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1. Introduction

This paper deals with the initial boundary value problem for the compressible Navier-Stokes equa-
tion

atp + div(pv) =0, (11)
POV +v-Vv)—puAv — (u+p)Vdivy + VP(p) = pg (1.2)
in an n-dimensional infinite layer £2, = R""! x (0, £):

2¢={x=(X,x); X =(x1,....,%-1) eR", 0<x<f} (n=3).
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Here p = p(x,t) and v = T(v1(x,t),...,v*(x,t)) denote the unknown density and velocity at time
t > 0 and position x € 24, respectively; P = P(p) is the pressure that is assumed to be a smooth
function of p satisfying

P'(ps) >0

for a given constant p, > 0; w and w’ are the viscosity coefficients that are assumed to be constants
and satisfy u > 0, %u + 1 >0; and g = g(x,) is an external force which has the form

g="(g'(x).0,...,0,8"(xn)),

where g/ (j =1,n) are given smooth function of x,. Here and in what follows the superscript -
stands for the transposition.
The system (1.1)-(1.2) is considered under the boundary condition

Vlg=0=0,  Vly,—e="V'ey, (1.3)
and the initial condition
T(p, V=0 = "(po, vo). (14)
Here V! is a given constant and e; is the unit vector e; = '(1,0,...,0) € R™.

Under suitable smallness conditions on g", problem (1.1)-(1.3) has a stationary solution '(ps, V)
of parallel flow with properties:
Ds=ps(xn),  Vs=(Vi(xn).0,...,0),

118"l cogo, 1
P’(04)

<2118 I coro, 1
(e < €( ZERE 1 1)),

5

los — pxlicopo,¢ < €

Here and in what follows | - [|ckfq ) denotes the usual ck norm of functions on the interval [a, b).
Typical examples are the plane Couette flow:

1 Vl
Ps = Px, VS =7xn

when g =0 and V! # 0; and the Poiseuille flow:

1
_ 1_ Px8
Ps =P Vs = 2u

Xn(€ — Xn)

when g = gle; with a constant g' £ 0 and V' =0. If g" is sufficiently small, then "(ps, Vs) can be
obtained as a perturbation of the superposition of the plane Couette flow and Poiseuille flow.

The purpose of this paper is to show the global existence of solutions to (1.1)-(1.4) when the initial
value T(py, vo) is sufficiently close to a parallel flow T(ps, vs).

P18 cogg.e
m

To state our result more precisely, we set V = 1 +1v1| > 0 and introduce the parame-

ters:

jz ;W VP'(ps)

V=—", V =—, )/_
PV PLV "4
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We note that Re=1/v and Ma = 1/y are the Reynolds and Mach numbers. We will prove that if
v>1, ¥y > 1 and ||gllcmo,¢; < 1 for some m € N satisfying m > [n/2] + 1, then (1.1)-(1.4) has a
unique global solution T(p, v) such that T(p — ps, v — ¥s) € C([0, co); H™), provided that T(pg — ps,
Vo — Vs) € H™ is small enough. Here H™ denotes the L% Sobolev space on $2; of order m.

In the case of the plane Couette flow, the results mentioned above was proved in [3]. Therefore,
the result of this paper is an extension of that of [3] to the case of general parallel flows for n > 3.
The main difference to [3] arises in the following point. A nondimensional form of the equations for

the perturbation "(¢, w) = T(7;)—3(/) — Ps). 7 (v — Vs)) is written in the form

o+ vs- Vo + y* div(psw) = f°, (15)
v v P’(ps) v
ow — —Aw — —Vdivw +V > —¢ |+ 3 5 AVs ¢+vs-Vw4+w-Vvg=Ff, (16)
Ps Ps VPs Y Ps
Wx,=0,1 =0, (1.7)
T(¢, W)li=0 = "(¢0. wo). (18)

Here D =v+’; f° and f denote the nonlinearities; the domain 2, is transformed into £2;. Eq. (1.6)
has a lower order term (#Avs)qb which is absent in the case of the plane Couette flow [3]. We

note that the Poincaré inequsality holds for w but not for ¢ in general. So, due to the appearance
of this term, a direct application of the Matsumura-Nishida energy method [9] does not work even
though the coefficient (5 Avy) is assumed to be sufficiently small. To overcome this, we employ a

S
decomposition of solutions essentially introduced in the linearized analysis in [7]. We write (1.5)-(1.8)
in the form

{atu+Lu=F, W(x,=0,1 =0, (1.9)

Ul¢=o = Uo,

where u = T(¢, w); L is the linearized operator; F denotes the nonlinearity; and ug = ' (¢o, Wo). The
Fourier transform of (1.9) in ¥’ € R"~! can be written as

{?[ﬁ"l‘i%"}]:ﬁ, W'Xn:()'] =0, (1.10)
Ul¢=0 = Uo,
where £ = (&1, ...,&_1) € R is the dual variable. When &’ = 0, the operator Lo (as an operator on

H'(0,1) x L2(0, 1)) has a one-dimensional kernel spanned by a function u©@ = T(¢© (x,), w©@ (x,))
with fol ¢© (x,) dx, = 1. We then define a projection P by

1
Piu=.2"" ()21 (S/)/é(‘;",xn)dxn)u(o)(xn)
0

for u = (¢, w). Here .#~! denotes the inverse Fourier transform and ¥; is a cut off function:
X1(6)=1 for || <1 and x;1(£) =0 for |£| > 1. We decompose the solution u(t) of (1.9) into

U=Piu+ Pt =01u? + uq, (111)
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where Po, =1 — Pq and Piu = oqu© with

1
or=o01(x,t)= <X1 / (&' xn,t dxn>
0

We can show, by a variant of the Matsumura-Nishida energy method, that
2 A o112 + |8xos |2 deWoollZm dT < Clluol? 112
”u(t) ”Hm + [ llowor ||Lz + | x¢oo||Hm71 + [19xWoollfym dT < Clltg || gm (112)

for sufficiently small [|ug|/gm, provided that v > 1, ¥ > 1 and [|gllcm[0,¢] < 1. An advantage of the
decomposition (1.11) is that the Poincaré inequality ||t ;2 < C||dxUooll;2 holds for use-part and that
differentiations of any order in x variable are bounded operators on the subspace Range(Pq), i.e.,
3% (1u@)| 2 < Cellogu@|| 2 for any k=1,2,.... Using these properties we can establish the a
priori estimate by a variant of the Matsumura-Nishida energy method.

Once H™-energy bound (1.12) is obtained, then the following decay and asymptotic behavior can
be shown as in the case of the plane Couette flow [3] by using the linearized analysis in [7]:

1

Jud]z=0("),
[u® = (Eu®) @2 = 0~ L)
as t — oo. Here 0 = o (¥, t) is a function given by

1

o(.0)=F <—(lao$1+Kol$1 +:<1|é”|>/ (&, xn)dxn>

0

with some constants ag € R, kg > 0 and k1 > 0, where £’ = (&, ..., &—1) € R?2; and L(t) = log(1+t)
when n =3 and L(t) =1 when n > 4. In this paper we concentrate on the proof of the global existence
of solutions and do not consider the decay and asymptotic behavior of perturbations.

We remark that in contrast to the case of the plane Couette flow [3], we here restrict ourselves
to the case n > 3. The case n =2 is different from the case n > 3; and we will study the case n =2
elsewhere.

This paper is organized as follows. In Section 2, we rewrite problem (1.1)-(1.4) into a nondimen-
sional form and show the existence of parallel stationary solutions. In Section 3, we state the main
result of this paper. In Section 4, we introduce the decomposition (1.11) of the solution and examine
some properties of P1. Section 5 is devoted to deriving the a priori estimate.

2. Nondimensionalization and parallel flows

In this section we rewrite the problem into a nondimensional form and show the existence of
stationary parallel flows.

2.1. Notations
We first introduce some notation which will be used throughout the paper. For a domain D and

1 < p < oo we denote by LP(D) the usual Lebesgue space on D and its norm is denoted by || - [|.»(p).
Let m be a nonnegative integer. The symbol H™(D) denotes the m-th order L?> Sobolev space on D
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with norm || - |gm(p). Cg*(D) stands for the set of all C™ functions which have compact support in D.
We denote by H}(D) the completion of C}(D) in H'(D).

We simply denote by LP(D) (resp., H™(D)) the set of all vector fields w = T(w',..., w") on
D with wi e LP(D) (resp.,, H"(D)), j=1,...,n, and its norm is also denoted by || - llp(py (resp.,
I - Ilgmpy). For u = T(¢,w) with ¢ € H*(D) and w = "(w',...,w") € H™(D), we define
lull gk (pyxumpy DY lullyepyxumpy = ISllprpy + IWlkm(D). When k = m, we simply write
||u”Hk(D)><Hk(D) = ||u||Hk(D)-

Later we will transform the problem into a nondimensional form; and then £2; will be transformed
into 2 =2, =R"1x(0,1).

In case D = 2 we abbreviate LP(£2) (resp.,, H™(£2)) as LP (resp.,, H™). In particular, the norm
I lleee2)y =1l - llee is denoted by || - [|p-

In case D is the interval (0,1) we denote the norm of L?(0,1) by |- |,. The norm of H™(0, 1) is
denoted by |- |gm.

The inner product of L2(£2) is denoted by

(f,g)=/f(X)g(X)dx, f.gel*().
2
We also denote the inner product of L2(0, 1) by
1
(f.9)= / FOngxa)dxn,  f,g€L*(0,1),
0

if no confusion occurs. We further introduce a weighted inner product ((-,-)) defined by

P’ (ps
((Ul,uz))=/¢1¢zﬁdx+/w1 - W05 dx
2 2

for uj = T(¢j, wj) € L2(£2)™! (j=1,2); and, also, (-,-) defined by

- 1
P/
ips) dx, + [ w1 - Wy s dXp
Y
0

1
(u1,uz) =/¢1¢2
5 Ps

for uj = T(¢j, wj) € L(0, )™ (j =1,2). Here ps = ps(xy) denotes the density of the parallel flow
whose existence will be proved in Proposition 2.1 below. We note that ((-,-)) and (-,-) define inner
products of L2(£2)™*1 and L2(0, 1), respectively, since 0 < p1 < ps < p2 and P’(ps) > 0 for p; <
ps < pz from Proposition 2.1. Furthermore, we denote the mean value of f € L1(0, 1) by (-):

1
(fi= / J (xn) dxy.
0

For u=T(¢, w) € L1(0, 1) with w = T(w!,..., w") we define (u) by

() = (@) + (W) + -+ (w").
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We denote the k x k identity matrix by Iy. We also define (n + 1) x (n + 1) diagonal matrices Qo,
Qn and Q by

Qo =diag(1,0,...,0),  Q,=diag(,...,0,1)
and
Q =diag(0,1,...,1).
Note that
{Qou) = () foru="(¢, w).
We often write x € £2 as
x="(X,x1), X'=T(x1,....%-1) eR"".

Partial derivatives of a function u in x, x’, x, and t are denoted by dxu, dyu, dx,u and du, respectively.
We also write higher order partial derivatives of u in x as 3,’fu = (0¢u; la| =k).

