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Abstract

The aim of this paper is to study the rigorous theory of nonlinear geometric optics for a contact dis-
continuity and a shock wave to the Euler system for one-dimensional gas dynamics. For the problem of a
contact discontinuity and a shock wave perturbed by a small amplitude, high frequency oscillatory wave
train, under suitable stability assumptions, we obtain that the perturbed problem has still a shock wave and
a contact discontinuity, and we give their asymptotic expansions.
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1. Introduction

The topic of nonlinear geometric optics is to study high frequency oscillatory waves in non-
linear problems by using the method of multiple scales, and to rigorously justify the asymptotic
properties of oscillations. Thanks to its width and importance in applied mathematics, there is a
rich literature devoted to the study of this topic (see [3,4,12] and references quoted therein).
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This paper deals with the nonlinear geometric optics for gas dynamics in one space vari-
able with background states being a shock wave and a contact discontinuity. The problem with
background states being shock waves was studied by Corli [1] and Wang [10] for the case of a
single shock in one space variable. Williams [12] established a rigorous theory on the nonlinear
geometric optics for a single multidimensional shock. The case of two shock waves for a 2 x 2
conservation law in one space variable was studied by the second author in [11], and the work
of [11] is generalized to the general N x N conservation law in one space variable by Peng and
Wang [7] recently, which has many prototypes in physics and mechanics such as gas dynamical
systems. Under the assumption of simpler form similar to [8], Corli [2] has established a rigor-
ous result for the case of a contact discontinuity in one space variable. As already mentioned,
until now, most of the analysis has either been concerned with the nonlinear geometric optics
for hyperbolic conservation laws with background states being shock waves, or one with back-
ground being contact discontinuity. In this paper, we first study the case of a shock wave and a
contact discontinuity as background states. For simplicity, this paper is devoted to the study of
one-dimensional gas dynamics. It is not difficult to see that our investigation can be generalized
to the general M x M system by combining the ideas of [2,7] with this article.

Comparing with the other works, the main difficulty that we encounter is that here we are
not only concerned with noncharacteristic problem for shock wave, but also concerned with
characteristic problem due to the presence of a contact discontinuity. In order to overcome this
difficulty, for the noncharacteristic problem, we use the method given by Wang in [11], while
for the characteristic problem, we use the one given by Corli in [2]. What we need to do is how
to technically combine the two methods. It is worth to strengthen, to solve nonlinear problem,
we need stability conditions on shock wave and contact discontinuity, which are always valid for
weak shock and weak contact discontinuity.

Let us now describe the content of this paper. In Section 2, we present the problem of shock
wave and contact discontinuity as well as that of leading profiles by using the method of multiple
scales and state our main result. Then, in Section 3, we shall study the problem of the oscillatory
shock wave and contact discontinuity. We study the problem of leading profiles in Section 4.
Finally, Section 5 is devoted to the proof of the asymptotic expansions of the oscillation problem,
which gives the nonlinear geometric optics.

2. Formulations of the problem and the main results
2.1. Formulations of the problem

We consider the following one-dimensional non-isentropic gas dynamical system

31‘10 + 8)5(:01)) =0,
3 (pv) + B (pv* + p) =0, 2.1.1)
2 3
3 (pe + &) + 0x (pev + 25~ + pv) =0,
where p, v, e and p represent the mass density, the flow velocity, the internal energy per unit
mass and the pressure, respectively. These functions are linked by some constitutive laws, such

as p=p(p,S) and e = e(p, S) with S being the entropy. Assume that p, p, p, and pg are
strictly positive. If we let u = (p, v, S), then (2.1.1) can be written as

08 (u) + 0y f (u) =0, (2.1.2)
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where g(u) = (p, pv, "7”2 + pe) and f(u) = (pv, p+ ,ovz, pT”S + pev + pv). As is well known,

it is strictly hyperbolic with eigenvalues A; = v — ¢, A» = v, and A3 = v + ¢ with ¢ = Po

being the sound speed. Let 1 = (p, —c, O)T, ro = (ps, 0, —cz)T and r3 = (p, c, O)T be the right

eigenvectors with respect to {A ; }:;:1' Obviously, only the second mode A; is linearly degenerate.

A set of Riemann invariants with linearly independent gradients is {v, p} (see [9, Chapter 15]).
Assume that the Riemann problem for (2.1.1) with piecewise constant initial data

u(o,x)z{uz(p’v’s)’ * <0, 2.13)

u+=(p+3 U+7S+)7 X >09
admits a weak solution

u_, —oo<x <qot,

=1 U qot <x<ot, (2.1.4)

(=1

Uy, Ot<x<o0,

where u, = (04, Vs, Sx), qo and o are constants, (u—, U, go) and (u,, u4, o) are a contact dis-
continuity and a shock wave, respectively. Thus, one has that

Ve =1V, P(ox, S) = p(p—, S-), qo=V— =1y, (2.1.5)
Vi +Cp <0 < Uy + Cxs o > Uy, (2.1.6)

with cp = ,/p,(ua) denoting the sound speed at the state u for A € {—, x, +}, and u satisfies
the Rankine—Hugoniot condition

o(gus) — g)) = fug) — f(u). (2.1.7)

Denote by r,? = ri(uy) and l}f =lx(uz) (k =1,2,3) with [y (uy) being the left eigenvectors
associated with Ag (uy) for (2.1.1) satisfying the normalization r,g . l? = 8xj. The purpose of this
article is to study the stability and asymptotic behavior of (2.1.4) under the perturbation of highly
oscillatory waves. For this, first we suppose that the following stability conditions on the contact
discontinuity and the shock (2.1.4).

(H1) The matrix

M= (rf.r3. (Veun) ™ (gu) — gw))) (2.1.8)

is nonsingular.
(H2) For the standard unit vector ¢, = (0, 1, 0), we have

0<eM~'ry < 1. (2.1.9)
Remark 2.1. When u are weak enough, hypotheses (H1) and (H2) hold always. (H1) is the

one-dimensional stability condition given by Majda in [5], while (H2) is similar to the stability
condition given by Métiver in [6].
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By perturbing the initial data #4 with some small amplitude oscillating functions eulo, we
are lead to the following Cauchy problem

38U )+, f(U)=0, t>0, xeR,

uy +eus (x), x>0, 211
U, =1 H0 (2.1.10)
u_ +6u_’0(x), x <0,

where € > 0 is small enough, and “ft,o € C! satisfy some compatibility conditions, which will
be given precisely.

Before giving assumptions on problem (2.1.10), we first introduce some notations as in [10].
Given a small closed neighborhood w C {t = 0} of the origin, suppose 2 is the closure of a
determinacy domain of w for the Cauchy problem of (2.1.2) when |u — u| < § for a fixed small
constant § > 0. Let u € C(£2), we define

lulf o =D [0 su] oo g)-
er| <k

A family u€ € C*(£2) are bounded in Cf(.Q) if the norms ||u6||;,9 are bounded, and ¢€(¢)
are bounded in CX([0, T]) if ¢ € C¥([0, T1) and ||d; ¢ |I¢ _ .[0.7] are bounded for k > 1.

Let Cg (R?) be the space of continuous almost periodic functions in 6 € RY. Denote by
Co%(2:R9) = CO(.Q:C?,(R‘f )) the space of continuous functions from £2 into C?,(R‘f ). For
k € N, define the space Ck(£2:R9) of those functions U € C°(§2:RY) whose derivatives

ag’x;g)U belong to C°(§2 : R?) for any || < k.

For problem (2.1.10), we assume that there are U+ g € C I(w* :R) such that

€

=o(l), whene— 0, 2.1.11)

€ X
ui’o(x) — Uzl x, <

l,w*

where ot = w N {x > 0} and v~ = w N {x < 0}, which immediately implies the boundedness of
U o in Cl(w®).

We are going to study whether the structures of contact discontinuity and shock wave are
conserved under such perturbations, i.e., whether there exists a local solution which contains a
contact discontinuity and a shock wave

u_ +eu (t,x), x<gqot+eq(),
US(t,x)={ up+eul(t,x), qot+eqt) <x<ot+ep(t), (2.1.12)
uyp +euf(t,x), x>ot+ep(t),

to problem (2.1.10). Under the suitable conditions (H1) and (H2) of the background state u, the
answer to this problem is in the affirmative.

Under the assumption of (2.1.11), 4 (¢, x) can be easily determined by (2.1.10). Obviously,
21 ={x > ot +e€¢(t)} is the determinacy domains w™ . Using the same way as in [11, p. 1626],
we obtain the solution U$ (¢, x) = uy + euS (¢, x) to (2.1.10) in 227 and the asymptotic expan-
sion
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u+(t,x):U+ t,x; g; +o(1), inC, (.QT) (2.1.13)

where U, € C 1 (.Q;r : R?) satisfies an integro-differential system (see [11, (2.18)]), with oF =
TN{t<T}.
The next aim is to study the local existence of U€ in the form of (2.1.12) to problem (2.1.10),
and to study the asymptotic properties of (u (¢, x), uS(t, x), g€ (t), ¢ (¢)) with respect to e.
Denote by 27 = {x < qot + €q€(¢)} and 2* = {qot + €4 (t) < x < ot + €¢*(t)}. From the
Rankine—Hugoniot condition, we know that (4, u$, ¢¢) satisfy

Btug + A(ug + 6u§)8xu§ =0, (t,x)eRf t=—, *+,

vE(t, x) =vi(t,x), onx=gqo(r)+eq(t),

P(ox + €05, Sy +€5S8) = p(p— +€pS, S—+€S°), onx=qot+eqc(t),

(0 +edip())(g(uy +eus) — glux +euy)) = f(ug +eul) — f(ux + euy),
onx =ot+ ep(t),

p(0)=0,  us(0,x)=uc ((x),

(2.1.14)

where A(u; + euf) = (Vg (uy + eug))_IVf(uﬁ + eus).
In order to transform problem (2.1.14) into one with fixed boundaries, we introduce the trans-
formations

y=t,
T :
Z=x —qot —€q (1),

for u€ (¢, x) in 2, and

2 4 y = t’
T =1 x—got—€q€(t)
TV ot+epc(t)—qot—eqc (1)’

for u (¢, x) in £2*.
By computation for (2.1.14), it is easy to see that ﬁﬁ(y, 7) = ué(t, x) (f = —, %) satisfy the
following boundary value problem on £2*

Li(ug, ¢ ug =0, (v,2) € 27,

Y1vE (8) = y1v5 (1), onz=0,
P(px+€v1p5 (1), Su + €185 (1)) = p(p— +€y1p5(1), S— +€y1S£(1)), onz=0, (2.1.15)
Fe(t, yous, dio€, ¢¢) =0, onz=t,

¢¢(0) =0, us (0,2) =ut (2),

where tildes are dropped, y; v§ ) = v§ (t,0), yzvg () = v§ (t,1),

1
Fe(t, voul, digt, ¢¢) = g((a +€dip® (1)) (g(us +eus (1,01 + €9 (1)) — g(us + €r2ul (1))

— fug +eul (t,ot +ep (1)) + f(us+ en2ul(®)), (2.1.16)
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and L;(ug, ¢€) =3y + Nyd;, where

N_=A(u—+eut) — ra(u_ +euc)I, N,,:(az) 1+(%> Au, +eu), (2.1.17)

E 0x
with
9 0 d,0¢ 9 1
(_Z) __a‘ ) +ezd; (y)’ <_Z) __ v 2.1.18)
at /), o —qo+€6¢(y) x /), o —qo+e€b(y)

and 6€(t) =t~ 1 (€ (t) — ¢ (t)) with ¢¢ (¢) satisfying

{d,qf(t) = ¢ (s +eyiug) — Aa(uy)), (2.1.19)

q€(0)=0.
At first, we give a result for the coefficients of L§ asin[11, Lemma 2.1].
Lemma 2.1.

