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1. Introduction

The Ginzburg—Landau equation [14,15] is one of the most-studied nonlinear equations in
physics. It describes a vast variety of phenomena from nonlinear waves to second-order phase
transitions, from superconductivity, superfluidity, and Bose—Einstein condensation to liquid crys-
tals and strings in field theory. The Ginzburg—Landau equation with fractional derivatives was
suggested in [41] and studied in [39] and [40], where it is used to describe processes in media
with fractal dispersion or long-range interaction.

This new type of problem has rapidly become a focus of interest since the fractional deriva-
tive and fractional integral have a wide range of applications in finance, fluid dynamics, physics,
biology, chemistry and other fields of science. One encounters them in the theory of sys-
tems with chaotic dynamics [35,42]; pseudochaotic dynamics [44]; dynamics in a complex
or porous medium [10,30,37]; random walks with a memory and flights [28,36,43]; obstacle
problems [6,34] and many other situations. Recently, fractional partial differential equation ver-
sions of some of the classical equations of mathematical physics have been studied, including
the fractional Schrodinger equation [9,12,13,16,18-20,29], the fractional Landau—Lifshitz equa-
tion [17], the fractional Landau-Lifshitz—Maxwell equation [31] and the fractional Ginzburg—
Landau equation [25,27,39]. Furthermore, many recent studies of fractional derivative problems
arise from probabilistic or purely mathematical considerations (see [1-3,5,11], for instance). Un-
fortunately, the fractional derivative (nonlocal) term sometimes makes it necessary to apply tools
that are non-traditional when only dealing with local smooth equations.

Here, we consider the following fractional complex Ginzburg—Landau equation [21,32]:

uy = pu — (1 +iv)(=A)%u + f(u), xeR", >0, (1.1

with the initial condition and the periodic boundary condition:

u(x,0) =uop, x eR", (1.2)
u(x +2mwe;, t) =u(x,t), xeR", >0, i=1,2,---n (1.3)
wheree; (i =1,2,---,n)is an orthonormal basis of R”. Here, «, v, and p are real constants with

p>0and a € (1/2,1), and f is a nonlinear function, for instance f(u) = (1 +iw)|u|*°u with
o > 0. For convenience, we sometimes write it as f = f(u, u), and in the various lemmas that
follow we assume f satisfies some of the following conditions:

Re f (u, )it < —P1|ul*’*> +y1, (1.4)

Re fu[VI* +Re fi(V)? < =B [ul* [VI* + [u]* 2 (he V) + As GV)?),  (1.5)
max{| ful, | fal} < Ba2lul* + 12, (1.6)

max{| fuul. | fual. | faal} < B3lul®* " + 3, (1.7)
| f G, i)| < Balul ! + ya, (1.8)

for u € C and V € C", where o, B;, and y; (i = 1,2, 3, 4) are positive constants, B, is a pos-
itive constant depending on o, A, is a complex constant depending on o, and (V)? =V .V =
>I_; V2, (which is not an inner product on C").
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In particular, we include the special but important case with f(u) = —(1 4 i) |u|*“u.

The condition we place on « is from the derivation of the fractional Ginzburg-Landau equa-
tion (see [39]). Mathematically, it is a necessary condition for our analysis to derive inequali-
ties (3.15) and (3.22) (using the Gagliardo—Nirenberg inequality) in the proofs of Lemmas 3.3
and 3.4, which establish our a priori estimates for the solution. We would like to point out that
the standard complex Ginzburg—Landau equation (for « =1 in (1.1))

up=pu+ (1+iv)Au— (1 +ip)|ul*u, (1.9)

which has been the object of intense study (see [4,7,8,12,22-24,33]), satisfies the conditions
(1.4)—(1.8).

In a recent paper [21], the authors studied (1.1)—(1.3) with spatial dimension two and with
the special pure power nonlinearity. They proved the well-posedness and studied the asymptotic
behavior of the solutions, proving the existence of the global attractor. Estimates of the Hausdorff
and fractal dimensions for the global attractor were also obtained.