For a function f = f(x') (¥ € R""1), we denote its Fourier transform by f or Zf:

He)=Fn(E) = f F(X)e " dx.
R-1

The inverse Fourier transform is denoted by %~ !:

(971 f)(x/) — (zn_),(n,]) / f(%./)eigﬁx/ di__/
R-1
2.2. Nondimensional form of equations

We introduce the following dimensionless variables:
- £ . - 5=
X = (X, t:vt, v=Vv, P = PP, P=p,V°P
with

_ p*£2|g1 loo

% +|v!|>o0.

Then the problem (1.1)-(1.4) is transformed into the following dimensionless problem on the layer
R=21=R"1x(0,1):

3P + div(pv) =0, (2.1)

P(3V+7-VV) —vAV — (v+V)Vdivi + P(5)Vp = g, (2.2)
- - V1

Vlgm0=0,  Vlgo1= Vel, (2.3)

(B, M=o = '(Po, Vo). (2.4)
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Here div, V and A are the divergence, gradient and Laplacian with respect to x; g(X;) = %g(b}n);

and v, v’ and y are the nondimensional parameters:

/ - P/ s«
Iz b M Y = By = Y@

\)=—7 = —,
PtV PV %4

-1

Remark. The Reynolds number Re and Mach number Ma are given by Re =v~! and Ma =y,

respectively.

2.3. Existence of stationary parallel flow

One can see that if |g"| is small enough, then a stationary solution T(ps, vs) = T(ps(%n), v} (%p)eq)

exists. More precisely, substituting (3, V) = (0s(%n), vl (Xy)e1) into (2.1)-(2.3), we have

—vdF vy = psg',
3%, (P(0s)) = psg".

Vl
Vilhmo =0 Vsl = v

We will look for solutions of (2.5)-(2.7) with

1

/ps()?n)d%n =1

0

(2.5)
(2.6)

2.7)

(2.8)

Prol_)osition 2.1. Assume that 13/(,0) > 0 for p1 < p < p2 with some 0 < p1 <1 < py. Let &(p) =
flp % dn for p1 < p < pp and let W (r) = &~1(r) for ry <1 <ry. Here &~ denotes the inverse function of

Dandrj=o(pj) (j=1,2).
If

_ , 1
g <Cmm{|r1|,r2,—},
1€ 4Y2 1" (| cogry a1

then there exists a smooth stationary solution T(ps, vs) = T(0s(®n), Vi (Rn)e1) of (2.5)-(2.8) satisfying

- 18"
P1 < ps(n) < o2, 1ps— 1o <C y2°°,

|0k vl|  <C+p2). k=0,1,2.

Xn " Sloo

Furthermore, if || 8" | k10,17 < 1, then

|8)l:n,03|oo < Ck”gn”(‘k%[()’l] fork=1,2,...,

and
Cr . .
|0 vs| < S Blceay fork=3.4,....

Here Cy are positive constants depending on k, 0, [|¥ || cky, r,) and p2.
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In particular,

C \on
[0, Psloo < P‘zg

|oo’

~, 2 < Y4 |§n|oo
|P(,05)_V |OO\C”P ”Co[m,pz] yZ ’

Outline of proof. We proceed as in [8, Proof of Lemma 2.1]. In the proof we omit “tilde” of x,. We
also denote |g|~ by || g]|l. We first observe that for @ and ¥ there hold

P(1)=0, wO) =@ '(O)=1, rn<0<n,

SMH=PM=y? T O=——=—
’ (1) y?

lI// 1 < lI/// <r<
r - 2| s 19| copry - (11 ST <T2),

1
'] <" o + 72 (ry <r<r).

r
[r1,12]

We set g(xp) = 6‘" g"(yn)dyn. By (2.6), we have

13/(:05) ) __ =n
Ps=8 -
Ps s
It then follows that ps is given by
p(Xn)I.i/( )
f nn dn=o+ g(xn) (2.9)

with some constant o which is determined by g through (2.8). In terms of ¥, (2.9) is written as
Ps(Xn) = W (o0 + g(xn)). (2.10)
By (2.8) and (2.10), problem (2.6), (2.8) is reduced to
G(x,8) =0, (211)

where G:R x C%[r1, 2] — R is defined by

1

69 = [ (¥l +g0m) 1) dxo
0

Observe that
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1

d G, g) sz’/’(oc + g(xn)) dxn,
0

1
3sG(a, gh = / ' (a + g(xn) ) (xn) dxy,
0
1

1 1
G(0,0)=0, 0¢G(0,0) = P7 0gG(0,0)h = p/h(xn)dxn.
0

We can show a unique existence of a solution o = «¢(g) of (2.11) for a suitably given g, together
with estimate on o = «(g) in terms of g, which leads to the desired estimates for ps.
Let us solve (2.11) by contraction mapping principle. We define I"(«, g) by

-1
I g =ao—(3,600,0) G, g=a—y>Ga,g.
Note that (2.11) is equivalent to
a=rI(a,g);
and that I"(0,0) =0.
One can show that I"': X x Y — X is a uniform contraction with X ={a €R; |¢| <8} and Y =
{g € C°[0,1]; |lgll < 8}, where § = min{|r{], 12, 1/(41’2||‘1’”||c0[r1,r21)}3 and hence, for each ge Y, I

has a unique fixed point & = «(g) € X. Furthermore, it can be seen that «(0) =0 and |x(g)| < ||g]l.
The estimates for ps(x,) are obtained as follows. We see from (2.10)

1

Ps(xn) — 1=V (a + g(x1)) — ¥(0) = / (0 + g(xn)) ( + g(xn)) dO.
0

This implies

1
60 = 11 < (19"t @)+ 180 + 2 ) )|+ g0)

3 18"
<5 llglh < C=5~.
2y 14

Moreover,

‘8§np5("")| = }ajfn (¥ («+gw))| <C|g" ”ck—l[o,u(l +|&" ”ck—l[o,u)k_]v

where C depends on 1 1l ckpry -
Once ps(xp) is obtained, then v} (xp) is given by

Ve(xn) = V1 (xn) + Vi p(xn), (2.12)
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where
1
A 1 1 »
Vs.c = 5 Xy Vs p(Xn) = " G(Xn, Yn)ps(Yn)& (¥n) dyn (213)
0
with
(A =x)yn (0 <yn<xn),
G yn) = 214
(Xn, yn) {xn(l—yn) (Xn < yn < 1. ( )

Since [V1|/V <1 and |g'|e0/V < 1, we see from (2.13)-(2.15) that |a§nv; loo < C(1+4pp) for k=0,1,2.
The estimates for k > 3 can be obtained by differentiating (2.5). This completes the proof. O

3. Main result

In this section we rewrite the equations into the ones for the perturbation and state the main
result of this paper.

We first rewrite the system (2.1)-(2.4) into the one for the perturbation. We set § = ps + y ~2¢
and v = vg + w in (2.1)-(2.4). Then omitting “tildes” in f, X we arrive at the initial boundary value
problem for the perturbation u = T(¢, w):

o+ vs - Vo + y* div(psw) = f°, (3.1)
~ 1’3,
ow — LAW— LVdivw—i—V( g’OS)qj) + (LZAw)qﬁ-{-vS -Vw+w- -Vvs=f, (3.2)
ps Ps Y2ps Y2p;3
Wlx,=0,1 =0, (3.3)
Ule=o =Uo = ' (¢0, Wo). (34)

Here D=v+v’;and fOand f=T(f, f", f'=T(f1,..., f*=1), denote the nonlinearities:

f0 = —divpw),

Vo 1 20} X
——w-Vw4+——2  [-A — A - vd
f=-w-vw+ <¢+y2ps>ps< W+<y2ps VS>¢’) @+y2pops

¢ <f>’(ps) ) 1 S0 oy L 33
+ v — V(P"(ps + P2 (ps, ¢, 0xx ),
2.\ 520 ?) 2 (P"(ps)9*) + P> (ps. ¢, dxxp)

where
P3= ¢—3vf>(ps) - V(6> P3(ps. 9))
V4(¢ + 3/2,05)/053 276,05
¢ 15/ l
+ m/Tp?V(P (ps)$* + P¢>3P3(,0, ¢>>)

_ @? P'(ps) 1=, 2 1 3 )
V2(¢+)’2Ps),052v< yz O gyal P0G st s @)
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with
1
P3(ps, ) = / (1—60)*P"(0y ~%¢ + ps) 6.
0

Before stating the main result we mention the compatibility condition for ug = T(¢g, wo). We will
m . .
look for a solution u = (¢, w) of (3.1)~(3.4) in ﬂgi(]) CI([0, 00); H™2J) satisfying [, |xw||%m dT < 00
for all t > 0 with m > [n/2] + 1. Therefore, we need to require the compatibility condition for the
initial value ug = T(¢o, wo), which is formulated as follows.

Let u = "(¢, w) be a smooth solution of (3.1)-(3.4). Then Btju = T(Btj¢, 8th) (j =2 1) is inductively
determined by

3 =—vs- Vol o -y div(psdl ' w) + 0] O
and
. b - Bpo) i
MW:1A$1W+Lvm@”w—V(%&%g%)
Ps Ps Y Ps

v . - . a
—(Wms)ag Yo —vs- Vol 'w—0/""w-vvs+0/ 7 f.

S

From these relations we see that Btjuh:o = T(Btjqﬁ, 8[jw)|t:o is inductively given by ug = T(¢o, Wo)
in the following way:

oul,_g="(09. 0/ w)|,_y= "0 W) =uj,

where
¢] =—Vs- V¢j—1 — )/ZdiV(,OSWj_]) + ij_] (Ll(), s, Ujo1, oxlo, ..., 3xuj—1),
v v P’
Wj=—AWj7]+—VdiVWj,1—v< gpS)(f)j,])
Ps Ps Y<Ps
( e Av >¢ vs-Vw w Vv
—\ 53 s |Pj—-1— Vs~ j-1— Wj-1- s
v2o?
+fj_](u0,...,u,-,l,...,axuj,l,...,afwj,1).
Here flo(uo,...,ul,...) is a certain polynomial in ug,...,u;,...;...... , and so on.

By the boundary condition w|x,—,1 =0 in (3.3), we necessarily have 8tjw|xn=0,1 =0, and hence,

Wjlx,=0,1 = 0.

Assume that u = T(¢, w) is a solution of (3.1)-(3.4) in ﬂgzg) CI([0, To]; H™—24) for some Ty > O.
Then, from the above observation, we need the regularity u; = T(zpj, wj) € H™2i for j=0,...,[m/2],
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which, indeed, follows from the fact that ug = "(¢g, W) € H™ with m > [n/2] + 1. Furthermore, it is
necessary to require that ug = ' (¢, Wo) satisfies the m-th order compatibility condition:

1 . n m—1
wjeHy forj=0,1,..., m= — |

We are ready to state our main result of this paper.

Theorem 3.1. Assume that n > 3. Let m be an integer satisfying m > [n/2] 4+ 1. Then there are positive
numbers vy, yo and & such that if v > vo, y2/(v + D) > yoz and ||gllcmpo,1;] < @, then the following as-
sertion holds. There is a positive number gq such that if ug = (¢o, wo) € H™ satisfies ||ug||ym < o and the
m-th compatibility condition, then there exists a unique global solution u(t) = T(¢(t), w(t)) of (3.1)-(3.4) in

25 CJ(10. 00): H™J) which satisfies

t
2
Ju@® | Gm + / 1901113 + 119xoo | Fm—1 + 19xWoo | Fm dT < Cllutg || Fym (3.5)
0

uniformly for t > 0. Here 01 = o1(X,t) = Z - ({1(¢(1))); X1(¢) =1 for |&'| < 1 and %1(¢) = 0 for
1€ > 1; u©® = u© (x,) is the function given in Lemma 4.1 below; and Uoo = (oo, Woo) = U — o1u®.