(1) The matrices N_ and N, are smooth with respect to arguments eu (eu$, ed;p€, €6€,
€zd,0%) around the origin, and at the origin, respectively,

N-©)=A_—qol,  N.0)=(o —q0)" (Ar—qol). (2.1.20)

(2) For any given (€, ¢°) € C~'€2([0, T1 with g€(0) = ¢<(0) = 0, it follows that {0°(y),
z2d0€(y)}e>0 are bounded in C€1 £29.

Setting Ry = (r}, 15, D), Ly = (15,15, 15)T and Az = diag[1%, 25, 251, we have LyR; = I and
LyA(us) Ry = Aj. Suppose that the solutions (1€, u$, ¢€) of problem (2.1.15) have the forms

us(y,z2) = RyUs(y,2; 2, %) + Ry Vu(y, s 2, £) + 0(e),
{ i it ﬁ( € e) ﬁ t( € e) (2.1.21)

e () =o(t, L) +ep(r, L) + o(e),

where Uy(y, z; &, 1), Ve(y,z;€,n) and (p(t, 7), ¢ (¢, 7)) are almost periodic in (&, n) € R2 and
T € R, respectively. For convenience, let ¢g€(¢) admit the formal expansion

qe(t):q<t, é) +eQ<t, é) +o(e), (2.1.22)
with (g, Q) being almost periodic in T € R. Obviously, the profiles of ¢€(¢) can be obtained
by those of u$ from problem (2.1.19). As in [11, pp. 1630-1635], we can formally deduce the
problem of (U_, U,, ¢) from (2.1.15).

Set& =y/e,n=z/e and T =t/e. Plugging the formal expressions (2.1.21) into the boundary
conditions in (2.1.15), grouping each power of € and using the Rankine—Hugoniot condition, it
follows

30 =0, (2.1.23)
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which means the leading term ¢ of shock front ¢ do not oscillate. Moreover, from (2.1.19), we
can obtain

d9:q = 0. (2.1.24)

In order to formulate the problem of Uy, let us define E; = diag[E!, E?, Eg] by

Efu(y, z:§,m) =limpso0 25 [°, u(y, 26 +5,0 = (g0 — 4 )s) ds,
' (2.1.25)
Eu(y, 2§, 1) =liMpoco 55 [, u(y, 236 +5,1 = 5220 (qo — A))s) ds,
the mean value operators for any u € C°(£2 : R?).
Denote by
P_(0¢,0y) =0t + (A —qol)0y,
! ! (2.1.26)
P*(aé’ ar] = *—401)317-
Then, as usual, we have
1) EzUy = U: is equivalent to P;(0¢, 0,)Us =0, and
() EU;=Uziseq 1 (9, 9y) Uy (2.127)

(2) forany Vs € C'(2%:R?), E;P;(3,3,)Vs=0
By formal analysis, it follows that the leading terms of (1€, u$, ¢¢) satisfy the problem:

EsU; = Uy,
E_(P_(dy,3,)U_+ L_B_(R_U_,R_3,U_) — x13,U_) =0,
Ey(Pa(dy, 3)U, + ;L B.(RU,, R,3,U,) + (dI + hA,)d,U,) =0,
SUsz. iU- )" =T (U1, nU-3)", onz=n=0, (2.1.28)
x2(8(uy) — guy) +0(Vgu)Uy — Vg(uy) Rayauy)
=Vfup)Uy —Viu)RnUs, onz=t n=rt,
U_ly=t=0=U—-0(z; ),

where x1(t,t) =diq(t) + 0: Q(t,t) and x2(t,7) = dyp(t) + 0:¢ (¢, T) are leading terms of
the contact discontinuity speed 9;¢€(¢) and the shock speed ;¢ (), respectively, U, (z, ) =
Us(t,ot;t,0t+¢(1)), (d,h) € Cclis given by the following formula:

d= (Goy+oz— qoz)((ﬂ q) _ (y=xi+zxe
e q0)°y* (040l (2.1.29)
= (0—4q0)%y

and

3:( & - ) j=< & - ) (2.1.30)
PxCx  —pP—C— —PxCx  P—C—
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Similar to the computation in [11, p. 1634], we know that (2.1.28) is equivalent to the follow-
ing problem:

EsU; = U,
P_(ay,a)U_HE (L_B_(R_U_,R_3,U_)) —dyqd,U_ =0,
Pu(dy, 0) U, + — E(LB(RU,,,RSU))+(dI+hA*)8U_0
S(y1Us 3, le_1)T T U1, v1U-3)", onz=n=0, (2.1.31)
x2(8(uy) — guy) +o(Vgu)Uy — Vg(uy) RayaUs)
=Vfu)Uy —VFu)RpU,, onz=t, n=r,
U_ly=¢=0=U-,0(z; n),

where

g lay+toz—q)le—q) —2dig+zdig
(0 —q0)*y? (0 —qo)y

(2.1.32)

is independent of (£, ).
To solve (2.1.31), we should first determine (g, ¢). By acting the mean value operator

u(y,z) =Eou(y,z;:§,n) = (2p)2//u(y 2 §,m)d&dn,

—p=p

on (2.1.31), it follows that (U_, U,) and (g, ¢) satisfy the following linear problem

Pti(ayv 0 )U:I =
SyUs3, 1U-_, 1)T T nUe1, nU-3)T, onz =0,
dip(guy) — g(uy)) + (0Vguy) =V fup)Uy (2.1.33)

— (0Vg(uy) — Vfu))RyU, =0, onz=t,
9(0) =0, U_ly=0=U_(2)

and

t i _
{dtq(t) = Jo(—e-nU—_1 +c_nU-_3)ds, (2.1.34)

q(0) =
where y1Us (1) = U;, j(1,0) (j = 1,3), 2U(t) = U, (t, 1) and Uy = U4 (¢, o1).
Finally, for functions 4 and d given by (2.1.29) and (2.1.32), respectively, similar to
[11, Lemma 2.2]. We have:

Lemma 2.2. If ¢, ¢ € C>([0, T1) and q(0) = ¢(0) =0, then d, h € W (2%).
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2.2. Compatibility conditions and main results

As mentioned above, compatibility conditions of (2.1.15), (2.1.31) and (2.1.33) are needed.
Note that (2.1.33) is deduced from (2.1.31) with x2 (¢, T) =d;@(t) + 0: ¢ (¢, T), the compatibility
conditions of (2.1.33) immediately follow from those of (2.1.31).

Two compatibility conditions for problem (2.1.15) are:

(1) There exists u$ (0, 0) such that

u 5(0,0) =us ,(0,0),

pps+eug 1(0,0), Si +eu; 5(0,0)) = p(p— +€us 1(0,0), S— +eu 5(0,0)),

(0 +edip®(0)(g(uy + €u’ (0,0)) — gux +€ug(0,0)) — f(uy + €us(0,0))
+ f(us +€us(0,0)) =0.

2.2.1)

(2) There exist 9,u$ (0, 0) such that

(N-(0)u’ )2 = (N4 (0)2;u5 (0, 0))2,
Vp(p- +eu 1(0,0), S +eu 5(0,0)(N-)us/ )1, (N-(O)u’ )3)"
= Vp(pou + €us 1 (0,0), S, + €us 5(0,00) (N1 (0),u$ (0, 0))1, (N+(0)0,u$(0,0))3)T,
d>¢€(0)(g(us + eus 1(0)) — g(us +€us(0,0))) — fuy +eus_;(0)) (2.2.2)
+ f (s 4 €uf(0,0)) + (0 + edip () { (Vg (uy + €us_(0))
=V fut +eu o(0))us o(0) — (Vgus + eug (0, 0))
— V f (s + €u(0,0))(I — N(0))3.u$(0,0)} =0,

where (.); denote the kth component of (.), u<(0, 0) and d;¢€ (0) are determined by (2.2.1).
From (2.1.27), we know that U_(y, z;&,n) = 17(y, z,0) with 8 = (gol — A_)E + n and
Uy, z;E,n) = f/*(y, z,0) with 0 = (gol — A& + (0 — qo)n. Thus two compatibility condi-
tions for problem (2.1.31) are:
(1) There exists U, (0, 0; (goI — A,)€) and U, (0, 0; (g0l — AL)E + (0 — go)n) such that

S(U,,3(0,0; (g0 — A3)&), U 1(0,0; (qo — A)ENT
= J(U.1(0,0; (g0 — A)E), U-3(0,0; (g0 — 13)ENT,
%20, M) (g(u+) — g(ue) + (0Vguy) =V f(u))Uy o(n, on)
— (Vg — Vfu))RUL(0,0; (go — AE + (0 — go)n) =0.

