (Rε

� )
−1f ε

� + (L̃ε
�(u

ε
�, ϕ

ε)(Rε
� )

−1)Rε
� w̃

ε
� ,

(γ1w̃
ε
�,3, γ1w̃

ε
−,1)

T = Πε
1 (t)(γ1w̃

ε
�,1, γ1w̃

ε
−,3)

T + g̃ε
1(t), on z = 0,

Mε(γ2w̃
ε
�,1, γ2w̃

ε
�,2, dtφ

ε)T

= g̃ε
2(t) + (σ + εdtϕ

ε − λ3(u� + εγ2u
ε
�))r3(u� + εγ2u

ε
�)γ2w̃

ε
�,3(t), on z = t,

φε(0) = 0, w̃ε−(0, z) = (Rε−)−1wε
−,0(z),

(3.7)

where Πε
1 (t) = (Sε(t))−1J ε(t) is 2 × 2 matrix with

Sε(t) =
(

c2
�,ε(ρ� + εγ1u

ε
�,1) −c2−,ε(ρ− + εγ1u

ε
−,1)

c�,ε c−,ε

)
,

J ε(t) =
(−c2

�,ε(ρ� + εγ1u
ε
�,1) −c2−,ε(ρ− + εγ1u

ε
−,1)

c�,ε c−,ε,

)

(here c2
�,ε := pρ(ρ� + εγ1u

ε
�,2, S� + εγ1u

ε
�,3)),

Mε =
((

λ1
(
u� + εγ2u

ε
�

)− σ − εdtϕ
ε
)
r1
(
u� + εγ2u

ε
�

)
,(

λ2
(
u� + εγ2u

ε
�

)− σ − εdtϕ
ε
)
r2
(
u� + εγ2u

ε
�

)
,(∇g

(
u� + εγ2u

ε
�

))−1(
g
(
u+ + εuε+

)− g
(
u� + εγ2u

ε
�

)))
, (3.8)

g̃ε
1(t) = ((Sε(t)

)−1
gε

1(t) 0
)T

, g̃ε
2 = (∇g

(
u� + εγ2u

ε
�

))−1
gε

2(t),

and

L̃ε
�

(
uε

�, ϕ
ε
)= ∂y + Nε−∂z,

with

Nε− = Λ
(
u− + εuε−

)− λ2
(
u− + εuε−

)
I, Nε

� =
(

∂z

∂t

)
�

I +
(

∂z

∂x

)
�

Λ
(
u� + εuε

�

)
, (3.9)

and (( ∂z
∂t

)�, (
∂z
∂x

)�) being given in (2.1.18).
From (2.1.18), when ε ∈ (0, ε0], we have Nε

� = diag[aε
�,1, a

ε
�,2, a

ε
�,3] with

aε
�,1 < 0 = aε

�,2 < 1 < aε
�,3. (3.10)

In order to study problem (3.7), we first consider the following diagonal problem:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂yw
ε
� + Nε

� ∂zw
ε
� = f ε

� ,

(γ1w
ε
�,3, γ1w

ε
−,1)

T = Πε
1 (t)(γ1w

ε
�,1, γ1w

ε
−,3)

T + gε
1(t), on z = 0,

Mε(γ2w
ε
�,1, γ2w

ε
�,2, dtφ

ε)T

= gε
2(t) + (σ + εdtϕ

ε − λ3(u� + εγ2u
ε
�))r3(u� + εγ2u

ε
�)γ2w

ε
�,3(t), on z = t,

φε(0) = 0, wε (0, z) = wε (z),

(3.11)
− −,0
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where the notations are the same as in (3.7).
For problem (3.11), similar to [2, p. 182], it is easy to solve wε

−,2 and wε
−,3 in Ω−

T . Denote by
(s, γ ε

−,1(s;y, z)) the characteristic curve of the operator ∂y + (λ1(u− + εuε−)−λ2(u− + εuε−))∂z

passing through (y, z) at s = y. If we define the set

Bε
−,1 = {(y, z) ∈ Ω−

T : z − γ ε
−,1(y;0,0) � 0

}
,

Cε
−,1 = {(y, z) ∈ Ω−

T : z − γ ε
−,1(y;0,0) � 0

}
,

obviously, Ω−
T = Bε

−,1 ∪ Cε
−,1. In Cε

−,1,w
ε
−,1(y, z) can be given similar to [2, p. 183], while

in Bε
−,1, wε

−,1(y, z) is a problem with its boundary condition being coupled together with those
of wε

−,3 and wε
�,1 on {z = 0}. The following idea is similar to [11], we want to obtain a functional

equation about γ2w
ε
�,3 = wε

�,3|y=z, which implies the existence of wε
�,1 and wε

�,2 in Ω�
T , and

wε
−,1(y, z) in Cε

−,1.

Let us derive the equation of γ2w
ε
�,3. Set Πε

1 (t) = (mij )2×2, g
ε
1(t) = (gε

11(t), g
ε
12(t))

T. Then
the boundary conditions about γ1w

ε
�,3 and γ2w

ε
�,1 in (3.11) can be written as

⎧⎪⎨
⎪⎩

γ1w
ε
�,3(t) = m11γ1w

ε
�,1 + m12γ1w

ε
−,3 + gε

11(t) := m11γ1w
ε
�,1 + hε

1(t),

γ2w
ε
�,1(t) = �e1(M

ε)−1(gε
2(t) + (σ + εdtϕ

ε − λ3(u� + εγ2u
ε
�))

× r3(u� + εγ2u
ε
�)γ2w

ε
�,3(t)).

(3.12)

Set bε
�,1 = −aε

�,1, bε
�,3 = 1/aε

�,3 and f ε
� = (f ε

�,1, f
ε
�,2, a

ε
�,3f

ε
�,3)

T, where aε
�,1 and aε

�,3 are given
in (3.10). Then the equations about wε

�,1, wε
�,2 in (3.11) can be written as

{
∂yw

ε
�,1 − bε

�,1∂zw
ε
�,1 = f ε

�,1,

bε
�,3∂yw

ε
�,3 + ∂zw

ε
�,3 = f ε

�,3.
(3.13)

For any (y, z) ∈ Ω�
T , let s → (yε(s;y, z), s) ((s, zε(s;y, z)), respectively) be the characteris-

tic curve of bε
�,3∂y +∂z (∂y −bε

�,1∂z, respectively) through (y, z), where yε(s;y, z) and zε(s;y, z)

are solutions to the following problems

{
dsy

ε(s;y, z) = bε
�,3(y

ε(s;y, z), s),

yε(z;y, z) = y
(3.14)

and

{
dsz

ε(s;y, z) = −bε
�,1(s, z

ε(s;y, z)),

zε(y;y, z) = z.
(3.15)

Set Y ε(y, z) = yε(0;y, z) and Zε(y, z) = zε(t;y, z). Then we have

y � Y ε(y, z) � y + z, z � Zε(y, z) � y + z, (3.16)
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and the solutions of wε
�,1,w

ε
�,3 in (3.13) can be expressed as

{
wε

�,1(y, z) = γ2w
ε
�,1(Z

ε(y, z)) + Fε
�,1(y, z),

wε
�,3(y, z) = γ1w

ε
�,3(Y

ε(y, z)) + Fε
�,3(y, z),

(3.17)

with {
Fε

�,1(y, z) = ∫ y

t
f ε

�,1(s, z
ε(s;y, z)) ds,

F ε
�,3(y, z) = ∫ z

0 f ε
�,3(y

ε(s;y, z), s) ds.
(3.18)

From (3.17), we obtain

{
γ1w

ε
�,1(t) = γ2w

ε
�,1(Z

ε(t,0)) + Fε
�,1(t,0),

γ2w
ε
�,3(t) = γ1w

ε
�,3(Y

ε(t, t)) + Fε
�,3(t, t).

(3.19)

Combining (3.19) with (3.12), it follows

γ2w
ε
�,3 = m11�e1

(
Mε
)−1(

σ + εdtϕ
ε − λ3

(
u� + εγ2u

ε
�

))
r3
(
u� + εγ2u

ε
�

)
γ2w

ε
�,3

(
Xε(t),0

)
+ hε(t), (3.20)

where Xε(t) = Zε(Y ε(t, t),0),

hε(t) = m11h
ε
3

(
Zε
(
Y ε(t, t),0

))+ m11F
ε
�,1

(
Y ε(t, t),0

)+ hε
1

(
Y ε(t, t)

)+ Fε
�,3(t, t). (3.21)

At first, for the functional equation (3.20), similar to [11, Lemma 3.3], it is easy to obtain the
following result:

Lemma 3.1. Given any uε
� ∈ C1

ε (Ω�
T0

), ϕε ∈ C̃2
ε ([0, T0]) and hε ∈ C0

ε ([0, T0]), there is a unique

solution γ2w
ε
�,3 ∈ C0

ε ([0, T0]) to Eq. (3.20), and the estimate

∥∥γ2w
ε
�,3

∥∥
T

� C0
∥∥hε
∥∥

T
, (3.22)

is valid for any T ∈ (0, T0].