Remark. Once (3.5) is obtained for m > [n/2] 4 2, then one can establish the decay estimates

Jluo],=0(").

_n-1_

[u®) = (eu®)®) |, = 0 (=" "2 L)

as t — oo, provided that ug = (g0, wo) € H™ N L1 with |ugllymnp1 < 1. Here 0 = o (¥, t) =
F 1 (e~ liaogr-+olér P+ 1€ (G0v) with some constants dg € R, ko > 0 and k7 > 0; and L(t) = 1 when
n>4 and L(t) =log(1 +t) when n = 3. In fact, this can be proved in a similar manner to the case
of the plane Couette flow [3] by using (3.5) and the decay estimates for the linearized problem given
in [7]. We note that in [7] it is considered the special case of a Poiseuille type flow, but one can easily
see that the argument in [7] is valid for general parallel flows given in Proposition 2.1 if [|g|lc1[o 1] is
sufficiently small.

As in [9,5], Theorem 3.1 is proved by showing the local existence of solutions and the a priori
estimate such as (3.5). The local existence is proved by applying the local solvability result in [4]; and
we will derive the a priori estimate in Proposition 5.1 below. So, the remaining part of this paper
will be devoted to establish the necessary a priori estimate. To do so, in Section 4, we introduce a
decomposition of solutions; and then, in Section 5, we establish the a priori estimate by a variant of
the Matsumura-Nishida energy method.

4. Decomposition of solutions
We write (3.1)-(3.4) as
ou+Lu=F, Wlx,=0,1 =0, Ult=0 = Ug. (4.1)

Here L is the operator of the form

L=A+ B+ Co,
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where

A (0 0 ) V; Oy y2div(ps-)
= soa ). B=(_ & :
0 —%Aln— %lev V(%-) vioy, In

0 0

Co=1{ vav! ,

S5e1 (d,vie e
Y < Ps

and F = T(f0, f) with f=T(f’, f) is the nonlinearity. Note that
(Au,u) = v[[Vwl|3 + Dl divw|3, (Bu1, uz)) = —{{us, Buz)) (4.2)

for u, uy,uz € H' x (H2 N HY).
In the analysis of this paper we will decompose the solution by a projection operator associated
with the linearized operator. To do so, we consider the Fourier transform of (3.1)-(3.4) in ¥’ e R 1:

8t(£ +i& V;J’ + i)/zé“/ : (,Os\;V/) + )/zaxn (,osliv”) = }'0, (4.3)
v+ (g iV e oy L e PPS) 4
dW + — (&7 = 82)W —i—&'(iE"- W' + By, W" +l/< )
t Ps("g ’ xn) psg (5 X, ) & 720, ¢
vAv! . . . N
+ 7/2,05 p€) +igvIW + (3, vi)W'e; = f, (4.4)
S

oW+ — (|€'* = 02 )W — L (i - W' + 0, W)
Ps Ps

P(ps) -\ . RN
+ 3xn( §p5)¢) +ig vy W' = f", (4.5)
Y“Ps
Wlx,=0,1 =0, (4.6)
file—o = flo = (¢p0, Wo). (4.7)

Here ¢ = (&', x,,t) and W = W(&', x,,t) are the Fourier transform of ¢ = ¢(X,x,,t) and w =
w(x, xp,t) in ¥ € R*™1 with & € R"! being the dual variable. We thus arrive at the following prob-
lem

A

i+ Leti=F,  fili=o =10 (4.8)
with a parameter £ € R"~!. Here Lg' is the operator on H'(0,1) x L?(0, 1) of the form
ié/ = Agf + Eg/ =+ 6(),

where
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0 0 0
Ag=|0 ZUETP =)+ 58 € —i 58Oy, ,
0 —i 2 TE Oy, (g2 —03) — 202

iglvl  iy2ps TED Y204 (s )

A P ,
Bo=| 5L vl 0 ,
P'(ps) e 1
I (52,50 0 i§1vg

with domain
D(Lg) = H'(0,1) x (H?(0,1) N HY(0, 1)).
We will make use of a spectral property of the linearized operator Lo = Ag + Bo + Co concerned

with problem (4.3)-(4.7) with £ =0. . .
We also introduce a formal adjoint operator Lf; of Lo with respect to the inner product (-,-):

ig:;\o—éo-i-ég,
with domain D(ig) = D(i.g), where
yivavliT ),
——7>lel 0
. Prps) 1
G=1o0 0 0
0 (d,vhTe, 0

Lemma 4.1. (See [7].) Let "(ps, vs) be a stationary solution obtained in Proposition 2.1. Then the following
assertions hold.

(i) A =0is asimple eigenvalue ofl:o and 1:3.

(ii) The eigenspaces for » = 0 of Lo and L are spanned by u® and u(©*

respectively, where
u® =T(¢©@ wO1¢, 0)
and
uOx — T(¢(0)*, 0. 0)

with

2 1 2 -1
¢(0) (Xl’l) = QOM’ oo = 3/ pS dxn s
P’(ps(xn)) 0 P’(ps)

1
1 -
w Ol () = v / G n, y) &' (yn)9® (yn) dyn,
0

yz
V% (%) = 0@ (xn).
(e 7)
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Here

_J A =2x)yn (0 <yn <Xn),
C(n. yn) = {xna “Vm) < yn<1).

(iii) The eigenprojection IT© for . = 0 of Lo is given by
TOu=(u, u@u® = (p)yu® foru="(p,w).
(iv) Let u©® be written as u©® = u® + u'®, where
0 1
0 0
uy =T(¢®,0,0, u”="T(0,w® e}, 0).

2
)% _ v<,,(0)
Then u'“* = a5 Yo and

foru="T(p, w,wh).
Remark 4.2. We note that if |g"| is sufficiently small, then
P =01)>0, a=01>0  wP'=0(1/y?.

Proof of Lemma 4.1. Lemma 4.1 can be proved in the same way as the proof of [7, Lemma 4.3]. So
we here only derive the expression of u'® given (ii).
If LOu =0, then

)/28,(” (,OsWn) =0,
v 92 yl
—— 02w + 2 S pel + (dy,v])w'e| =0,
0s Xn )/2,052 1 ( X, s) 1
v+ D p’
—_ + a)%n Wn + axn( gps)¢> — 07
Ps Y Ps
Wlx,=0,1 =0.

The first equation with the boundary condition w"|y,—o.1 =0 implies that w" = 0. Then, by the third

equation, we see that %q& =c for some constant c. We thus take ¢ = ag. Since —vd7 vi = psg',
S

the second equation, together with the boundary condition w'|x,—o,1 =0, yields w’ = w®-1e], where

1
1 -
w Ol (xy) = v / G (xn. yn)' (Yn)9 @ (yn) dyn.
0

We thus obtain the expression of u© in (ii). O
We now introduce a projection operator P1. We define the projection P by

Piu=7"1({:11%0) = Z 1 (1(Qow))u®,
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ie,
Piu=F""(%1(@))u® foru="(¢, w),
and Py, by
Poo =1—P;.

Here 31(¢) =1 for |€'| <1 and %1(&§') =0 for |&'| > 1.

We state several properties of P1 and P, which are easily seen but useful in the subsequent
analysis. One can easily see that differentiations in x of any order are bounded on the range of P;.
As for the P..-part, one can see that the Poincaré inequality holds. In fact, let Pooll = (oo, Woo).

Since (¢oo(£',)) =0 for [&'| <1, we have |¢oo (&', )2 < Clox,Po0(&’, )2 for |&'] < 1. We also have
Seri>1 lpoo (€, V3 dE" < fanr & ?|Poo (&, -)|3 d&". Therefore, by the Plancherel theorem,

Igooll2 < Clidoollz < C{l1dxbocllz + | (Broo) |5} < Clldxoolla-

As for we, we note that if wiy,—0.1 =0, then Weglx,=0.1 = 0, since w@1|, _o 1 = 0. Therefore, we
have |[Weoll2 < 110x, Wooll2 if Wx,—0,1 = 0. We write these properties in the following lemma.

Lemma 4.3. There hold the following assertions.

(i) P2=Pj (j=1,00).
(ii) 198 Pyull2 < [|P1ullz forallk=0,1,2,....
(iii) 19}, Prull2 < CllPyull2 foralll=0,1,2,....
(iv) Let u = T(¢, w) and let Poott = (oo, Woo). Then

l¢ooll2 < Clloxdooll2-
Furthermore, if W|x,=0,1 =0, then
Weoll2 < ClloxWooll2-
Therefore, if w|x,—0,1 = 0, then
IPocttll2 < ClloxPooltl2.

We now decompose the solution u(t) of (3.1)-(3.4) into the Py and P, parts. Let T > 0 and let
u(t) = T(¢(t), w(t)) be a solution of (3.1)-(3.4), i.e., a solution of (4.1), in ﬂgz(]) ci([0, T]; H™ %) with
atfw € [2(0, T; H™t1-2)) 0 < j < [(m+ 1)/2]. We decompose u(t) as

u(t) = (o1u ) (©) + uco (0),

where
(1w =Pu@®), or=01(¥.t)=F " (zalp®)),
Uso(t) = Pool(t).

Note that oy is a function of ¥ and t and u©@ is a function of x,. Furthermore, as for u.-part, we
have the Poincaré inequality [[uxoll2 < [|9xUcoll2 Dy Lemma 4.3 since w|y,0,1 =0.
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We now deduce the equations for o1(t) and us(t). To do so, we introduce some notations. We
define (-); by

We also denote

with
0 0 0
A=A—Ag=|0 —£ATh1— %V/TV/ —%V’axn
0 —%BXHTV’ LN
vy, v2ps 'V 0
B=B—Bo=| v(EL) vigna o |,
0 0 v1dy,

where V' = T(dy,.,..., 0, ,), A" =02 +---+ 9% _,. We note the relations

PiL=PiM, L(ou®)=M(o1u®), QoM =QoB,
and
{(Bui, ua)) = —{(u1, Buy)). (4.9)

Applying P1 and P, to (4.1), we have

o1 +(QoB(01u® +ux)), = (QoF)1, (410)

oo + Litso + M(01u@) — (QoB(01u® + u)),u® = F o, (411)
Weolx,=0,1 =0, (4.12)

01lt=0 = 01,0, Usolt=0 = Uco,0- (4.13)

Here Uoo = (@0, Woo) = Pooll, 01,0 = {¢0)1, and U0 = Poollp. In what follows we will denote F, =
TR Foo) Foo ="l FL). .
We note that if u is a solution of (4.1) in ﬂgzé C([0, T]; H™%J), then Weoly,—0,1 = O since

m .
w1, _41=0; and furthermore, Uy € ﬂgié C([0, T]; H™2i) by Lemma 4.3.
We close this section with several lemmas, which will be used in the next section to derive the a
priori estimate.

Lemma 4.4.

(1) (0w f)1="0x (f)1 and [|0x (Frll2 < {Frll2-
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(11) Leto = o’(x’) with Supp(o"-) c {|%./| <1). Then
((QoBu)1.0) =~ - fu. Blowi”)))

(iii) (((f)wéo), Uso)) = 0 for us € Range(P o).