(2.2.3)

(2) There exists 3. U, (0, 0, (g0l — A,)&) and 3,U, (0,0, (goI — A,)E + (o — go)n) such that

S(Oe3 0-NT=J@,1,0-3)T,
9 x2(0, M (g(u4) — gu) + (0 Vguy) =V fu)U, o(n,0m) (2.2.4)
— (0Vg(uy) — Vf(u)Ru(dy + 3:)UL (0, 0; (qo] — AW)E + (o — qo)n) =0,
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where

O-=(A-—qoDd.U_+E (L-B(R-U_,R_9U-)) —diqly=z=006U_,

Ay, —qol -
5*2*4%32[]*_,_
0 —4q0 0 —4qo

E.(LBu(R.Us, Ru(0 — q0)3pU.)) + (A1 +h A |y==09 U,,

with Uz = Uz(0,0; (90l — ApE), 3,Uz = 3.Uz(0,0; (qol — A»E), 3Uy = 85U (0,0;
(qol — Ap)§), Oy ; (j =1, 3) denote the jth component of Oy, and

3y U(0,0; (qoI — ADE + (0 — qo)n)

Ay —qol . -
=——qO82U,,—
o —qo 0 —q0

—(dI +hAD|y=z=0(0 — q0)dU_,,

E.(L.B.(R.U,, Ri(o — q0)3pU.))

with U, = Uz(0,0; (g0l — A)§ + (0 — qo)n), 9. U, = 9:U+(0,0; (g0 — A& + (0 — qo)n),
9 Ux = 09 U,(0,0: (go] — A)E + (0 — qo)n).

The following proposition explains that there indeed exist a class of functions such that the
compatibility conditions for problem (2.1.15) up to order one are satisfied. Before giving the
proposition, for convenience, let us introduce some notations:

rlg,e i=ry(ug +€ag ), )‘i’e = (uz + €af ), Pﬁ = po(ps+eag g, S +eags),

_ (5—q0) * (A1 —4q0)

Ao p-p, (A1 —qo) 5= PP B —p-p, (A3 —qo) G, " PxP)
- - (GO I - - ti—goes |
—05 —goe-  — S —03 —qo)e-  ——LE

—1 ’
83(0) = (0 +€0°) (Vg (ur+€ag ) (Vg (s +€uy o) = Vf (s +€usy o(0))us 4(0),
M= (~(0 + o) (1= 25}, —(0 +€0%) (1 =253, (Ve (us +€al))”

x (g(us + eui’o(O)) —g(u.+ eafyo) — flus+ eu ((0) + fue+ eaf’o)))).
Proposition 2.1. Suppose that uZ(0,0) = a; , and d;¢°(0) = o€ satisfying the zeroth order
compatibility condition (2.2.1) with {ag‘o, 0}ee(0,¢0] being bounded. Then the first order com-
patibility (2.2.2) is equivalent to the following fact:

12:0’1(0) =¢; A_IB(zZi”O’S(O), 0.y 1 (0, 0))T, (2.2.5)
i.e., there is a special relation between 126_/’0’ 1(0) and gi (0), where

0. 1(0,0) = ,C" ((—a$ 5, —asB5) i o 50) + (&1 (M)~ & (M) ') gS.(0). (22.6)

l—aip; O
C= _ . EQE 1
o3 B

Here
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with

af i=¢ (Me)_l(o +e0€)(1 - )\*’e)mr*f B =¢ A—IM PP}
= Pl o—q PR g \me )

_ A= -
o = (M) (0 +e0) (1 -25) 2 qzor;f, B :=A7 (A5 — qo) (”_f_ﬂ ) :

Proof. Let us diagonalize condition (2.2.2). Setting R; = (ri(ug + ea§ o) r2(ug + ea§ o)

r3(ug + eag’o)), obviously we have (R:EI)_1 = (1 (ug + eag,o), Ih(uyg + eag’o), I3(ug + eag’o))T.
In (2.2.2), by taking the transformation

~ -1
g (y,2) = (Rg) ™ us(y, 2),
it follows that (2.2.2) is equal to the following equation

A€ 1(0), 8:0i€ 5(0,0)T = B 5(0), 8:ai€ | (0, 0)T,
M€ (8, (0,0, a i ,(0, 0) d?¢c(0)T 22.7)

= (0 +e0c¥)(1 — )\*f) qu ry €0 5(0,0) + g5.(0).

The matrices A and M€ are nonsingular, thus, from (2.2.7), it follows

C (3, 1 (0, 0), 3,ii€ ,(0,0)) "
= (—aips, 0‘2:32)T~€—/0 30) + (&1(M), éZ(Me)il)Tgi(O)’ (2.2.8)

Thanks to (2.1.6) and (H2), by computation, we know that the matrix C is nonsingular. Thus,
from (2.2.8), we obtain (2.2.6). Moreover, from (2.2.7), we prove (2.2.5). O

In the same way, we can give another proposition, which implies that there indeed exist a class
of functions such that the compatibility conditions for problem (2.1.31) up to order one are also
satisfied. For simplicity, we omit it here.

In the following, we state the main assumption of this paper.

(MA). Given the initial data uft’o(x) € Cl(w?) satisfying the compatibility conditions (2.2.1)
and (2.2.2) for problem (2.1.15) for any € € (0, €p], then there are U+ (x,n) € Cl(w* :R) satis-
fying the compatibility conditions (2.2.3) and (2.2.4), such that the asymptotic property (2.1.11)
holds.

The main results of this paper are stated as follows.

Theorem 2.1. Under the above assumption (MA), we have:

(1) there are constants T, €9 > 0 such that problem (2.1.15) has unique solutions (u_, ut, <)
bounded in C1(227) x CL(23) x C2([0, T1) for any € € (0, €];
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(2) there are unique solutions (U_, Uy, x2) € C! (2, :R%) x C! (27 :R%) x CL([0, T]:R) and
p(t) € C2([0, T]) to problems (2.1.31) and (2.1.33);
(3) when € — 0, the asymptotic expansions

€
us (y,2) — R:Us <y, zZ; X, E) =o(l) (2.2.9)
E 6 1 Q*
BT
and
t €
dpt (1) — x2 (r, —) =o(1), ¢ =) oy =0 (22.10)
€/ 10,11 ’
hold.
Remark 2.2.

(1) From this theorem and (2.1.34), it follows that there exists y; € C 1[0, T]:R) such that

dig () — x1 (r, 5)
€

(2) From this theorem, we can easily obtain the asymptotic expansions of the perturbed contact
discontinuity x = got 4+ €€ (¢) and the perturbed shock front x =o't + €€ ().

(3) From this theorem and the results of uS, we can also obtain the existence of the perturbed
contact discontinuity and shock solution U€ in the form of (2.1.12) to problem (2.1.10) as
well as their asymptotic properties.

€

=o(1), l9°®) =@ || g 7y = 0D 2211
1,[0,T]

3. Existence of oscillatory waves

This section concerns the local existence of solutions (u<,u¢, ) to problem (2.1.15)
by using an iterative scheme. It is necessary to construct the first approximate solution
@0, us? o0 € Cl(2;7) x CL(2%) x C2([0, T1) to this problem by the following proposi-
tion, whose proof can be given similar to [7, Proposition 2.1] by using compatibility conditions.

Proposition 3.1. Under the assumption (MA) in Section 2.2, there are approximate solutions

(uio,ui’o,gos’o) to problem (2.1.15), such that they are bounded in C; (£27) x CE] (£27) x
C2([0, T1) and satisfy

L5 ¢Oui® =0, (v.2) € 2%,

€,0 _ €,0
y1u7,2|y:[:() - ylu*,z )7:[:0’
dfge e,y )| _,_, k=0,1, 3.1)

dEFe(t, youl® dip0, 00 _ o, k=0,1,

u%0,2) =us (2),
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where

G (1, yu, yiug) = p(ou + 1105, Su +€1185) — p(o— +€vi1pS, S— +€y15).

329

(3.2)

For any fixed u§ € Ce1 (.Q%) and ¢€ € C’S([O, T1), define the Fréchet derivative of G¢ and F*

with respect to (y1u€, y1u$) and (you$, di¢)

G€

1
(Vlui,Vlui)(w_’ w,)

Flut ey W T) = (814 + €uly) — gus + €ypu))

where u§ (1) = u (t,0t + €9 (1)).
For problem (2.1.15), we take the following iteration scheme:

LE@wg” g ™ =0, (v,2) € 27,

€, v+1 e, v+1
yiu', =yiu, , onz=0,

e, v+1 e,v+1)

?yluiv,ylui’u)(ylu_ » Vilkx

(s

€,v+1 1
F(Eyzui'“,drwf-”) (rauz™ " drp® )

(y2ux
(pe,v+1(0) =0, uiv-H 0,2)= M:O(Z),

where the first approximate solutions (uio, us?, ¢%0) are given by Proposition 3.1.
To study the iterative problem (3.4), we first consider the linear problem:

L§ s, p9)ws = ff,  (v,2) € 2%,
Y1 wé_,z(t) =" wi’z(t)a onz =0,

nylui,ylui)(ylwi’ nw) =gi®). onz=0,
Pl g 205 8 =550, onz=1,

< (0)=0, wE(0,2) =we ((2).

= Pp(0x + €V105, Su + €V1SOW, | + Ps(pu + €v105, Se +en1SHwW]
—pplo—+eyipl, S—+eniSHw_ 1 — ps(p- +ey1p5, S- + e SHw- 3,

— (0 + €dip)Vguy + €y2ul) — V f (s + €y2u))w?,

= =Gyl ) + GY e e (i i), onz=0,

:_fe(tv Vzui’u’dtfpé’v)‘i'Fe €V d(pe V)(yzui,v’dt(pé’v)’ Onzzta
Ut ’

(3.3)

(3.4)

(3.5)

Let us diagonalize problem (3.5). Denote by R; = (r1(uy —I—eu;), ra(uy +eu§), r3(ug —i—eu;)), and

its inverse (Rg)_1 = (1 (ug + euE), b(ug + eug), I3(ug + euE))T. By taking the transformation

5 = (Rg) g

(3.6)

in problem (3.5), and using the fact (R§)_1(8R§) = —(8(R§)_1)R€, it follows that J)g satisfy
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LE(us, )i = (RS ™" f + (L§ (u§, 9°) (RS ) RS w5,

w5, s DT =I5 @) (s |, e HT+g5@), onz=0,

ME (a5 |, Yo 5, di )" (3.7)
=85(1) + (0 + €dip® — A3 (uw + €72uL))r3(us + €12uL) Y25 5 (1), onz=t,

$€(0) =0, wE(0,2) = (RO 'we ((2),

where [T} (1) = (¢ (1))~LTE () is 2 x 2 matrix with

e(petenul ) —c (p-+eyus ) >

Cx,e C—e

S€(1) = (

—CE,E(p* + Gylui’]) _Cz_,e(,O— + €y1u€’1)>

Cx,e C—e>

ro=(

(here C%E = pp(pn + 6)/]14;27 S]j + €V1u§’3)),

—~

M€ = ( A (u* + eyzui) —0 — ed,gos)rl (u,, + eyzui),

A2 (s + €y2ul) — o — €dip®)ra(ua + €y2uf),

—_~

Vg (. + eyzui))f1 (g(us +eus) — g(u. + eyzui))), (3.8)

O =((S0) gm0, g =(Ve(u+erau)) " g5,

—_

and
LE(u, ¢°) = 8y + N2,

with
0z az
NE =A(u—+eus) —rp(u— +eu)l, N¢ = <5> I+ (5) Aus+eu), (3.9

and ()., (8£),) being given in (2.1.18).
From (2.1.18), when € € (0, €p], we have N{ = diag[a

€

1 @y ag 3] with

a; 1 <0=a5, <1<ag;. (3.10)
In order to study problem (3.7), we first consider the following diagonal problem:

dywg + Ndwg = ff,

yiws 5, niws DT =5 O nw , yiws )T +g{@), onz=0,

ME(paws y, yaws§ 5, dip€)" (3.11)
=g5(t) + (0 + €di9® — A3 (ux + €y2uL))r3(us + €y2ul) 2wy 5 (1), onz=t,

¢€(0) =0, we (0,2) =we ((2),
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where the notations are the same as in (3.7).