Then, for problem (3.11), we sum-up the above derivation in the following proposition:

Proposition 3.2. Let uε
� , f ε

� , gε = (gε
1, gε

2) and uε
±,0 be some families of functions bounded

in C1
ε (Ω

�
T ), C0

ε (Ω
�
T ), (C0

ε ([0, T ]))2 and C0
ε (ω±), respectively, for some T ∈ (0, T0], assume

moreover that ε‖uε
�‖ � η for ε ∈ (0, ε0] and the zeroth order compatibility condition hold. Then

problem (3.11) has a unique solution wε
� bounded in C0

ε (Ω
�
T ), and such that

∥∥wε
�(t)
∥∥

T
� C

(∥∥uε
−,0

∥∥+ ∥∥uε+
∥∥

T
+ ∥∥gε

∥∥
T

+
T∫ ∥∥f ε

�

∥∥
s
ds

)
, (3.23)
0
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for some positive constant C, which implies

∥∥wε(t)
∥∥

T
+ ∥∥dtφ

ε
∥∥

T
� C

(∥∥uε
−,0

∥∥+ ∥∥uε+
∥∥

T
+ ∥∥gε

∥∥
T

+
T∫

0

∥∥f ε
∥∥

s
ds

)
, (3.24)

where wε = (wε−,wε
�), f ε = (f ε−, f ε

� ).

Now, let us turn to the study of problem (3.5).

Proposition 3.3. Let us take uε
� , f ε

� , gε and uε
±,0 as in Proposition 3.2, and ϕε ∈ C̃0

ε ([0, T ]), in
particular let ε‖uε

�‖ � η and the zeroth order compatibility condition hold. Then problem (3.5)
has a unique solution wε

� bounded in C0
ε (Ω

�
T ), φε ∈ C̃0

ε ([0, T ]) and there exists some constant C

such that

∥∥wε(t)
∥∥

T
+ ∥∥dtφ

ε
∥∥

T
� CeCMT

(∥∥uε
−,0

∥∥+ ∥∥uε+
∥∥

T
+ ∥∥gε

∥∥
T

+
T∫

0

∥∥f ε
∥∥

s
ds

)
, (3.25)

where M > 1 + ε‖∇uε‖T + ‖dtϕ
ε‖ε

1,[0,T ] with uε = (uε−, uε
�).

Proof. From the above discussions, we know that it is sufficient to consider the diagonal prob-
lem (3.7), which is solved by the iterative scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

L̃ε
�(u

ε
�, ϕ

ε)w̃
ε,ν+1
� = (Rε

� )
−1f ε

� − (L̃ε
�(u

ε,ν
� , ϕε)(Rε

� )
−1)Rε

� w̃
ε,ν
� ,

(γ1w̃
ε,ν+1
�,3 , γ1w̃

ε,ν+1
−,1 )T = Πε

1 (t)(γ1w̃
ε,ν+1
�,1 , γ1w̃

ε,ν+1
−,3 )T + gε

1(t), on z = 0,

Mε(γ2w̃
ε,ν+1
�,1 , γ2w̃

ε,ν+1
�,2 , dtφ

ε)T

= g̃ε
2(t) + (σ + εdtϕ

ε − λ3(u� + εγ2u
ε
�))r3(u� + εγ2u

ε
�)γ2w̃

ε,ν+1
�,3 (t), on z = t ,

φε,ν+1(0) = 0, w̃
ε,ν+1
− (0, z) = (Rε−)−1wε

−,0(z),

(3.26)

where the first approximate solution (w̃
ε,0
− , w̃

ε,0
� , φε,0) ∈ C1

ε (Ω−
T ) × C1

ε (Ω�
T ) × C̃2

ε ([0, T ]) can
be constructed.

In view of Proposition 3.2, for each ν we can find a solution w̃
ε,ν+1
� to problem (3.26), and

estimate (3.24) gives

∥∥w̃ε,ν+1
∥∥

T
+ ∥∥dtφ

ε,ν+1
∥∥

T
� C0

(∥∥uε
−,0

∥∥+ ∥∥uε+
∥∥

T
+ ∥∥gε

∥∥
T

+
T∫

0

(∥∥f ε
∥∥

s
+ ks

∥∥w̃ε,ν
∥∥

s

)
ds

)
,

which implies

∥∥w̃ε,ν
∥∥

T
+ ∥∥dtφ

ε,ν
∥∥

T
� CeCMT

(∥∥uε
−,0

∥∥+ ∥∥uε+
∥∥

T
+ ∥∥gε

∥∥
T

+
T∫ ∥∥f ε

∥∥
s
ds

)
, (3.27)
0
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where M > 1+ε‖∇uε‖T +‖dtϕ
ε‖ε

1,[0,T ]. From this estimate, it is easy to prove that the sequence

{w̃ε,ν+1
� } is a Cauchy sequence in C1

ε (Ω
�
T ), and its limits is solution to (3.7). Therefore we have

found a solution (wε−,wε
�,φ

ε) to (3.7) and estimate (3.25) follows from (3.27) with possibly
another constant C. �

We pass now to smooth C1 solution, let us consider again problem (3.5).

Proposition 3.4. Let uε
� , f ε

� , gε = (gε
1, gε

2), uε
±,0 and ϕε(t) be some families of functions and

assume that they are bounded in C1
ε (Ω

�
T ), C1

ε (Ω
�
T ), (C1

ε ([0, T ]))2, C1
ε (ω±) and C̃2

ε ([0, T ]),
respectively, for some T ∈ (0, T0]. Moreover, assume that ε‖uε

�‖ � η for ε ∈ (0, ε0] and the
compatibility condition of problem (3.5) up to order one are satisfied. Then problem (3.5) has a
unique solution (wε−,wε

�,φ
ε) bounded in C1

ε (Ω−
T )×C1

ε (Ω�
T )× C̃2

ε ([0, T ]);wε = (wε−,wε
�) and

φε satisfy (3.25) and

∥∥ε∇wε
∥∥

T
+ ∥∥εd2

t φε
∥∥

T
� CeCMT

(
εM
(∥∥uε

−,0

∥∥+ ∥∥uε+
∥∥

T
+ ∥∥gε

∥∥
T

)+ ε
∥∥f ε(0)

∥∥
+ ε
(∥∥(uε

−,0

)′∥∥+ ∥∥dtuε+
∥∥

T
+ ∥∥dtg

ε
∥∥

T

)

+
T∫

0

(
εM
∥∥f ε

∥∥
s
+ ε
∥∥∇f ε

∥∥
s

)
ds

)
, (3.28)

for some constants T and M > 1 + ε‖∇uε‖T + ‖dtϕ
ε‖ε

1,[0,T ].

Proof. From Proposition 3.3, we know that problem (3.5) has a continuous solution (wε−,wε
�,φ

ε),

which is obtained after a change of variables from the limit of the sequence {w̃ε,ν
� } defined

through (3.26). At the present assumptions, we see that the data uε
� , f̃ ε

� = (Rε
� )

−1f ε
� , gε , ũε

−,0

entering in (3.26) are continuously differentiate function, while m̃ε
� = (L̃ε

�(u
ε
�, ϕ

ε)(Rε)−1)Rε
�

is barely continuous. However, thanks to the particular form of m̃ε
�, we can deduce that w̃

ε,ν
�

is continuously differentiable for each ν by applying [7, Lemma 3.5]. Next, similar to [3,
Lemma 6.2.7], we can prove that, for fixed ε, the sequence {∇w

ε,ν
− ,∇w

ε,ν
� , d2

t φε,ν, ν ∈ N} is
bounded in L∞ and then the sequence {w̃ε,ν

− , w̃
ε,ν
� , φε,ν} is equicontinuous. Then Ascoli’s theo-

rem is applied and existence of a C1 solution {wε−,wε
�,φ

ε} to (3.5) is proved.
It remains to prove the C1 estimate (3.28) and here we cannot proceed the case of shock waves

in [1,10,11], i.e., derive with respect to y system (3.5), estimate ∂yw
ε
� , then recover an estimate

for ∂zw
ε
� , by inversing the matrix N�, since the boundary is characteristic. In order to overcome

this difficulty, we will decouple the problem, solving at first the noncharacteristic components
(which need boundary conditions) and then the characteristic component (which need not).

Let us split function u into u = (uI , u2) with uI = (u1, u3) Since λ2 is linearly degenerate,
then λ2 = λ2(u

I ), and the system ∂yu + A(u)∂zu = 0 can be written as

{
∂yu

I
� + C(u)∂zu

I = 0,

∂yu2 + c(u)∂zu
I + λ2(u

I )∂zu2 = 0,
(3.29)

where C(u) is an 2 × 2 matrix, c(u) a 2-row vector. The vector c does not vanish, in general.
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Thus problem (3.5) can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂yw
ε,I
� + C(u� + εuε

�)∂zw
ε,I
� = f

ε,I
� ,

∂yw
ε
�,2 + c(u� + εuε

�)∂zw
ε,I
� + λ2(u� + εuε

�)∂zw
ε
�,2 = f ε

�,2,

w
ε,I
� − w

ε,I
− = gε

1, on z = 0,

F ε
(γ2u

ε
�,dt ϕε)

(γ2w
ε
�, dtφ

ε) = gε
2(t), on z = t,

φε(0) = 0, wε−(0, z) = wε
−,0(z),

(3.30)

where C and c are defined by

N� =
(

C(u� + εuε
�) 0

c(u� + εuε
�) λ2(u� + εuε

�)

)
,

with C and c being given by (3.29), 0 standing for a null 2-column vector.
Define zε

� = ε∂zw
ε
� , then zε

� and εdtφ
ε are a solution to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂yz
ε
� + C(u� + εuε