2
Proof. It is easy to see (i). Let us prove (ii). Since (u) = (u, u@*) and Qou©@* = y©* = g—ou(()o)

have, by the Plancherel theorem and (4.9),

, we

((QoBu)1, ) = @m)~ " V((.F QoBu, u®*))
=((QoBu, ou®*))
=—((u, B(ou®")))

This proves (ii). As for (iii), since u}” = T(¢@,0) and %1 (¢eo) =0, we have

((F)rul®, u oo>)=(271)*("*“%(21(}),%)

= (27_[,)—(71—1)%()’(1 <}>7 (¢OO))L2(RH—1)

=0.

This completes the proof. O

Lemma 4.5. There hold the following assertions.
(i) 11QoB(01u® + us)) 1112 < Cldwo11IZ + 8w dooll2 + ¥ 2113y Woo13).

(i) If W |x,=0,1 = 0, then (QoBuo)1 = (QoBuco)1 = (v} 8y, b0 + ¥ 2 div(psWoeo))1-
(iii) If wllx,=0.1 =0, |8llcmpo,1) < @ and 2j + k < m, then

52 (QoB(ovu® + ucc)) [
<cllagalon];+ ool seolly + v [divg o/ weo |5 + v *7 350 woo 3}
forO<p,g<k+1,0<r,s<k
Proof. A direct computation gives (i), By integration by parts, we see (div(osWoo))1 = (V' (PsWi,))1.

This gives (ii). By using (ii) and Lemma 4.4, one can obtain (iii) by a direct computation. This com-
pletes the proof. O
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5. A priori estimate

In this section we establish the a priori estimate such as (3.5). We introduce the following nota-
tions:

(2 3
[rol, (Zna O ) |

l10x f (E)1l2 form =0,

lips il = { [ f O + [0 fOI2_? form>1.

We will prove the following estimate.

Proposition 5.1. Let m be an integer satisfying m > [n/2] + 1. There are positive numbers vy, Yo, @ and &1
such that the following assertion holds.

Let T > 0 be any given number and let u(t) be a solution of (4.1) in ﬂgié ci([0, T1; H™ 2}y with
fOT |||DWOO|||ﬁ1 dt < oo. If [u(t)]m < &1 for t € [0, T], then there holds the inequality

t

2
[uo]; + / (Dot 12— 1 + IDosllZ_1 + IDWeolIZ) dT < Cliug||Zm
0

fort € [0, T] with C > 0 independent of T, provided that v > vg, y2/(v + D) > y02 and ||gllcmpo,1] < @

As in [9,5], one can prove Theorem 3.1 by combining the a priori estimate given in Proposition 5.1
and the local existence result in [4].

To prove Proposition 5.1, we first derive fundamental estimates in the energy method (Section 5.1);
we then combine them to obtain the H™-energy inequality (Section 5.2); and we finally estimate the
nonlinearities to complete the a priori estimate given in Proposition 5.1 (Section 5.3).

Throughout this section we assume that u(t) = (o1u©@)(t) + us(t) is a solution of (4.1) in

N2 CA0. TI: H™2J) with [ [IDWooll? dT < oo for an arbitrarily fixed T > 0.
We also assume that

&llcmpo,11 < @

for a constant @ > 0. This implies that

13/
(/2)5) <Cé
cm[o,1]

P'(ps)
ax,,< y2 )

|ps_1|oo+‘ —1‘ + 19x, os lcmpo,17 +
o0

by Proposition 2.1.
5.1. Fundamental estimates

We introduce some quantities. Let E©@[u] and D@[w] be defined by

( )
Ps + /P Wooll2

¢oo

EOmu] = =2 oy]3 +
y2 2

VZ
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for u = ou® + ug With tg = (oo, Woeo); and
DO[w] = v Vw2 + D||divw]]3.
Note that
(Au,u)) = DO w]

for u = T(¢, w) with w|y,—01 =0.
In what follows we will denote the tangential derivatives ag 8)’5, by Tj:

T =0l 0ku;

and, for operators A and B, we will denote the commutator AB — BA by [A, B].
We begin with the L% energy estimates for tangential derivatives.

Proposition 5.2. There is a constant vy > 0 such that if v > vy and @ < 1, then the following estimate holds
for0<2j+k<m:

%jt EO[T kul + = D“’)[Tjkwoo]
“>+c{<y +”;">||axmm||2+(% %)nnmmnz} (5.1)
where
R =1 7 ((QOT k)1, Tj501) + (T o, T o)
and

= poo  (J=k=0),
Tj,l<¢w = { Tj,k(boo (2] + k )

Proof. We consider the case j =k = 0. Recall that u© = ug]) + ugo) with uéo) =T(©,0) and u§0)
T, w®-1e;). (See Lemma 4.1.)

We take the inner product of (4.10) with o7 to obtain

d -
g 17113 + ((QoB(oru® +us)}y. 01) = ((QoF). ).

N =

By integration by parts, we have

((QoB(o1u®));, 01) = ((v5 35,010 ); + (¥ ? psds, 1w @), 1)
= ((vI¢@) + (y2osw @ 1)) 3y, 01, 01)

0.
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We also see from Lemma 4.4(ii) that

2

((QoBuse)1.01) = = (s Blorug”))
(&0]
We thus obtain
1d 2
Ed—llm ||2 - Z_O((UOO, B(muéo))» — ((QOF)1,(71), (5.2)

We next take the inner product of (4.11) with u., to obtain

1d /1| |Pps ]
2dr (7/2 (p ) o0 + ||\/Ewoo“%) + (Luoo, Uoo)) + ((M(01u@), uso))
R A T )

By (4.2), we see that
(Lttoo, Uoo)) = D@ [Weo] + (Colloo, o).
By Lemma 4.4(iii), we have
(({QoB(o1u@ + o)) u®. usc)) = {{(QoB (014 + tiso) . o))

It then follows from (5.3) that

13 1 P/(pS) 2 (0)
2dt(y2 )/ 0s 00 2+ ”\/EWOO||2> + D™ [Weo] + ((Collno, Uno))
+{(M(01u@), o)) = (({QoB(018® + tiso) )t toc)) = (Foo, so). (5.4)

We add % x (5.2) to (5.3). Then, since

(¥1(011®), o) = (A (01 @), uac)) + ([B(o16), toc)) +{(Blor12?), e,
the term <(B(01uéo)), U )) is canceled, and hence, we have

1d

5 gp BTl + DOTwao] + (Cotie, o)) + {(A(01?). ttoo) + {(B(o1117”). o))

~({(QoB(01u” +usc)) 1y, usc))

- %((QOF)LW) + (Foon o). (5.5)

A direct calculation gives, if v > vg, then

1 v
|(Cottos, Use))| < ED“’)[WOO] +CF||¢OO||%. (5.6)
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Since w1 = 0(y2), by integration by parts, we have

C

[{{A(o1u?), us))| < F(V Vo1 ],V Weoll2 + D13k, 01 l12]ldiv W [12)
1
< 16D VW 1+t 1  Javon 12, (5.7)

and, also,
- C
((B(o1u(?), us))| < " V01|, (I docll2 + Woll2)
1.0 (. , 1 5 .
\ED [(Wool + F—i_v—y‘l ||ax’01||2+ﬁ“¢oo”2 . (5.8)
By Lemma 4.5(iii), we find that

(I{QoB(o1u® + o)) uf”. usc)

{QoB(o1u® +uco)), ||, I Wooll2

‘N\ o il 2

{l3vo1ll2 + loollz + ¥ 2lIdiv w2 + 2@ Weoll2 I Weo 2.
So, if v > vy for some vy > 0, then
(((QoB(o1u® +use)),ul”, us)) < lD“J)[w ]+L(||a o112 + llgooll?) (5.9)
0 1 ‘1500\16 00 U]/4 X011l oollz)- .
Since ||¢xoll2 < ||9x®ooll2 by Lemma 4.3(iv), we deduce from (5.5)-(5.9) that
d 3
S E Ol + DV we]

2dt
(]) v+ v 2 1 % 2
)+ C{ <y e )naxm 13+ (—yz + —y4)||ax¢oo||2}. (5.10)

This proves (5.1) for j=k=0. The case 2j+k > 1 can be proved similarly by applying T;  to (4.10)
and (4.11) and using Lemma 4.4. This completes the proof. O

We next derive the H!-parabolic estimates for wo,. We define J[u] by
Jul= ((mu(o) +uoo,BQuoo)> foru=o01u® +uy

It is easy to see that if )/2 >1 and ® <1, then

1 . 1
[t < € {5 (101l + lsl) |y diviosweo) [ + (5 10112 + w2 ) 1w 2
b‘”’ PV O] 4 2 DOwe]

for some constant by > 0.
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Let by be a positive constant (to be determined later) and define E([u] by

b”/ 2 O[] 4 DOwao] + JTul.

EVu]=
Note that if by > bg, then EM[u] is equivalent to E@[u] + D©@[w].

Proposition 5.3. There exists by > bg such that if v > vg, y% > 1, ‘L > 1 and @ < 1, then the following
estimate holds for0 <2k + j<m —1:

Cx

1d
2dt

J/

by
—ED[T; u] + —— D<°>[T1kwoo]+ ||~/—pgarr,kwmu2

1 v+D
R<2>+c{< +—2)||ax/Tj,km||§
Y
1 1 v\ - , 1 2
H(5+oat e ) ITiadsl+ 1T ol . (511)

where

@ 2biag 2

2b1]/
Rji= " ((QoTjkF)1, Tjko1) +

(TjkFoo, Tjklco)

1 -
+ c{ﬁnrj.onFu% + ||Tj,kQF||%}.
Proof. We consider the case j =k = 0. We take the inner product of (4.11) with 8;Q u., to obtain

/D5 Wooll3 + (Lttoo, & Quos)) + ((M(o1u @), 8 Quoc))
—{((QoB(01u® + uco))u®, 8 Quo))
= (Foo, 9 Qo)) (5.12)
Let us first consider ((Luqo, 3 Q Uso)) on the left of (5.12) which is written as
{(Lttoo, 3 Qoo) = (Attoo, 3 Qoo) + (Buos, 3 QUoo)) + (Colioo, d QUoc)). (5.13)

The first term on the right of (5.13) is written as

(Ao, % Quoo)) = = — D@ [wecl. (5.14)

N =
Sl=

As for the second term,

d ~ <
—{(Uoo, BQuco)) + (rlioo, BQU))

<<Buoo,at(zuoo>>=—dt

d ~ ~ - ~
= = (oo, BQuUoo)) + (3 Qolioo, BQuoo)) + (3 QUoo, BQuoo).

By (4.11), we have
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Othoo = _{Vg Ox; Poo + 72 div(psweo) + (V3¢(0) + J/Z,OsW(O)’l)% 01
—(QoB(01u® + 1)), 6O} + £2..