For problem (3.11), similar to [2, p. 182], it is easy to solve w* o and we 3 in £27. Denote by
(s, < 1(s ¥, 2)) the characteristic curve of the operator dy, + (A1 (u + eu ) )»2(14 +€uc))o,
passing through (y, z) at s = y. If we define the set

B ={0.2) € 271 z2—y€ 1(:0,0) >0},
C< i ={02 e z—yE (y:0,0) <0},

obViously, r =B 1Y Ce . InCE 1 wo 1(y z) can be given similar to [2, p. 183], while
in BS_! l( y,z)isa problem with its boundary condition being coupled together with those
of we_’3 and w v on {z = 0}. The following idea is similar to [11], we want to obtain a functional
equation about y>wj 3 = wg 3|y=;, which implies the existence of w; ; and w{ , in £27, and
wé_,l (y,2) in Ci»]

Let us derive the equation of yzwfj. Set IT{ (t) = (m;j)ax2, &5 (1) = (g5, (®), gfz(t))T. Then
the boundary conditions about yjwy 5 and y,wy ; in (3.11) can be written as

yiwg 3(t) =muyiwg | +mpyiw 3+ g7 (1) =mnyiwg | + i),
yaw$ (1) =1 (M) (g5 (1) + (0 + edig® — A3 (s + €y2uf)) (3.12)
X 13 (s + €y2u3) Y2w5 5(1)).

Set b$ 1= —ay 4, b* 3= l/a* jand ff = (f,f1 f:z, a:3f:3)T, where af’l and af’3 are given
in (3. 10) Then the equations about w¢ 2 in (3.11) can be written as

*1’

dyws | —bg Wi = £,
{y 1 1 1 (3.13)

€ €
b*,38yw*,3 + 3zw*,3 =Ji3

For any (y,z) € 27, lets — (y°(s; y,2),s) ((s,2°(s; y, 7)), respectively) be the characteris-
tic curve of b§’38y +0; (0, — b§,1 d,, respectively) through (y, z), where y€(s; v, z) and z(s; y, z)
are solutions to the following problems

{diyg(S;y,Z) = b 30053y, 2), 9), (.14)
Y (3 y,2) =Yy
and
{dSZE(S;y»Z):_bi,l(s’ze(S;y’Z)L (315)
(v y, 0=z

Set Y€ (y,z) = y(0; y, z) and Z¢(y, z) = z€(¢; y, z). Then we have

<Y(y,2)<y+z <Z¢(y,2)<y+z, (3.16)
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and the solutions of w¢

51> W5 3 in (3.13) can be expressed as

{wi1()”1):7/2‘1)11(26()’72))+Ff’1(yaz)’ (3 17)

ws 3 (v, 2) = w3 (Y, 2) + Fi 300, 2), '

with

FS ) =[] fE1(s,25(s5 9, 2) ds, G1s)

Fii(v.2) = [ £E30°(s5 7, 2),5) ds. '

From (3.17), we obtain

{mw:]m = yows [(Z€(1,0)) + FE, (1,0, o)

rows 3(t) = yiwg 3 (Y@, 1) + F5(t,1). '

Combining (3.19) with (3.12), it follows
w3 =mije (ME)_I(U + edi o — A3 (us + €2ul) )r3 (s + €y2us) 2wl 5(X€(1),0)
+ h¢ (), (3.20)
where X€(r) = Z¢(Y¢(z, 1), 0),
R (1) =myih§(Z€(Y(t,1),0)) +mi S (Y@, 1), 0) + h{ (Y (1. 0)) + F{5(t.1).  (3.21)

At first, for the functional equation (3.20), similar to [11, Lemma 3.3], it is easy to obtain the
following result:

Lemma 3.1. Given any uf € Ce1 (.Q}O), o< € 662([0, To)) and h€ € C?([O, Tol), there is a unique
solution )/zw;3 € Cg([O, To)) to Eq. (3.20), and the estimate

[v2wisly < Colh 7 (3:22)
is valid for any T € (0, Tp].
Then, for problem (3.11), we sum-up the above derivation in the following proposition:

Proposition 3.2. Let u§, f;, g€ = (g}, 85) and ”ft,o be some families of functions bounded

in Cel (.Qg), C?(Q?), (C?([O, T)? and Cg(a)i), respectively, for some T € (0, Tp], assume
moreover that € ||u§ | < nfore € (0, €y] and the zeroth order compatibility condition hold. Then

problem (3.11) has a unique solution wE bounded in C?(.Q?), and such that

T
Jus 0] < c(uuéon s+ sl + 15, ds), 623)
0
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for some positive constant C, which implies

T

Jur 0]+ ], <c(uu:ou sl + gl + | Ws), 324

0
where w¢ = (W, ws), €= (f<, f5).
Now, let us turn to the study of problem (3.5).

Proposition 3.3. Let us take us, fE g€ and ujE o as in Proposition 3.2, and ¢¢ € C'O([O T), in
articular let € u < n and the zeroth order compatibility condition hold. Then problem (3.5)

P D y p

has a unique solutton wﬁ bounded in CO(.QT) o € CO([O T1) and there exists some constant C

such that

T
w0l + o] < CeCMT(nu:on s+ e+ (151, ds), 329
0

where M > 1 +€||Vu€|r + ||dt¢€||i,[0,r] with u¢ = (u , uf).

Proof. From the above discussions, we know that it is sufficient to consider the diagonal prob-

lem (3.7), which is solved by the iterative scheme:

LS, ¢ )“““ = (R ff — (LSS, o) (R ™RSS,

gy T = IO na L ST T + gl ), on z =0,

Mf(yzwf VSt )T (3.26)
= Z5() + (0 + €dig® — A3 (uts + €yauS))raus + eypu) {3 (1), onz=t,

¢l 0)=0, @02 = (RO W y(2),

where the first approximate solution (u?e_’ q&e % e C (£27) x C (SZ ) X Cz([O T]) can
be constructed.

In view of Proposition 3.2, for each v we can find a solution W’ o problem (3.26), and
estimate (3.24) gives

T

Hﬁf’”“HﬁHdrff’”“HT<C0<Hu6,o|!+Hui|\r+ngHﬁf(Hf I +&s 2] ) )

0

which implies

T
1y o < e (o o, 1L+ [ 1), @2
0
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where M > 14¢€||Vu€|| 7+ ||d; € ||§,[0,T]~ From this estimate, it is easy to prove that the sequence

{1I1§’V+1} is a Cauchy sequence in CE1 (.Q?), and its limits is solution to (3.7). Therefore we have

found a solution (we, wg, ¢¢) to (3.7) and estimate (3.25) follows from (3.27) with possibly
another constant C. 0O

We pass now to smooth C! solution, let us consider again problem (3.5).

Proposition 3.4. Let u§ fﬁe, 8¢ = (g1, 85), us o and (1) be some families of functions and
assume that they are bounded in C1(23), CL(2%), (CL(0,T1)2 Clw*) and CX([0, TY),
respectively, for some T € (0, Ty]. Moreover, assume that 6||u§|| < n for € € (0, ¢0] and the
compatibility condition of problem (3.5) up to order one are satisfied. Then problem (3.5) has a
unique solution (W, w¢, ¢¢) bounded in CE1 (£27) x Ce1 (£27) x CN’S([O, TD); we = (we, ws) and
@€ satisfy (3.25) and

levwe] + |ed?ot |, < CeMT (6M(Hue,o|\ +uslr +1s%l7) +el o]

(€ o) I+ ldews | + e | 7)

—_~

i [(emse], +e]vre ||s>ds), .

S

for some constants T and M > 1+ €||Vu€ |7 + ||d; p¢ ”i,[O,T]'

Proof. From Proposition 3.3, we know that problem (3.5) has a continuous solution (we ,w¢,¢¢),
which is obtained after a change of variables from the limit of the sequence {IIJE’V} defined
through (3.26). At the present assumptions, we see that the data u§, fjf = (R;)’lf;, gs, 12:0
entering in (3.26) are continuously differentiate function, while rhg = (I:g(ug, ¢€)(R€)’1)R§
is barely continuous. However, thanks to the particular form of ﬂzg, we can deduce that u~)§’”
is continuously differentiable for each v by applying [7, Lemma 3.5]. Next, similar to [3,
Lemma 6.2.7], we can prove that, for fixed e, the sequence {Vw®’, Vwg"”, d>¢<”, v € N} is
bounded in L and then the sequence {WS", w", ¢€ 7} is equicontinuous. Then Ascoli’s theo-
rem is applied and existence of a C! solution {w€ , w¢, ¢¢} to (3.5) is proved.

It remains to prove the C! estimate (3.28) and here we cannot proceed the case of shock waves
in [1,10,11], i.e., derive with respect to y system (3.5), estimate ang , then recover an estimate
for 8Zw§, by inversing the matrix N, since the boundary is characteristic. In order to overcome
this difficulty, we will decouple the problem, solving at first the noncharacteristic components
(which need boundary conditions) and then the characteristic component (which need not).