�)∂zz
ε,I
� + ∂z(C(u� + εuε

�))z
ε,I
� = ε∂zf

ε,I
� ,

∂yz
ε
�,2 + c(u� + εuε

�)∂zz
ε,I
� + λ2(u� + εuε

�)∂z∂zz
ε
�,2 + ∂z(c(u� + εuε

�))z
ε,I
�

+ ∂z(λ2(u� + εuε
�))z

ε
�,2 = ε∂zf

ε
�,2,

z
ε,I
� − z

ε,I
− = ε∂zw

ε,I
� − ε∂zw

ε,I
− , on z = 0,

∇g(u� + εγ2u
ε
�) · εγ2∂zu

ε
� · εdtφ

ε + ((σ + εdtϕ
ε)∇g(u� + εγ2u

ε
�)

− ∇f (u� + εγ2u
ε
�)) · εγ2z

ε
�

= −∂z[(σ + εdtϕ
ε)∇g(u� + εγ2u

ε
�) − ∇f (u� + εγ2u

ε
�)] · εγ2w

ε
�, on z = t,

φε(0) = 0, zε−(0, z) = ε∂zw
ε
−,0(z),

(3.31)

which is of the form

mε
�(y, z) =

(
∂z(C(u� + εuε

�)) 0

∂z(c(u� + εuε
�)) ∂z(λ2(u� + εuε

�))

)
,

and since uε
� ∈ C1

ε (Ω
�
T ), then mε

� is bounded in C0
ε (Ω

�
T ), i.e., ‖mε

�‖ � M for some M � C(1 +
ε‖∇wε

�‖T + ε‖d2
t φε‖T ). Using Proposition 3.3, we obtain

ε
∥∥∂zw

ε
∥∥

T
+ ε
∥∥d2

t φε
∥∥

T
� CeCMT

(
ε
∥∥(uε

−,0

)′∥∥+ ε
∥∥dtuε+

∥∥
T

+ ε
∥∥∂zw

ε,I |z=0
∥∥

T

+ ε
∥∥γ2w

ε
�

∥∥+
T∫

0

ε
∥∥∂zf

ε(s)
∥∥

s
ds

)
. (3.32)

Here, it is easy to inspect that the second compatibility condition for (3.5) is just the first one
for (3.30). Since the problem for w

ε,I

�
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{
∂yw

ε,I
� + C(u� + εuε

�)∂zw
ε,I
� = f

ε,I
� ,

w
ε,I
� − w

ε,I
− = gε

1, on z = 0, and w
ε,I
− (0, z) = w

ε,I
−,0(z),

(3.33)

noncharacteristic in consequence of strict hyperbolicity, similar to [1], it is easy to find C1 esti-
mates for wε,I :

ε
∥∥∂zw

ε,I
∥∥

T
� CeCMT

(
εM
(∥∥uε,I

−,0

∥∥+ ∥∥gε
1

∥∥
T

)+ ε
∥∥f ε,I (0)

∥∥

+ ε
(∥∥(uε,I

−,0

)′∥∥+ ∥∥dtg
ε
1

∥∥
T

)+
T∫

0

(
εM
∥∥f ε,I

∥∥
s
+ ε
∥∥∇f ε,I

∥∥
s

)
ds

)
. (3.34)

Substituting (3.34) and (3.25) into (3.32), we obtain an analogous estimate holds for ε‖∂zw
ε‖

with possibly another constant C. At last, we can obtain the estimate of ε‖∂yw
ε‖ from the interior

equation in (3.29). Proposition 3.4 is therefore proved. �
The following result is devoted to the study of the iterative scheme (3.4), from which we

immediately obtain the conclusion of Theorem 2.1(1).

Theorem 3.1. Let uε
±,0 be a bounded families in C1

ε (ω±) satisfying the compatibility conditions
(2.2.1) and (2.2.2). Then there exist some T ∈ (0, T0] and ε0 > 0 such that problem (2.1.15)
has a unique solution (uε−, uε

�, ϕ
ε) for ε ∈ (0, ε0), which are bounded in C1

ε (Ω−
T ) × C1

ε (Ω�
T ) ×

C̃2
ε ([0, T ]).

Proof. We consider the iterative scheme (3.4) starting with (u
ε,0
− , u

ε,0
� , ϕε,0), where

(u
ε,0
− , u

ε,0
� , ϕε,0) being given by construction and qε,ν(t) = ε−1

∫ t

0 (λ2(u� + εu
ε,ν
� (s,0)) −

λ2(u�)) ds. One first prove that ε(‖uε,ν‖T + ‖dtϕ
ε,ν‖T ) � η and the sequences {uε,ν}, {ϕε,ν}

are bounded in C1
ε (Ω−

T ) × C1
ε (Ω�

T ) and C̃2
ε ([0, T ]), respectively, by induction on ν if T and

ε0 are sufficiently small. In fact, by the boundedness of uε
±,0 in C1

ε (ω±) and Proposition 3.4,

it is easy to prove these facts. Then it can be showed that for ε fixed, ∇uε,ν and d2
t ϕε,ν are

not only uniformly bounded, but also equicontinuous, which implies the convergence uε,ν → uε

and ϕε,ν → ϕε, qε,ν → qε also hold in C1
ε (Ω−

T ) × C1
ε (Ω�

T ) and (C̃2
ε ([0, T ]))2 by Ascoli’s theo-

rem once again. Thus, we conclude that (uε, qε, ϕε) ∈ C1
ε (Ω−

T ) × C1
ε (Ω�

T ) × (C̃2
ε ([0, T ]))2 are

the solution to problem (2.1.15). For the detailed proof, we refer the reader to [7, Lemma 3.1,
Theorem 3.1], or, more generally to [3]. Theorem 3.1 is therefore proved. �
4. Existence of profiles

In this section, we consider problem (2.1.31). At first, it is easy to construct the first ap-
proximate solutions (U0−,U0

� ,χ0
2 ) ∈ C1(Ω−

T : R2) × C1(Ω−
T : R2) × C1([0, T ] : R) satisfying the

compatibility conditions of (2.1.31). Moreover, the following asymptotics

{
u

ε,0
� (y, z) = R�U

0
�

(
y, z; y

ε
, z

ε

)+ o(1), in L∞(ΩT ),

d ϕε,0(t) = χ0
(
t, t
)+ o(1), in L∞[0, T ],

(4.1)

t 2 ε



Y. Peng, Y.-G. Wang / J. Differential Equations 229 (2006) 317–352 337
holds when ε → 0, where u
ε,0
� (y, z) ∈ C1

ε (Ω
�
T ) and ϕε,0(t) ∈ C̃ε([0, T ]) are the approximate

solutions constructed in Section 3. For sake of simplicity, the construction of the first approximate
solutions and proof of the asymptotic (4.1) are omitted here. In order to reduce overlaps, we shall
refer the reader to [10, Section 4.1]. Without loss of generality, in the remainder of this paper, we
suppose that A� = (∇g(u�))

−1∇f (u�) is the diagonal matrix

A� = Λ� = diag
[
λ

�
1, λ

�
2, λ

�
3

]
, (4.2)

which can be easily obtained by using a transformation similar to (3.6). In this diagonal case,
r
�
k = �ek (k = 1,2,3) are the standard unit vectors.

Obviously, the nonlinear problem (2.1.31) can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E�U� = U�,

P−(∂y, ∂z)U− − dtq∂ηU− + E−B−(U−, ∂ηU−) = 0,

P�(∂y, ∂z)U� + (d̃�I + h�Λ�)∂ηU� + 1
σ−q0

E�B�(U�, ∂ηU�) = 0,

S(γ1U�,3, γ1U−,1)
T = J (γ1U�,1, γ1U−,3)

T, on z = η = 0,

χ2(g(u+) − g(u�)) + (σ∇g(u+) − ∇f (u+))U+ − (σ∇g(u�) − ∇f (u�))γ2U� = 0,

on z = t, η = τ,

U−|y=0 = U−,0(z; θ),

(4.3)

where U+(t, τ ) = U+(t, σ t; τ, σ t + ϕε(t)) and d̃ being given by (2.1.32) with (q,ϕ) ∈
(C2([0, T ]))2 being determined by problems (2.1.33) and (2.1.34).

For the linear problem (2.1.33) and problem (2.1.34), it is easy to get the existence of Ū� ∈
C1(Ω

�
T ) and (q,ϕ) ∈ (C2([0, T ]))2.

We solve the nonlinear problem (4.2) by the iterative scheme:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E�U
ν+1
� = Uν+1

� ,

P−(∂y, ∂z)U
ν+1− − dtq∂ηU

ν+1− + E−B−(Uν−, ∂ηU
ν+1− ) = 0,

P�(∂y, ∂z)U
ν+1
� + (d̃�I + h�Λ�)∂ηU

ν+1
� + 1

σ−q0
E�B�(U

ν
� , ∂ηU

ν+1
� ) = 0,

S(γ1U
ν+1
�,3 , γ1U

ν+1
−,1 )T = J (γ1U

ν+1
�,1 , γ1U

ν+1
−,3 )T, on z = η = 0,

χν+1
2 (g(u+) − g(u�)) + (σ∇g(u+) − ∇f (u+))U+ − (σ∇g(u�) − ∇f (u�))γ2U

ν+1
� = 0,

on z = t, η = τ,

Uν+1− |y=0 = U−,0(z; θ),

(4.4)

where (U0−,U0
� ,χ0

2 ) being given by construction. It is easy to verify that the compatibility con-
ditions here up to order one are valid for each ν � 0.

