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Abstract

This work was intended as an attempt at studying stationary Stokes and Navier–Stokes problem with
Navier boundary conditions (1.3). We wish to investigate some results of existence, uniqueness and regu-
larity of solutions in Hilbert case and in Lp-theory.
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1. Introduction

Throughout this work, if we do not say otherwise, we assume that Ω be a bounded domain
in R

3 with boundary Γ of class C2,1. We consider the stationary Stokes equations:

−�u + ∇π = f and divu = 0 in Ω (1.1)

and the stationary Navier–Stokes equations:
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−�u + u · ∇u + ∇π = f and divu = 0 in Ω, (1.2)

where u denotes a velocity, π a pressure and f are the external forces.
To study these problems, it is necessary to add some boundary conditions. Note that these

systems are often studied with Dirichlet boundary condition, also called no-slip boundary condi-
tion, which is applicable in the case where the boundary of the flow is solid. Yet, in the physical
applications, we are often encounter situations where this condition does not quite feasible. In
this case, it is really important to introduce another boundary conditions to describe the behavior
of fluid on the wall. For example, when a part of flow boundary is the air, it is convenient to use
a slip boundary condition.

In the literature, in 1827, Navier [10] was the first to propose a Navier with friction boundary
condition, in which there is the stagnant layer of fluid close to the wall allowing a fluid to slip, and
the tangential component of the strain tensor should be proportional to the tangential component
of the fluid velocity on the boundary:

u · n = 0 and 2
[
D(u)n

]
τ

+ αuτ = 0, (1.3)

where D(u) = 1
2 (∇u+∇u�) denotes the deformation tensor associated with the velocity field u,

α the scalar friction function, n the exterior unit normal and τ the corresponding tangent vector.
Systems (1.1) and (1.2) with (1.3) have been studied by many authors. Note that, the first paper
is due to V.A. Solonnikov and V.E. Ščadilov [12] in 1973 without friction function (α = 0)
in the Hilbert case and only for external force f ∈ L2(Ω). We also refer to the paper of
H.B. da Veiga [5]. We can cite the work of Clopeau, Mikelic and Robert in two dimension [8] or
the paper of Verfürth [13], who has studied the mathematical formulation of Newtonian fluid flow
with slip boundary condition. In the case of special boundary, such that periodic rough boundary
we can mention the works of D. Bucur et al. [6] and the paper of J. Casado-Díaz et al. [7].

The purpose of this work is to study some results of existence, uniqueness and regularity of
solution for the stationary Stokes problem (1.1) and also Navier–Stokes problem (1.2) with the
boundary condition (1.3) with α = 0.

To study the Stokes problem in the Hilbert case we use the Lax–Milgram theorem. For the case
of Lp theory, 1 < p < ∞, we prove the existence and uniqueness of weak solution by duality
arguments. The regularity results are obtained by exploiting the relationship between slip-Navier
boundary condition and the following condition:

u · n = 0 and curlu × n = 0, (1.4)

to prove the regularity. To study Navier–Stokes equation, we use Galerkin method and some
compactness results.

The outline of this paper is as follows: In Section 2, we will recall some preliminaries results,
introduce an important frameworks and announce a crucial result which gives the relationship
between (1.3) and (1.4) in the weak sense on the conventional spaces.

In Section 3, we investigate the existence and uniqueness of weak solution for system
(1.1), (1.3). The main idea is to begin by proving the existence and uniqueness in the Hilbert
(p = 2) case for Ω only of class C1,1 then generalizing this result in Lp-theory for 1 < p < ∞
for Ω of class C2,1.

In Section 4, we establish the existence and uniqueness of strong solution when we impose
more regularity to data.
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The purpose of Section 5 is to proof the existence of another class of solutions called very
weak solution for less regular data. The idea is based on using the regularity of solution and a
duality argument.

In Section 6, we prove the existence of a similar basis of eigenfunctions of Stokes operator to
that given by T. Clopeau et al. in [8].

The purpose of Section 7 is to study the Navier–Stokes problem with Navier boundary condi-
tion in the Hilbert case. The idea here is to use the Galerkin method and the Brouwer theorem.

2. Preliminaries and functionals spaces

In this section we review such basic notations and functional frameworks. Let us first recall
some elementary properties. We note that the vector-valued Laplace operator of a vector field
v = (v1, v2, v3) is equivalently defined by

�v = 2 div D(v) − grad(divv) (2.1)

or by

�v = grad(divv) − curl curlv. (2.2)

Second, we define the following spaces: For all 1 � p < ∞,

L
p

0 (Ω) =
{
v ∈ Lp(Ω);

∫
Ω

v dx = 0

}
,

is equipped with the norm of Lp(Ω),

Hp(div,Ω) = {
v ∈ Lp(Ω); divv ∈ Lp(Ω)

}
,

which is equipped with the norm:

‖v‖Hp(div,Ω) = (‖v‖p

Lp(Ω)
+ ‖divv‖p

Lp(Ω)

) 1
p

and

Hp(curl,Ω) = {
v ∈ Lp(Ω); curlv ∈ Lp(Ω)

}
,

which is equipped with the norm:

‖v‖Hp(curl,Ω) = (‖v‖p

Lp(Ω)
+ ‖curlv‖p

Lp(Ω)

) 1
p .

According to [3], the space D(Ω) is dense both in Hp(div,Ω) and Hp(curl,Ω). The clo-
sure of D(Ω) in Hp(div,Ω) and in Hp(curl,Ω) is denoted respectively by H

p

0 (div,Ω) and
H

p
(curl,Ω) and can be characterized respectively by
0
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H
p

0 (div,Ω) = {
v ∈ H (div,Ω); v · n = 0 on Γ

}
,

H
p

0 (curl,Ω) = {
v ∈ H (curl,Ω); v × n = 0 on Γ

}
.

Let now introduce some notation to describe a boundary. Let us consider any point P on Γ and
choose an open neighborhood W of P in Γ small enough to allow the existence of 2 families of
C2 curves on W with these properties: a curve of each family passes through every point of W

and the unit tangent vectors to these curves form an orthonormal system (which we assume to
have the direct orientation) at every point of W . The lengths s1, s2 along each family of curves,
respectively, are a possible system of coordinates in W . We denote by τ 1,τ 2 the unit tangent
vectors to each family of curves, respectively.

With this notation, we have v = ∑2
k=1 vkτ k + (v · n)n where τT

k = (τk1, τk2, τk3) and vk =
v · τ k .

In the sequel, for simplicity of notation, we write

Λw =
2∑

k=1

(
wτ · ∂n

∂sk

)
τ k. (2.3)

In this paper we need a relationship between slip-Navier boundary conditions (1.3) and (1.4), for
this reason we state the following result, where the proof is given in Appendix A.

Lemma 2.1. For any v ∈ W 2,p(Ω), we have the following equalities:

[
2D(v)n

]
τ

= ∇τ (v · n) +
(

∂v

∂n

)
τ

− Λv, (2.4)

curlv × n = ∇τ (v · n) −
(

∂v

∂n

)
τ

− Λv. (2.5)

Remark 2.2. In the particular case v · n = 0, we have the following equality: For all v ∈
W 2,p(Ω),

[
2D(v)n

]
τ

=
(

∂v

∂n

)
τ

− Λv,

curlv × n = −
(

∂v

∂n

)
τ

− Λv,

which implies that

[
2D(v)n

]
τ

= − curlv × n − 2Λv in W
1
p

,p
(Γ ). (2.6)

Note that we can obtain the equality (2.6) in weak sense. To do this, we must give a sense
to curlv × n and to [D(v)n]τ when v belongs to an appropriate space. We need the following
space:

V p(Ω) = {
v ∈ W 1,p(Ω); divv = 0 in Ω, v · n = 0 on Γ

}
,
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with the norm of W 1,p(Ω) and

Ep(Ω) = {
v ∈ W 1,p(Ω); �v ∈ [

H
p′
0 (div,Ω)

]′}
,

where [Hp′
0 (div,Ω)]′ is the dual space of H

p′
0 (div,Ω). Ep(Ω) is equipped with the norm:

‖v‖Ep(Ω) = ‖v‖W 1,p(Ω) + ‖�v‖[Hp′
0 (div,Ω)]′ .

We note that D(Ω) is dense in Ep(Ω) (see [11, Lemma 4.2.1]). We need also the following
two lemmas. To prove the first one we refer to [11, Corollary 4.2.2].

Lemma 2.3. We suppose that Ω is of class C1,1. The linear mapping γ : v → curlv × n defined
on D(Ω) can be extended to a linear and continuous mapping

γ : Ep(Ω) → W
− 1

p
,p

(Γ ).

Moreover, we have the Green formula: For any v ∈ Ep(Ω) and ϕ ∈ V p′
(Ω),

−〈�v,ϕ〉Ω =
∫
Ω

curlv · curlϕ dx − 〈curlv × n,ϕ〉Γ , (2.7)

where 〈.,.〉Γ denotes the duality between W
− 1

p
,p

(Γ ) and W
1
p

,p′
(Γ ) and 〈.,.〉Ω denotes the du-

ality between (H
p′
0 (div,Ω))′ and H

p′
0 (div,Ω).

Lemma 2.4. Suppose that Ω is of class C1,1. The linear mapping Θ : v → [D(v)n]τ |Γ defined
on D(Ω) can be extended by continuity to a linear and continuous mapping

Θ : Ep(Ω) → W
− 1

p
,p

(Γ ).