Let us split function u into u = (u', us) with u’ = (uy, u3) Since A, is linearly degenerate,
then A, = A»(u!), and the system dyu + A(u)d;u = 0 can be written as

dyul + Cw)d.u’ =0,

(3.29)
dyuz + c()dul + ro(!)duy =0,

where C(u) is an 2 x 2 matrix, c(u) a 2-row vector. The vector ¢ does not vanish, in general.
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Thus problem (3.5) can be written as

I I I
8),w§’ + C(uy —i—eug)azu);’ = f;’ ,
Bng’z +c(ug + eué)azwg’l + Xo(ug + eué)azwi2 = fﬁe,Z’

wi! —wS' =gf, onz=0, (3.30)
Pl 205 9 = 850, onz=t,
¢(0) =0, we (0,2) =we ((2),
where C and c are defined by
N C(ug + €us) 0
$= clug +eus)  ro(us+eus) )
with C and c being given by (3.29), 0 standing for a null 2-column vector.
Define z$ = €d, w¢, then z$ and e€d,;¢€ are a solution to
# Shae! #
8yz§ + Cug + €ud.z5" +0.(Clug + eu))zy " =€d, £
8y25 5 + cluy + €u)d:z5 " + Aoy + €u$)d.0:25 5 + 0 (cluy + euf))zg !
+ 0 (Ao (ug + €us))zg , = €9: f5,,
21— = e ws! —ed.ws!, onz=0, 3.31)

Vg(us + €yauy) - €y20.us, - €dip€ + ((0 + €dr ) Vg (uy + €yaus)
— V f(u, +€yruy)) - €yzs
= —0:[(0 + €dip)Vgux + €y2uy) — V f (U + €2uy)] - €2ws, onz=t,
#<(0) =0, 7£(0,2) = €d;we ,(2),

which is of the form

) 9:(C (ug + €us)) 0
mg(y,2) = O (c(ug +eus))  0:(Aa(uz+eup)) |’

and since u§ € C(£2}), then m¢ is bounded in C2(£2}), i.e., [mS|| < M for some M > C(1 +
e||Vw§ |7 + €lld?¢€ || 7). Using Proposition 3.3, we obtain

ellows |, +efdiot], < ceMT (E [ o) + €l [ 7 + €| 0w Lo -

T

+ ey +/6|I d: f€(s) Hsds>. (3.32)

0

Here, it is easy to inspect that the second compatibility condition for (3.5) is just the first one
for (3.30). Since the problem for wE’I
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(3.33)
we! —wS' =gf, onz=0, and w"'(0,2)=w"{ (),

€l el el
{a% + Cluyg + eug)owi’ = f',
noncharacteristic in consequence of strict hyperbolicity, similar to [1], it is easy to find C! esti-
mates for w!:

el w5 < CeMT (EM(HMi,'o [ +1gtlz) +el O]

T

() |+ Vi) + [ (e 5o, +e]v 5! ||S>ds). 634

0

Substituting (3.34) and (3.25) into (3.32), we obtain an analogous estimate holds for €||d, w* ||
with possibly another constant C. At last, we can obtain the estimate of € |9, w* || from the interior
equation in (3.29). Proposition 3.4 is therefore proved. O

The following result is devoted to the study of the iterative scheme (3.4), from which we
immediately obtain the conclusion of Theorem 2.1(1).

Theorem 3.1. Let u & o be a bounded families in C, (%) satisfying the compatibility conditions
(2.2.1) and (2.2.2). Then there exist some T € (O To] and €9 > 0 such that problem (2.1.15)
has a unique solution (u_, us, ¢¢) for € € (0, €p), which are bounded in C (£27) x C (.Q ) X

C2([0, 7).

Proof. We consider the iterative scheme (3.4) starting with (u_ , u* , 0y, where
(u7 Uy ,goe ) being given by construction and g©V(r) = € lfo (Aa(uy + euu Y(s,0)) —
A2(uz))ds. One first prove that €(||u®"|7 + [|di¢®"|lT) < 1 and the sequences {u®"}, {p*"}
are bounded in C 61 (£2;)xC 61 (£27) and C?([O, T1), respectively, by induction on v if T and
€o are sufficiently small. In fact, by the boundedness of ”l,o in C!(o%) and Proposition 3.4,
it is easy to prove these facts. Then it can be showed that for € fixed, Vu" and d,zgog’” are
not only uniformly bounded, but also equicontinuous which implies the convergence u€" — u¢

and ¢V — ¢¢, ¢“" — ¢€ also hold in C (£27) x C (£27) and (Cz([O T]))2 by Ascoli’s theo-
rem once again. Thus, we conclude that (u€, g€, ¢€) € C (£24) x C (£27) x (C2([0 T]))2 are
the solution to problem (2.1.15). For the detailed proof, we refer the reader to [7, Lemma 3.1,

Theorem 3.1], or, more generally to [3]. Theorem 3.1 is therefore proved. O
4. Existence of profiles

In this section, we consider problem (2.1.31). At first, it is easy to construct the first ap-
proximate solutions (U°, Uf?, Xg) € Cl(.QT_ R?) x CI(SZT_ :R?) x C'([0, T]:R) satisfying the
compatibility conditions of (2.1.31). Moreover, the following asymptotics

uS0(y.2) = ReUD(v.2: 2. £) +o(l), in L(827),

(4.1)
dip0(1) = x3 (1. £) +o(1), in L=[0, T,
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holds when € — 0, where u (y Z) € C (.Q ) and ¢© 0() € C6 ([0, T]) are the approximate
solutions constructed in Sectlon 3. For sake of simplicity, the construction of the first approximate
solutions and proof of the asymptotic (4.1) are omitted here. In order to reduce overlaps, we shall
refer the reader to [10, Section 4.1]. Without loss of generality, in the remainder of this paper, we
suppose that Ay = (Vg(uz)™! V f(uy) is the diagonal matrix

Ap = Ay =diag[3], 35, 45], 4.2)

which can be easily obtained by using a transformation similar to (3.6). In this diagonal case,

r,? =¢é; (k=1,2,3) are the standard unit vectors.

Obviously, the nonlinear problem (2.1.31) can be written as

EyUg = Us,

P_(0y,0)U_ —diqo,U_+E_B_ (U 9,U_) =0,

P.(dy,0 DUy + (dud + h, A Us + 5 5=q0 E+Bx Uy, 0,U,) =0,

S(iUs3 U- D" =T (1Us1, nU-, 3) onz=n=0, 4.3)

X2(8(u4) = g) + (0 Vg uy) =V )Uy = (0 V() =V f )y2Us =0,
onz=t, n=r,
U_ly=0=U_(z;0),

where Uy (t,7) = U4(t,0t; 7,0t + ¢°(t)) and d being given by (2.1.32) with (q,¢) €
(C2([0, T1))? being determined by problems (2.1.33) and (2.1.34). .
For the linear problem (2.1.33) and problem (2.1.34), it is easy to get the existence of Uy €

C'(£27) and (g, @) € (C*([0, TD)?,
We solve the nonlinear problem (4.2) by the iterative scheme:

EuUﬁvH — Uﬁv+1’
P_(dy,3)U" ! —dyqd, U™ + E_B_ (U” U =0,

Py(dy, U 4+ (dud + ho A3, U + L E,B.(U), 9,U ) =0,
SnunuthT=gmulty U”Jrl)T onz=n=0, @4
X3 gur) — gua) + (0 Vguy) =V f Uy — (0 Veu,) — V f))yUrH! =0,

onz=t, n=rt,
UM |ymo =U-0(z;6),

where (U?, U?, g ) being given by construction. It is easy to verify that the compatibility con-
ditions here up to order one are valid for each v > 0.

For any u(y, z;&,7n) € C%(£27 : R?), define the mean value operator Eﬁ, Eg as follows:

Eﬁu(yz%'n)—hmpﬁoozpf u(y,z;€+s,n— bks)dv k=1,2,

1 0 : (4.5)
Eju(y,z;6,m) =limy_ o0 3% ffp u(y,z;§ —bys,n+s)ds.

As Joly et al. in [3, Proposition 6.3.1], we can establish the following lemma.
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Lemma 4.1. For any (uy, vy) € (CH (27 : R2))? satisfying Esuy = ug, if we denote by By (u, v)

the bilinear form
T
By(u,v) = (B} (u,v), B (u,v), B} (u,v))

with Bé‘(u, v) = Zil:l bé{kuivl, then

{ ELBY 9yuz.ve) = yf w)dgul + B (ug. (0 — bydv),  p=1.2,
E3 B} 91z, v) = y3 (v)dyu + B (ug, (3 — b30:)vs),

where
3
yt{‘(vﬁ) = Eé‘(Zbéfkvﬁ’l) and
=1
Eé‘(uﬁ, vﬁ) = Eé{( Z yéfkuﬁ,ivﬁ,l) , k=1,2,3,
ik, I£k
with
yil =bl! ——— i#p p=1,2 and yil3=bil3; i#3.
f.p &p bi _ bl;t f, f, b?bg 1

Moreover, if E4vy = vy, then

Ef(uy,v) = Eg(ZyJ’lku;,ivﬁ,,-), ik k=1,2,3.
ik

Applying Lemma 4.1 for problem (4.4), it follows that (4.4) can be written as
v+l _ prv+l

EU, 7 =U, ",

P_(3y, 3)U" ! + (—diq + y- (U”))a urtt 4 2wt s, U") =

Snu o nuhT=gmuy ,le” HT, onz:n=0,
X (gup) — ga) + (Vg (uy) — V f (up) Uy
— (oVgu.) = Vfw)nU =0, onz=t, n=r,
Uy = U—0(z;6),

where (U, Uf, xg) can be constructed, yﬁ(U&’) = diag[yt1 (Uﬁ’), yﬁz(Ut}’), yf(U&’)] and
ENUIT, (0 — bjay)U,)
By (U 0pUY) = | B2, (3 — b33, UY)
E3 UL, (3, — bi00)UY)

Pu(@y, R)UYT + (dud + hoAu + y*(U"))a uytt+ L ,(Uv+l U =0,

(4.6)

%))

(4.8)

(4.9)

(4.10)
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To study the iteration problem (4.10), we consider the linear problem:

EgUs = U,

P, (ay,a )U +(d I+h, A+ P qOV*(V*))anU* u*(Uh anV*)—E F,,
SUn3. U- D" =T Us1. 1U-3)T, 0HZ=’I=0, (4.11)
x2(g(uy) — g(uy) + (0Vg(uy) =V fug)Us

—(0Vgu,) =V fu))yU., =0, onz=t, n=rt,

U_ly=0=U_0(z;0),

where V = (V_, V,) € C1(27 :R?) x C1(25:R?), f = (f-, f) € C1(2; :R?) x C' (25 :R?)
and U € C'(w™; R) satisfying the compatibility conditions of (4.11) up to order one.
In order to study the linear problem (4.11), let us first consider the diagonal systems
Ep Uy = Uy,
P_(8y,0)U- + (=diq +y- (V) U-=E_F_,
Py(@y, 3)Us + (dod + o A + 52574 (V2) 3y Us = ELF,

SWUss, iU- DT =T Us1, nU-3)T, onz=n=0, 4.12)
x2((Vgu)) ™ (guy) — gu) + (Vgu) " (0Vguy) — V f(ug) Uy
_(O'I_A*))R*VZU*=07 onz=t, n=rt,

U_ly=0=U_,(z;0),

where the notations and the assumption are the same as in (4.11). Using condition (H1) with
r,f = ¢ for problem (4.12), it follows that (4.12) can be written as

E;Ug = Us,

P_(dy, 9)U_ + (—dig + y—(V_))3,U_ = E_F_,

Po(@y, 0)Us + (dud + haAs + 2=1a(V2) 3, Us = ELF,y,

SWUs3 iU- DT =T nUe1, nU-3)T, onz=n=0,
MU 1, v2Un2, x2)T = (0 = 233Uz + g2(t, 1), onz=t, n=r,
U_ly=0=U-(z;0),

(4.13)

where M = (] — o)rf. (%3 — 0)r3. (Ve() ™ (g(uy) — gwn)). ga(t.7) = (Vg(un) ™
(Vfuy) —oVg(uy))Us.