Therefore, using the Poincaré inequality, if @ < 1, then we have

({3 Qottos. BQUoo))| < C{l1dx dooll2 + ¥ 10xWosll2 + 1301 ll2} [div(pswoo) ||,
+ CllQoFooll2|div(psweo) |

2
y 1
< c{ D Olwao] + F(||ax«z>oo||§ + oo 3 + ||Q0Fw||§)}.
We also have

|40t Quuoo, BQuoo))| < lIv/DsdcWosll2 | /s Vs s Woo |

1 C
< 7 WPt Woollz + =D [wo].
v
We thus obtain, if y2 > 1, then
~ d ~ 1 5
{(Buoco, 0 Queo)) > —E«uoo, BQueo) — E”\/psatwoonz
Y2 o 1 2 2 2
- c{ DO wel + F(naxf«z»oouz + lloxor 3 + ||Q0Foo||2)}- (5.15)
As for the third term on the right of (5.13), we have
~ v
{(Colleo, O QUoo)) < C[ﬁ [ Pooll2 + ||Woo||2} I/ P50t Weoll2
1 2 v? 2 2
< E”\//Osatwoo”z +C Fllqﬁoollz + W ll3
1 5 v? 2. 1 0
< ﬁllvpsarwoo||2++C F”(poo”z"‘;D [Wool g (5.16)

It follows from (5.13)-(5.16) that if 2 > 1, then

- 1d 1
(Ltoo, 3 Queo)) = Ed—(D“’)[woo] — 2((Uoo, BQUo))) — g||matwoo||§
{VT DOwacl + 5 el
o2 (||ax¢oo||2+||ax/ol||2+||QoFoo||2)} (517)

We next consider (M (o1u©@), 3 Quoo)) in (5.12):

((F(01®). 8O ut)) = (A1), 8 Qutc)) + (B 014 ). Qe
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Each term on the right is estimated as follows. Since || ;012 < ||y o1]l2 for k> 1 by Lemma 4.4(i)
and w©1 = 0(y~2), we have

~ ~ + v
[({A(o1u®), 8 Quoo))| < C"yz" (lworllz + 8501 ,) Vs Wosll2

1 v+ D)2
< EH\/_psatwoon% + CV—naxfcnnz

By Lemma 41(ii), we have Z{224® =, and so d, (Z122¢©) = 0. This gives Bou® =0, which, in

turn, gives Bo(o1u@) = o4 Bou©® = 0. It follows that B(o1u©@) = B(o1u®) + Bo(o1u®) = B(o1u©@).
Therefore, we see, by (4.2),

(B0t ®). & Q)] = (B(010®), 2 Q)
d ~ -
- _ a((cﬁ u® B Quoo)) + (301 u® B QUoo))-
As for the second term on the right, we see from (4.10)

o1 =—(QoB(01u'? + us)), + (QoF)1.

This, together with Lemma 4.5(ii), implies
[((8r01u®, BQuoo)| < C{l10x01ll2 + 0y dooll2 + ¥ |div(psweo) |, + [ (QoF)1 ]}
1
X {”div(pswoo)”z + Fnaxl Woo||2]
Y2 Lo 1 2 2 2
< C{jD [(Wool + P(Ilaxm 15 + ll0x pooll3 + | (QoF)1 Hz)}.
We thus obtain
. ~ d < 1
(M(o1u@), 8 Queo)) > —a«mu(o), BQuo)) — Ellmatwoollﬁ
I R 1 2 2
C > D™ [we] + )2 (19x o115 + 19 pooll3
2 ~\2
+ ||<Q0F>1||2)+T||ax’al||2 : (5.18)

We also have

fi{{er

oot

(018 + o)) u®, 9 Quoc)|

{I19¢ 01112 + 19 dooll2 + ¥ [ div(pswoo) |, }I1V/Ps O Wos 2

—_ “<N|(-3

||¢Eafwoo||2 + C{ DOwe]+ y—(naxro] I3 + 19y ¢oo||2)} (5.19)
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and

~ 1 ~
[(F oo, 9 Quoo))| < ﬁnmatwmn% +CQ Fooll3. (5.20)

It then follows from (5.12), (5.17)-(5.20) that

1
(DOTwool + JIul) + —||mafwoo||%

N =
Sl

y?

< CRyg+ DO we]

1 (v+D)? v? 1
+ c{ (ﬁ + T) 19w ll + Ve Iooll3 + 2 19 ool ¢ - (5.21)

We take by > 0 in such a way that by > max{byp, 2C}. Adding M x (5.1) to (5.21), we obtain (5.11)
for j=k=0. The case 2j +k > 1 can be obtained by replacing u, with T; ru. This completes the
proof. O

We next derive the dissipative estimates for x,-derivatives of ¢c.

Proposition 5.4. If & < min{1, (”;r—f)z}, then the following estimate holds for 0 <2j+k+1<m—1:

= 2 = 2
1il Pl(ps) l 1+1¢ 1 Pl(ps) ] 1+1¢
2t 2|\ 20, K0 x| ooy | Ty ke O
3 V+17
<RY)+ i ||1<j,k,z||§, (5.22)
where
1 "(ps) 2 v+
e _| 1 s okt o2
R”"’_‘ y? <dw( ¥20s ) K | )‘Jr ya ikl
with
2 o3
il < Ity ] Vel 4 e 22+ | 228t | ]
and

FL=—¢divw —w-V(019©) — (QoF)16:

and K | is estimated as
VK2 < T el dewa |2+ [ BT ol wa|?
—4|| iktlly < m” Jjk+10x, 9xWoo H2+ m” Psocljk onoo”z

-1
096 S Teritaons 4 Dk )

p=0 p=0
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I
1
05T ;I!T,-,kﬂaﬁwoollj

+
+ vy d (Z” Tj, lcaxnax¢w ”2 + 110x T k01 ||2> ]

p=0
Proof. The first equation of (4.11) is written as
depoc + (Vs + W) - Voo + ¥ 2 sV - Wi + 120, (05 WD)

+ (V1@ +y2o,w @13 01 — (QoB(01u® + uss)), 6@ = FL..

Applying T j,kaﬁl to this equation, we have
3 (Tj k0 doo) + (Vs + W) - V(T doc) + 12 05T 0y > Wi
= _[Tj kal-H , Vs + W] Voo — VZB)I(;H (psv/ : Tj,kW:)o)
— V2[00 os]Tjawho — 0 (v + ¥ 2 psw@ 1), T on
+({QoB(Tjko1u@ + Tjkuoo)), 0 1@ + T; b 7L (5.23)

The (n + 1)-th equation of (4.11) is written as
v+ P’
_ 82 _"_ 8)(“( (105) (poo)
Ps Y?o

v v D
= —{Btwgo — p—A’wgo — p—aan’ cwh +vio,wh — p—(axnw@)’l)ax]al} + f.
S S

S

Applying T; 3} to this equation, we have

v+

Ps

i 1 P’(ps)
=+ v)[a,ﬂn, E]afn Tjwh, — [a}(j], yZpSs T; koo

(;Os)

T] <81+2 Oo ; p T] <8l+]¢00
S

I n l Vo ion v / /
— atTj,kaxnwoo—Tj,ka,(n EA Woo-‘r-gaxnv * W

D
+ Tj,ka)’(n (V; Ox, Wgo) - 8}(" (p— aon(O)’l)am Tj,k01 } + Tj,ka)l(n fgc (5.24)
s

2,2
Adding L5 x (5.24) to (5.23), we have

/0513,(/05)
v+
=Hjki+Kjki (5.25)

at(T] kal+1¢00) + (Vs +w)- V(T_, kal:lqﬁoo) 4= 8l+l¢oo
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where
— . gl41 I+17 14 iOs gl fn
Hj,k,l——[T],kaxn ,W]-V¢oo+TJk3 2+ N =T k0, foos

Kjki= —[3,'(:1, Vg] VT kpoo — 7/2[3,];{1, ps]V' - Tjxw
— V202, ps|Tiawh — 0 (vig©@ + ¥ 2 psw @ 1)dy, Tj ko

+(QoB(Tjko1u® + Tj ko)), 819

1 v2pe P'(ps)
2 2| ql 2 7. S I+1 S .
+ V705 |:ax,1’ E]axn TJ,ngo ) ) ax,, "V 2p, TjkPoo

y2pd I v ! I+1
; {atTj,kaongo — p_A/Tj,kaongO + — 05 8X1' V/ Tj,kW;O
S

l 1 / n ~ l 1 / ’
-V BXn, — |A Tj,kwoo -V axn, — aan 'Tj,kWoo
Ps Ps
v
+ Tj ey, (vide wio) — a}(n(p—za,<,,w<°>~1>ax1 Tj,kol}.
S

Multiplying (5.25) by d ('05) T] ka’“%o and integrating over £2, we have

2 1 2
+

l+1
2 V+D ¢°O

ﬁ’(ps)
yz

P’ (ps))

—((vs+w)-V(Tj,,<a§:1¢oo) T kst foo A,
S

) P'(ps)
+ (Hj,k,l,rj,ka Lo (‘; > )+(1<,k,,rjka’“¢oo ‘; : ) (5.26)
S S

1

Since v = v;eq, an integration by parts gives

P’(,Os)>

(Vs : V(Tj.ka;l(;i_](poo), T; kal+]¢oo 2
Y7 Ps

(vs,axl (705 o] )P,fl'oS)) —0. (5.27)

Nl»—\

Also, we have

P (/Os)>

(w V(T3 o), Tk oo vy
S

D/
_ _L(div(” WW),
2y? ¥2ps

Since 13/(,05) = 0(y?) and ps > p; (> 0), the last two terms on the right of (5.26) are estimates as

o boo| ) (5.28)
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P’ (ps) P'(ps)
‘(H jaeds Ty oo ps + ( Kkt Tiady boo ps
S S
P’ (/O )
< F — Tk boo (||H,-,k,1||z + 11K ke tl2)
1 F’(ps) I H
<— KO +cZH + |IK 5.29
200+ D) )/2 Do )/ (” ]kl”z || ]kl” ) ( )
Noting that [37'¢(© |, < Ca, one can see that K, has the desired estimate if @ < min{1, %},

and hence, estimate (5.22) follows from (5.26)-(5.29). This completes the proof. O

In order to obtain the dissipative estimates for higher order x;,-derivatives of w, and the tangen-
tial derivatives of ¢, we consider the material derivative of ¢~,. We denote the material derivative

of ¢ by d’oo:
boo = oo + (Vs + W) - Voo

We have the following estimates.
Proposition 5.5.
(i) If ®* < min{1, (””) } then the following estimate holds for 0 < 2j +k +1<m — 1:

2 1

13/(:05) gl
4v + D)

]/2,0 jk Xn ¢OO

13/
)E‘f) ,kaij1¢oo“ +oo 1 TN

1d 1
2 dt y2

3
<R| )+ % ||1<J kill2, (5.30)

where cg is a positive constant; and Rf',l ; and K | satisfy the same estimates as in Proposition 5.3.
(ii) Let 0 < q < k. Then

v+ 4 o~
S I Tikdoell3 < C{R§,,2+D<°>[Tj,kww]+<v+v>w2||rj,kwoo||§

+ @naxl Tixo1ll3 + ﬂnaxl T,-,qasoon%}, (5.31)
14 14
where Rﬂ = % 1T fO N2
Proof. By (5.25), we have
:0313/(,05)

T kamfboo =— Tj,ka)lc:rl(l’oo + Hjpr+ K,

V4D
where
Hjri= [Tj,ka)l(:—la W] Voo + Hji 1,
kj,k,l = [35:1, Vs] . VTj,k¢oo + Kj’kJ.
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It follows that

v+

Tl bl

P'(ps)
}/2

T;, ka’”%o

1 vV, ~ ) ~ )
{v+f) 7] (||Hj,k,l||2+||Kj,k,l||2)}- (5.32)

Since I:Ij,k,, and I~<j,k31 have the same estimates as those for H; and Kj x|, respectively, we obtain
(5.30) by adding (5.22) to cp x (5.32) with cg > 0 satisfying coC < }l. This proves (i).
As for (ii), we see from the first equation of (4.11) that

Tjkoo = —psy? div(TjkWos) = ¥ (B, p) T j W
— (vie©@ + 2 psw O3, T; oy
+(QoB(Tjxo1u® + Tjkuuoe)); 0@ + Tjk F2.
from which one can obtain (5.31). This completes the proof. O
We next derive the dissipative estimates for o7.