Moreover, we have the Green formula: For any v ∈ Ep(Ω) and ϕ ∈ V p′
(Ω),

−〈�v,ϕ〉Ω = 2
∫
Ω

D(v) : D(ϕ) dx − 2
〈[

D(v)n
]
τ
,ϕ

〉
Γ

. (2.8)

Proof. Let v ∈ D(Ω) and ϕ ∈ W 1,p′
(Ω) with ϕ · n = 0 on Γ , then, by using (2.1), we have

−〈�v,ϕ〉Ω = 2
∫
Ω

D(v) : ∇ϕ dx − 〈
2
[
D(v)n

]
τ
,ϕ

〉
Γ

−
∫
Ω

divv divϕ dx.

Then, for any v ∈D(Ω) and for any ϕ in V p′
(Ω) we have

−〈�v,ϕ〉Ω = 2
∫

D(v) : D(ϕ) dx − 〈
2
[
D(v)n

]
τ
,ϕ

〉
Γ

. (2.9)
Ω
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Now, let μ be any element of W
1
p

,p′
(Γ ), then there exists an element ϕ in W 1,p′

(Ω) such
that divϕ = 0 in Ω and ϕ = μτ on Γ with

‖ϕ‖
W 1,p′

(Ω)
� C‖μτ‖

W
1
p ,p′

(Γ )
� C‖μ‖

W
1
p ,p′

(Γ )
. (2.10)

Consequently,

∣∣〈2[
D(v)n

]
τ
,μ

〉
Γ

∣∣ = ∣∣〈2[
D(v)n

]
τ
,μτ

〉
Γ

∣∣
= ∣∣〈2[

D(v)n
]
τ
,ϕ

〉
Γ

∣∣
� ‖�v‖

(H
p′
0 (div,Ω))′‖ϕ‖

H
p′
0 (div,Ω)

+ 2
∥∥D(v)

∥∥
Lp(Ω)

∥∥D(ϕ)
∥∥

Lp′
(Ω)

,

∣∣〈2[
D(v)n

]
τ
,μ

〉
Γ

∣∣ �
(‖�v‖p

[Hp′
0 (div,Ω)]′

+ 2p/2
∥∥D(v)

∥∥p

Lp(Ω)

) 1
p

× (‖ϕ‖p′
Lp′

(Ω)
+ 2p′/2

∥∥D(ϕ)
∥∥p′

Lp′
(Ω)

) 1
p′ . (2.11)

It follows that from Korn’s inequality, we have

∣∣〈[D(v)n
]
τ
,μ

〉
Γ

∣∣ � Cp‖v‖Ep(Ω)‖ϕ‖
W 1,p′

(Ω)
.

Thus, by using (2.10), we deduce that

∥∥[
D(v)n

]
τ

∥∥
W

− 1
p ,p

(Γ )
� C‖v‖Ep(Ω).

Therefore, the linear mapping Θ : v → [D(v)n]τ |Γ defined on D(Ω) is continuous for the norm
of Ep(Ω). Since D(Ω) is dense in Ep(Ω),Θ can be extended by continuity to a mapping

still called Θ ∈ L(Ep(Ω),W
− 1

p
,p

(Γ )) and formula (2.9) holds for all v ∈ Ep(Ω) and ϕ ∈
V p′

(Ω). �
Owing the previous result, it is possible to extend (2.6) in W

− 1
p

,p
(Γ ) and we have the fol-

lowing corollary.

Corollary 2.5. For any v ∈ Ep(Ω) such that v · n = 0 on Γ , we have

[
2D(v)n

]
τ

= − curlv × n − 2Λv in W
− 1

p
,p

(Γ ). (2.12)

Remark 2.6. Note that, if Ω is of class C2,1, then the slip-Navier boundary condition (1.3) differs
from (1.4) only by the term −2Λv. This term is equal to zero in the case of the flat boundary,
consequently we have (1.3) and (1.4) are identical, in this context we cite the paper of H.B. da
Veiga et al. [5].

In the sequel, we need the result of existence and uniqueness for the following intermediate
problem:
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(S1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�u + ∇π = f in Ω,

divu = χ in Ω,

u · n = g on Γ,

curlu × n = h on Γ.

We introduce the following spaces:

K
p
N(Ω) = {

v ∈ Lp(Ω); divv = 0, curlv = 0 in Ω and v × n = 0 on Γ
}
,

K
p
T (Ω) = {

v ∈ Lp(Ω); divv = 0, curlv = 0 in Ω and v · n = 0 on Γ
}
.

We now recall a result of existence and uniqueness of weak solution for the problem (S1) (see
[2] and [11]):

Theorem 2.7. Suppose that Ω is of class C1,1. Let

f ∈ [
H

p′
0 (div,Ω)

]′
, χ ∈ Lp(Ω), g ∈ W

1− 1
p

,p
(Γ ), h × n ∈ W

− 1
p

,p
(Γ )

and verifying the following compatibility conditions: For any ϕ ∈ K
p′
T (Ω),

〈f ,ϕ〉Ω + 〈h,ϕ〉Γ = 0, (2.13)∫
Ω

χ dx =
∫
Γ

g dσ . (2.14)

Then, Stokes problem (S1) has a unique solution (u,π) ∈ W 1,p(Ω) × Lp(Ω)/R satisfying the
estimate:

‖u‖W 1,p(Ω) + ‖π‖Lp(Ω)/R

� C
(‖f ‖[Hp′

0 (div,Ω)]′ + ‖χ‖Lp(Ω) + ‖g‖
W

1− 1
p ,p

(Γ )
+ ‖h × n‖

W
− 1

p ,p
(Γ )

)
.

We need also the following result (we refer to [11]):

Theorem 2.8. Let f ∈ [Hp′
0 (curl,Ω)]′ with divf = 0 in Ω satisfying the following compatibil-

ity condition:

∀v ∈ K
p′
N (Ω), 〈f ,v〉[Hp′

0 (curl,Ω)]′×H
p′
0 (curl,Ω)

= 0, (2.15)

and h be such that h × n ∈ W
1− 1

p
,p

(Γ ). Then the following problem

⎧⎪⎨
⎪⎩

−�u = f in Ω,

divu = 0 in Ω,
u × n = h × n on Γ,
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has a unique solution in W 1,p(Ω)/K
p
N(Ω) and we have

‖u‖W 1,p(Ω)/K
p
N (Ω) � C

(‖f ‖[Hp′
0 (curl,Ω)]′ + ‖h × n‖

W
1− 1

p ,p
(Γ )

)
.

3. Weak solutions of (ST )

In this paper we are interested in the following problem:

(ST )

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�u + ∇π = f in Ω,

divu = χ in Ω,

u · n = g on Γ,

2
[
D(u)n

]
τ

= h on Γ.

The aim of this section is to study the existence and uniqueness of weak solution for prob-
lem (ST ). First, we consider the Hilbert case. Then, we will study the case of Lp-theory,
1 < p < ∞. We start by the following proposition:

Proposition 3.1. We suppose that χ = 0 and g = 0. Let f ∈ [Hp′
0 (div,Ω)]′, h ∈ W

− 1
p

,p
(Γ )

such that

h · n = 0 on Γ. (3.1)

The problem: Find that (u,π) ∈ W 1,p(Ω)×Lp(Ω) satisfying (ST ), in the distribution sense,
is equivalent to

⎧⎪⎨
⎪⎩

Find u ∈ V p(Ω) such that,

∀ϕ ∈ V p′
(Ω), 2

∫
Ω

D(u) : D(ϕ) dx = 〈f ,ϕ〉Ω + 〈h,ϕ〉Γ . (3.2)

Proof. First, we note that if h ∈ W
− 1

p
,p

(Γ ), then we have h · n ∈ W
− 1

p
,p

(Γ ). That means that

the relation (3.1) holds in W
− 1

p
,p

(Γ ). In fact, let a be in W
1
p
,p′

(Γ ), or Ω is of class C1,1, then

an ∈ W
1
p

,p′
(Γ ) since n ∈ W 1,∞(Γ ). The regularity W

− 1
p

,p
(Γ ) of h · n is then consequence of

the relation

〈h · n, a〉Γ = 〈h, an〉Γ .

Now, using Green formula (2.8), we deduce that every solution of (ST ) also solves (3.2). Con-
versely, let u be a solution of the problem (3.2). Let us take a function ϕ ∈ D(Ω) such that
divϕ = 0 as a test function in (3.2). Then we have

2
∫

D(u) : D(ϕ) dx = 〈−�u,ϕ〉D′
(Ω)×D(Ω)

.

Ω
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As a consequence,

∀ϕ ∈Dσ (Ω), 〈−�u − f ,ϕ〉D′
(Ω)×D(Ω)

= 0.

So, by the De Rham theorem, there exists a distribution π in D′
(Ω) defined uniquely up to an

additive constant such that

−�u + ∇π = f . (3.3)

As ∇π ∈ [Hp′
0 (div,Ω)]′ ↪→ W−1,p(Ω), we deduce that π ∈ Lp(Ω) (we refer to [4]). Moreover,

by the fact that u belongs to the space V p(Ω), we have divu = 0 in Ω and u · n = 0 on Γ . It
remains to prove the Navier boundary condition 2[D(u)n]τ = h on Γ . We multiply Eq. (3.3) by
ϕ ∈ V p′

(Ω) and we integrate on Ω :

2
∫
Ω

D(u) : D(ϕ) dx − 2
〈[

D(u)n
]
τ
,ϕ

〉
Γ

= 〈f ,ϕ〉Ω. (3.4)

Using (3.2) and (3.4), we deduce that

∀ϕ ∈ V p′
(Ω),

〈
2
[
D(u)n

]
τ
,ϕ

〉
Γ

= 〈h,ϕ〉Γ .