In this work, we study (1.1)—(1.3) with the more physically relevant spatial dimension three,
again proving well-posedness and examining the long-time behavior of solutions. In three dimen-
sions the constraints in the Gagliardo—Nirenberg inequality (Sobolev interpolation inequalities),
make the L2-norm estimate of higher order derivatives of the solution more challenging.

Usually to derive the necessary a priori estimates, one proves the boundedness of |u||, | Vu||,
and || Au|| successively (e.g. [21], etc.). Here, to obtain the boundless of ||Au||, a technical step

. Ita . .. o
(see Lemma 3.3) is to show that ||(—A) 2 u]|| is bounded under a more restrictive condition on o,
namely,

o <3/Q2—a)— 1.

Once we obtain these estimates, the existence of global smooth solutions is established through
Galerkin’s method. We also prove the existence of the global attractor and obtain estimates for
its Hausdorff and fractal dimension.

The rest of this paper is organized as follows. In Section 2, some notation and preliminary
results are introduced. In Section 3, a priori estimates are derived, and a bounded absorbing set
is obtained. In Section 4, using Galerkin’s method, the existence of global smooth solutions is
established, uniqueness of solutions and the continuity of the semigroup of solutions are proved.
In Section 5, the existence of the global attractor and estimates for its Hausdorff dimension and
fractal dimension are obtained.

2. Preliminaries and notations

If u is smooth and 27 -periodic in each of the three coordinates, it can be expressed by a
Fourier series u = Y uge!%*) . It follows that Uy; = > ikjuke‘<k’x> (j=1,2,3),and (—A)*
kezZ3 kezZ3
is defined by

(—A)‘xu — Z |k|2auk€i<k'x).
kez?

Let Q =[0,27] x [0,27] x [0,27] C R3 and let H? = HF (£2) denote the Sobolev space of
order 8 equipped with the norm:
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1
2
luell gy = (Z kP >+ |uk|2) :

keZ3 keZ3

We denote by H 5 those functions that are 2 -periodic in all the coordinate variables and when
restricted to €2, lie in H#(£2). Throughout this paper, we denote by (-, -) the usual inner product
in L2 =L%(2; C), || - || g the norm of Sobolev space H"(2),and ||-llg = Il lLa (@), 1 < g < o0.
In the forthcoming discussion, we use T to denote an arbitrary positive constant, and use ¢; (j =
1,2, ---) to denote different positive constants which depend on the constants p, v, «, and the
constants appearing in the constraints on f. In addition, the following embedding theorem [26]
is frequently used.

Theorem 2.1. Let 2 C R" be a bounded domain having the cone property and let u € L7(S2)
and its derivatives of order m, D™u, belong to L" (), 1 < gq,r < oo. For the derivatives D’ u,
0 < j < m, the following inequality holds

IDullLe < c(ID™ullLr + ullza)? llull},?, (2.1)

where

1 1 m 1
—==4+0(-——)+U-0)-
p n r o n q

for all 6 in the interval

<6<l

3 |~

(the constant ¢ depending only on n, m, j, q, r, and 0), with the following exceptional case:

* If 1 <r < oo, andm — j —n/r is a nonnegative integer then (2.1) holds only for 0 satisfying
j/m<0<1.

Of course, we will be concerned with the case when n = 3. The following lemma (Uniform
Gronwall Inequality [38]) will also be used.

Lemma 2.1. Let g € R and let y(t), g(t), and h(t) be three nonnegative locally integrable
functions on (ty, 00). Suppose that y' is locally integrable on (ty, 00) and satisfies

Yt =g)y@® +h(t)  forallt >t

and
t+r t+r t+r

/y(s)ds <, /h(s)dsfal, /g(s)dsfaz forallt > 1y,

t t t

where r, ag, o1, and oy are positive constants. Then we have

(7)) o
y(it+r)<(—+ape®?, forallt>t.
r
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Finally, the following result [38] will be used to establish the existence of the global attractor
of (1.1)—(1.3).