Proposition 5.6. There are positive constants v and yg such that if v > vg and y2 /(v + D) > )/02' then the
following estimate holds for0 < 2j+k<m—1:

Y ralB+ 19 T 01 1
2dt 2w+ kot 2( + p) N IkET2

5
R“+C{ o _(10: Tk Wooll + DT}k Wool

(o 195, T pooll2 (5.33)
V4D )/4(V+lj) Xn & ], p¥ooli2 [ -

where o1 > 0 is a constant; p is any integer satisfying0 <2j+p+1<mand0< p <k; and

1
5 —
R = m«zor,ﬁ Tjko1) = 5= (os(=2) 7 (0sV' Tjufic). Tio).

Here (—A)~ 1 is the inverse of —A on L?(£2) with domain D(—A) = H?(2) N H}(£2).
Proof. It is convenient to consider the Fourier transform of (4.10) in x’-variable:
3 (Tjx01) +(QoBe (Tj ko1t @ + Tj ptio)) = (QoT; 1 F)
t\1jkO1 0b¢g j,k91 j,kUoo 0ljkE),
where |£'| <1 and
igv  iy*ps’E 0
~ ~ ~ . B (ps .
By =By —Bo=|i&' T igivilna 0
0 0 i&v!
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We write this equation as

3(Tj01) + 72(psi&’ - Tjpwho) + (QoBe (T x01u@))
= (QoT;kF) — (i1 v T} rpoc) (5.34)

for |&'] < 1.
We further rewrite the second term y2(psi&’ - T;w/,) on the left of (5.34). We introduce (n —1)
x (n+ 1) matrix operators A/, B and Cj:

A/ — (0 _LA/IH—I _ LV/TV/ _Lv/axn)7
Ps Ps Ps

. P’
B’—(yg’;)v’ v oy In1 0),
S

- vAv!
Ch= (—se’ 0 BX,,V1 e’).
0 221 (3, v5)€s

Since %qbw) =g (see Lemma 4.1(ii)), we have
S

B'(o1u®) = B’(muéo)) + B’(mugo)) =aoVor + E’(mugo)). (5.35)
Furthermore,
;\’(01 u(O)) = A/(cﬁugo)). (5.36)

Therefore, by (4.11), (5.35) and (5.36), we have

v Y, - -
Wi, — IO—AW’OO — —V'divWeo + B'lag + Chlino
S

Ps
+ A’(mugo)) + C(()V/Oj + B/(G]ugo)) — <Q()B(O’1Ll(o) + uoo))l W(O)’le/l
=fl-
This gives
(64))] ~/ P
—ATj W = —7psv’T,-,ka] +Tjkfoo+ ij,kf;O, (5.37)
where

- v - -
f;o = _%{atwgo — Ev’divwoo + B'Uloo + Chlioo

- 0 - 0 -
+ A (oul®) + B (oqul?) — (QoB(01u©@ + uge)), w@ e} }
We take the Fourier transform of (5.37) to obtain

/ S oo .y Y /
(|&'° +2) Tjawho = —TO(IS Tjko1)ps+ F (Tjxf) + %ff(Tj,kfoo). (5.38)
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Here < is an operator on L?(0, 1) with domain D(«/) = H(0,1) N H}(0, 1) defined by
v=—3lv forveD(s).

It follows from (5.38) that

Tiawhe === (i€ Treon) (¢ + ) s+ (8" + )iy, (5.39)

for |£'| < 1, where
1./ r Ps /
k=T (Tixfs) + 5 F(Tixf o)

Substituting (5.39) into (5.34), we obtain

—_— 2 — —_— ~ —
0 (Tjro1) + %(Psﬂﬂz + ) ],05>|§/|2Tj,k0'1 +(QoBg (Tjko1u?))
= (QoTcF) — (i£1v! T adboo) — ¥2(psi&’ - ([8']" + ) i) (5.40)

for |&'] < 1.

We multiply (5.40) by m Here z denotes the complex conjugate of z. Since
(QOB’E/u(O)) = i§1<v}¢>(0) + yzpsw(o)'l) ciR,

and supp(m) C {|€’] < 1}, integrating the resulting equation in & and taking its real part, we
obtain

oo

2 —
1 tos(6' P + ) pille | oo |2

1L a2+
2dt Sk )

= Re{(QoTj«F. Tj01) — (i£1v{ T koo, Tjk01)
—y2(psie’ - (|€'* +22) W Tixon)). (5.41)
We here note that there is a constant ¢ > 0 such that
(os((& + )™ ps) = (182 + ) o2z ¢ forle <1,

This implies

oo

2 o 2 o
Y| loslle P+ ) ol T > S g Ty | (542)

for some constant o1 > 0. As for the second term on the right of (5.41), since 21(@) =0 and
X161 =61, we see that for 0 < p <k,
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|(i& ViT | koo, Tjxo1)|= \(Vg)h T kPoos 11T k01)|
S Cl 1T pdooll2li&ErTj ko112
S ClIX10x, T}, pPooll2 li€r Tj,kffl ll2

2
Oll
< li&1 T] ko1 ||2 + ||8an] p¢’oo||2 (5.43)

As for the last term on the right of (5.41), we have

-1

|y (psit’ - (|&']* + ) "' .. Tiaon)|

= [0 P ) TR )
V2 (e 1, T
+7(p51é: : (|S | +d) (IOST],kfoo)vT]ka1) )

2 _ 17
li&1T; ko113 + CVV2||05)?1(|E’|2 + o) 1Tj,kf;o ”5

yz ryes 72 -1 o7 —
+ 7(;)515 (€7 + ) (psTjnf ). Tjko)

2 2

oanys o Y — - M
||zs1T,-,ka1||§+CT[||8Jj,kwoo||§+v2||chvrj,kwoo||§

4y

<

~

e 112 1 VZ R — 5
+||1§ Tj,kWoo||2+ ]+F+F | X10%, T, poc iz
(U L e Tl

y4 y4

2 — —
* ‘VT(psiS/ (|87 + ) (psTjaf ) Trio)|. (5.44)

The desired estimate (5.33) now follows from (5.41)-(5.44) through the Plancherel theorem, provided
that v > Y 5 = y02 for some vy > 0 and yp > 0. This completes the proof. O

We next apply estimates for the Stokes system to obtain the estimates for higher order derivatives.

Proposition 5.7. If v > vy, y2 > 1 and & is sufficiently small, then there holds the following estimate for
0<2j+k+I<m—1:

1 2
02T oo |5+ — = [0 T

(6) U+]7 1 ) 2
<CRJ-,,<’I—I—C{( vz +? 10x Tjko1ll5

Y

Vb @ v+ L
+ i +v+ ||T]k¢oo||[-1! 7 ||TJ’<¢°°”HI+1+ +~“atT1kW°°“

1 .
+ (V PRl v)a)2> ITjaWooll et + D“”[Tj,kwoo]}, (5.45)



Y. Kagei /]. Differential Equations 251 (2011) 3248-3295

where

v+ 1
RS =" i I TiaF e + 5 Tk el

3281

Proof. To prove Proposition 5.7, we employ estimates for the Stokes system. Let (¢, W) be the solu-

tion of the Stokes system
divw=F in$2,
—AW+V¢=G in2,
W]y =0.

Then for any [ € Z, | > 0, there exists a constant C > 0 such that

|02 ])5 + 351315 < CLIFIZ00: + IGIZ, + laywi3).

(See, e.g., [1], [2, Appendix].)
y (4.11), we have

diV(Tj,kWoo) = Fj,k in £2,
P’ (0s)

—A(Tj kWoo)+V< TJ kd)oo) :Gj’k in 2,

TjxWeolag =0,

8xn Ps

1 .
Fik= mTj,kffo -
- <QOB(Tj,kUlu( )+ Tj,kuoo)>1¢(0)},

P( \4
Gj,k—pST]kfoo'i'ipsz P T koo
VY <pPs

1

Ps v 1 VAV
— —10tTjxWoo — —VFj+ V0% TjkWeo + ?Tj,k(pooel
v Ps Y Ps

v v
+ (3xn v;)Tj,kwgoﬁ — p—W(O)A/Tj’kOj — p—V(W(O)’laxl Tj,kal)

S S

—I—OtoVTjJ<O’1 + VS] W(O)ax1 Tj,kal — <Q01§(Tj,ka1u(0) + Tj,kuoo)>1w(°)}.

Here and in what follows we denote w©@ = w(©-1g;.
We now apply (5.46) to obtain

2

||31+2T1 kWOO”z 2

13/
a1 ( ;gs) TM%O)

C{IFjalZer + 1Gjalzy + 10xTjuwoo 3}

2

(5.46)

1 .
T] kW )/2,0 {Tj,k¢oo + (Vsl¢(0) + VzpsW(OH)ax] Tj,l<01
s

(5.47)
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Since
P'(ps) 2| Py ? P'(ps) ’
a,i“( S Tikdoo || = | —5— 0 Tisdoo| — [[|07" —5= |Tjkdoo
14 2 14 2 14 2
2 -
> |0 T koo |5 — COPNIT koo 241
1 2 -
> [ Tjadoo 3 = COPNT jacoo Iy
the desired estimate (5.45) now follows from % x (5.47) by using Lemmas 4.3-4.5. This completes
the proof. O

We finally estimate the time derivatives of o1 and ¢oo.

Proposition 5.8.
(i) If0<2j+k <m — 1, then there holds the following estimate:

7
18T k0113 < C{RYY + 100 Tjk01 13 + 10w Tj koo I3 + ¥4 10w Tjawecll3}.  (5.48)

7
Here R} = I{(QoT .« F)1 3.
(i) If0 < 2j <m —1 and @?* < 1, then there holds the following estimate:

[0 e |3 < RS + [t [ + v odt w3+ [ [} (549)
Here RY = 193] QoF oo 2.
Proof. We see from (4.10)

0:Tjro1={(QoTjkF)1 — <Q01§(Tj,/<01u(0) + Tj,kuoo)>17

which gives the estimate in (i).
As for (ii), we see from (4.11)

1 ) . ] )
0 poo = 0] £, — {V104,0] oo + ¥ div (053] Woo)
+ (vio@ + y?psw @ 1oy, 8/ o1 — (QoB(3 o1u® + 8/ uce)), 0@},
which gives the estimate in (ii). This completes the proof. O

5.2. H™-energy bound: induction argument

In this subsection we establish H™-energy bound by using Propositions 5.2-5.8.
We will show the following estimate.