Let now μ be any element of the space W
1− 1

p′ ,p′
(Γ ). So, there exists ϕ ∈ W 1,p′

(Ω) such that
divϕ = 0 in Ω and ϕ = μτ on Γ . Its clear that ϕ ∈ V p′

(Ω) and

〈
2
[
D(u)n

]
τ

− h,μ
〉
Γ

= 〈
2
[
D(u)n

]
τ

− h,μτ

〉
Γ

= 〈
2
[
D(u)n

]
τ

− h,ϕ
〉
Γ

= 0.

This implies that

2
[
D(u)n

]
τ

= h on Γ,

it is that end of the proof. �
First, we denote by a the bilinear form defined on V p(Ω) × V p′

(Ω) by

a(u,ϕ) =
∫
Ω

D(u) : D(ϕ) dx. (3.5)

We introduce the kernel T (Ω) for any 1 < p < ∞:

T p(Ω) = {
v ∈ W 1,p(Ω); D(v) = 0 in Ω, divv = 0 in Ω and v · n = 0 on Γ

}
.

Observe that, if Ω is obtained by rotation around a constant vector b of R3, then
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T p(Ω) = Span{β},

where

β(x) = b × x for x ∈ Ω.

Else, the kernel T p(Ω) is equal to zero (see [14] for more details). We denote

N p(Ω) = {
(u, c); u ∈ T p(Ω), c ∈R

}
.

Since T p(Ω) and N p(Ω) do not depend on p, we note T (Ω) instead of T p(Ω) and N (Ω)

instead N p(Ω).

Remark 3.2. By this characterization, we deduce the following compatibility condition:

〈f ,β〉Ω + 〈h,β〉Γ = 0

(with h · n = 0) that is necessary to solve problem (3.2) and then also to solve (ST ) with χ = 0
and g = 0.

3.1. The case p = 2

In this section we prove the existence and uniqueness of weak solution for problem (ST ) in the
Hilbert case. Our proof is based on the use of Lax–Milgram theorem. Before that, we introduce
the following spaces:

X(Ω) = H 1(Ω)/T (Ω). (3.6)

To prove the coercivity of the bilinear form a, we are now going to give the proof of the following
lemma which was cited in [13] without proof.

Lemma 3.3 (Poincaré–Morrey inequality). Let Ω be a Lipschitz bounded domain. Then, we have

inf
v∈T (Ω)

‖u + v‖2
L2(Ω)

� C

(∥∥D(u)
∥∥2

L2(Ω)
+

∫
Γ

|u · n|2 dσ

)
, ∀u ∈ H 1(Ω) (3.7)

where the constant C only depends on Ω . In particular, the semi-norm ‖D(u)‖L2(Ω) is a norm

which is equivalent to the norm ‖u‖H 1(Ω) if u ∈ H 1(Ω), u · n = 0 on Γ and
∫
Ω

u · β dx = 0.

Proof. Let us P denote the orthogonal projection from L2(Ω) onto T (Ω) with the product
scalar of L2(Ω). Then

inf ‖u + ρ‖2
L2(Ω)

= ‖u − Pu‖2
L2(Ω)

.

ρ∈T (Ω)
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Therefore, it suffices to show that, there exits C > 0 such that

‖u − Pu‖2
L2(Ω)

� C

(∥∥D(u)
∥∥2

L2(Ω)
+

∫
Γ

|u · n|2 dσ

)
for any u ∈ H 1(Ω). (3.8)

To establish the existence of such constant, assume the contrary. Then, for any k � 1, there
exists uk , such that

‖uk − Puk‖2
L2(Ω)

> k

(∥∥D(uk)
∥∥2

L2(Ω)
+

∫
Γ

|uk · n|2 dσ

)
.

We can suppose that

‖uk − Puk‖2
L2(Ω)

= 1.

As consequence,

1

k
>

∥∥D(uk)
∥∥2

L2(Ω)
+

∫
Γ

|uk · n|2 dσ , ∀k ∈ N
∗.

Setting wk = uk −Puk and using the Korn inequality, we deduce that wk is bounded in H 1(Ω).
Then, by Rellich theorem, there exists a subsequence still called wk that converges to w in
L2(Ω) and weakly in H 1(Ω). Since ‖D(w)‖L2(Ω) = 0 and w ·n = 0, we deduce that w belongs

to T (Ω). Moreover, we have w ∈ T (Ω)⊥, where T (Ω)⊥ is the orthogonal complement of
T (Ω) in L2(Ω). Hence w = 0, in contradiction with the relation ‖wk‖L2(Ω) = 1, ∀k � 1. The
proof of lemma is completed. �

Now, we can solve the Stokes problem.

Theorem 3.4. Suppose that χ = 0 and g = 0. Let f ∈ [H 2
0(div,Ω)]′ and h ∈ H− 1

2 (Γ ), satisfy-
ing (3.1) and

〈f ,β〉[H 2
0(div,Ω)]′×H 2

0(div,Ω) + 〈h,β〉
H

− 1
2 (Γ )×H

1
2 (Γ )

= 0. (3.9)

Then, Stokes problem (ST ) has a unique solution (u,π) ∈ (H 1(Ω) × L2(Ω))/N (Ω). In addi-
tion, we have the following estimate:

‖u‖H 1(Ω)/T (Ω) + ‖π‖L2(Ω)/R � C
(‖f ‖[H 2

0(div,Ω)]′ + ‖h‖
H

− 1
2 (Γ )

)
. (3.10)

Proof. It is clear that the bilinear form a(.,.) given by (3.5) is continuous on H 1(Ω) and using
Poincaré–Morrey inequality (3.7) we deduce that it is also coercive on X(Ω). Moreover, we have
the linear form � : X(Ω) → R, which is defined by

�(ϕ) = 〈f ,ϕ〉[H 2(div,Ω)]′×H 2(div,Ω) + 〈h,ϕ〉 − 1 1

0 0 H 2 (Γ )×H 2 (Γ )
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is continuous over H 1(Ω)/T (Ω). Thus, we deduce by Lax–Milgram’s theorem that prob-
lem (3.2) given in Proposition 3.1 has a unique solution u ∈ X(Ω) and π ∈ L2(Ω)/R.

Using the variational problem and Poincaré–Morrey inequality, we have

‖u‖X(Ω) � C0
(‖f ‖[H 2

0(div,Ω)]′ + ‖h‖
H

− 1
2 (Γ )

)
. (3.11)

On the other hand,

‖∇π‖H−1(Ω) � ‖f ‖H−1(Ω) + ‖�u‖H−1(Ω).

We know that

‖f ‖H−1(Ω) � C1‖f ‖[H 2
0(div,Ω)]′

and

‖�u‖H−1(Ω) � C‖u‖H 1(Ω).

Therefore,

inf
k∈R‖π + k‖L2(Ω) � C2

(‖f ‖[H 2
0(div,Ω)]′ + ‖h‖

H
− 1

2 (Γ )

)
. (3.12)

The estimation (3.10) follows easily from (3.11) and (3.12). �
We can also solve the Stokes problem when the divergence does not vanish and we have the

following corollary the proof of which is given later in Corollary 3.8.

Corollary 3.5. Let f , χ , g and h be such that

f ∈ [
H 2

0(div,Ω)
]′
, χ ∈ L2(Ω), g ∈ H

1
2 (Ω) and h ∈ H− 1

2 (Γ ),

satisfying the compatibility conditions (3.1), (3.9) and

∫
Ω

χ dx =
∫
Γ

g dσ . (3.13)

Then, problem (ST ) has a unique solution (u,π) ∈ (H 1(Ω)×L2(Ω))/N (Ω). Moreover we
have the following estimate:

‖u‖H 1(Ω)/T (Ω) + ‖π‖L2(Ω)/R

� C
(‖f ‖[H 2

0(div,Ω)]′ + ‖χ‖L2(Ω) + ‖g‖
H

1
2 (Γ )

+ ‖h‖
H

− 1
2 (Γ )

)
. (3.14)
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Remark 3.6. In the case g = 0, we can write problem (ST ) as follows:

(
S ′

T

) {−�u + ∇π = f and divu = χ in Ω,

u · n = 0 and curlu × n = −2Λu − h on Γ.

3.2. The general case 1 < p < ∞

We now investigate the case 1 < p < ∞. We start by showing the existence and uniqueness
of weak solution for (ST ). We start by studying the case p � 2.

Theorem 3.7. Assume that p � 2. Suppose that χ = 0 and g = 0. Then, for any f ∈
(H

p′
0 (div,Ω))′ and h ∈ W

− 1
p

,p
(Γ ) satisfying (3.1) the following compatibility conditions are

satisfied

〈f ,β〉Ω + 〈h,β〉Γ = 0, (3.15)

where 〈.,.〉Γ = 〈.,.〉
W

− 1
p ,p

(Γ )×W
1
p ,p′

(Γ )
and 〈.,.〉Ω = 〈.,.〉[Hp′

0 (div,Ω)]′×H
p′
0 (div,Ω)

.

Then, problem (ST ) has a unique solution (u,π) ∈ (W 1,p(Ω)×Lp(Ω))/N (Ω). In addition,
we have the following estimate:

‖u‖W 1,p(Ω)/T (Ω) + ‖π‖Lp(Ω)/R � C
(‖f ‖[Hp′

0 (div,Ω)]′ + ‖h‖
W

− 1
p ,p

(Γ )

)
.

Proof. We know that for all p � 2 we have

(
H

p′
0 (div,Ω)

)′
↪→ (

H 2
0(div,Ω)

)′ and W
− 1

p
,p

(Γ ) ↪→ H− 1
2 (Γ ).