For any u(y, z; ξ, η) ∈ C0(ΩT : R2), define the mean value operator E
�
k , E

�
3 as follows:

{
E

�
ku(y, z; ξ, η) = limρ→∞ 1

2ρ

∫ +ρ

−ρ
u(y, z; ξ + s, η − b

�
ks) ds, k = 1,2,

E
�
3u(y, z; ξ, η) = limρ→∞ 1

2ρ

∫ +ρ

−ρ
u(y, z; ξ − b

�
3s, η + s) ds.

(4.5)

As Joly et al. in [3, Proposition 6.3.1], we can establish the following lemma.



338 Y. Peng, Y.-G. Wang / J. Differential Equations 229 (2006) 317–352
Lemma 4.1. For any (u�, v�) ∈ (C1(ΩT : R2))2 satisfying E�u� = u�, if we denote by B�(u, v)

the bilinear form

B�(u, v) = (B1
� (u, v),B2

� (u, v),B3
� (u, v)

)T
,

with Bk
� (u, v) =∑3

i,l=1 bil
�,kuivl, then

{
E

p
� B

p
� (∂ηu�, v�) = γ

p
� (v�)∂ηu

p
� + Ξ

p
� (u�, (∂ξ − b

�
p∂η)v�), p = 1,2,

E3
�B

3
� (∂ηu�, v�) = γ 3

� (v�)∂ηu
3
� + Ξ3

� (u�, (∂η − b
�
3∂ξ )v�),

(4.6)

where

γ k
� (v�) = Ek

�

(
3∑

l=1

bkl
�,kv�,l

)
and

Ξk
� (u�, v�) = Ek

�

( ∑
i �=k,l �=k

γ il
�,ku�,iv�,l

)
, k = 1,2,3, (4.7)

with

γ il
�,p = bil

�,p

1

b
�
p − b

�
i

, i �= p, p = 1,2 and γ il
�,3 = bil

�,3
1

b
�
1b

�
3 − 1

, i �= 3. (4.8)

Moreover, if E�v� = v�, then

Ξk
� (u�, v�) = Ek

�

(∑
i �=k

γ il
�,ku�,iv�,i

)
, i �= k, k = 1,2,3. (4.9)

Applying Lemma 4.1 for problem (4.4), it follows that (4.4) can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E�U
ν+1
� = Uν+1

� ,

P−(∂y, ∂z)U
ν+1− + (−dtq + γ−(Uν−))∂ηU

ν+1− + Ξ−(Uν+1− , ∂ηU
ν−) = 0,

P�(∂y, ∂z)U
ν+1
� + (d̃�I + h�Λ� + 1

σ−q0
γ�(U

ν
� )
)
∂ηU

ν+1
� + 1

σ−q0
Ξ�(U

ν+1
� , ∂ηU

ν
� ) = 0,

S(γ1U
ν+1
�,3 , γ1U

ν+1
−,1 )T = J (γ1U

ν+1
�,1 , γ1U

ν+1
−,3 )T, on z = η = 0,

χν+1
2 (g(u+) − g(u�)) + (σ∇g(u+) − ∇f (u+))U+
− (σ∇g(u�) − ∇f (u�))γ2U

ν+1
� = 0, on z = t, η = τ,

Uν+1− |y=0 = U−,0(z; θ),

(4.10)

where (U0−,U0
� ,χ0

2 ) can be constructed, γ�(U
ν
� ) = diag[γ 1

� (Uν
� ), γ 2

� (Uν
� ), γ 3

� (Uν
� )] and

Ξ�

(
Uν+1

� , ∂θU
ν
�

)=
⎛
⎜⎜⎝

Ξ1
� (Uν+1

� , (∂ξ − b
�
1∂η)U

ν
� )

Ξ2
� (Uν+1

� , (∂ξ − b
�
2∂η)U

ν
� )

Ξ3(Uν+1, (∂η − b
�
∂ξ )U

ν)

⎞
⎟⎟⎠ .
� � 3 �
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To study the iteration problem (4.10), we consider the linear problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E�U� = U�,

P−(∂y, ∂z)U− + (−dtq + γ−(V−))∂ηU− + Ξ−(U−, ∂ηV−) = E−F−,

P�(∂y, ∂z)U� + (d̃�I + h�Λ� + 1
σ−q0

γ�(V�)
)
∂ηU� + 1

σ−q0
Ξ�(U�, ∂ηV�) = E�F�,

S(γ1U�,3, γ1U−,1)
T = J (γ1U�,1, γ1U−,3)

T, on z = η = 0,

χ2(g(u+) − g(u�)) + (σ∇g(u+) − ∇f (u+))U+
− (σ∇g(u�) − ∇f (u�))γ2U� = 0, on z = t, η = τ,

U−|y=0 = U−,0(z; θ),

(4.11)

where V = (V−,V�) ∈ C1(Ω−
T : R2) × C1(Ω�

T : R2), f = (f−, f�) ∈ C1(Ω−
T : R2) × C1(Ω�

T : R2)

and U± ∈ C1(ω+;R) satisfying the compatibility conditions of (4.11) up to order one.
In order to study the linear problem (4.11), let us first consider the diagonal systems

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E�U� = U�,

P−(∂y, ∂z)U− + (−dtq + γ−(V−))∂ηU− = E−F−,

P�(∂y, ∂z)U� + (d̃�I + h�Λ� + 1
σ−q0

γ�(V�)
)
∂ηU� = E�F�,

S(γ1U�,3, γ1U−,1)
T = J (γ1U�,1, γ1U−,3)

T, on z = η = 0,

χ2((∇g(u�))
−1(g(u+) − g(u�)) + (∇g(u�))

−1(σ∇g(u+) − ∇f (u+))U+
− (σ I − Λ�))R�γ2U� = 0, on z = t, η = τ,

U−|y=0 = U−,0(z; θ),

(4.12)

where the notations and the assumption are the same as in (4.11). Using condition (H1) with
r
�
k = �ek for problem (4.12), it follows that (4.12) can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

E�U� = U�,

P−(∂y, ∂z)U− + (−dtq + γ−(V−))∂ηU− = E−F−,

P�(∂y, ∂z)U� + (d̃�I + h�Λ� + 1
σ−q0

γ�(V�)
)
∂ηU� = E�F�,

S(γ1U�,3, γ1U−,1)
T = J (γ1U�,1, γ1U−,3)

T, on z = η = 0,

M̄(γ2U�,1, γ2U�,2, χ2)
T = (σ − λ�

3)r
�
3γ2U�,3 + g2(t, τ ), on z = t, η = τ,

U−|y=0 = U−,0(z; θ),

(4.13)

where M̄ = ((λ�
1 − σ)r�

1 , (λ�
2 − σ)r�

2 , (∇g(u�))
−1(g(u+) − g(u�))), g2(t, τ ) = (∇g(u�))

−1 ×
(∇f (u+) − σ∇g(u+))U+.

Similar to Section 3, our aim is to obtain a functional equation of U�,1 and U�,3 on z = 0.

From E�U� = U�, it follows that U�,l(y, z; ξ, η) (l = 1,2) (respectively U�,3) are functions

of (y, z;b�
l ξ + η) (respectively of (y, z; ξ + b

�
3η)) with U�,k(y, z; θ) (k = 1,2,3) being almost

periodic in θ ∈ R.

Set⎧⎨
⎩

k−
l = −dtq + γ l−(V−), l = 1,2, k−

3 = 1
q0−λ−

3
(−dtq + γ 3−(V−)),

k�
l = d̃ + hλ�

l + 1
σ−q

γ l
�(V�), l = 1,2, k�

3 = − σ−q0
� (d̃ + hλ�

3 + 1
σ−q

γ 3
� (V�)),
0 λ3−q0 0
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and ⎧⎨
⎩

E−f− = (F−,1,F−,2, (λ
−
3 − q0)F−,3)

T,

E�f� = (F�,1,F�,2,
σ−q0
λ�

3−q0
F�,3

)T
.

By computation, it follows that (4.12) can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂yU�,l − b
�
l ∂zU�,l + k

�
l ∂θU�,l = F�,l,

b
�
3∂yU�,3 + ∂zU�,3 + k

�
3∂θU�,3 = F�,3,

γ1U�,3 = n11γ1U�,1 + n12γ1U−,3, on z = η = 0,

γ1U−,1 = n21γ1U�,1 + n22γ1U−,3, on z = η = 0,

M̄(γ2U�,1, γ2U�,2, χ2)
T = (σ − λ�

3)r
�
3γ2U�,3 + g2(t, τ ), on z = t , η = τ ,

U−|y=0 = U−,0(z; θ),

(4.14)

where the numbers (nij ) are the entries of the matrix Π1 = S−1J .

Obviously, the boundary condition in (4.14) can be decoupled into

χ2(t, τ ) = �e2M̄
−1(σ − λ�

2

)
r�

2γ2U�,3 + �e2M̄
−1g2(t, τ ) (4.15)

and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ1U�,3(t, τ ) = n11γ1U�,1 + n12γ1U−,3,

γ1U−,1(t, τ ) = n21γ1U�,1 + n22γ1U−,3,

γ2U�,1(t, τ ) = �e1M̄
−1(σ − λ�

3)r
�
3 + �e1M̄

−1g2(t, τ ),

γ2U�,2(t, τ ) = �e2M̄
−1(σ − λ�

3)r
�
3 + �e2M̄

−1g2(t, τ ).