Theorem 2.2. Suppose that E is a Banach space and {S(t)};>0 is a semigroup of continuous
operators that map E into itself and enjoy the usual semigroup properties:

S()-S(t) =S+ 1), S0 =1,
where I is the identity operator. Also suppose that the operator S(t) satisfies

(1) S(¢) is bounded, i.e., for any given R > 0, if ||ug||g < R, then there exists a constant C(R)
such that

IS(Huollg < C(R), fort €0, 00);

(ii) There is a bounded absorbing set By C E, i.e., for any given bounded set B C E, there
exists a constant T = T (B) such that

SH)Bc By, fort>T,
(iii) S(t) is a completely continuous operator for t > 0 sufficiently large.
Then the semigroup {S(t)}+>0 of operators has a compact global attractor A C E.
3. A priori estimates

In this section the main goal is to obtain a priori estimates of the solution to problem
(1.1)~(1.3). In what follows, for brevity, we write [ F to denote [, Fdx.

Lemma 3.1. Suppose that ug € L%(Q) and f satisfies (1.4). For the solution u(t) of (1.1)—(1.3),
we have

t
lulf? + / 7 (22 Full + prlul3s 3) ds < e Mol + Cj < o, orall 1 =0,
0

t
Jim ||u||2+/ef’“"> (2||<—A>%u||2+ﬁ1||u||§§i§) ds | < Cp, 3.1)
0

where

1
30 3p a2y
Eo=|u 2+C’ and C),= < ) + —.
0 || 0|| 0 0 o+ 1 ﬁl(a‘i‘]) 0
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Proof. Taking the inner product in L? of (1.1) with u and taking the real part, we obtain
ld, <2 2 -
Eallull +I1(=2)2ull” = pllul”+Re | fu)u. (3.2)
Applying (1.4), we see that

Re/f(u)ﬁ <-Bi / |2 4+ 119

By Young’s inequality,

1

30 3p 3
3pllul® =3 /u2< /uz”+2+ < ) Q.
ollull o lul”=<p | |ul 'Oa+1 FCES)) [€2]

Then (3.2) implies

1
d « 30 3p T 2y
—Jlull® +20(=2) 2ull* + B / |2 4 pllull* < p + =)
dt o+1 P

Bilo+1)
=pC}, (3.3)
and so
5
Jul + [ 670 (212 5ulP + il 3) ds = e fuol? + € < Eo.
0
Therefore,
t
T ( ful® + f 0 (2=t tul? + prlul3g ) ds | <. o
0
Remark 3.1. In particular, for f(u) = —(1 + ix)|u|?® u, one obtains the same result.

Corollary 3.1. For any given Co > Cy and R > 0, if luoll®> < R and f satisfies (1.4), then there
exists to = to(R) such that

R
Co—C(/).

1
lull> < Co, forallt>19=—1In
p

Lemma 3.2. Suppose that ug € HI%(Q). If f satisfies (1.4) and (1.5), and if Bo <2|As|, then the
solution u(t) to (1.1)—(1.3) satisfies

t

||Vu||2+/ep“ D(=2) T ul® < | Vuol? +<Cl+p)(lluoll +Cy) 2 Ey,
0
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and

t
—_— o 1
lim ||vu||2+/ep<s—’)<||(—A)%lu||2)ds 52<c1+—>cgécj.
0

—>0o0

Proof. Taking the inner product in L2 of (1.1) with —Au and taking the real part, we obtain
1d 2 axl 02 2
EEIIVMII +I1(=4) 2 ull” = pl[Vull” —Re(f (u), Au). (34
Integrating by parts and using (1.5) gives
—Re(f(u), Au) = Re/(fu(u)|Vu|2 + fa(m)Vi - Vﬁ)
< [(=Bolul 19l 4+ WP 200 9 + 7 0V0?))
< [ WP (=B PIVUP + e ViD? 4+ 50
= / |u|*Dirace(Y MY H), (3.5)
where
_ H
Y:(“V'f> , M:(i%“ *g >
uVi A B

and Y# is the conjugate transpose of the matrix Y. We observe that the condition B, < 2|A|
implies that the matrix M is nonpositive definite. From (3.4), we get

d atl
IVl 4 201(=2)F ) < 20]|Vul®. (3.6)
Using (2.1) and Young’s inequality, we have

atl
3ol Vull®> < [(=A) = ul® + (pey + Dlul?, (3.7)

where

3ca 6p ¥
c1= .
! a+1\a+1
Combining (3.6) and (3.7), we infer that

atl
2

d 1
EHVM”2 F1(=2)"T ull* + pl Vull? < (per + D fJull. (3.8)