Then according to the Hilbert case the problem (ST ) has a unique solution (u,π) ∈ (H 1(Ω)×
L2(Ω))/N (Ω). Applying Corollary 2.5, we have

curlu × n + 2
[
D(u)n

]
τ

= −2Λu on H− 1
2 (Γ ),

because u ∈ E2(Ω) and Ω is of class C2,1. As consequence, (u,π) is solution of (S ′
T ). There-

fore, (u,π) verifying the following problem: For all ϕ ∈ V 2(Ω),

∫
Ω

curlu · curlϕ dx = 〈f ,ϕ〉(H 2
0(div,Ω))′×H 2

0(div,Ω) + 〈2Λu + h,ϕ〉
H

− 1
2 (Γ )×H

1
2 (Γ )

.

In particular, we have

〈f ,ϕ〉(H 2
0(div,Ω))′×H 2

0(div,Ω) + 〈2Λu + h,ϕ〉
H

− 1
2 (Γ )×H

1
2 (Γ )

= 0 for all ϕ ∈ K2
T (Ω).

Or more generally, for all p � 2 and ϕ ∈ K
p′
T (Ω)

〈f ,ϕ〉 p′ ′ p′ + 〈2Λu + h,ϕ〉Γ = 0. (3.16)

(H 0 (div,Ω)) ×H 0 (div,Ω)
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In the other hand, we have uτ ∈ H
1
2 (Γ ) ↪→ W− 1

6 ,6(Γ ). Therefore, by (3.16) and Theorem 2.7,
we have (u,π) ∈ W 1,p(Ω) × Lp(Ω), for 2 � p � 6. Now, suppose that p � 6, then repeated

application of Theorem 2.7 enables us to assume that uτ ∈ W 1− 1
6 ,6(Γ ) ↪→ W

− 1
p

,p
(Γ ) for all

p � 6. Clearly, −2Λu − h belongs to W
− 1

p
,p

(Γ ). Consequently, by the same reasoning, we
deduce that the solution (u,π) ∈ W 1,p(Ω) × Lp(Ω). �

We can also solve the Stokes problem when the divergence does not vanish.

Corollary 3.8. Let p � 2. Let f , χ , g and h such that

f ∈ [
H

p′
0 (div,Ω)

]′
, χ ∈ Lp(Ω), g ∈ W

1− 1
p

,p
(Γ ) and h ∈ W

− 1
p
,p

(Γ ),

satisfying (3.1), (3.13) and (3.15). Then, Stokes problem (ST ) has a unique solution (u,π) ∈
(W 1,p(Ω) × Lp(Ω))/N (Ω). Moreover we have the following estimate:

‖u‖W 1,p(Ω)/T (Ω) + ‖π‖Lp(Ω)/R

� C
(‖f ‖[Hp′

0 (div,Ω)]′ + ‖χ‖Lp(Ω) + ‖g‖
W

1− 1
p ,p

(Γ )
+ ‖h‖

W
− 1

p ,p
(Γ )

)
.

Proof. We solve the following Neumann problem:

�θ = χ in Ω and
∂θ

∂n
= g on Γ. (3.17)

For χ ∈ Lp(Ω) and g ∈ W
1− 1

p
,p

(Γ ), problem (3.17) has a unique solution θ ∈ W 2,p(Ω)/R

satisfying the following estimate:

‖θ‖W 2,p(Ω)/R � C
(‖χ‖Lp(Ω) + ‖g‖

W
1− 1

p ,p
(Ω)

)
.

Setting z = u − ∇θ , then (ST ) becomes: Find (z,π) ∈ W 1,p(Ω) × Lp(Ω) solution of problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�z + ∇π = f + ∇χ in Ω,

divz = 0 in Ω,

z · n = 0 on Γ,

2
[
D(z)n

]
τ

= H on Γ

(3.18)

with H = h − 2[D(∇θ)n]τ . Observe that f + ∇χ belongs to [Hp′
0 (div,Ω)]′ and H belongs

to W
− 1

p
,p

(Γ ) and satisfies H · n = 0. Using Remark 3.2, to prove that problem (3.18) has a
solution, it is necessary to prove the following compatibility condition:

〈f + ∇χ,β〉Ω + 〈H ,β〉Γ = 0, (3.19)
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which is equivalent by (3.15) to the condition

〈∇χ,β〉Ω − 〈
2
[
D(∇θ)n

]
τ
,β

〉
Γ

= 0.

In fact, it is clear that ∇θ belongs to Ep(Ω). Then applying Green formula (2.8) with v = ∇θ

and ϕ = β we obtain

−〈
2
[
D(∇θ)n

]
τ
,β

〉
Γ

= −〈
�(∇θ),β

〉
Ω

= −〈∇χ,β〉Ω.

Thus, due to Theorem 3.7, problem (3.18) has a unique solution (z,π) ∈ W 1,p(Ω) ×
Lp(Ω)/N (Ω). �

The following theorem will be proved by duality argument.

Theorem 3.9. Assume that 1 < p < 2. Let f ∈ (H
p′
0 (div,Ω))′, χ ∈ Lp(Ω), g ∈ W

1− 1
p

,p
(Γ )

and h ∈ W
− 1

p
,p

(Γ ), satisfying the compatibility conditions (3.1), (3.13) and (3.15). Then, prob-
lem (ST ) has a unique solution (u,π) ∈ (W 1,p(Ω) × Lp(Ω))/N (Ω). In addition, we have the
following estimate:

‖u‖W 1,p(Ω)/T (Ω) + ‖π‖Lp(Ω)/R

� C
(‖f ‖[Hp′

0 (div,Ω)]′ + ‖χ‖Lp(Ω) + ‖g‖
W

1− 1
p ,p

(Γ )
+ ‖h‖

W
− 1

p ,p
(Γ )

)
.

Proof. The proof will be divided into two steps.
First step: We suppose that g = 0. Using Green formula (2.8), we deduce that problem (ST )

has the following equivalent variational formulation: Find (u,π) in (W 1,p(Ω)×Lp(Ω))/N (Ω)

satisfying u · n = 0 on Γ such that: ∀η ∈ Lp′
(Ω), ∀w ∈ Ep′

(Ω) satisfying w · n = 0 and
[D(w)n]τ = 0 on Γ

〈u,−�w + ∇η〉Hp
0 (div,Ω)×(H

p
0 (div,Ω))′ −

∫
Ω

π divw dx

= 〈f ,w〉
(H

p′
0 (div,Ω))′×H

p′
0 (div,Ω)

+ 〈h,w〉Γ −
∫
Ω

χηdx. (3.20)

According to Corollary 3.8 for any pair (F , ϕ) in ((H
p

0 (div,Ω))′⊥T (Ω))×L
p′
0 (Ω) there exists

a unique solution (w, η) ∈ (W 1,p′
(Ω) × Lp′

(Ω))/N (Ω) such that

−�w + ∇η = F and divw = ϕ in Ω, w · n = 0 and
[
D(w)n

]
τ

= 0 on Γ

and
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inf
(λ,μ)∈N (Ω)

(‖w + λ‖
W 1,p′

(Ω)
+ ‖η + μ‖

Lp′
(Ω)

)
� C

(‖F‖(H
p
0 (div,Ω))′ + ‖ϕ‖

Lp′
(Ω)

)
. (3.21)

Let T be a linear form defined from ((H
p

0 (div,Ω))′⊥T (Ω)) × L
p′
0 (Ω) onto R by

T : (F , ϕ) �→ 〈f ,w〉
(H

p′
0 (div,Ω))′×H

p′
0 (div,Ω)

+ 〈h,w〉Γ −
∫
Ω

χηdx.

Note that, using (3.21), for any (λ, k) ∈N (Ω) we have

∣∣T (F , ϕ)
∣∣ �

∣∣∣∣〈f ,w + λ〉
(H

p′
0 (div,Ω))′×H

p′
0 (div,Ω)

+ 〈h,w + λ〉Γ −
∫
Ω

χ(η + k) dx

∣∣∣∣
� C

(‖f ‖
(H

p′
0 (div,Ω))′ + ‖χ‖

Lp′
(Ω)

+ ‖h‖
W

− 1
p ,p

(Γ )

)(‖F‖(H
p
0 (div,Ω))′ + ‖ϕ‖

Lp′
(Ω)

)
.

Thus the linear form T is continuous on ((H
p

0 (div,Ω))′⊥T (Ω)) × L
p′
0 (Ω) and we deduce that

there exists a unique (u,π) in H
p

0 (div,Ω)/T (Ω) × Lp(Ω)/R such that

T (F , ϕ) = 〈u,F 〉Hp
0 (div,Ω)×(H

p
0 (div,Ω))′ +

∫
Ω

πϕ dx.

To finish, we shall prove that u belongs to W 1,p(Ω). We recall that u ∈ Lp(Ω) and �u =
∇π − f ∈ (H

p′
0 (div,Ω))′ ↪→ W−1,p(Ω). Now, we introduce the following spaces:

Xp(Ω) = {
v ∈ W

1,p

0 (Ω); divv ∈ W
1,p

0 (Ω)
}

and

T p(Ω) = {
v ∈ Lp(Ω); �v ∈ (

Xp′(Ω)
)′}

.

It is clear that W−1,p(Ω) ↪→ (Xp′(Ω))′ and thus we have u ∈ T p(Ω). Therefore, according to

Lemma 12 of [1], we have uτ ∈ W
− 1

p
,p

(Γ ) and also −2Λu − h belongs to W
− 1

p
,p

(Γ ). Finally,
using Remark 3.6 and Theorem 2.7, we deduce that (u,π) ∈ W 1,p(Ω) × Lp(Ω).