(4.16)

Similar to Section 3, U−,2, U−,3 can be given. While for U−,1,U�,k (k = 1,2,3), if we obtain
γ1U�,1 or γ2U�,3, they can be obtained. In the following, we will obtain a functional equation
of γ2U�,3.

For any (y, z) ∈ Ω�
T , set y�

3(s) = y + b�
3(z − s) and z�

1(s) = (t − z) + b�
1(y − s) be the

characteristic curves of the vectors b�
3∂y + ∂z and ∂y − b�

1∂z, respectively, through (y, z). Let
s → (y�

3(s), s;μ�
3(s;y, z, θ)) ((s, z�

1(s);μ�
1(s;y, z, θ)), respectively) be the characteristic curve

of b�
3∂y + ∂z + k�

3∂θ (∂y − b�
1∂z + k�

1∂θ , respectively) through (y, z; θ) ∈ Ω�
T × R, where μ�

3 and
μ�

1 are solutions to the following problems

{
dsμ

�
3(s;y, z, θ) = k�

3(y
�
3(s), s;μ�

3(s;y, z, θ)),

μ�
3(z;y, z, θ) = θ

(4.17)

and

{
dsμ

�
1(s;y, z, θ) = k�

1(s, z
�
1(s);μ�

1(s;y, z, θ)),

μ�(y;y, z, θ) = θ.
(4.18)
1
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Obviously, the solutions (U�,1,U�,3) can be expressed as

{
U�,1(y, z;b�

1ξ + θ) = U�,1(t, z
�
1(t);μ�

1(t)) + F�,1(y, z; θ),

U�,3(y, z; ξ + b�
3θ) = U�,3(y

�
3(0),0;μ�

3(0)) + F�,3(y, z; θ),
(4.19)

where y
�
3(0) = y + b

�
3z, z

�
1(t) = t − z + b

�
1(y − t), and

{
F�,1(y, z; θ) = ∫ y

t
f�,1(s, z

�
1(s);μ�

1(s)) ds,

F�,3(y, z; θ) = ∫ z

0 f�,3(y
�
3(s), s;μ�

3(s)) ds,
(4.20)

with μ
�
1(s) = μ

�
1(s;y, z, θ) and μ

�
3(s) = μ

�
3(s;y, z, θ).

From (4.19), we have

{
γ1U�,1(t, b

�
1τ) = γ2U�,1(t,μ

�
1(t; t,0, b�

1τ)) + F�,1(t,0;b�
1τ),

γ2U�,3(t, (1 + b�
3)τ ) = γ1U�,3((1 + b�

3)t,μ
�
3(0; t, t, (1 + b�

3))) + F�,3(t, t; (1 + b�
3)).

(4.21)

Combining (4.21) with the first and third lines in (4.16), it gives rise to

γ2U�,3
(
t,
(
1 + b�

3

)
τ
)= n11�e1M̄

−1(σ − λ�
3

)
r�

3γ2U�,3
((

1 + b�
3

)
t, θ(t, τ )

)+ H(t, τ ), (4.22)

where

θ(t, τ ) = (1 + b�
1

)−1(1 + b�
3

)
μ�

1

((
1 + b�

3

)
t; (1 + b�

3

)
t,0, b�

1μ
�
3

(
0; t, t, (1 + b�

3

)
τ
))

(4.23)

and

H(t, τ ) = n11�e1M̄
−1g2

((
1 + b�

3

)
t,
(
1 + b�

3

)−1
θ(t, τ )

)
+ n11F�,l

((
1 + b�

3

)
t,0;b�

l μ
�
3

(
0; t, t, (1 + b�

3

)
τ
))

+ n12γ1U−,3
((

1 + b�
3

)
t;μ�

3

(
0; t, t, (1 + b�

3

)
τ
))+ F�,3

(
t, t; (1 + b�

3

)
τ
)
. (4.24)

Denote by M = ‖V�‖1,T for a given V� ∈ C1(ΩT �
0

: R2), for the functional equation (4.22),
similar to [11, Lemma 4.2], it follows:

Lemma 4.2.

(1) Given any V� ∈ C1(Ω�
T : R2) and H ∈ C0([0, T0] : R), such that U±,0 ∈ C0([0, T0] : R), there

is a unique solution γ2U�,3 ∈ C0([0, T0] : R) to Eq. (4.21), and the estimate

‖γ2U�,3‖T � C0‖H‖T (4.25)

holds for any T ∈ (0, T0].
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(2) If H ∈ C1([0, T0] : R), U± ∈ C0([0, T0] : R), then there exists T1 ∈ (0, T0] depending only
upon MT0, such that the solution γ2U�,3 of (4.21) belong to C1([0, T0] : R), and the estimate

‖γ2U�,3‖1,T � C0‖H‖1,T (4.26)

holds for any T ∈ (0, T1].

Then for problem (4.12), similar to Section 3, we sum up the following proposition.

Proposition 4.1. For any given V = (V−,V�) ∈ C1(Ω−
T0

: R2) × C1(Ω�
T0

: R2), F = (F−,F�) ∈
C0(Ω−

T0
: R2) × C1(Ω�

T0
: R2), U±,0 ∈ C1(ω± : R) and G(t, τ ) ∈ C0([0, T0] : R), assume that the

zeroth compatibility condition holds of (4.12). Then there are unique solutions U = (U−,U�) ∈
C0(Ω−

T : R2) × C0(Ω�
T0

: R2) and χ2 ∈ C0([0, T ] : R) to problem (4.12), moreover, the estimate

‖χ2‖T + ‖U‖T � C

(
‖U−,0‖ + ‖U+‖T + ‖G‖T +

T∫
0

‖F‖s ds

)
(4.27)

holds for any T ∈ (0, T0].

Let us turn to consider the linear problem (4.11). Similar to Proposition 3.3, we have:

Proposition 4.2. Let us take V , F , U± and G as in Proposition 4.1, assume that the zeroth com-
patibility condition of (4.11) holds. Then problem (4.11) has a unique solution U = (U−,U�) ∈
C0(Ω−

T : R2) × C0(Ω�
T0

: R2) and χ2 ∈ C0([0, T ] : R). Moreover, for any T ∈ (0, T0], we have

‖χ2‖T + ‖U‖T � CeCMT

(
‖U−,0‖ + ‖U+‖T + ‖G‖T +

T∫
0

‖F‖s ds

)
, (4.28)

where M = 1 + ‖V ‖T .

Proof. As usual, the existence is proved by means of the iterative

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E�U
ν+1
� = Uν+1

� ,

P−(∂y, ∂z)U
ν+1− + (−dtq + γ−(V−))∂ηU

ν+1− + Ξ−(Uν−, ∂ηV−) = E−F−,

P�(∂y, ∂z)U
ν+1
� + (d̃�I + h�Λ� + 1

σ−q0
γ�(V�)

)
∂ηU

ν+1
� + 1

σ−q0
Ξ�(U

ν
� , ∂ηV�) = E�F�,

S(γ1U
ν+1
�,3 , γ1U

ν+1
−,1 )T = J (γ1U

ν+1
�,1 , γ1U

ν+1
−,3 )T, on z = η = 0,

χν+1
2 (g(u+) − g(u�)) + (σ∇g(u+) − ∇f (u+))U+
− (σ∇g(u�) − ∇f (u�))γ2U

ν+1
� = 0, on z = t, η = τ,

Uν+1| = U (z),

(4.29)
− y=0 −,0
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where U0 = (U0−,U0
� ) ∈ C1(Ω−

T : R2) × C1(Ω�
T0

: R2) and χ0
2 ∈ C1([0, T0] : R) are the first ap-

proximate solutions constructed in a way similar to [7]. Note that

∥∥Ξ�

(
Uν

� , ∂θV�

)∥∥
s
� C0‖V�‖1,s

∥∥Uν
�

∥∥
s
,

then one proceeds as in the second part of Proposition 3.3, exploiting Proposition 4.1. �
Moreover, parallelly to Proposition 3.4 in Section 3, we have:

Proposition 4.3. Assume that V , F , U± and G are C1-smooth, if two compatibility conditions
of (4.11) hold, then the solution U and χ2 of problem (4.11) are C1-smooth and satisfies the
following estimate

‖χ2‖1,T + ‖U‖1,T � CeCMT

(
‖U−,0‖1 + ‖U+‖1,T + ∥∥F(0)

∥∥+ ‖G‖1,T +
T∫

0

‖F‖1,s ds

)
,

(4.30)

where M = 1 + ‖V ‖1,T .

Proof. Proof of this proposition follows from the same item in Proposition 3.4 and the estimate
‖Ξ�(U

ν
� , ∂θV�)‖1,T � C0‖V�‖1,T ‖Uν

� ‖1,T . �
At last, let us turn to the study of the iterative scheme (4.10), from which we immediately

obtain the conclusion of Theorem 2.1(2).

Theorem 4.1. If U±,0 ∈ C(ω± : R) and two compatibility conditions hold for (2.1.31), then there
exists T ∈ (0, T0] and a unique solution U ∈ C1(Ω−

T : R2) × C1(Ω�
T : R2) and χ2 ∈ C1([0, T ] : R)

of this problem.