~ . 2 ~ ~
Proposition 5.9. There are positive constants vo, yo and @ such thatifv > vg, U)/? > y02 and || gllcmpo,1] < @,
then
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t

2
[uo]; + / (D112, 1 + ID¢oollz,_1 + IDWeo ) dT

0
[Iluolle + [u®],, +Z/R(1)(r)dr]
] 00
where

M= @ ® — ® @ _ @
RV = 3" Rip RV = > Ry (p=2,57, R%= > R,
2j+k<m 2j+k<m—1 2jrk<m

2j#m
W= Y R e-e. 8O- Y
2j+k+HI<m—1 2j<m—-1

Proof. We set

E9m= Y EOMuo], EV0= ) EV[Tjuo]
2j+k<m 2j+k<m—1
2j#m

DOt = 3 DO[Tjwe(®)]
2j+k<m
2j#m

and

2
pV= 3 (L’CD(O)[T“{W&(DH Bs

V(v v
2j+k<m—1 v +v)

Tj,kwoo(r)Hﬁ).

By (5.1) with 2j +k <m, 2j #m, and ;15 x (5.11), we have

d 1 3.
EO ED 0) (1)
i < (®) + s (t)) + = 3 ~DPwm+DM )

1 V4V 1 v
<CRV+RP)+c Y {(P'f‘y—)HaxT]kUl”z (— —4)||T,k¢oo||2}

2
2j+k<m Y Y
2j#m
e ¥ ! +1||aTa||
. v(v + ) X kT2
2j+k<m—1
1 1 v\ 1 1 )
+ ;+P+y U—|—~” ]k¢oo||2 72(1)_'_]3) 10x T kPooll5 ¢ - (5.50)
We set
1] | P(ps) 2
@ () — s
EPm= ) 2|\ 2, e Tid O]

2j+k<m—1
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1
Do) = Z (v +

2j+k<m—1

2 -
V+v

P’ <p ) -
: . 7||Tj,k¢oo||i,l).

axn T] l<¢oo (t)

By (5.30) with [ =0 and (5.31) with 2j +k <m, 2j #m, we have

d V4V
GEPO+DPO<CRO+RY) 1 YT Tkl
2j+k<m—1

+C Y ADOIT e Wool + (v + D@ Tj i Weol3
2j+k<m
2j#m

v+
+

V+D -
|0, T}, ko1ll3 + y4 IITj,k¢ooI|§}~ (5.51)

Let b, be a positive number with by < 1 to be determined later. It then follows from (5.50) and
by x (5.51) that

1
; (E(‘”(r) +55E O +sz<2>(t)> + ;D“’)(r) + DV (t) +b2DP (1)

4
. 1 v+
gCZR(])+C Z (724' A >(||8x’T]I<Ul||2+||T1 kPooll )

j=1 2j+k<m
2j#m
1 1 1 2 1 -
+C Y {(— )uaﬂ] «o1ll3 + ( + =+ —4>—~||Tj,k¢oo||§
2j+k<m—1 v+ U) Y Y Vv
1 V4D
+ m||ax/T,‘,k<z>oo||%} - Cbz{ > 1Kol
Y 2j+k<m—1
+ Y (DO eweel + (v + D)@ ||Tj,kwoo||§)}. (5.52)
2j+k<m
2j#m
We take b, > 0 so small that 2Chy(1 + w++f1)) < 1. Furthermore, @ is taken so small that 2Cby (v +

D)@? < 5. Then the terms [T} k+10xWooll3, Iv/PsdTjkWooll3 and [T kdxWos 3 in V+” IIKjkoll3 on
the right of (5.52) are absorbed in the left. We thus arrive at

d 1 3. 3
0 <E<°>(t)+ e E<”(r)+sz<2>(t)> ZD(O)(t)—i-ZD(1)(t)+b2D(2)(t)

1 v+
)
<CZR +C Z (U(U+U) + )/ )(”ax Tj](01||2+||Tjk¢OO||2)

2j+k<m
2j#m

1 V+D
+C Z ( — + )/4 )”aXTj,kd)OO”%a (5.53)

2
2j+k<m—1 yew+v)

provided that v+ > 1.
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We set

v
E90= ) mnrﬁkol 113

2j+k<m—1

and

(041}
DO () = Z mnax,rj,kmng.
2j+k<m—1

Let b3 be a positive number to be determined later. We add b3 x Z2j+k§m—] (5.33) to (5.53). It then
follows

d( EOt) + —— ! “>(t)+b25(2>(t)+b3£<3>(t))
dt V+D

3. 3
+ 5D<°>(t) + ZD<1>(t) +b2DP(t) +b3DP (1)

5
j=1
1 v+ (+D)?
+C<—+ 5 kAN 4)>D(3)(t)
Vv V4 14
1 +D
+C Z ( +—>”T]k¢oo||2
2j+k<m V(U"H)) y*
2j#m
1 V4V
+C Z (2 = T >||8XTJk¢oo||2 (5.54)
2jkam—17 v+v) v

We take b3 > 0 so small that Chs < }1. We then take v, ¥ and y2 so large that C(% + % +

(";—f)z) < %. The terms D (t), DY (t) (j=1,2,3) on the right of (5.54) are absorbed in the left. We
thus arrive at

d - 1,.
d—E(4)(t) + _(D(O)(t) + D(l)(t) + sz(Z)(t) + b3D(3)(t))
1 +D
<C Z ( _+_>”T]k¢’oo||2
2jtam \PW D) y*
2jm
1 v+
+C Z ( 2 —~+—3 >”8XTj,k¢oo”%~ (5.55)
2itkam NV AV Y

Here
y 1
EY0=E9%%+ —— v EV(t) + b2 E@(t) + b3E®) (0).

Let b4 be a positive number to be determined later and set
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DW= (D“” ©)+ DV () +b,D? (t) + b3 D (1))

g 1
The D (H 32T jaeweo |5 + Hﬁnaﬂj,k%@n%).

2j+k<m—1

We may assume that v > 1 and (v + D)@? < 1. It then follows from by x {(5.45) with | =0} and (5.55)
that

6 52
4 g ) +DP ) <Y RD(t) + Cb4{ <1 L oty +4”) >D<3> )+ D@ )+ DV (t)+ D@ (t)}
dt o y

v+ D @?
+ Cby Z ( + m)”Tj,kQSoo”%

4
2j+k<m—1 Y
1 V+D . - 5
+C 3 ( +—4)||Tj,k<z>m||2
2j+k<m vv+ U) v
2j#m
1 V+7D
+C Z < Z(U-i-f)) + )”aXTj k¢oo||2 (5.56)
2jtkam—17 r?

We may also assume that ";2“ 1. We take bg > 0 so small that Cbg < }l. We also take v, D and

y? so large that Chy (”;r—”) < ¢ and C(i"’ + (”") + ) : and then, take @

so small that

Cha@?* < 1. It then follows that the term on the rlght of (5.56) except RY) are absorbed in the left
since ||T;;, k¢>oo||2 IT;, k¢oo||2 by Lemma 4.3(iv). We thus arrive at

6
d - - .
—E@® D@ < RD (1), 57
7 )+ D™ () C]E:l (t) (5.57)

By (5.48) and (5.49) we see

Y ([ @)+ o o)

2j<m-2
<C(R? +R®) + c{(v +0)DD (1) + — D“’)(t)} (5.58)

We add %bs x (5.58) to (5.57) to obtain

d - ~ b ; :
ZEY0+DY0+ 2 3 ([0 o + [0 e ]3)
2j<m-2

8
gCZR(j)(t)+Cb5{7( ;r )

D)+ D (t)}
j=1

W+0)? 1 ;
Take bs > 0 so small that Cbs( " +1) < 5. We then obtain
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d . 1. b
—E(4)(t)+§D(4)(t)+v—:

8
dt > (o @] + [0 e 0]3) <CYRP@®.  (559)

2j<m—2 j=1

Let bg be a positive number to be determined later. We set
ED() = ED(0) + 267 % E“’)[a u(®]
and

vb . .
= 2 (o o)+ 6 e 0]3).

DDty = DDty + 2 U D57 wao(®)] +
v? 2j<m-2

Since [0 Tj,00113 < I Tj 00113, it follows from (5.1) with 2j =m and (5.59) that

d
_E(4)t D(4)t
T &)+ D™ ()

vV+v

8
<CZR(j)(t)+Cb6%<1 + ) Ha o1 H2+ Ha ¢<><>H
j=1
Taking bg > 0 so small that 2Cbg < =3, we see that

8
d .
—E® D@ < RD(p). .
LEDO+ D0 Cj§:1 (©) (5.60)

We next bound higher order derivatives in xj.
Let b7 be a positive number to be determined later. For 1 <I<m — 1, we set

P'(ps)

1
EPo= Y = K b
2j+k<m—1-I1 y2 yzp
and
1 1 P’ +
D=5 Y ( _| 2 S)T,ka’“qsoo(t)H Mnr, a’+1¢oo(r)||>

) v+ y2
2j+k<m—1-1
b7 2
L2008 (S e+ s o Tl

2j+k<m—1-I

We will show that there exists a number bg > 0 such that the following estimate holds for 1 <I <
m—1:

I l l 8
d (e L+1-ppp p4) Pp@ )
E(ZE ©+ Y 2 PEEY (0) | + > bEDRY (1) < ;21’ CljZ]:RJ(t), (5.61)

p=1 p=0

4
where D(() () = DP(p).
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By (5.30) and (5.45), we have

d
B O+20 70 <O RO O+ RD O} + CFV () + C3br P (1)

+ .
e Y T v [ T )
2j+k<m—1-1

where

V2 2 1 2
FV = 3 {v+ ITssea10 woolly + 5 VoSO T i, Wl
2j+k<m—1-1

(L 5)% ) 1Tk Wool 2
V4D I H

~ -1
+
+ ”yf (ZH T; 100 oo |5 + 10x T k0 ||§) ]

p=0

~ ~2
®)) V+v () 1 2
F~ = E T orTirw
I {( +l)+\))” ]k¢oo||Hl \)—i—f)” t !k oo”Hl

4
2j+k<m—1—1 Y

1 "2 v+ D
+ m+(”+v)a) ||T1kWoo||H1+1+ A (||T]k+1¢oo||Hl+||T1k¢oo||H1)

n (1 + (v;r—v))D(‘“(t)

We take by > 0 so that C3b; < %2, and then, take v, ¥ and y? so that C; %52 "*" < It then follows

2(v+v)

G B O+DP 0 <Ci(RY+RO) + CoF[Y + CabrF”. (5.62)

We here note that if v, ¥, 2 and @ are in the range restricted above, then there exists a constant
C4 > 0 such that

-1
CF (0 + CsbrFP©) < Cay_ DY (1),

p=0

which, together with (5.62), yields
iE(“) O+DP 1 <G Z RY 4y 121: DY (). (5.63)
dt j=1 p=0

Let bg be a positive number satisfying C4bg < % and bg < % We now prove (5.61) by induction
on l. Consider first [ = 1. By adding (5.60) to bg x {(5.63) with | =1}, we have

1 8

d .

a EPO+bsE ) + 3 bg DY (0) < (14 bg)Cr YRV +bsCaDg? (0.
p=0 j=1
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Since C4bg < % we have

1 8
d 1 )
(E“® +bsEy” () + 5 D bEDy" (1) < (1+bs)C1 Y RV,

dt s s
and, since 2bg < 1, we arrive at
d 1 8 ‘
i (2ED @) +2bsESY ) + > bEDYY (1) < @+ 1)Cr Y RV,
p=0 j=1