Second step: We solve Neumann problem (3.17) with χ ∈ Lp(Ω), g ∈ W
1− 1

p
,p

(Γ ) satisfy-
ing (3.13). There exists a unique θ ∈ W 2,p(Ω)/R solution of (3.17). Setting z = u − ∇θ the rest
of the proof runs as in proof of Corollary 3.8. �
Remark 3.10. We are so far interested in the boundary conditions on the stress tensor. However,
it is also interesting to consider the boundary conditions on the tangential components of the
normal derivative:
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⎧⎨
⎩

−�u + ∇π = f and divu = χ in Ω,

u · n = g and

(
∂v

∂n

)
τ

= h on Γ.
(3.22)

As in Corollary 2.5, using the relation (2.5), we can write

(
∂u

∂n

)
τ

= ∇τ (u · n) − curlu × n − Λu in W
− 1

p
,p

(Γ ). (3.23)

As consequence, in the same way as for problem (ST ) we can solve the problem (3.22) and
we have the following theorem:

Theorem 3.11. Let f ∈ (H
p′
0 (div,Ω))′, χ ∈ Lp(Ω), g ∈ W

1− 1
p

,p
(Γ ) and h ∈ W

− 1
p

,p
(Γ ), sat-

isfying the compatibility conditions (3.1) and (3.13). Then, problem (3.22) has a unique solution
(u,π) ∈ W 1,p(Ω) × Lp(Ω)/R. In addition, we have the following estimate:

‖u‖W 1,p(Ω) + ‖π‖Lp(Ω)/R

� C
(‖f ‖[Hp′

0 (div,Ω)]′ + ‖χ‖Lp(Ω) + ‖g‖
W

1− 1
p ,p

(Γ )
+ ‖h‖

W
− 1

p ,p
(Γ )

)
.

4. Strong solutions of (ST )

We prove the existence of strong solutions (u,π) ∈ W 2,p(Ω) × Lp(Ω) for the Stokes prob-
lem.

Theorem 4.1. Let f ∈ Lp(Ω), χ ∈ W 1,p(Ω), g ∈ W
2− 1

p
,p

(Γ ) and h ∈ W
1− 1

p
,p

(Γ ), satisfying
the compatibility conditions (3.1), (3.13) and (3.15). Then, problem (ST ) has a unique solution
(u,π) which belongs to (W 2,p(Ω) × W 1,p(Ω))/N (Ω) and satisfies the estimate:

‖u‖W 2,p(Ω)/T (Ω) + ‖π‖W 1,p(Ω)/R

� C
(‖f ‖Lp(Ω) + ‖g‖

W
2− 1

p ,p
(Γ )

+ ‖h‖
W

1
p ,p

(Γ )

)
. (4.1)

Proof. Before, we note that under the hypothesis of Theorem 4.1, the problem (ST ) has a unique
solution (u,π) ∈ W 1,p(Ω) × Lp(Ω)/N (Ω).

To prove the regularity of the velocity, we set z = curlu. Observe that −�z = curl curlz
and curlz = −�u + ∇χ = f + ∇(χ − π). Using Remark 2.2, we deduce that z satisfies the
following problem: ⎧⎪⎨

⎪⎩
−�z = curlf in Ω,

divz = 0 in Ω,

z × n = H on Γ,

where H = −2Λu−h. Since, Ω is of class C2,1 and u ∈ W 1,p(Ω), we have Λu ∈ W
1− 1

p
,p

(Γ ).

Consequently, H ∈ W
1− 1

p
,p

(Γ ) and satisfies the compatibility condition (3.1). Since, curlf
belongs to [Hp′

(curl,Ω)]′ and satisfies the following compatibility condition
0
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〈curlf ,ϕ〉[Hp′
0 (curl,Ω)]′×H

p′
0 (curl,Ω)

= 0 for all ϕ ∈ K
p′
N (Ω),

we deduce from Theorem 2.8 that z ∈ W 1,p(Ω). Then u ∈ X2,p(Ω), where

X2,p(Ω) = {
v ∈ Lp(Ω); divv ∈ W 1,p(Ω), curlv ∈ W 1,p(Ω) and v · n ∈ W

2− 1
p

, 1
p (Γ )

}
.

As a consequence, thanks to the imbedding of X2,p(Ω) in W 2,p(Ω) (see [3]), the solution u of
the problem (ST ) belongs to W 2,p(Ω). Finally, since

∇π = �u + f ∈ Lp(Ω),

we deduce that π ∈ W 1,p(Ω). �
5. Very weak solutions of (ST )

In this section we want to prove the existence of a very weak solution for the Stokes prob-
lem (ST ). To prove this, we shall apply a technique used in [1] for the Dirichlet boundary
conditions and in [2] for the Navier boundary conditions. First, we start by introducing the fol-
lowing space:

T p(Ω) = {
ϕ ∈ H

p

0 (div,Ω); divϕ ∈ W
1,p

0 (Ω)
}
.

We recall now some preliminary results which we shall use in the sequel (for instance
see [2]).

Lemma 5.1. The space D(Ω) is dense in T p(Ω) and for all χ ∈ W−1,p(Ω) and ϕ ∈ T p′
(Ω),

we have

〈∇χ,ϕ〉
(T p′

(Ω))′×T p′
(Ω)

= −〈χ,divϕ〉
W−1,p(Ω)×W

1,p
0 (Ω)

. (5.1)

Lemma 5.2. A distribution f belongs to (T p(Ω))′ if and only if there exist Ψ ∈ Lp′
(Ω) and

f0 ∈ W−1,p′
(Ω), such that

f = Ψ + ∇f0.

Moreover, we have

‖f ‖(T p(Ω))′ = Max
{‖Ψ ‖

Lp′
(Ω)

,‖f0‖W−1,p′
(Ω)

}
.

Giving a meaning to Navier boundary condition of a very weak solution of a Stokes problem
is not easy. For this reason, we need to introduce the space

Hp(�;Ω) = {
v ∈ Lp(Ω); �v ∈ (

T p′
(Ω)

)′}
,
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which is a Banach space for the norm:

‖v‖Hp(�;Ω) = ‖v‖Lp(Ω) + ‖�v‖
(T p′

(Ω))′ .

The following lemma (see [2]) is important to prove a trace result.

Lemma 5.3. The space D(Ω) is dense in Hp(�;Ω).

Let us introduce the space

Sp(Ω) = {
ϕ ∈ W 2,p(Ω); ϕ · n = 0, divϕ = 0,

[
D(u)n

]
τ

= 0 on Γ
}

and recall the following formula (see [4]):

divv = divΓ vτ + Kv · n + ∂v

∂n
· n on Γ. (5.2)

The following lemma proves that for any v which belongs to Hp(�;Ω), we have [D(v)n]τ is

well defined in W
−1− 1

p
,p

(Γ ).

Lemma 5.4. The mapping Υ : u �→ [D(u)n]τ on the space D(Ω) can be extended by continuity

to a linear mapping still denoted by Υ , from Hp(�;Ω) into W
−1− 1

p
,p

(Γ ) and we have the

following Green formula: For any u ∈ Hp(�;Ω) and ϕ ∈ Sp′
(Ω),

〈�u,ϕ〉
(T p′

(Ω))′×T p′
(Ω)

=
∫
Ω

u · �ϕ dx + 〈
2
[
D(u)n

]
τ
,ϕ

〉
W

−1− 1
p ,p

(Γ )×W
1+ 1

p ,p′
(Γ )

. (5.3)

Proof. First, let u ∈D(Ω). Then for any ϕ ∈ Sp′
(Ω), we have on one hand

〈�u,ϕ〉
(T p′

(Ω))′×T p′
(Ω)

=
∫
Ω

divudivϕ dx − 2
∫
Ω

D(u) : D(ϕ) dx

+ 〈
2
[
D(u)n

]
τ
,ϕ

〉
W

−1− 1
p ,p

(Γ )×W
1+ 1

p ,p′
(Γ )

and on the other hand∫
Ω

u · �ϕ dx =
∫
Ω

divudivϕ dx − 2
∫
Ω

D(u) : D(ϕ) dx.

Thus, for any u ∈ D(Ω) and ϕ ∈ Sp′
(Ω)

〈�u,ϕ〉
(T p′

(Ω))′×T p′
(Ω)

=
∫

u · �ϕ dx + 〈
2
[
D(u)n

]
τ
,ϕ

〉
W

−1− 1
p ,p

(Γ )×W
1+ 1

p ,p′
(Γ )

.

Ω
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Now, let μ ∈ W
1+ 1

p
,p′

(Γ ). We know that there exits ϕ ∈ W 2,p′
(Ω) such that

ϕ = μτ and
∂ϕ

∂n
= Λμ − ndivΓ μτ on Γ.

In addition, we have the following estimate

‖ϕ‖
W 2,p′

(Ω)
� C‖μτ‖

W
1+ 1

p ,p′
(Γ )

� C‖μ‖
W

1+ 1
p ,p′

(Γ )
. (5.4)

As Λμ · n = 0 on Γ (see (2.3)), we have

∂ϕ

∂n
· n = −divΓ μτ on Γ.

Using identity (5.2), we deduce that

divϕ = 0 on Γ.

Also, using (2.4), we have

[
D(ϕ)n

]
τ

=
(

∂ϕ

∂n

)
τ

− Λϕ

= Λμ − Λμ

= 0.

To recapitulate, ϕ belongs to Sp′
(Ω) and satisfies

ϕ = μτ and
∂ϕ

∂n
= Λμ − ndivΓ μτ on Γ. (5.5)

Therefore, we can bound the boundary term as follows: For functions ϕ belonging to Sp′
(Ω)

∣∣〈[D(u)n
]
τ
,μτ

〉
W

−1− 1
p ,p

(Γ )×W
1+ 1

p ,p′
(Γ )

∣∣ = ∣∣〈[D(u)n
]
τ
,ϕ

〉
W

−1− 1
p ,p

(Γ )×W
1+ 1

p ,p′
(Γ )

∣∣
�

∣∣∣∣〈�u,ϕ〉
(T p′

(Ω))′×T p′
(Ω)

−
∫
Ω

u · �ϕ dx

∣∣∣∣
� ‖ϕ‖

T p′
(Ω)

‖�u‖
(T p′

(Ω))′ + ‖u‖Lp(Ω)‖ϕ‖
W 2,p′

(Ω)

� C‖u‖Hp(�;Ω)‖ϕ‖
W 2,p′

(Ω)

� C‖u‖Hp(�;Ω)‖μ‖
W

1+ 1
p ,p′

(Γ )
.