Multiplying (3.8) by e”’, integrating with respect to ¢ and applying Lemma 3.1, we deduce that
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t
||W||2+/ep“ I(~a)F ull® < e | Vuo|? +<c1+ >(|Iuo|| +Co)(1—e™"")
0

SIIVuo||2+<Cl+ )(Iluoll +Cp 2 (3.9)

Therefore,

t

Tim ||Vu||2+fep“—’>(||< 2% ul?) ds 52(C1+ )C()ACI =
—00
0

Remark 3.2. For f(u) = —(1 + iw)|u|*"u, taking B, = (0 + 1) and Ay = o (1 +ipn)/2, we
obtain the same result under the condition

1
o >

VIS

Corollary 3.2. For any given C1 > C| and R > 0, if ||M()||2 <R, if f satisfies (1.4) and (1.5),
and if Bo < 2|As|, then there exists t| = t1(R) > ty such thatp

IVull> <Cy, forall t>1.

Lemma 3.3. Suppose that ug € H;'H"(Q). If f satisfies (1.4)—(1.6), and if o <3/2 —a) — 1,
then the solution u(t) of (1.1)—(1.3) satisfies

II(— A) u|| <max{o1, El}—Eforall t>0,
where
By = e (1(—=8) F uol? + ),

for some constants a} (j =1,2) and o1, defined in the proof below.

Proof. First, we estimate ||u ||2Zi§ Taking the inner product in L2 of (1.1) with 2(c + 1)|u|*“u
and taking the real part, we obtain

d .
3553 =20 + 1) (plul35 13 —Re(t +iv) (=) u. ulu) +Re (@), lu*"u))
(3.10)
By Young’s inequality, one has

(1412
B1

—2Re(1 +iv) (=), [uu) < I(=2)%ull® + Billul i3,

Applying (1.4), we see that
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2Re (f ), 1) < =281 [ull 4513 + 20 ul35.

Then, (3.10) implies

d 2
+2 20+2 4o+2
E”u”zg_;_Z + pllullyg 15 + Bilo + Dllullzg 15

_ o+ D +v?
N B1
_ o+ D +v?)
- B1

I(=2)ul® + oo + 3)ull32 13 + 21 (0 + Dllul3s
a2 2042
I(=2)%ul* + (020 +3) + 2010) |ul3553 + 2111€2I.

Multiplying the above inequality by e’ and integrating with respect to 7, we have

t
- 4042
lul3333 + Bi(o+1) f e’ |ul|37 1 3ds
0

t
_ (0 + D(1+1?) _
<e f”||u(0)||§zi§+T / S0 (—2)*u)ds
0

t
2111
+(p(za+3)+2yla)/ep<s—f>||u||§g1§ds+ ’“’J '. (3.11)
0

For the second term on the right-hand side of (3.11), by (2.1) and the Young inequality, we have

2(1—a)

atl Ao a+l
1= ul® < c((=2) 7 ull + ul)e flul e < c(l(=2) 7 ull® + [ul®).

Applying (3.1) and (3.9), we have
A E
/ "0 (=AY ul2ds < c(E1 + —2). (3.12)
0
0

So, by (3.1) and (3.12), (3.11) implies

t
113253 + Br(o+1) / e? S0 |lu |31 3ds
0

B c(o + 1)1 +? E 29112
<e P’||u(0>||%gi§+%(Ew;o)+(p<2o+3>+2mo>Eo+ nie
1

clo+D(1+1?) Ep 21119
s||u(0>||§gi§+T<E1+7>+<p(20+3>+2ma)Eo+ p £ Eb.