Similar to Section 3, our aim is to obtain a functional equation of U, 1 and U, 3 on z =0.

From E;U; = Uz, it follows that Uy ;(y,z; &, 1) (I =1,2) (respectively Uy 3) are functions
of (v,z; b?é + n) (respectively of (v, z; & + bgn)) with Uy (v, z;0) (k=1,2,3) being almost
periodic in 0 € R.

Set

ki =—diq +yL(V), [=1.2, ky = H=(=dig +72(V-)),

(Vo). 1=1.2,  Kj=—7Rd+hg+

kf =d +hay + vV,

=40
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and

E_f =(F_1,F-5 (A —q0)F-3)",

— T
E*f* = (F*,l, F*,Z, ){%qu%F*,?a) .

By computation, it follows that (4.12) can be written as

0yUs s — bl Uy + kU = Fr,

bid,Uy s+ 0.Us 3+ KsopUy s = Fr 3,

YUz =nuniUsi +nppynU-3, onz=n=0, (4.14)
niU—_ 1 =nyy1Us 1 +nnyiU-3, onz=n=0,

MUy 1, 12Us 2, x2)V = (0 = X3)riyales + g2(1,7), onz=t,n=r,
U_ly=0=U_(z;0),

where the numbers (n;;) are the entries of the matrix IT| =S -l7.
Obviously, the boundary condition in (4.14) can be decoupled into

x(t, 1) =M~ o =) 3l + M ' g(t, 1) (4.15)
and

VU3, 1) =nuyiUs +ni2nU-j3,
viU_ 1(t, 1) =naiyiUs 1 + noyiU- 3,
nUi(t, 1) =M~ (0 =)} + et Mg (1, 1),
YUea(t, 1) =M™ (0 = A)ry + &M~ 22, 7).

(4.16)

Similar to Section 3, U_ >, U_ 3 can be given. While for U_ |, U, x (k =1, 2, 3), if we obtain
y1U,1 or yoU, 3, they can be obtained. In the following, we will obtain a functional equation
of U, 3.

For any (y,z) € £27, set y3(s) =y + b3(z — s) and zj(s) = (¢t — z) + b](y — 5) be the
characteristic curves of the vectors b3dy + 9, and 9, — b]d;, respectively, through (y, z). Let
s — (y3(5), 55 13055y, 2,0)) ((s,27(s); uj(s; v, z,0)), respectively) be the characteristic curve
of b33y + 3, + k399 (3y — b7, + k] dg, respectively) through (y, z; 0) € £27 x R, where u3 and
w7 are solutions to the following problems

dyp3(s; y,z,0) =k3(y3(5), 53 u3(s3 y, 2, 0)),
o Y 313 3 (4.17)
wi(z;y,z,60) =0
and
dspy(s;y,2,0) =k (s, 27 (s); ny(s; ¥, 2,0)),
{ o Y et ey (4.18)
nwi(y;y,z,0)=0.
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Obviously, the solutions (Ug, 1, Uy 3) can be expressed as

U, L bE+O)=U, 1,25 (t); ui (1)) + Fi ,2:0),
{ 1y, z; 076 +0) A0, 27 ()5 ny (@) 1y, z:0) 4.19)

Ui3(y,2:§ +030) = Us 3(y5(0), 0; 13(0)) + Fi3(y, 2:0),

where y§(0) =y-+ bgz, zili(t) =t—z —i—brli(y —1), and

{ Fo1(v.2:0) = [ far(s. 25 (9); () ds, (4.20)

Fi3(0,2:0) = [ foa(05(s), 55 15 (s)) ds,

with 12 (s) = (53 y, 2, 0) and i (s) = 4 (s; v, 2, 6).
From (4.19), we have

{ V1Ux 1 (t, b1T) = oUs 1 (8, (85 1,0, b77)) + Fy 1 (2, 0; b T), 421

V2Us3(t, (1+65)7) = niUs3((1+ b9t 1505 2,1, (14 53))) + Fu3(t, 15 (14 53)).
Combining (4.21) with the first and third lines in (4.16), it gives rise to

»Us(t (L+63)7) =nneiM (o — 23)r5nUas((1+63)1, 00, 0) + H(t, 1), (4.22)
where

0(t,v) = (14+5}) " (1403wt (1 +63)e; (14+55)1,0, 655 (0: 1,1, (14 b3)7))  (423)

and

H(t,t)= nllglM_lgz((l —i—bg)t, (1 —i—bg)_l@(l‘, 7,'))
+ 11 Fag((1+05)2,0: b7 3 (0: 2,2, (14 b5)7))
+nyiU—3((1+6%)6; 15(05 2,1, (1+65)7)) + Fos(t. 65 (1+63)7).  (4.24)

Denote by M = ||V,|1,r for a given V, € C 1(.QT(; :R?), for the functional equation (4.22),
similar to [11, Lemma 4.2], it follows:

Lemma 4.2.

(1) Givenany V, € C'(25:R?) and H € C°([0, Tyl : R), such that Uy o € C°([0, To] : R), there
is a unique solution y,U, 3 € CO([O, To]:R) to Eq. (4.21), and the estimate

l2Ussllt < CollHllT (4.25)

holds for any T € (0, To].
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(2) If H € C([0, Ty]:R), U+ € C°([0, To]:R), then there exists T; € (0, Ty] depending only
upon My, such that the solution y,U, 3 of (4.21) belong to CL([0, Ty]: R), and the estimate

12Uzl < CollHIl1,1 (4.26)
holds for any T € (0, T1].
Then for problem (4.12), similar to Section 3, we sum up the following proposition.
Proposition 4.1. For any given V = (V_, V,) € C'(£2, ‘R?) x cley, ‘R?), F=(F_,F,) €
CO(QT‘O ‘R2) x cl(sz;o :R?), Ut € C(@F:R) and G(t, 1) € C°([0, Tp]: R), assume that the

zeroth compatibility condition holds of (4.12). Then there are unique solutions U = (U_, U,) €
CO(.QT_ ‘R?) x CO(.Q;O :R2) and x» € CO([0, T]:R) to problem (4.12), moreover, the estimate

T
el +1UNr < C(IIU,OII +I1U+llr +1Glir +/ ||FI|de> (4.27)
0

holds for any T € (0, To].
Let us turn to consider the linear problem (4.11). Similar to Proposition 3.3, we have:

Proposition 4.2. Let us take V, F, Ux and G as in Proposition 4.1, assume that the zeroth com-
patibility condition of (4.11) holds. Then problem (4.11) has a unique solution U = (U_, U,) €
CO(QT_ :R?) x CO(Q}O :R2) and x» € C°([0, T1:R). Moreover, for any T € (0, Tyl, we have

T
Ixallr + 1Ullr < CeCMT<||U_,o|| +1U4lI7 + IGllr +/ ||F||sds>, (4.28)
0

where M =14 ||V||T.

Proof. As usual, the existence is proved by means of the iterative

v+l _ yrv+1l
E, Uyt =t
P_(3y, 0)U + (—diq + y- (V)0 U + 5 (U, 0,V ) =E_F_,
Po(@y, U + (dud + ha Ay + 2572 (V)3 UM + Ao Bl (UY, 8, V.) = ELF,

=40
Snu ' nuHhT=gmul T oo HT, onz=n=0, (4.29)
X g us) — ga) + (0 Vguy) — V f(uy)Uy

—(0Vg(uy) — VI )npUrtt =0, onz=t, n=r,

Um0 = U—0(2),
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where U? = (U°, U?) e C1 (27 :R?) x Cl(.Q}O :R?) and ) € C!([0, Tp]: R) are the first ap-
proximate solutions constructed in a way similar to [7]. Note that

|2:(Uy, 00 Vi) [, < Coll Vells | U

N

s’

then one proceeds as in the second part of Proposition 3.3, exploiting Proposition 4.1. O
Moreover, parallelly to Proposition 3.4 in Section 3, we have:

Proposition 4.3. Assume that V, F, Uy and G are C'-smooth, if two compatibility conditions
of (4.11) hold, then the solution U and x> of problem (4.11) are C'-smooth and satisfies the
following estimate

T
Ixalliz + U7 <CeCMT<||U_,o||1 + U4l + |FO| +||G||1,T+/||F||1,sds>,
0
(4.30)
where M =14 ||V ||1,T.

Proof. Proof of this proposition follows from the same item in Proposition 3.4 and the estimate
12U, 9 V)l < Col Vel r U li,r. O

At last, let us turn to the study of the iterative scheme (4.10), from which we immediately
obtain the conclusion of Theorem 2.1(2).

Theorem 4.1. If Uy o € C(w* :R) and two compatibility conditions hold for (2.1.31), then there
exists T € (0, Ty] and a unique solution U € C! (2, ‘R?) x CI(SZ} :R?) and x» € C'([0, T1:R)
of this problem.