Consequently, we obtain for any u ∈ D(Ω):

∥∥[
D(u)n

]
τ

∥∥ −1− 1
p ,p

� C‖u‖Hp(�;Ω).

W (Γ )
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It follows that, the linear mapping Υ : u �→ [D(u)n]τ defined in D(Ω) is continuous for the
norm of Hp(�;Ω). Finally, by density of D(Ω) in Hp(�;Ω), we can extend continuously this

mapping from Hp(�;Ω) into W
−1− 1

p
,p

(Γ ) and the Green formula (5.3) holds. �
Now, we are in position to prove the existence and uniqueness of a very weak solution for

Stokes problem (ST ). The proof of the following theorem is similar to Theorem 4.15 in [2].

Theorem 5.5. Given any f , χ , g and h with

f ∈ (
T p′

(Ω)
)′
, χ ∈ Lp(Ω), g ∈ W

− 1
p

,p
(Γ ), h ∈ W

−1− 1
p

,p
(Γ ),

and satisfying the compatibility conditions (3.1), (3.15)

∫
Ω

χ dx = 〈g,1〉
W

− 1
p ,p

(Γ )×W
1
p ,p′

(Γ )
. (5.6)

Then, problem (ST ) has a unique solution

u ∈ Lp(Ω)/T (Ω) and π ∈ W−1,p(Ω)/R.

Moreover, we have the estimate:

‖u‖Lp(Ω)/T (Ω) + ‖π‖W−1,p(Ω)/R

� C
(‖f ‖

(T p′
(Ω))′ + ‖χ‖Lp(Ω) + ‖g‖

W
− 1

p ,p
(Γ )

+ ‖h‖
W

−1− 1
p ,p

(Γ )

)
.

Proof. The basic idea of this proof is to use the duality argument and the strong solution of
the adjoint problem with Navier boundary condition. The proof falls into three parts: in the first
part we will write the variational formulation, after that we prove the existence of a very weak
solution when g = 0 and, in the third part, we will finish with the case that g is not vanish.

First step: Observe that if u ∈ Hp(�;Ω) and π ∈ W 1,p(Ω), then according to (5.1) and (5.3)
we have for any ϕ ∈ Sp′

(Ω) and for any q ∈ W 1,p′
(Ω),

〈−�u + ∇π,ϕ〉
(T p′

(Ω))′×T p′
(Ω)

= −
∫
Ω

u · �ϕ dx − 〈
2
[
D(u)n

]
τ
,ϕ

〉
W

−1− 1
p ,p

(Γ )×W
1+ 1

p ,p′
(Γ )

− 〈π,divϕ〉
W−1,p(Ω)×W

1,p′
0 (Ω)

,∫
Ω

u · ∇q dx = −
∫
Ω

q divudx + 〈u · n, q〉Γ .

Thus, if (u,π) ∈ Lp(Ω) × W−1,p(Ω) is solution of (ST ), then u ∈ Hp(�;Ω) and for any
ϕ ∈ Sp′

(Ω) and for any q ∈ W 1,p′
(Ω) we have
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−
∫
Ω

u · �ϕ dx − 〈π,divϕ〉
W−1,p(Ω)×W

1,p′
0 (Ω)

= 〈f ,ϕ〉
(T p′

(Ω))′×T p′
(Ω)

+ 〈h,ϕ〉
W

−1− 1
p ,p

(Γ )×W
1+ 1

p ,p′
(Γ )

, (5.7)

∫
Ω

u · ∇q dx = −
∫
Ω

χq dx + 〈g, q〉Γ .

Conversely, let (u,π) ∈ Lp(Ω) × W−1,p(Ω) be a solution of (5.7). Therefore, it follows imme-
diately that,

−�u + ∇π = f and divu = χ in Ω.

Now, writing

�u = ∇π − f

and using Lemma 5.2 we deduce that u belongs to Hp(�;Ω). As consequence, applying

Lemma 5.4 we have 2[D(u)n]τ ∈ W
−1− 1

p
,p

(Γ ). We repeat application of (5.3) and using
Lemma 5.1 enables us to write: for any ϕ ∈ Sp′

(Ω),∫
Ω

u · �ϕ dx + 〈
2
[
D(u)n

]
τ
,ϕ

〉
W

−1− 1
p ,p

(Γ )×W
1+ 1

p ,p′
(Γ )

= −〈f ,ϕ〉
(T p′

(Ω))′×T p′
(Ω)

− 〈π,divϕ〉
W−1,p(Ω)×W

1,p′
0 (Ω)

. (5.8)

Comparing (5.7) with (5.8), we get

〈
2
[
D(u)n

]
τ
,ϕ

〉
W

−1− 1
p ,p

(Γ )×W
1+ 1

p ,p′
(Γ )

= 〈h,ϕ〉
W

−1− 1
p ,p

(Γ )×W
1+ 1

p ,p′
(Γ )

.

Let μ ∈ W
1+ 1

p
,p′

(Γ ). Analysis similar to that in the proof of Lemma 5.4, there exists a function
ϕ ∈ Sp′

(Ω) such that ϕ = μτ .
Consequently,

〈
2
[
D(u)n

]
τ
,μ

〉
W

−1− 1
p ,p

(Γ )×W
1+ 1

p ,p′
(Γ )

= 〈h,μ〉
W

−1− 1
p ,p

(Γ )×W
1+ 1

p ,p′
(Γ )

.

Accounting on the above equality, we have

2
[
D(u)n

]
τ

= h on Γ.

It still remains to prove that u · n = g on Γ . For this, we consider the equation divu = χ in Ω .
We multiply this equation by q ∈ W 1,p′

(Ω), do the integration by parts and compare with (5.7).
Then we get

〈u · n, q〉Γ = 〈g, q〉Γ .
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As consequence,

u · n = g in W
− 1

p
,p

(Γ ).

This finishes the first step.
Second step: We suppose that

g = 0 on Γ and
∫
Ω

χ dx = 0.

According to Theorem 4.1, for any (F , ξ) ∈ (Lp′
(Ω)⊥T (Ω)) × (W

1,p′
0 (Ω) ∩ L

p′
0 (Ω)) there

exists a unique solution (ϕ, q) ∈ (W 2,p′
(Ω) × W 1,p′

(Ω))/N (Ω) such that

−�ϕ + ∇q = F and divϕ = ξ in Ω, ϕ · n = 0, and
[
D(ϕ)n

]
τ

= 0 on Γ

and

inf
(λ,k)∈N (Ω)

(‖ϕ + λ‖
W 2,p′

(Ω)
+ ‖q + k‖

W 1,p′
(Ω)

)
� C

(‖F‖
Lp′

(Ω)
+ ‖ϕ‖

W 1,p′
(Ω)

)
. (5.9)

Let T be a linear form defined from (Lp′
(Ω)⊥T (Ω)) × (W

1,p′
0 (Ω) ∩ L

p′
0 (Ω)) onto R by

T : (F , ξ) �→ 〈f ,ϕ〉
(T p′

(Ω))′×T p′
(Ω)

+ 〈h,ϕ〉
W

−1− 1
p ,p

(Γ )×W
1+ 1

p ,p′
(Γ )

−
∫
Ω

χq dx.

Note that for any (λ, k) ∈ N (Ω),

∣∣T (F , ξ)
∣∣ �

∣∣∣∣〈f ,ϕ + λ〉
(T p′

(Ω))′×T p′
(Ω)

+ 〈h,ϕ + λ〉
W

−1− 1
p ,p

(Γ )×W
1+ 1

p ,p′
(Γ )

−
∫
Ω

χ(q + k)

∣∣∣∣
� C

(‖f ‖
(T p′

(Ω))′ + ‖χ‖Lp(Ω) + ‖h‖
W

−1− 1
p ,p

(Γ )

)(‖F‖
Lp′

(Ω)
+ ‖ξ‖

W 1,p′
(Ω)

)
.

Thus, the linear form T is continuous on (Lp′
(Ω)⊥T (Ω)) × (W

1,p′
0 (Ω) ∩ L

p′
0 (Ω)) and we

deduce that there exists a unique (u,π) in (Lp(Ω)/T (Ω) × W−1,p(Ω)/R) solution of prob-
lem (5.7).

It remains to prove the existence and uniqueness of very weak solution when g is not van-
ish.

Third step: Now, we suppose that g �= 0 satisfying the compatibility condition (5.6). Then,
there exists a unique θ ∈ W 1,p(Ω)/R solution of Neumann problem (3.17). Now, setting
z = u − ∇θ , (ST ) becomes: Find (z,π) ∈ W 1,p(Ω) × Lp(Ω) satisfying (3.18), with H =
h − 2[D(∇θ)n]τ . Since ∇θ ∈ Hp(�;Ω), it is clear that H belongs to W

−1− 1
p

,p
(Γ ) and satis-

fies H · n = 0. On the other hand, we have f + ∇χ belongs to (T p′
Ω)′. Thus, due to the second

step, there exists a (z,π) ∈ (Lp(Ω) × W 1,p(Ω))/N (Ω) solution of (3.18), and the proof is
complete. �
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6. Eigenfunctions of the Stokes problem

In [8] T. Clopeau et al. showed, in two dimensions, the existence of an orthonormal basis
formed by the eigenfunctions of Stokes operator with Navier boundary condition. It was the
idea to invest in a relationship between curlu and [D(u)n]τ on the boundary and reduce to the
resolution of bi-Laplacian problem. By this method they were able to show the existence of the
basis without solving the stationary Stokes problem. Yet, this technique is not valid in the case
of three dimension.