(3.13)
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Next, we estimate ||(—A)#u||. Taking the inner product in L? of (1.1) with (—=A)1 Ty and
taking the real part, we obtain

) Ful = 200~ + 20l = Re (@), (~8) )
(3.14)

Integrating by parts, applying (1.6) and (2.1), and using the Holder, Young, and Gagliardo—
Nirenberg inequalities, we infer that, when

oc<3/2—-—a)—1,
2Re (), (1) u)
<20(fu )V + fi(u)Vid, (=A) 2 )|
54’32/ P Vull (2] +4y2/ IVul|(—A) 2+

1
<4(Ballull? + y) I (—2) 2 ul|||Vu]|

SEII( A)2+O‘ull + 16(B3 ull ¥ + ) [ Vul?
1 ta P 4001 4o (1-6)) 2
SEII( A)Z ull® 4+ 16¢B3 [ V)l (11(— NS u|I+I|ullza+2 [2(psevey + 1631 Vul|
1 atl
SEII( A)2+°‘u|| + 16¢B3 I Vul*[(=2) 7 ul*
o6 41(1 961)
+16c(B5 + ) | Vul)? ( (1+<1—ael><8091)—1091>||u||2;+“21 ) (3.15)
where
3
6 = .
Qa—1o +2(+1)
‘We also obtain
2(1+IJ) 2 1 1 ) )
2p|I(— A) “ul? <2€p(|l( A)2+°‘MII+I| II) [|ae]] 2241 SEII(—A)fJ”"uII + e lull”,
(3.16)
where
1 204l O 4(a+1) ot
CH = o
) 20+ 1\ 2a+1

Combining (3.14)—(3.16), we deduce that
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Lt Lt
2 2

d o 1 «
=2 wl? + (=2 2u)? <h()(=A) 2 ull* + g(@), (3.17)
where
atl
h(t) = 16¢B5 | Vul*(—2) 2 ull?,

and

- 40(_1(;6])
g(t) = 16¢(B3 + v Vul® (1 + (1 + —oeo(&rel)—lwl) el 45 ) +eollull®.

Dropping the third term on the left-hand side of (3.8), integrating from ¢ to ¢ + 1, and applying
Corollaries 3.1 and 3.2, we infer that

t+1 t+1

a+1
f||<—A>%u||2dss||W||2+/(pc1+1>||u||2dsscl+(pc1+1)coéao for 1 > 1.
t t

So, by Corollaries 3.1 and 3.2 and (3.13), we obtain, for any ¢ > #1,

t+1
/ h(s)ds < 16¢B3Crap 2 a;
t

and

t+1
20 (1-6))

0 _20(1-6y)
/ g(s)ds < 16c(,322 + 7/22)C1 (l + <1 4+ (1 —061)(8c06)) 7% ) Eé("""l)“’“)) +2Co £ ay.
1

Then using the Uniform Gronwall inequality (Lemma 2.1), we obtain

||(—A)1+Tau||2 < (ag+ap)e®? & 01, foranytr > ti =1n+1. (3.18)
For 1 <1/, integrating (3.8) with respect to 7 from 0 to 7, and applying Lemmas 3.1 and 3.2, we
obtain

t
at+l
/u(—A) T ull*ds < |[Vuoll* + (per + D lull* < E1 + (per + Dt} Eg = o).
0

So, by Lemmas 3.1 and 3.2 and (3.13), we obtain, for any ¢ < t{,

'
/h(s)ds < 166,3%5'()016 £ af,
0
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and

t
a6y 20 (1-061)
/g(s)ds < 16¢(83 + )t  Ex <1 + (1 +(1—061)(806;) o0 ) Eéi“—“"l)(”“))
0

+ cot i Eo2 aé.
Applying Gronwall’s inequality, for any r < r{, we infer

t
1ta Ty (e It
1(=2) 2 ul? < o " [ (—n) 5 ug|? + / g(s)ds
0

< e (I(-0) Fupl® + ) £ Ei. (3.19)
Combining (3.18) and (3.19), we have
||(—A)1+Tau||2 < E= max{o1, El}, for any ¢ > 0.
This completes the proof. O

Remark 3.3. For f(u) = —(1 +iu)|u|?? u, the same result can be established under the condition

1 3
<——1

V1+p2-1 2-«a

Corollary 3.3. Suppose that ug € H;*'“ (). If f satisfies (1.4)—~(1.6), and ifo <3/2 —a) —1,
with c3 the constant associated with the embedding of H'** into L, then one has

lull®, < c3(Eo+ E) 2 Eqo forall t>0.