Proof. The proof parallels that of Theorem 3.1. The iterative scheme we take into account here
is (4.10) (notice that the first approximate solution is given by construction). At first, using Propo-
sition 4.3, we solve problem (4.10) for each ν, has L∞ bounds. Then these bounds prove that
{Uν,χν

2 } is a Cauchy sequence in L∞ and hence the existence of a continuous almost periodic
solution U and χ2 to (2.1.31). C1-smoothness is proved once more through Ascoli’s theorem. �
5. Asymptotic properties

In this section, we study the asymptotic properties of the oscillatory shock wave and con-
tact discontinuity solutions (uε−, uε

�, ϕ
ε) to problem (2.1.15), which gives the proof of Theo-

rem 2.1(3). Let T > 0 be the smaller one between those obtained in Theorems 3.1 and 4.1.
At first, we give a result, whose proof can be found in [11, Proposition 5.1].

Proposition 5.1. Suppose that (uε−, uε
�, ϕ

ε) ∈ C1
ε (Ω−

T ) × C1
ε (Ω�

T ) × C̃0
ε ([0, T ]), (U−,U�,χ2) ∈

C1(Ω−
T : R2) × C1(Ω�

T : R2) × C1([0, T ] : R) and ϕ ∈ C2([0, T ]) are solutions to Goursat prob-
lems (2.1.15), (2.1.31) and (2.1.33), respectively, and uε satisfy the asymptotics
�
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∥∥∥∥uε
�(y, z) − R�U�

(
y, z; y

ε
,
z

ε

)∥∥∥∥
ε

1,ΩT

= o(1), when ε → 0. (5.1)

Then, when ε → 0, we have

{∥∥dtϕ
ε(t) − χ2

(
t, t

ε

)∥∥ε

1,[0,T ] = o(1),

‖ϕε(t) − ϕ(t)‖L∞[0,T ] = o(1).
(5.2)

By Proposition 5.1, in order to finish the proof of Theorem 2.1, we only need to establish the
asymptotics (5.1).

We start with the following linear diagonal problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L̃ε
�(v

ε
� ,Φ

ε)uε
� = f ε

� ,

(γ1u
ε
�,3, γ1u

ε
−,1)

T = Πε
1 (t)(γ1u

ε
�,1, γ1u

ε
−,3)

T + gε
1(t), on z = 0,

dtϕ
ε(g(u+) − g(u�)) + (σ I − A+)uε+ − (σ I − Λ�)γ2u

ε
� = gε

2(t), on z = t ,

uε−(0, z) = uε
−,0(z),

(5.3)

where uε+ = uε+(t, σ t + εΦε(t)), L̃ε
�(v

ε
� ,Φ

ε) = ∂y + Nε
� ∂z and

Nε− = Λ
(
u− + εvε−

)− λ2
(
u� + εvε

�

)
I, Nε

� =
(

∂z

∂t

)
�

I +
(

∂z

∂x

)
�

Λ
(
u� + εvε

�

)
, (5.4)

with (( ∂z
∂t

)�, (
∂z
∂x

)�) being given in (2.1.18) by replacing Φε for ϕε.

For problem (5.3), suppose that vε = (vε−, vε
�), f ε = (f ε−, f ε

� ), Φε , gε = (gε
1, gε

2) and uε
±,0

are bounded as in Proposition 3.2, and uε+ satisfies the asymptotic property (2.1.13). Assume

that V� ∈ C1(Ω
�
T : R2), F� ∈ C0(Ω

�
T : R2) and K ∈ C0([0, T ] : R) such that

E�V� = V� (5.5)

and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vε
� (y, z) − V�

(
y, z; y

ε
, z

ε

)= o(1), in L∞(Ω
�
T ),

f ε
� (y, z) − F�

(
y, z; �ψ( y

ε
, z

ε

))= o(1), in L∞(Ω
�
T ),

dtΦ
ε(t) − K

(
t, t

ε

)= o(1), in L∞([0, T ]),
(gε

1(t), gε
2(t)) = o(1), in L∞([0, T ]),

(5.6)

when ε → 0, where �ψ(ξ,η) = ( �ψ−(ξ, η), �ψ�(ξ, η),ψ(ξ, η)) with �ψ�(ξ, η) = (b
�
1ξ + η,b

�
2ξ + η,

ξ + b
�
η) and ψ(ξ,η) = ξ + η.
3
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The profile problem related to (5.3) will be

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E�U� = U�,

P−(∂y, ∂z)U− + (−dtq + γ−(V−))∂ηU− = E−F−,

P�(∂y, ∂z)U� + (d̃I + h�Λ� + 1
σ−q0

γ�(V�)
)
∂ηU� = E�F�,

S(γ1U�,3, γ1U−,1)
T = J (γ1U�,1, γ1U−,3)

T, on z = η = 0,

χ2((∇g(u�))
−1(g(u+) − g(u�))) + (∇g(u�))

−1(σ∇g(u+) − ∇f (u+))U+
− (σ I − Λ�)R�γ2U� = 0, on z = t, η = τ,

U−|y = 0 = U−,0(z),

(5.7)

where U+(t, τ ) = U+(t, σ t; τ, στ + Φ(t)) with

Φ(t) =
t∫

0

(E0K)(s) ds, (5.8)

d̃� = (q0y + σz − q0z)(Φ − q)

(σ − q0)2y2
− (y − z)dtq + zdtΦ

(σ − q0)y
, (5.9)

and γ�(V�) = diag[γ 1
� (V�), γ

2
� (V�), γ

3
� (V�)] with

γ k
� (V�) = Ek

�

(
3∑

p=1

∂λk

∂vp

(u�)V�,p

)
. (5.10)

If we assume that the zeroth order compatibility condition holds for problem (5.3) and one for
problem (5.7), then Propositions 3.2, 4.1 apply and provide solutions (uε−, uε

�, ϕ
ε) ∈ C1

ε (Ω−
T ) ×

C1
ε (Ω�

T ) × C̃1
ε ([0, T ]) and (U−,U�,χ2) ∈ C0(Ω−

T : R2) × C0(Ω�
T : R2) × C1([0, T ] : R).

Proposition 5.2. Under the above assumption and notations, we have the following asymptotic
developments

{
uε

�(y, z) − U�

(
y, z; y

ε
, z

ε

)= o(1), in L∞(Ω
�
T ),

dtϕ
ε(t) − χ

(
t, t

ε

)= o(1), in L∞([0, T ]),
(5.11)

when ε → 0.

Proof. The asymptotic development for the components uε
−,2, uε

−,3 are deduced from [1]
by using the nonstationary phase lemma in [3] and [2, Lemma 2.4.1]. Then uε−,i (y, z) −
U−,i (y, z; y

ε
, z

ε
) = o(1) (i = 2,3) in L∞(Ω−

T ). Similarly, asymptotic development of the com-
ponent uε

−,1 holds also in the region Cε
−,1. For the region Bε

−,1, the boundary conditions are
needed. For the components uε

�,k (k = 1,2,3), the boundary conditions are needed also in the
region Ω�

T . In fact, if we know the asymptotic development of γ2u
ε
�,3 in Ω�

T , then we will know
the one of uε

−,1 in Bε
−,1, uε

�,1, uε
�,2 in Ω�

T and dtϕ
ε(t). The proof of Proposition 5.2 is thus

completed. �
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In the following, we are devoted to the study of asymptotic develop of γ2u
ε
�,3 in Ω�

T . Similar
to the derivation [11, pp. 1669–1670], if we set

dε = (q0y + σz − q0z)(Φ
ε − qε)

(σ − q0)2y2
− (y − z)dtq

ε + zdtΦ
ε

(σ − q0)y
, hε = qε − Φε

(σ − q0)y
, (5.12)

⎧⎨
⎩

bε
�,1 = −λ1(u�+εvε

� )−q0+ε(dε+hελ1(u�+εvε
� ))

σ−q0
,

bε
�,3 = σ−q0

λ3(u�+εvε
� )−q0+ε(dε+hελ3(u�+εvε

� ))
,

(5.13)

and

f ε
� =

(
f ε

�,1, f
ε
�,2,

σ − q0

λ�
3 − q0

f ε
�,N

)T

, (5.14)

then the equations of uε
�,1, uε

�,3 in (5.3) are written as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂yu
ε
�,1 − bε

�,1∂zu
ε
�,1 = f ε

�,1 + o(1),

bε
�,3∂yu

ε
�,3 + ∂zu

ε
�,3 = f ε

�,3 + o(1),

(γ1u
ε
�,3, γ1u

ε
−,1)

T = Πε
1 (t)(γ1u

ε
�,1, γ1u

ε
−,3)

T + gε
1(t), on z = 0,

dtϕ
ε(g(u+) − g(u�)) + (σ I − A+)uε+ − (σ I − Λ�)γ2u

ε
� = gε

2(t), on z = t .