This shows that (5.61) holds for | =1.
Let 1 <I<m— 2 and suppose that (5.61) holds up to I. We will prove that (5.61) holds with [
replaced by [ + 1. By adding (5.61) to b'gr1 x {(5.63) with I replaced by [+ 1}, we have

I+1 I+1
d (.4 I+1—ppp £ (@) )
E(zEU(tHZﬁ PBEERY(6) | + > bEDy (1)

p=1 p=0

l 8 I
< ( Y 2P+ bg“) 1Y RV +b5ca DY

p=0 j=1 p=0

Since b 1Cq < Il < 1b for 0 < p <1, we have
d 141 1
I(4 [+1—ppP (4 AN )]
a(25<>(t)+22 PHEE, (t))—i—istDl, ®)
p=1 p=0

1 8
< (Zzp + b’;])chR(D(r).
p=0 j=1

We thus obtain
d I+1 I+1 I+1 8
o (2’“ ED @)+ 22 PhRERY (r)) + > i () < ( > zP) C1y_RY ().
p=1 p=0 p=0 j=1

This proves (5.61) with | replaced by I + 1. Therefore, we conclude that (5.61) holds for all 1 <1<
m — 1. We thus arrive at

d - .
G EO+2D(O) <CR®), (5.64)
where
m—1 1 I+1
E=2""ED @+ ) 2" PhiE ). D=3 ) bEDy ().
p=1 p=0

8
R(t) = ZRU’)(r).

j=1
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Integrating (5.64) in t, we obtain

t t
F:(t)+2/D(r)dr gE(0)+c/R(r)dr. (5.65)
0 0

To complete the H™-energy estimate, it remains to estimate [[a,%n Woo(t)]]%l,T This can be estimated
by the equations

v Do P'(ps)
—vaZw, =psf.. —p {Btw’ —— AW - —V'divw +V’< ¢
Xn '’ 00 SJ oo S oo 0Os 00 0s o] J/z,Os o8]
vAv!
4+ vlag Wi, + —7/2,03 Pool) + (35, V) 0k, W€}
S

v ’ v ’
- p—w(o) ANop — p—V’(w(O)’laxl 01) +agV'or + viw@ g, o1
S S

—{QoB(01u® +uso)),w® e, }
~ Vv f) 13/
_(V+U)83HWZO:,05fgo—,Os{atwgo—fA’Wgo_iax”v/,W/oo_i_axn( gpS)(/J)oo)
Ps Ps Y Ps

v
+ V; axl Wgo — ;(axnw(o)’])axlg] }v
S

which follows from (4.11). Applying BLH Tj with 2j +k+1<m — 2 to these relations, one can show
the following estimate by a direct computation:

Uz 2 2 = 2
3 [ Woo®] 5, SCE®) + C[f o ®] - (5.66)

%

Furthermore, by using Lemmas 5.10-5.13 below, one can show

[Fo®] s, <Cu®]

It then follows from (5.65) and (5.66) that

t t
E(t)—l—Z/D(t)d'c <C{5(0)+ [u(t)]]j‘nJr/R(r)dr}, (5.67)
0 0
where
E®) =E@® + v [02 weo 0]
- V+i} Xp ' OO m-—2"
Clearly,

IDo1I2_1 + ID$ecllZ_q + IDWsollZ, < CD(©). (5.68)
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Since EMW[u] is equivalent to E©@[u]+ D©@[w] with our choice of b; in Proposition 5.3, we also have

[u®]2 < CE®. (5.69)

Therefore, by (5.67)-(5.69) we obtain the estimate in Proposition 5.9. This completes the proof of
Proposition 5.9. O

5.3. Estimates on the nonlinearities
It remains to estimate R(t). The points in the estimates on the nonlinearities are as follows. Com-

pared with the standard Matsumura-Nishida energy method, we have more terms which involve o7y.
By Lemma 4.4(i), we have

[o8o1], <llotllz fork=1,2,.... (5.70)
This, together with the Gagliardo-Nirenberg-Sobolev inequality, implies
lo1lloo < Cllot 2. (5.71)
Also, since n > 3, we have

1/2 1/2

lo1ll4 < Cllotlly " oot lly " (5.72)

See Lemma 5.12 below. As for u,-part, by Lemma 4.3, we have the Poincaré inequality
luoell2 < ClloxUooll2. (5.73)

Using these inequalities, one can control the terms involving o, which are classified as

n(QoF)1: 0(019y01), 0(019xlUso), O (Usodyo1),
inFoo:  0(0135,01), 0(018Ux), O (Usdyo1), 0(013301),
0(podZor), 0(012We), 0(01Ux), O(07),
and terms in 0(¢°), 0(¢*V¢).

We note that in the computations of the nonlinearities, we use the relations

v U82 1
_p_afnw<0>,1+ Pas 40 _ 0 and ¢(0)
S

(Ps
y2p? Y2p

See the proof of Lemma 4.1.
Using the inequalities (5.70)- (5 73), one can estimate the terms mvolvmg o1 as classified above.
For example, as for the term O(Ul ) in F o, which comes from the term 205 4 8xn(P”(ps)O'1 {9012y,

we see from (5.72) and (5.73)

1
‘( ——n, (P ()0l [0 @), woops>’<cnol I511Wooll2
2y ps
< Cllo1 2018y o121 9xWooll2

Clulm(IDo1lIZ_1 + IDWeoll,).-
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As for the term O(o010x,01) in (QoF)1, we have, by integration by parts,

(0130019 OW ) 01) = (G105, 016 WO 01) = —2 (26O WO, iy, 01),

and thus,
(<O'] 3X101¢(0)W(0)’1)1 , 0'1) =0.

The terms involving only u., can be treated similarly to the standard Matsumura-Nishida energy
method. We also note that the Poincaré inequality (5.73) is effectively used in the estimates on the
terms involving only .

We summarize inequalities to estimate the nonlinearities.

Lemma 5.10. Let 2 < p < oo and let j and k be integers satisfying
. . 1 1
0<j<k, k>j+nl=-—-]).
2. p

Then there exists a constant C > 0 such that

”8 f”Lp(Rn) C”f”LZ R”)“ akf”]_z (RM)°

wherea:%(j—i— 5 - %).

Lemma 5.10 can be proved by using Fourier transform.
Combining Lemma 5.10, the extension argument and the Poincaré inequality, we have the follow-
ing inequalities for u,-part.

Lemma 5.11. Let p, k and j be as in Lemma 5.10 and let uss = "(¢oo, Woo) be in Range(Poo). Then

[Pcollp < Clldx@ooll yr-1

The same inequality also holds for Weo if Woo |x,=0,1 = 0.

As for (5.71) and (5.72), Lemma 4.4 and Lemma 5.10 with n replaced by n — 1 yields the following
inequalities.

Lemma 5.12.

M) 1)1l < ClIF 2. o
i) 1CF)1lla < CIOIY 10w (115>

Proof. We first note that (f); is a function of ' € R*~1. Let k be an integer satisfying k > 2>1. Then,
Lemma 5.10 with n replaced by n — 1 implies

Lemma 4.4 thus gives (i).
As for (ii), let k be an integer satisfying k > =—. Then we have

[l <CH<f>1H;*”H<8!:/f>1 I5 (5.74)
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with a = 4k We see that ; <a <1 if and only if ” <k< . Since ”E >1 for n > 3, we find

an integer k > 1 for which (5.74) holds with some a satlsfymg 5 <a < 1. With this k, we see from
(5.74) and Lemma 4.4

Jinla< el leen 5~

1
k 2
<l i, )2
%
<M1 £)15.
This completes the proof. O
We next state estimate on composite functions.
Lemma 5.13.
(i) Letmand my (k=1, ..., £) be nonnegative integers and let oy, (k =1, ..., £) be multi-indices. Suppose
that
n
mz 3 +1, Ol <me<m+|oygl k=1,...,¢)
and

my+--+me 2 (@ —Dm+ o]+ + ol

Then there exists a constant C > 0 such that

log fr o fel, <€ T Mfiellme.

1<kt

(ii) Let 1 < k < m. Suppose that F(x,t, y) is a smooth function on £2 x [0, 00) x I, where I is a compact
interval in R. Then for || 4+ 2j = k there hold

|[6¢8. Fx.t. f)] 2,
_ [Colt: o) I + G AO)T DA D f 1 N1 [ 2]k
co(r FO)falier + Cr (e, F1©) 1+ DA VD f1 o [ F2Tk-1-

Here
Co(t. i)=Y sup|(3fo{F)(x.t, f1(D)]
BhH<@.j *
(B.H#(0,0)
and

aEho)= sgp|(afafafF)(x,t,f1(t))|.

B.D< (@, ))
1<p<i+ial
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The proof of Lemma 5.13 can be found in [5,6].

Using inequalities mentioned above, one can obtain the following estimates for the nonlinearities.

Before stating the estimates for the nonlinearities, we observe that since m > [n/2] + 1 we have
the Sobolev inequality

[ flloo < C2ll fllHm.

2
Let &3 > 0 be a number such that Cy&; < Vz'ol . Then whenever [u(t)]m < &2, we have

le®],, <Cu®],, <C2e2<
and hence,
P8 = pslan) + ¥ 290 > 1~y 26 0], > 5 > 0.

We thus see that F(t) is smooth, whenever [u(t)]m < &2. So, we assume that [u(t)]m <& for t e
[0, T].

Proposition 5.14. Let j be an integer satisfying 0 < j < m — 1 and let u(t) be a solution of (4.1) in
m . .

M2 CI(10. T): H™2)) with [y [ Dwecli dT < co. Assume that [u(6)]m < min{1. &5} for t € [0, T]. Then

the following estimates hold for t € [0, T] with C > 0 independent of T.

@ 8 @divw)| s + 3] (W V(016@)) | ymss + |8 (QoF)1 |y < CE®2D(®)V/2,

(ii) |0{ W - Vo) | ym125 + 8] F || yms25 < CE@®)2D(®)'/2.

m . .
Proposition 5.15. Let u(t) be a solution of (4.1) in ﬂgi(]) ci(o, T1; H™2J) with fOT IDwsllZ dT < oc.
Assume that [u(t)]m < minf1, &2} for t € [0, T]. Then there hold the following estimates for t € [0, T] with
C > O independent of T.

(i) Let 0 < 2j + k < m. Then
[(Tjx(QoF)1. Tjxo1)| + [(TjsFoo. Tjsc| < CE®)'?D(0).
(i) Let 0 < 2j+k <m— 1. Then
(s (=2)"" (05 V" Tjk £ o))y Tiko1) | < CE® 2D ().

(iii) Let0<2j+k+1<m—1.Then

[T w] - Voo, < CEOV2DO2,

(B}t

Y2 ps

< CEM®V2D).

We are now in a position to derive the a priori estimate. We deduce from Propositions 5.9, 5.14
and 5.15 that
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t

2
[uo]; + / (IDo111Z_1 + IDpocllz_1 + IDWoollZ,) dT
0

t
< C3 lluoligm + [u®] / (D012, 1 + ID¢oollz_1 + IDWell) dT ¢
0

provided that [u(t)]m < min{1, &2}. The desired a priori estimate in Proposition 5.1 now follows by
taking €1 = min{1, &3, C3/2}.
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