Our objective in this section is to show the existence of the Hilbertian basis of V 2(Ω) formed
by a sequence of eigenfunctions (vk)k ∈ H 1(Ω) of problem (ST ). Let us introduce the following
problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�u + ∇π = f and divu = 0 in Ω,

u · n = 0 and
[
D(u)n

]
τ

= 0 on Γ,∫
Ω

u · β dx = 0.

(6.1)

We start by the following lemma:

Lemma 6.1. Let f ∈ (H 2
0(div,Ω))′ satisfying the following compatibility condition:

〈f ,β〉(H 2
0(div,Ω))′×H 2

0(div,Ω) = 0. (6.2)

Then, problem (6.1) has a unique solution u ∈ H 1(Ω) and π ∈ L2(Ω)/R satisfying the estimate:

‖u‖H 1(Ω) + ‖π‖L2(Ω)/R � C‖f ‖(H 2
0(div,Ω))′ .

Proof. Let (u,π) be one of solutions given by Theorem 3.4. We know that u can be written as
u = Pu + cβ , where Pu is the orthogonal projection of u onto L2(Ω)⊥T (Ω) and c ∈ R. It is
immediate that Pu is the unique solution of (6.1). This finishes the proof. �

We introduce the following spaces:

Z(Ω) =
{
v ∈ H 1(Ω); divv = 0 in Ω, v · n = 0 on Γ,

∫
Ω

β · v dx = 0

}

and

H (Ω) =
{
v ∈ L2(Ω); divv = 0 in Ω, v · n = 0 on Γ,

∫
Ω

β · v dx = 0

}
.

We have the following theorem:

Theorem 6.2. There exists a sequence (vj )j of V 2(Ω) and (λj )j ⊂ R such that: The se-
quence (vj )j is a Hilbert basis of H (Ω). Moreover we have
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(i) λj > C(Ω) > 0 and limj→+∞ λj = +∞;
(ii) 2

∫
Ω

D(vj ) : D(ϕ) dx = λj

∫
Ω

vj · ϕ dx, ∀ϕ ∈ V 2(Ω);
(iii)

∫
Ω

D(vj ) : D(vk) dx = λj δjk .

Proof. We introduce the operator

Λ : H (Ω) → Z(Ω) → H (Ω),

f �→ u �→ u,

where u is the solution given by Lemma 6.1. Note that, H (Ω) is a Hilbert separable space and
Λ is compact. Moreover, Λ is self-adjoint operator, indeed

∫
Ω

Λf 1 · f 2 dx = 2
∫
Ω

D(u1) : D(u2) dx =
∫
Ω

f 1 · Λf 2 dx,

where Λf i = ui , i = 1,2. To summarize, Λ is a compact and self-adjoint operator, consequently
H (Ω) possesses a Hilbert basis formed by a sequence of eigenfunctions uk :

Λuj = μjuj , μj > 0, j � 1 and lim
j→+∞μj = 0.

Particularly,

∫
Ω

uj · uk dx = δjk and
∫
Ω

Λuj · v dx =
∫
Ω

μjuj · v dx, ∀v ∈ V 2(Ω).

So,

∀v ∈ V 2(Ω),

∫
Ω

μj D(uj ) : D(v) dx =
∫
Ω

uj · v dx.

We set λj = 1
μj

, ∀j � 1. Then we have limj→+∞ λj = +∞ and

∀v ∈ V 2(Ω),

∫
Ω

D(uj ) : D(v) dx = λj

∫
Ω

uj · v dx.

As consequence, by applying Lemma 3.3 we have

∥∥D(uj )
∥∥2

L2(Ω)
= λj � 1

C2
‖uj‖2

L2(Ω)
= 1

C2
. �

This basis will be very useful in the study of problem of existence of weak solution for Navier–
Stokes equation in the Hilbert case.
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7. Navier–Stokes equation

We consider the following Navier–Stokes problem:

(NST )

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�u + u · ∇u + ∇π = f in Ω,

divu = 0 in Ω,

u · n = 0 on Γ,

2
[
D(u)n

]
τ

= h on Γ.

The aim of this section is to prove the existence of weak solution and strong solution of prob-
lem (NST ). To prove the existence of weak solution, we need to introduce some spaces. First,
we introduce the following space:

H
6
5 ,2
0 (div,Ω) = {

v ∈ L
6
5 (Ω); divv ∈ L2(Ω), v · n = 0 on Γ

}
,

which is a Banach space for the norm

‖v‖
H

6
5 ,2

0 (div,Ω)

= ‖v‖
L

6
5 (Ω)

+ ‖divv‖L2(Ω).

We define also the space

E
6
5 ,2(Ω) = {

v ∈ H 1(Ω); �v ∈ [
H 6,2

0 (div,Ω)
]′}

.

We note that D(Ω) is dense in H
6
5 ,2
0 (div,Ω). As consequence, we have the following lemma,

which has a similar proof as Lemma 2.4.

Lemma 7.1. Suppose that Ω is of class C1,1. The linear mapping Υ : v → [D(v)n]τ |Γ defined
on D(Ω) can be extended by continuity to a linear and continuous mapping

Υ : E 6
5 ,2(Ω) → H− 1

2 (Γ ).

Moreover, we have the Green formula: for any v ∈ E
6
5 ,2(Ω) and ϕ ∈ V 2(Ω),

−〈�v,ϕ〉[H 6,2
0 (div,Ω)]′×H

6,2
0 (div,Ω)

= 2
∫
Ω

D(v) : D(ϕ) dx − 2
〈[

D(v)n
]
τ
,ϕ

〉
Γ

. (7.1)

Thanks to this lemma, we can show that the Navier–Stokes problem (NST ) is equivalent to
the following formulation:

(FNS)

⎧⎪⎨
⎪⎩

Find u ∈ V 2(Ω) such that,

∀ϕ ∈ V 2(Ω), 2
∫
Ω

D(u) : D(ϕ) dx +
∫
Ω

(u · ∇)u · ϕ dx = 〈f ,ϕ〉Ω + 〈h,ϕ〉Γ ,

where 〈.,.〉Ω = 〈.,.〉[H 6,2
(div,Ω)]′×H

6,2
(div,Ω)

and 〈.,.〉Γ = 〈.,.〉 − 1 − 1 .

0 0 H 2 (Γ )×H 2 (Γ )
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In the sequel we write b(u,v,w) = ∫
Ω

(u · ∇)v · w dx. To facilitate the work, we give some
properties of the operator b.

Lemma 7.2. For any u ∈ V 2(Ω) and η ∈ T (Ω), the following identities hold

b(u,u,η) = b(u,η,η) = b(η,η,u) = 0.

Proof. We know that b(u,η,η) = 0. Since, D(η) = 0, we have ∂ηi

∂xj
= − ∂ηj

∂xi
, then, for any u ∈

V 2(Ω)

b(u,u,η) =
3∑

i,j=1

∫
Ω

ui

∂uj

∂xi

ηj dx = −
3∑

i,j=1

∫
Ω

ui

∂ηj

∂xi

uj dx

=
3∑

i,j=1

∫
Ω

ui

∂ηi

∂xj

uj dx = −
3∑

i,j=1

∫
Ω

uj

∂ui

∂xj

ηi dx

= −b(u,u,η).

Consequently, b(u,u,η) = 0. Finally, because D(η) = 0, we have

b(η,η,u) = 1

2

∫
Ω

u · ∇|η|2 dx = 0. �

Using Lemma 7.2, we deduce that the following compatibility condition is necessary to solve
problem (FNS):

〈f ,β〉Ω + 〈h,β〉Γ = 0. (7.2)

Due to all these results we can now solve the problem (FNS).

Theorem 7.3. Let f ∈ (H 6,2
0 (div,Ω))′ and h ∈ H− 1

2 (Γ ), satisfying h · n = 0 on Γ and the
compatibility condition (7.2). Then problem (FNS) has solution (u,π) ∈ H 1(Ω) × L2(Ω).
Moreover, we have the following estimate:

‖u‖H 1(Ω) + ‖π‖L2(Ω) � C
(‖f ‖

(H
6,2
0 (div,Ω))′ + ‖h‖

H
− 1

2 (Γ )

)
.

Proof. To show the existence of u, we start by constructing the approximate solutions of the
problem (FNS) by Galerkin method and then thanks to compactness arguments, we prove, by
passing to the limit, some convergence properties. We note that, if u = w + η, with w ∈ Z(Ω)

and η ∈ T (Ω), is a solution of (FNS), then for any ψ ∈ Z(Ω),

2
∫

D(w) : D(ψ) dx + b(w + η,w,ψ) + b(w,η,ψ) = 〈f ,ψ〉Ω + 〈h,ψ〉Γ . (7.3)
Ω
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Note that for any η′ ∈ T (Ω), we have

b
(
w + η,w + η,ψ + η′) = b(w + η,w,ψ) + b(w,η,ψ).

It follows that problem (FNS) is reduced to finding w ∈ Z(Ω) verifying (7.3).
Now, for each fixed integer m � 1, we define an approximate solution wm of (7.3) by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wm ∈ V m,

2
∫
Ω

D(wm) : D(vk) dx + b(wm + η,wm,vk) + b(wm,η,vk)

= 〈f ,vk〉Ω + 〈h,vk〉Γ , k = 1, . . . ,m

(7.4)

where V m = 〈v1, . . . ,vm〉 is the space spanned by the vectors v1, . . . ,vm and {vi}i is the Hilber-
tian basis of H (Ω) given by eigenfunctions of Stokes problem. We define a scalar product on
Z(Ω) by

∀u1,u2 ∈ Z(Ω),
(
(u1,u2)

) =
∫
Ω

D(u1) : D(u2) dx.