(5.15)

On the other hand, the equation of U�,1, U�,3 in (5.7) can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(∂y − b�
1∂z)U�,1 + (d̃ + hλ�

1 + 1
σ−q0

γ 1
� (V�)

)
∂θU�,1 = E1

�F�,1,

(b�
3∂y + ∂z)U�,3 + σ−q0

λ�
3−q0

(
d̃ + hλ�

3 + 1
σ−q0

γ 3
� (V�)

)
∂θU�,3 = σ−q0

λ�
3−q0

E3
�F�,3,

S(γ1U�,3, γ1U−,1)
T = J (γ1U�,1, γ1U−,3)

T, on z = η = 0,

χ2((∇g(u�))
−1(g(u+) − g(u�))) + (∇g(u�))

−1(σ∇g(u+) − ∇f (u+))U+
− (σ I − Λ�)R�γ2U� = 0, on z = t, η = τ,

(5.16)

where we denote by θ = b�
1ξ + η in the first equation, and θ = ξ + b�

3η in the second equation.
For any (y, z) ∈ Ω�

T , set y�
3(s) and z�

1(s) be the characteristic curves as in Section 3.4. Let
s → (y�

3(s)+ εyε
�,3(s;y, z), s) (s → (s, zε

1(s)+ εzε
�,l,(s;y, z)), respectively) be the characteristic

curve of bε
�,3∂y + ∂z (respectively of ∂y − bε

�,l∂z) through (y, z) ∈ Ω�
T , where (yε

�,3, z
ε
�,l) satisfies

{
dsy

ε
�,3(s;y, z) = ε−1(b�

3 − bε
�,3(y

�
3(s) + εyε

�,3(s;y, z), s)),

yε
�,3(z;y, z)(z;y, z) = 0

(5.17)

and {
dsz

ε
�,1(s;y, z) = ε−1(b�

1 − bε
�,1(s, z

�
1(s) + εzε

�,1(s;y, z))),

zε
�,1(y;y, z) = 0.

(5.18)

Let s → (y�
3(s), s; θ + Y �

3 (s;y, z, θ)) ((s, z�
1(s); θ + Z�

1(s;y, z, θ)), respectively) be the char-
acteristic curve of bε

�,3∂y + ∂z + σ−q0
� (d̃ + hλ�

3 + 1
σ−q

γ 3
� (V�))∂θ (respectively of ∂y − bε

�,1∂z +

λ3−q0 0



Y. Peng, Y.-G. Wang / J. Differential Equations 229 (2006) 317–352 347
(d̃ +hλ�
1 + 1

σ−q0
γ 1
� (V�))∂θ ) through (y, z; θ) ∈ Ω�

T , where (Y �
3 ,Z�

1) satisfies the following prob-
lem: {

dsY
�
3 (s;y, z, θ) = σ−q0

λ�
3−q0

(
d̃ + hλ�

3 + 1
σ−q0

γ 3
� (V�)

)
(y�

3(s), s; θ + Y �
3 (s)),

Y �
3 (z;y, z, θ) = 0

(5.19)

and {
dsZ

�
1(s;y, z, θ) = (d̃ + hλ�

1 + 1
σ−q0

γ 1
� (V�)

)
(s, z�

1(s); θ + Z�
1(s)),

Z�
1(y;y, z, θ) = 0.

(5.20)

Denote by Ω�
T,y = {(s;y, z) | z � s � t , (y, z) ∈ Ω�

T }, and Ω�
T,z = {(s;y, z) | t � s � y,

(y, z) ∈ Ω�
T }. Similar to [11, Lemma 5.1], we have:

Lemma 5.1. There are unique solutions yε
�,3 ∈ C1

ε (Ω�
T,y), zε

�,1 ∈ C1
ε (Ω�

T,z), Y �
3 ∈ C1(Ω�

T,y : R)

and Z�
1 ∈ C1(Ω�

T,z : R) to problems (5.17), (5.18), (5.19) and (5.20), respectively. Moreover, the
following asymptotic development holds in L∞ when ε → 0,

⎧⎨
⎩

yε
�,3(s;y, z) − Y �

3

(
s;y.z,

y+b�
3z

ε

)= o(1),

zε
�,1(s;y, z) − Z�

1

(
s;y.z,

b�
1y+z

ε

)= o(1).
(5.21)

As derivation in Sections 2 and 3, problems (5.15) and (5.16) can be transformed into a system
of functional equations respectively. Here, for simplicity, we need not to give the whole system of
functional equations. However, the functional equations of γ2u�,3(t) and γ2U�,3(t, τ ) are needed.

As in [11, Lemma 5.2], applying the above Lemma 5.1, we give the following result.

Lemma 5.2. Let γ2u
ε
�,3(t) ∈ C0

ε ([0, T ]) and γ2U�,3(t, τ ) ∈ C0([0, T ] : R) be the unique solutions
to the functional equations

γ2u
ε
�,3(t) = ηεγ2u

ε
�,3

(
Xε(t)

)+ hε(t) (5.22)

and

γ2U�,3(t, τ ) = ηγ2U�,3(t, τ )
((

1 + b�
3

)
t, θ(t, τ )

)+ H(t, τ ), (5.23)

respectively, where ηε = m11�e1(M
ε)−1(σ + εdtϕ

ε − λ3(u� + εγ2v
ε
�)r3(u� + εγ2v

ε
�)), η =

n11�e1(M̄)−1(σ − λ�
3) and every notation is the same as in Sections 3 and 4, then when ε → 0,

we have

γ2u
ε
�,3(t) − γ2U�,3

(
t,

t

ε

)
= o(1), in L∞([0, T ]). (5.24)

Before passing to the asymptotics for solutions of general linear problems like (3.4), in order
to shorten the proof of the next proposition, we first give a lemma by considering the following
semilinear problem with linear diagonal principal part
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L̃ε
�(v

ε
� ,Φ

ε)uε
� + m�(εv

ε
� ,w

ε
� )u

ε
� + Q�(εv

ε
� , u

ε
�) = f ε

� ,

(γ1u
ε
�,3, γ1u

ε
−,1)

T = Πε
1 (t)(γ1u

ε
�,1, γ1u

ε
−,3)

T + gε
1(t), on z = 0,

dtϕ
ε(g(u+) − g(u�)) + (σ I − A+)uε+ − (σ I − Λ�)γ2u

ε
� = gε

2(t), on z = t ,

uε−(0, z) = uε
−,0(z),

(5.25)

where the notations and assumptions are the same as in (5.3), and

m�(v,w) =
∑

l

m�,l(v)w�,l, Q�,k(v,u) =
∑
i,p

Q
ip
�,k(v)u�,iu�,p, (5.26)

where m�(v,w) are linear in w and Q�(v,u) are quadratic form in u, with m�,l and (Q
ip
�,k)rn

being (3×3)-matrices. We suppose that wε
� is bounded in C0

ε (Ω
�
T ) and the asymptotic expansion

wε
�(y, z) − W�

(
y, z; �ψ

(
y

ε
,
z

ε

))
= o(1), in L∞(Ω�

T

)
, (5.27)

hold with W�(y, z; θ) ∈ C0. Then for problem (5.25), we have:

Lemma 5.3. For the solution uε
� and ϕε(t) to problem (5.25), there is T1 ∈ [0, T ] such that in

L∞(ΩT1), the asymptotic properties

{
uε

�(y, z) − U�

(
y, z; y

ε
, z

ε

)= o(1),

dtϕ
ε(t) − χ2

(
t, t

ε

)= o(1), k = 1,2,
(5.28)

hold, where T1 = T when Q(v,u) = 0 in problem (5.25), (U−,U�,χ2) ∈ C0(Ω−
T1

: R2) ×
C0(Ω�

T1
: R2) × C0([0, T1] : R) are unique solutions to the problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E�U� = U�

∂yU−,k + (λ−
k − q1)∂zU−,k + (−dtq + γ k−(V−))∂ηU−,k

+ Ek−
(∑

l,p m̄
kp
−,lW−,lU−,p +∑i,p Q̄

ip
−,kU−,iU−,p

)= Ek−F−,k, k = 1,2,3,

∂yU�,k − q0−λ�
k

σ−q0
∂zU�,k + (d̃ + hλ�

k + 1
σ−q0

γ k
� (V�)

)
∂ηU�,k

+ Ek
�

(∑
l,p m̄

kp
�,lW�,lU�,p +∑i,p Q̄

ip
�,kU�,iU�,p

)= Ek
�F�,k, k = 1,2,

σ−q0
λ�

3−q0
∂yU�,3 + ∂zU�,3 + (d̃ + hλ�

3 + 1
σ−q0

γ 3
� (V�)

)
∂ηU�,3

+ E3
�

(∑
l,p m̄

3p
�,lW�,lU�,p +∑i,p Q̄

ip

�,3U�,iU�,p

)= E3
�F�,3,

S(γ1U�,3, γ1U−,1)
T = J (γ1U�,1, γ1U−,3)

T, on z = η = 0,

χ2((∇g(u�))
−1(g(u+) − g(u�))) + (∇g(u�))

−1(σ∇g(u+) − ∇f (u+))U+
− (σ I − Λ�)R�γ2U� = 0, on z = t, η = τ,

U−|y = 0 = U−,0(z; θ),

(5.29)

with the notation being the same as in (5.7). m̄�,l = m�,l(0) and Q̄
ip = Q

ip
(0) (k = 1,2,3).
�,k �,k
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Proof. Under the zeroth order compatibility condition for problems (5.25) and (5.29), exis-
tence of a solution (uε−, uε−, ϕε) bounded in C0

ε (Ω−
T ) × C0

ε (Ω�
T ) × C1

ε ([0, T ]) to problem (5.25)
is a byproduct of the proof of Proposition 3.3, while existence of a solution (U−,U�,χ2) ∈
C0(Ω−

T : R2)×C0(Ω�
T : R2)×C1([0, T ] : R) to problem (5.29) follows from Proposition 4.2. The

solution (uε−, uε−, ϕε) are constructed by way of an iterative scheme similar to (3.26), and the
limits are uniform in ε. The profile (U−,U�,χ2) are obtained by an iterative scheme similar
to (4.29). Then the asymptotic properties can be easily obtained by using Proposition 5.1 to
parallel terms of both sequence and pass to the limit (see [3, Proposition 6.5.1]). �

With this lemma, we can consider the following linear problem with nondiagonal principal
part

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Lε
�(v

ε
� ,Φ

ε)uε
� + m�(εv

ε
� ,w

ε
� )u

ε
� = f ε

� ,

(γ1u
ε
�,3, γ1u

ε
−,1)

T = Πε
1 (t)(γ1u

ε
�,1, γ1u

ε
−,3)

T + gε
1(t), on z = 0,

dtϕ
ε(g(u+) − g(u�)) + (σ I − A+)uε+ − (σ I − Λ�)γ2u

ε
� = gε

2(t), on z = t ,

uε−(0, z) = uε
−,0(z),

(5.30)

where Lε
�(v

ε
� ,Φ

ε) = ∂y + Nε
� ∂z with

Nε− = A
(
u− + εvε−

)− λ2
(
u− + εvε−

)
I, Nε

� =
(

∂z

∂t

)
�

I +
(

∂z

∂x

)
�

A
(
u� + εvε

�

)
, (5.31)

and (( ∂z
∂t

)�, (
∂z
∂x

)�) being given in (2.1.18) by replacing Φε for ϕε, and all hypotheses are the
same as in Proposition 5.1, Lemma 5.3. Moreover, we have

vε
� (y, z) − V�

(
y, z; y

ε
,
z

ε

)
= o(1), in L∞(Ω�

T

)
, (5.32)

with V� ∈ C1(Ω
�
T : R2) being the same as in (5.5).

Proposition 5.3. For the solutions (uε−, uε
�, ϕ

ε) ∈ C0
ε (Ω−

T )×C0
ε (Ω�

T )× C̃1
ε ([0, T ]) of (5.30), we

have the following asymptotic properties:

{
uε

�(y, z) − R�U�

(
y, z; y

ε
, z

ε

)= o(1), in L∞(Ω
�
T ),

dtϕ
ε(t) − χ2

(
t, t

ε

)= o(1), in L∞([0, T ]),
(5.33)

where (U−,U�,χ2) ∈ C0(Ω−
T : R2) × C0(Ω�

T : R2) × C0([0, T ] : R) are unique solutions to the
problem
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E�U� = U�,

P−(∂y, ∂z)U− − dtq∂ηU− + E−
(
B−(∂ηU−,V−) +∑l m̄−,lU−W−,l

)= E−F−,

P�(∂y, ∂z)U� + (d̃I + hΛ�)∂ηU� + 1
σ−q0

E�

(
B�(∂ηU�,V�) +∑l m̄�,lU�W�,l

)= E�F�,

S(γ1U�,3, γ1U−,1)
T = J (γ1U�,1, γ1U−,3)

T, on z = η = 0,

χ2((∇g(u�))
−1(g(u+) − g(u�))) + (∇g(u�))

−1(σ∇g(u+) − ∇f (u+))U+
− (σ I − Λ�)R�γ2U� = 0, on z = t, η = τ,

U−|y = 0 = U−,0(z; θ).

(5.34)

Clearly the zeroth order compatibility conditions are satisfied for problems (5.30) and (5.34).

Proof. The idea of this proposition is that one can diagonalize problem (5.30), then for diago-
nalized problem, one can easily obtained results by using Lemma 5.3. For the detailed process,
one can be found Proposition 5.4 in [11] and Proposition 2.2.4 in [2]. �

So far we have been concerned with L∞ asymptotics, we give now a result about C1
ε asymp-

totics. Let us consider the asymptotics of derivation of solutions to problem (3.4), i.e., (5.30) with
m� = 0, where vε

� is the same as in (5.32), f ε
� , Φε and gε

k (k = 1,2) are bounded in C1
ε (Ω

�
T ),

C̃2
ε ([0, T ]) and C1

ε ([0, T ]), respectively. Under the assumptions of Proposition 3.4, let uε
� , ϕε

be its solution. We already know from the previous proposition that uε
� , ϕε has U�, χ2 as pro-

files, with errors in L∞(Ω
�
T ); to reach C1

ε (Ω
�
T ), we strengthen the assumption on the asymptotic

expansions (5.6), replacing L∞(Ω
�
T ) with C1

ε (Ω
�
T ).

Proposition 5.4. Let (uε−, uε
�, ϕ

ε) ∈ C1
ε (Ω−

T ) × C1
ε (Ω�

T ) × C̃2
ε ([0, T ]) be the solution to (3.5)

and (U−,U�,χ2) ∈ C1(Ω−
T : R2)×C1(Ω�

T : R2)×C2([0, T ] : R) be the solutions to the following
problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E�U� = U�,

P−(∂y, ∂z)U− + E−(−dtq∂η)U− + B−(∂ηU−,V−) = E−F−,

P�(∂y, ∂z)U� + E�(d̃I + hΛ�)∂ηU� + 1
σ−q0

B�(∂ηU�,V�) = E�F�,

S(γ1U�,3, γ1U−,1)
T = J (γ1U�,1, γ1U−,3)

T, on z = η = 0,

χ2((∇g(u�))
−1(g(u+) − g(u�))) + (∇g(u�))

−1(σ∇g(u+) − ∇f (u+))U+
− (σ I − Λ�)R�γ2U� = 0, on z = t, η = τ,

U−|y = 0 = U−,0(z; θ).

(5.35)

Under the above mentioned assumptions and two compatibility conditions for both problems.
Then we have

uε
�(y, z) − R�U�

(
y, z; y

ε
,
z

ε

)
= o(1), (5.36)

in C1
ε (Ω

�
T ) when ε → 0.
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Proof. From the proof of Proposition 3.4, we know that zε
� = ε∂zu

ε
� satisfies (3.29). This propo-

sition falls under the frame of Proposition 5.3, except for the boundary term ε∂zu
ε,I
� , whose

asymptotic properties are not yet know. Thus what the first step we do is to establish the C1

asymptotic for u
ε,I
� solving the noncharacteristic problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂yu
ε,I
� + C(u� + εvε

� )∂zu
ε,I
� = f

ε,I
� ,

u
ε,I
� − u

ε,I
− = gε

1(t), on z = 0,

Fε
(γ2v

ε
� ,dt ϕε)

(γ2u
ε
�, dtφ

ε) = gε
2(t), on z = t ,

u
ε,I
− (0, z) = u

ε,I
−,0(z).

(5.37)

For the noncharacteristic problem (5.37), we can apply the method similar to [11, Propo-
sition 5.5] and deduce that u

ε,I
� (y, z) − R�U

I
� (y, z; y

ε
, z

ε
) = o(1) in C1

ε (Ω
�
T ), where UI =∑

U�,kr
I
�,k are profiles of u

ε,I
� . This gives the asymptotics we needed. Now we can come back to

problem (3.29). The remainder proof is similar to [2, Proposition 2.4.5], we omit it here. Propo-
sition 5.4 is thus proved. �

Finally, we turn to the item (3) in Theorem 2.1. Let (uε−, uε
�, ϕ

ε) be the solutions to (2.1.15)
and (U−,U�,χ2) that of (2.1.31). We may suppose that both are defined for T ∈ (0, T0] for some
T0 > 0.

Theorem 5.1. Under the assumptions of Theorem 2.1, we have the following asymptotic expan-
sions:

{
uε

�(y, z) − R�U�

(
y, z; y

ε
, z

ε

)= o(1),

dtϕ
ε(t) − χ2

(
t, t

ε

)= o(1),
(5.38)

in C1
ε (Ω

�
T ) when ε → 0.

Proof. We only provide a brief sketch of the proof, since it is similar to that of Proposition 5.4.
Problem (2.1.15) was solved by means of the iterative scheme (3.2), while problem (2.1.31) used
the scheme (4.4). Applying Proposition 5.4, it is easy to prove that

{
u

ε,ν
� (y, z) − R�U

ν
�

(
y, z; y

ε
, z

ε

)= o(1),

dtϕ
ε,ν(t) − χν

2

(
t, t

ε

)= o(1),
(5.39)

in C1
ε (Ω

�
T ) when ε → 0 for each ν, where the case of ν = 0 is valid by (4.1). By combining

(5.39) with the uniform convergence of (u
ε,ν
− , u

ε,ν
� , ϕε,ν) in C0(Ω−

T ) × C0(Ω�
T ) × C̃1([0, T ]),

it immediately follows the part of L∞-norms in (5.38). The asymptotic property of derivation
of (u

ε,ν
− , u

ε,ν
� , ϕε,ν) will be obtained directly from the study of the nonlinear problem (2.1.15).

In fact, we differentiate (2.1.15) with respect to z and find that zε
� = ε∂zu

ε
� satisfies a semilinear

problem, the existence for such a problem is obtained by following the lines of Proposition 3.3.
Also the associated profile is semilinear, and has a solution Z�. Then an asymptotic result show

that zε(y, z) − Z�(y, z; y
, z ) = o(1) in L∞(Ω

�
) (compare with Proposition 5.3). At last, one
� ε ε T
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can check that ∂θU� are solutions of the problem for Z�, and then ∂θU� = Z�. This completes
the proof of Theorem 5.1. �
Corollary 5.1. Under the hypotheses of Theorem 2.1, there exists χ1 ∈ C1([0, T ] : R) such that
the asymptotic expansions

∥∥∥∥dtq
ε(t) − χ1

(
t,

t

ε

)∥∥∥∥
ε

1,[0,T ]
= o(1), (5.40)

when ε → 0.
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