Proof. The proof parallels that of Theorem 3.1. The iterative scheme we take into account here
is (4.10) (notice that the first approximate solution is given by construction). At first, using Propo-
sition 4.3, we solve problem (4.10) for each v, has L* bounds. Then these bounds prove that
{U", x5} is a Cauchy sequence in L and hence the existence of a continuous almost periodic
solution U and x5 to (2.1.31). C'-smoothness is proved once more through Ascoli’s theorem. O

5. Asymptotic properties

In this section, we study the asymptotic properties of the oscillatory shock wave and con-
tact discontinuity solutions (u€, u$, ¢¢) to problem (2.1.15), which gives the proof of Theo-
rem 2.1(3). Let T > 0 be the smaller one between those obtained in Theorems 3.1 and 4.1.

At first, we give a result, whose proof can be found in [11, Proposition 5.1].

Proposition 5.1. Suppose that (u€, u$, ¢¢) € CL(2;) x CL(23) x C2([0, T)), (U—, U, x2) €
CI(QT_ ‘R2) x CI(Q; :R?) x C1([0, T1:R) and ¢ € C([0, T)) are solutions to Goursat prob-
lems (2.1.15), (2.1.31) and (2.1.33), respectively, and ug satisfy the asymptotics
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€

=o(l), whene— 0. ;.1
1,27

y Z
u€ B _RU 3;_7_
:(¥,2) — Ry n(y 2 e)

Then, when € — 0, we have

ry|€ _

Hdt(ﬂé(t) - XZ(ta E)”l,[O,T] - 0(])7 (52)
o€ () — o) | Lj0,11 = o(1).

By Proposition 5.1, in order to finish the proof of Theorem 2.1, we only need to establish the
asymptotics (5.1).
We start with the following linear diagonal problem

LS (5, @“)u§ = ff,
(yiu 5 yius DT =I5 @O (nug |, yiu 3)" + g5 @), onz=0,
drp(g(uy) — guy) + (01 — Apus — (o1 — Ay)yaus =g5(1), onz=t,
u€(0,2) =ut (),

(5.3)

where u§ = u (¢, o1 + €D (1)), L (v§, #€) = 0, + N£ 9, and

NE = A(u_ —|—ev€_) — )»2(14; +ev§)1, N{ = <%> I+ (g—z) A(u* +evi), (5.4)
* X *

with ((%)*, (%)*) being given in (2.1.18) by replacing @€ for ¢°.

For problem (5.3), suppose that v¢ = (v, v5), f€ = (f€, f5), €, g = (g}, &5) and uf
are bounded as in Proposition 3.2, and u¢ satisfies the asymptotic property (2.1.13). Assume
that V; € C! (:2§ :R?), F; € CO(Qi :R?) and K € C°([0, T']:R) such that

E:Vi=V; 5.5
and
vE(r,2) = Vi(y. 2 £ 2) = o(D), in L®(025),
FE0. = F(yozv(22) =0, in L®(€]), 56
di®<(1) — K (1, 1) = o(1), in L*([0, T1),
(g1(®), 85(1)) = o(1), in L>°([0, T),

when € — 0, where ¥ (£, 7) = (Y— (&, 0), Y (&, 1), ¥ (€, 1)) with Y(5, n) = (b'€ + 1, B3 +1,
£+Dbin) and Y (E,m) =& +1.
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The profile problem related to (5.3) will be

E.U; = Uy,

P_(0y,0)U_+ (=dig+y-(V_))oy,U_=E_F_,

Pu(3y, 0)Us + (A1 + huAu + 52572 (V)) 3y U, = EL F,

SnU, 3, nU- DT =T U1, nU-3)T, onz=n=0, (5.7

x2((Vg)) Hguy) — ) + (Vgw) " HoVeguy) — V f(uy)Us
— (ol — AR »U,=0, onz=t, n=rt,
U-ly=0=U-(2),

where Uy (t,t) =U4(t,0t; 1,07 + @ (1)) with

(1) = / (EoK)(s) ds. 5.8)
g = (qoy + o0z — 405)(;15 -q) (v —2dig +zd;®P 59)
(0 —q0)~y (6 —q0)y
and y; (Vy) = diagly, (V), 7 (Vy), v (Va)] with
k k 2, B
yE (Vi) = EX (Z W(ug)vm,,) (5.10)
p=17

If we assume that the zeroth order compatibility condition holds for problern (5.3) and one for
problem (5.7), then Propositions 3.2, 4.1 apply and provide solutions (u< , u$, ¢€) € C (£24) x

Cl(©2%) x C1([0, T]) and (U_, Uy, x2) € CO(£2; :R?) x CO(25:R?) x C'([0, T]: R).

Proposition 5.2. Under the above assumption and notations, we have the following asymptotic
developments

uS(v.2) = Us(y.z: 2. 2) = o(1), in L®(2}),

(5.11)
dip®(1) — x (1, ) = o(1), in L=([0, TD),

when € — 0.

Proof. The asymptotic development for the components ue_’z, ué_’3 are deduced from [1]
by using the nonstationary phase lemma in [3] and [2, Lemma 2.4.1]. Then u:i(y,z) —
U_i(y, Z, 2,9 =o0(1) (i =2,3) in L*®(£2;). Similarly, asymptotic development of the com-
ponent u€ holds also in the reglon C¢ . For the region B¢ .1» the boundary conditions are
needed. For the components u$ * k=1, 2 3), the boundary conditions are needed also in the
region £27. In fact, if we know the asymptotic development of yu€ Y3 in 2%, then we will know
the one of ue_’l in Be_’l, u uiz in 27 and d,¢°(¢). The proof of Proposition 5.2 is thus
completed. O

€
*1°
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In the following, we are devoted to the study of asymptotic develop of yzui3 in £27.. Similar

to the derivation [11, pp. 1669—-1670], if we set

e (qy+oz—qo)(@°—q°) (y—2)diq® +2d, D¢ e 4 — P
d = 5 - , = —o—, (5.12)
(0 —qo)y (0 —q0)y (0 —q0)y
b = M (uatevy) —qote(d +h A (uatevy))
) : Lo (5.13)
b*,3 A3 (Uptevs)— qo+e(d€+hfkg(u*+ev,))’
and
— 40 T
ff:(f*l f*Z’ —q0 f*N) ’ (5.14)
then the equations of u* 1 i’3 in (5.3) are written as
dyug | — b 1 0:us = f+o(l),
bi,33y”*,3 + dous 3= f3+o(l), 5.15)
(g 5y D' =I5 O rug ;. s )T +g5 @), onz=0, '
dip(guy) —gwy)) + (ol —ApuG — (01 — A)yus =g5(t), onz=t.
On the other hand, the equation of U, 1, U, 3 in (5.7) can be written as
(y — b}3)Usy + (d + h2AT + 1(V*))89U*1=E1F*1,
(b30y + 0) U3 + 7t (d+hx* VA (V)deUs = T2 E3F. s,
(5.16)

SU,3, U= 1)T j()’lU*l nu_3T, OHZ=77=0,
X2 (V) Hguy) — gw))) + (Vgw) " HoVguy) — V fu)Us
— (0l — AR U, =0, onz=t, n=r,

where we denote by 6 = b7& + n in the first equation, and 6 = & + b3 in the second equation.
For any (y, z) € 27, set y3(s) and zj(s) be the characteristic curves as in Section 3.4. Let

s — (y3(8)+ eyf’3(s; y,2),8) (s = (5,27(s) + ezi’l’ (s; v, 2)), respectively) be the characteristic

curve of bi,33y + 0, (respectively of dy — b;,az) through (y, z) € £27, where (yf’3, zi’l) satisfies

ey 5(5:y.2) = € (B] = bE3(03(5) + €38 50553, 2). ), (5.17)
¥i3@ Y, Dy, 2) =0 .
and
dyzg, (537, 9) = €1 (b} = b, (5.2} ) + €2 1 (537, 2))),
L ’ ’ (5.18)
21y, 2)=0.

Lets — (y3(s), 50 + Y3 (s5y,2,0)) ((5,27(5); 0 + Z*(s v, z,0)), respectively) be the char-
acteristic curve of b 39, +9; + 5 o q° (a’ +has+ ¥ (V) dp (respectively of 9y — b 10, +

e q
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d+hrj+
lem:

(V,))dp) through (y, z; 0) € 2%, where (Y7, Z7) satisfies the following prob-

{dsY;(s;y,z,9)= Fin (d 4 has + 2oyl (V) (059), 510 4 Y3 (5)), (5.19)

Y(z;9,2,6)=0

and
* (e (5 * 1 * . *
{azsz1 (53 7,2,0) = (d + hA} + 2= (V) (5, 21 (9): 0 + Z3(5)), (5.20)
Zi(y;y,z,60)=0.
Denote by 27 ={(s;y,2) |z<s <1, (y,2) € 27}, and 27  ={(s;y,2) |1 <s <y,

(v,2) € 27} Slmllar to[11, Lemma 5. 1] we have:

Lemma 5.1. There are unique solutions yf3 € CI(SZ* ) zi | € Cl(.Q* ) Y3e Cl(.Q* 'R)
and 77 € c! (.Q* :R) to problems (5.17), (5.18), (5. 19) and (5.20), respectlvely Moreover the
followzng asymptotlc development holds in L°° when € — 0,

* +b
VE3(s5 3, 2) = Y3 (ss vz, ) = o(1),

s (5.21)
251 (559, 2) = Zf (85 y.z, =) = o(1).

As derivation in Sections 2 and 3, problems (5.15) and (5.16) can be transformed into a system
of functional equations respectively. Here, for simplicity, we need not to give the whole system of
functional equations. However, the functional equations of y»u, 3(¢) and 2 U, 3(t, T) are needed.

Asin [11, Lemma 5.2], applying the above Lemma 5.1, we give the following result.