With an aim to establish the existence of the solutions of the problem (7.4), we consider the
following operator

P m : V m → V m,

w → P m(w)

defined, for each η ∈ T (Ω) fixed, by

((
P m(w),z

)) = 2
(
(w,z)

) + b(w + η,w,z) + b(w,η,z) − 〈f ,z〉Ω − 〈h,z〉Γ .

Let us note that

∀w ∈ Z(Ω), b(w + η,w,w) = b(w,η,w) = 0.

Thus, using inequality (3.7), we show that

((
P m(w),w

))
� ‖w‖V m

(
2‖w‖V m − C

(‖f ‖
(H

6,2
0 (div,Ω))′ + ‖h‖

H
− 1

2 (Γ )

))
,

where the norm on V m is induced by the norm on Z(Ω).
As consequence, ((P m(w),w)) > 0 for ‖w‖V m > C

2 (‖f ‖
(H

6,2
0 (div,Ω))′ + ‖h‖

H
− 1

2 (Γ )
). We

know that P m : V m → V m is continuous. Therefore, the hypothesis of Brouwer theorem is sat-
isfied and there exists a solution wm of (7.4).

Passage to the limit: Since wm is a solution of problem (7.4), we have

2
∥∥D(wm)

∥∥2
2 = 〈f ,wm〉Ω + 〈h,wm〉Γ .
L (Ω)
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Using compatibility condition (7.2) and Lemma 3.3, we obtain the a priori estimate:

‖wm‖V m � C
(‖f ‖

(H
6,2
0 (div,Ω))′ + ‖h‖

H
− 1

2 (Γ )

)
.

Since the sequence wm remains bounded in Z(Ω), we can extract a subsequence wk such that

wk ⇀ w weakly in Z(Ω).

The injection of Z(Ω) into H (Ω) is compact, so we have

wk → w in H (Ω).

Therefore, we can pass to the limit in (7.4) and we obtain

2
∫
Ω

D(w) : D(ψ) dx + b(w + η,w,ψ) + b(w,η,ψ) = 〈f ,ψ〉Ω + 〈h,ψ〉Γ

for any ψ ∈ Z(Ω).
Finally, we conclude that u = w + η is a solution of (NST ). �

Remark 7.4. We proved that, in the case of symmetric domain, the Navier–Stokes prob-
lem (NST ) has an infinity of solutions for all data satisfying the compatibility condition (7.2).
Then, we have a situation where we don’t have a uniqueness of solution even if the data is suf-
ficiently small. Unlike the Navier–Stokes problem with Dirichlet boundary condition where we
have a uniqueness of solution for data sufficiently small.

Theorem 7.5. Let f ∈ L2(Ω) and h ∈ H
1
2 (Γ ), satisfying h · n = 0 on Γ and the compatibility

condition (7.2). Then problem (NST ) has solution (u,π) ∈ H 2(Ω) × H 1(Ω). Moreover, we
have the following estimate:

‖u‖H 2(Ω) + ‖π‖H 1(Ω) � C
(‖f ‖L2(Ω) + ‖h‖

H
1
2 (Γ )

)
.

Proof. According to Theorem 7.3, there exists (u,π) ∈ H 1(Ω)×L2(Ω) solution of (NST ). So,

(u · ∇)u belongs to L
3
2 (Ω). Thus, f − (u · ∇)u ∈ L

3
2 (Ω) and satisfies the following condition:

∫
Ω

f · β dx − b(u,u,β) −
∫
Γ

h · β dσ = 0. (7.5)

Furthermore, u satisfies the following problem:

{−�u + ∇π = f − u · ∇u and divu = 0 in Ω,

u · n = 0 and
[
2D(v)n

] = h on Γ.
(7.6)
τ
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Thanks to Theorem 4.1 we deduce that u belongs to W 2, 3
2 (Ω). Thus, ∇u ∈ W 1, 3

2 (Ω) ↪→ L3(Ω).
Therefore f − (u · ∇)u ∈ L2(Ω) satisfying again the condition (7.5). As consequence, we apply
again Theorem 4.1, we deduce that (u,π) ∈ H 2(Ω) × H 1(Ω) solves (7.6). �
Appendix A

In this appendix we give the proof of Lemma 2.1. The main idea is to use the local coordinates
(similar to Theorem 3.1.1.1 in [9]) and the density of D(Ω) in W 2,p(Ω). Let v ∈ D(Ω) and let
us start by calculating a gradient of v on the boundary.

∇v =
2∑

�=1

∂v

∂s�
τT

� + ∂v

∂n
nT

=
∑
�,k

(
vk

∂τ k

∂s�
+ ∂vk

∂s�
τ k

)
τT

� +
2∑

�=1

(
∂(v · n)

∂s�
n + v · n ∂n

∂s�

)
τT

�

+
2∑

k=1

(
∂vk

∂n
τ k + vk

∂τ k

∂n

)
nT +

(
∂(v · n)

∂n
n + v · n∂n

∂n

)
nT .

As a consequence,

(∇v)n =
2∑

k=1

(
∂vk

∂n
τ k + vk

∂τ k

∂n

)
+ ∂(v · n)

∂n
n + v · n∂n

∂n
. (A.1)

Therefore,

[
(∇v)n

]
τ

=
2∑

k=1

(
∂vk

∂n
τ k + vk

(
∂τ k

∂n

)
τ

)
+ v · n∂n

∂n
. (A.2)

Note that ∂n
∂n · n = 0, then we have

(∇v)T =
2∑

�,k=1

τ �

(
vk

(
∂τ k

∂s�

)T

+ ∂vk

∂s�
τT

k

)
+

2∑
�=1

τ �

(
∂(v · n)

∂s�
nT + v · n

(
∂n

∂s�

)T )

+
2∑

k=1

n

(
∂vk

∂n
τT

k + vk

(
∂τ k

∂n

)T )
+ n

(
∂(v · n)

∂n
nT + v · n

(
∂n

∂n

)T )
.

Since ∂n
∂sk

· n = 0, we deduce that

(∇v)T n =
∑
�,k

τ �vk

(
∂τ k

∂s�

)T

n +
2∑

�=1

τ �

∂(v · n)

∂s�

+
2∑

nvk

(
∂τ k

∂n

)T

n + n
∂(v · n)

∂n
. (A.3)
k=1
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Then,

[
(∇v)T n

]
τ

=
2∑

�,k=1

vk

((
∂τ k

∂s�

)T

n

)
τ � +

2∑
�=1

∂(v · n)

∂s�
τ �. (A.4)

Adding up equality (A.2) to (A.4) we obtain

[
2D(v)n

]
τ

=
2∑

k=1

∂vk

∂n
τ k + vk

(
∂τ k

∂n

)
τ

+ v · n∂n

∂n

+
2∑

�,k=1

(
vk

(
∂τ k

∂s�

)T

n

)
τ � +

2∑
�=1

∂(v · n)

∂s�
τ �. (A.5)

But we know that

(
∂v

∂n

)
τ

=
2∑

k=1

∂vk

∂n
τ k + vk

(
∂τ k

∂n

)
τ

+ v · n∂n

∂n
,

and

∇τ (v · n) =
2∑

�=1

∂(v · n)

∂s�
τ �,

which implies that

[
2D(v)n

]
τ

=
(

∂v

∂n

)
τ

+ ∇τ (v · n) +
∑
�,k

vk

∂τ k

∂s�
· nτ �. (A.6)

In addition, because τT
k · n = 0 on Γ , we have

∑
�,k

vk

∂τ k

∂s�
· nτ � = −

2∑
k=1

vk

2∑
�=1

τ k · ∂n

∂s�
τ �

= −
2∑

�=1

(
2∑

k=1

vkτ k · ∂n

∂s�

)
τ �

= −
2∑

�=1

(
vτ · ∂n

∂s�

)
τ � = −Λv.

Therefore, we have

∑
vk

∂τ k

∂s�
· nτ � = −Λv.
�,k
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Since Ω is of class C2,1, we see that ∂n
∂s�

∈ W 1,∞(Γ ), � = 1,2. Hence, using (A.6), (A.7) and the

density of D(Ω) in W 2,p(Ω), we obtain (2.4).
In the other hand, we know that

curlv =
2∑

k=1

∂v

∂sk
× τ k + ∂v

∂n
× n.

As consequence, we have

curlv × n =
2∑

k=1

(
∂v

∂sk
× τ k

)
× n +

(
∂v

∂v
× n

)
× n.

Now, in general

(u × v) × w = (u · w)v − (v · w)u.

Using this equality, we have

curlv × n =
2∑

k=1

(
∂v

∂sk
· n

)
τ k − (τ k · n)

∂v

∂sk
+

(
∂v

∂n
· n

)
n − ∂v

∂n

=
2∑

k=1

(
∂v

∂sk
· n

)
τ k +

(
∂v

∂n
· n

)
n − ∂v

∂n
.

On other hand, we have

(
∂v

∂n
· n

)
n − ∂v

∂n
= −

(
∂v

∂n

)
τ

.

Consequently,

curlv × n =
2∑

j=1

(
∂v

∂sj
· n

)
τ j −

(
∂v

∂n

)
τ

=
2∑

j=1

(v · n)

∂sj
τ j − Λv −

(
∂v

∂n

)
τ

. (A.7)

In conclusion, since Ω is of class C2,1, we can pass to the limit in (A.7) and we obtain equality
(2.5) in W 2,p(Ω).
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