Therefore, if ||uo||?11+a <R, then

lull3, < c3(Co+01) £ Coor  forallt >1].

We would like to poig\t out that, in Corollary 3.3, one has Co, < E~, Which follows from
Co C(/) < Ep and o1 < E that can be derived from Lemma 3.1, Corollary 3.1 and Lemma 3.3.

Lemma 3.4. Suppose that u € sz(Q). If f satisfies (1.4)—(1.7) and if o > 1/2, then the solution
u(t) of (1.1)—(1.3) satisfies

t
| Aull® + f SN (=) 2u | < |Auol* +
0

2B+ c4Ep A E
- — L),

and
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t
_ ) a 2B’ + ¢5C),
fm [ faul? +/ep<“’> (I=2)*5up?)as | < =202 ),
11— 00 IO
0

where the constants B, B’, c4 and cs are given in the proof of this lemma.
8 4

Proof. Taking the inner product in L2 of (1.1) with A%y and taking the real part, we obtain

1d @
S bul? 4+ 1) Ful = pl Aul? +Re (£ @), 2%). (3.20)
Integrating by parts and applying (1.6) and (1.7), we deduce that

Re (f(u), Azu)
=Re (fuu(u)VMVM + 2 fua @) Vul® + fa@)ViVi + fou)Au + fa(u)Ai, AM)

s4ﬂ3/|u|2””|Vu|2|Au|+4y3/|W|2|Au|+2ﬁz/|u|2”||Au|2+2yz/|Au|2.

(3.21)

Applying Holder, Gagliardo—Nirenberg, and Young inequalities, we obtain the following esti-
mates when o > 1/2,

4ﬁ3f|u|2”—1|Vu|2|Au|+4y3f|W|2|Au|
2 20—1 2
< 4831 Au |Vt 222 + 4y | Vul 2] A

< llaull® + 883 I Vulldull22° =Y + 8y Vull}

da+l

3
< laul? + (10" Sull + 19ul) T IVul (8083 ul327) + 8er)

1 .
< llaul* + Z||(—A>1+2u||2+A, (3.22)

where

3
20 — 1 12 \ 21 Aeth 264t 1
S —— 8cB2||ul|2? D 4+ 8¢ 2) “ Vul| 2T + —||Vu|?.
e <a+1> (G v3) Il Z1vul

A direct application of Lemma 3.2 and Corollary 3.3 gives

2atl)  4g41 1

20—1 2a—1 A
E{"+ JE1 =B,

200 — 1 ( 12

3
2a—1
< QeB2E2 1 1. g 2)
= 3@TD oz—{—l) (6,33 ~  +8cy;

For the last two terms on the right-hand side of (3.21), we obtain
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2/32/ |u|* || Au)? +2V2[ |Aul? <2 (2 + BEL) || Au?.

By (3.21)-(3.23), we have

1 1 o
Re (£, 2%u) <2 (5 +r+ ﬂzEgo> l8ull® + 21 (=)l + B.

Putting (3.24) into (3.20), we obtain

d 2 3 1+2 12 o 2
EHAM” +§||(—A) ull* =2(1+p + 22+ 2B2E )| Aul” + 2B.

Applying the Gagliardo—Nirenberg and Young inequalities, we deduce that
(2+3p +4y2 +4BEL) | Au?
< c@+ 3p+dp+ 4822 (I Sull+ ) 7 a5
< SRl + ealul?,

where

2
ca 8 o 240 1
=— | — 243 4 4B,E° )7 —.
C4 2+a<2+a) 2+3p+4n+4BEL) +

[\

Then (3.25) can be rewritten as
d 2 1+% 12 2 2
EIIAMII +1(=2) " 2ull"+pllAull” <2B + callul|” < 2B + c4 Ep.