Lemma 5.2. Let you 5(t) € CX(10, T1) and y,U, 5(t, 7) € C°([0, T1:R) be the unique solutions
to the functional equations

yaus 5(6) = nyaug 3 (X)) + h° (1) (5.22)

and
Y2Usa3(t, 1) = 002U 3(1, ) (1 + 03)1, 61, 7)) + H (2, 7), (5.23)
respectively, where n° = my1e1(M€)" (0 + ed;g — M3(us + €20 )r3(uy + €209)), 1 =

niel (]\_4)_1(0 — kg) and every notation is the same as in Sections 3 and 4, then when € — 0,
we have

yaus (1) — y2Us 3 (r, é) =o(l), inL®([0,T]). (5.24)

Before passing to the asymptotics for solutions of general linear problems like (3.4), in order
to shorten the proof of the next proposition, we first give a lemma by considering the following
semilinear problem with linear diagonal principal part
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LS (5, D€)u§ + my(evs, w§Hug + Qs (evs, uf) = ff,
il 5, yius T =50 (nus 1, nus )" +g{ @), on z=0,

(5.25)
drp®(g(uy) —gu)) + (0l — Apu§ — (o — A)yu =g5(t), onz=t,
ut(0,2) =u’ 4(2),
where the notations and assumptions are the same as in (5.3), and
myw) =Y my Wwsr,  Qui.u) =Y OF g iuz p. (5.26)
l i,p

where m3(v, w) are linear in w and Q3(v, u) are quadratic form in u, with my; and (Q;pk)m

being (3 x 3)-matrices. We suppose that w§ is bounded in CS(Q%) and the asymptotic expansion

w (v, 2) — Wi (y, z; fﬁ(% g)) —o(1), inL®(2}), (5.27)

hold with Wy (y, z;60) € CY. Then for problem (5.25), we have:

Lemma 5.3. For the solution ug and @€ (t) to problem (5.25), there is T| € [0, T] such that in
L°°(827,), the asymptotic properties

(5.28)

u§(y,2) = Us(y, 2, ) =o(1),
dtQDG(t)—XZ(ta 5)20(1)5 k=1,2,

hold, where Ty = T when Q(v,u) = 0 in problem (5.25), (U_,U,, x2) € CO(Q;1 ‘R?) x
CO(Q}l :R?) x CO([0, T11:R) are unique solutions to the problem

EU: =Uyg
WU_k+ (p —q)dU_x + (—dig + Y5 (Vo)) 0,U_
+EN (Y, , W U_p+ 5, 07 U_U_ ) =EXF_i. k=1,2,3,

dyUp i — L ka Ue + (d +haf + K(V2)dy Uk
+ Ef(zl’pm*’lW,,’lU*’p +3, QipkU* iUsp) = EXFox, k=1,2,
(d+ 72y + 52 v3(V))0,Us 5 (5:29)

+E3(Zzp O WaiUs p+ 30, 03U iU p) = E3F 3,
SGUe3. U-DT=T U1, nU-3)T, onz=n=0,
x2(Vgu) ™1 (gug) — g(u)) + (Vg(u) " (0 Vgug) — V f(ug)) Uy

— (0l — A)RU,=0, onz=t, n=rt,

U-ly=0=U-(z;0),

with the notation being the same as in (5.7). my; = my ;(0) and Q;pk = Q «0) (k=1,2,3).
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Proof. Under the zeroth order compatibility condition for problems (5.25) and (5.29), exis-
tence of a solution (1€, u€ , ¢¢) bounded in C2(£27) x C2(£2}) x CL([0, T1) to problem (5.25)
is a byproduct of the proof of Proposition 3.3, while existence of a solution (U_, Uy, x2) €
CO(2; :R?) x C0(£25 :R?) x C!([0, T1: R) to problem (5.29) follows from Proposition 4.2. The
solution (u€ ,u€ , ¢¢) are constructed by way of an iterative scheme similar to (3.26), and the
limits are uniform in €. The profile (U_, U,, x2) are obtained by an iterative scheme similar
to (4.29). Then the asymptotic properties can be easily obtained by using Proposition 5.1 to
parallel terms of both sequence and pass to the limit (see [3, Proposition 6.5.1]). O

With this lemma, we can consider the following linear problem with nondiagonal principal
part

L;(vg, <1>€)ufi + mt(evg, wg)ug = fje,

i 5 i€ DT =T @) (nul |, vin 5)" + g5 @), onz=0,
dip(guy) —gwy)) + (ol —ApuG — (ol — A)yus =g5(), onz=t,
ue(0,2) =u’ ((2),

(5.30)

where L§(v§, ) =9, + Ngaz with

N¢ = A(u_ +ev€_) — Az(u_ —i—eve_)l, NE = (?Tj) I+ (g—z> A(u* +evi), (5.31)
* x *

and ((g—f)*, (%),,) being given in (2.1.18) by replacing @€ for ¢€, and all hypotheses are the
same as in Proposition 5.1, Lemma 5.3. Moreover, we have

Z .
v 2) — Ve (y,z; =, ;) =o(l), inL%(2}), (5.32)

with Vy € c! (.Qg ‘R?) being the same as in (5.5).

Proposition 5.3. For the solutions (u_, u$, ¢¢) € C2(27) x C2(823) x CL([0, T1) of (5.30), we
have the following asymptotic properties:

. f— ] u
i ug(y,2) = ReUs(y, 2 ¢, §) = o), in L(27), (5.33)

dig (1) = xa2(1, £) = (1), in L0, TY),

where (U—_, Uy, x2) € CO(.QT_ ‘R?) x CO(Q} :R?) x C°([0, T]:R) are unique solutions to the
problem
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E.U; = U,
P_(dy, 3)U— — diqd U— + E_(B_(0,U_,V_) + Y ym_ U_W_;)=E_F_,
Py(dy, 9)Us + (A1 +hA)Us + 52 En(Bu(ByUs, Vi) + 3 s 1 UuWaf) = EoF,
SGUss, iU- DT =T Us1, nU-3)T, onz=n=0, (5:34)
x2(Vgw)) ™ guy) — gu)) + (Vgu) " (0 Vg uy) — V f (ui)Us

— (ol — A)RNU,=0, onz=t, n=r,
U_ly=0=U_0(z:6).

Clearly the zeroth order compatibility conditions are satisfied for problems (5.30) and (5.34).

Proof. The idea of this proposition is that one can diagonalize problem (5.30), then for diago-
nalized problem, one can easily obtained results by using Lemma 5.3. For the detailed process,
one can be found Proposition 5.4 in [11] and Proposition 2.2.4 in [2]. O

So far we have been concerned with L asymptotics, we give now a result about Ce1 asymp-
totics. Let us consider the asymptotics of derivation of solutions to problem (3.4), i.e., (5.30) with
my =0, where vg is the same as in (5.32), fﬁf, @€ and g; (k =1,2) are bounded in Ce1 (Q%),
C~’€2([O, T]) and C 61([0, T]), respectively. Under the assumptions of Proposition 3.4, let ufi, o€
be its solution. We already know from the previous proposition that u§, @€ has Uy, x2 as pro-
files, with errors in L™ (Q?); to reach CG1 (.Q;), we strengthen the assumption on the asymptotic
expansions (5.6), replacing L°°(.Q¥) with CE1 (.Q%).

Proposition 5.4. Let (u€,u, ¢¢) € CL(2;) x CL(23) x C2([0,T1) be the solution to (3.5)
and (U_, U,, x2) € C! (27 ‘R%) x C! (27 :R?) x C2([0, T1:R) be the solutions to the following
problem

E Uy = Uy,
P_(0y,0,)U_+ E_(—diqd)U_+B_(3,U_,V_)=E_F_,

Py(dy, 9)Us + Eo(dI + hA) Uy + 5255 B.(3,Us, Va) = ELF,

SYUe3. iU-DT=T U1, iU-3)T, onz=n=0, (5.35)
x2(Vg)) ' (g(ug) — gw))) + (Vgw)) (o Vguy) — V f(uy)Uy

— (ol — A)RNU,=0, onz=t, n=r,
U_ly=0=U-0(z;0).

Under the above mentioned assumptions and two compatibility conditions for both problems.
Then we have

Z
us (y,2) — R:Us <y, Z % E) =o(1), (5.36)

in C1($25) when € — 0.
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Proof. From the proof of Proposition 3.4, we know that z§ = eazug satisfies (3.29). This propo-
sition falls under the frame of Proposition 5.3, except for the boundary term eazu§’l , whose

asymptotic properties are not yet know. Thus what the first step we do is to establish the C!
asymptotic for u§’1 solving the noncharacteristic problem

dyug" + Cug + ev)oup’ = 7

ug’ —us! = g5 (o), onz=0, (537)
Fit.apny 725 di$) =50, onz=t, '

us'(0,2) =ut!)2).

For the noncharacteristic problem (5.37), we can apply the method similar to [11, Propo-
sition 5.5] and deduce that ME’I(%Z) — RﬁUﬁI(y,Z: f £) =o(l) in Cel(.Q?), where Ul =

Uy !, are profiles of u$!. This gives the asymptotics we needed. Now we can come back to
Bk k p # g ymp

roblem (3.29). The remainder proof is similar to [2, Proposition 2.4.5], we omit it here. Propo-
p p P p
sition 5.4 is thus proved. O

Finally, we turn to the item (3) in Theorem 2.1. Let (u€ , u$, ¢¢) be the solutions to (2.1.15)
and (U_, U,, x») that of (2.1.31). We may suppose that both are defined for T € (0, Tp] for some
Ty > 0.

Theorem 5.1. Under the assumptions of Theorem 2.1, we have the following asymptotic expan-
sions:

(5.38)

u§(y,2) = ReUp(y, 23 2, £) = o(1),
dtgoe(t) - XZ(t» é) = 0(1)1

in CE1 (Q;) when € — 0.

Proof. We only provide a brief sketch of the proof, since it is similar to that of Proposition 5.4.
Problem (2.1.15) was solved by means of the iterative scheme (3.2), while problem (2.1.31) used
the scheme (4.4). Applying Proposition 5.4, it is easy to prove that

usvv( 72)_R UV » 45 lvg =0(1)7
{ g W # j(y € 6) (5.39)

droV (1) — x5 (1, £) = 0(1),

in C€1 (.Q%) when € — 0 for each v, where the case of v =0 is valid by (4.1). By combining
(5.39) with the uniform convergence of (1", u$”, ) in CO(27) x CO(23) x C'([0, T)),
it immediately follows the part of L°°-norms in (5.38). The asymptotic property of derivation
of ", ug”, V) will be obtained directly from the study of the nonlinear problem (2.1.15).
In fact, we differentiate (2.1.15) with respect to z and find that z§ = e&zu§ satisfies a semilinear
problem, the existence for such a problem is obtained by following the lines of Proposition 3.3.
Also the associated profile is semilinear, and has a solution Z;. Then an asymptotic result show

that zE v, 2) — Zs(y, z; % f) =o0(1) in LOO(.Q?) (compare with Proposition 5.3). At last, one
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can check that dyUy are solutions of the problem for Z;, and then dgUy = Z;. This completes
the proof of Theorem 5.1. O

Corollary 5.1. Under the hypotheses of Theorem 2.1, there exists x1 € C'([0, T1:R) such that

the asymptotic expansions
p t

€
=o(1), (5.40)
1,[0,T]

when € — 0.
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