Multiplying (3.26) by e’ and integrating with respect to ¢, one has

t

o ZB +C E
lAu)? + / P (=) FEu|? < e P! | Ao + 220
0
2B + c4E
<|lAug|? + =220 2 |y
ol
and
o ; . 2B’ + ¢sC!
fim | [|Aul? +/e”“—’> (||(—A)1+7u||2)ds <—22(,
1—>o0 P
0

where

5289

(3.23)

(3.24)

(3.25)

(3.26)
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3 o
et () e o) T e e
and
ca 8 @ 240 1
C5=2+a (Z—i——a> Q24+3p+4+4B2C) = +§. |
Remark 3.4. For f(u) =—(1+ i,u)|u|2”u, we have the same result under the condition

1 1 - 3
max|-=, ———— (<0 < —— —
x 2 J14+p2—-1 2—-«o

Corollary 3.4. For any given C; > C} and R > 0, if ||u()||§12 <R, if f satisfies (1.4)—(1.7), and
P
if o > 1/2, then there exists t, = tr(R) > t{ such that

lAu|® < Cy,  forall t > to.

Lemma 3.5. Suppose that ug € Hy(RQ) with |luo|l3, < R. If f satisfies (1.4)~(1.7), then the
solution to (1.1)—(1.3) satisfies '

(=)' 2u)? < (& + B)e* £ C5 forall t > 1r(R) + 1,
where constants o, and By are given in the proof of this lemma.
3

Proof. Taking the inner product in L2 of (1.1) with (—A)?*%u and taking the real part, we obtain

1d

SN Rl 4 =)l = pl =) Ful + Re (£ ). (=2)7* ).

(3.27)

Integrating by parts and applying (1.6) and (1.7), we deduce that
Re (@), (—8)*"u)
—Re (f;(u)ww F 21 @)Vl + £ )Vavi + £ du + fiu)Ad, (—A)1+°‘u)
54/33/|u|2"*‘|W|2|(—A>‘+“u|+4y3f|W|2|(—A)‘+°‘u|
+2ﬁzf|u|2”||Au||<—A>‘+“u|+2yz/|Au||<—A>1+°‘u|. (3.28)

Applying the Holder, Gagliardo—Nirenberg, and Young inequalities, one has
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4ﬂ3/ |2 Va1 (=) ) + dys / IVul|(—2) Ful

< 4Bl IVulZ I (= 2) Ul + 4y | Va1 (= 2) |

IA

Bl— B — A

=) el 4+ 32 (Bl + v2) I Vul

IA

=2l +32¢ (B3 1ul227 0 + y2) ully,

IA

For the last two terms on the right-hand side of (3.28), we obtain

2ﬁzf|u|2”||Au||(—A)‘+“u|+2yz/|Au||(—A)‘+°‘u|
=2 (BalluliZZ +2) I 8ull (=) Fu]
=) el + 8 (B3Iulis) + v2) 2wl

<

=

N N

||(—A)l+au||2+8<,322ng+y22) C%, forall t > t.

Then the second term on the right-hand side of (3.27) is controlled by

B

Re (@), (—8)*u) < %n(—m“"fuu2 +

where
Br =64c (32" +y2) (Co+C2)* +16(B2C2% +y2) 2.
Putting (3.31) into (3.27), we obtain that
d o @
En(—m”zun2 F (=) u)? < 2p )1 (=2)F 2ul* + By.

By Lemma 3.4, one has

t+1
/ I(=2)"*2u))? < Co + 2B + c4 Eg 2 o
t

Using the Uniform Gronwall inequality (Lemma 2.1), we obtain

[(=2)"*5ul? < (@b + B 2C3, foralli>n+1. O

(=) + 32¢ (ﬁgcgg—l + y32) (Co+C2)?,  forall 1 > 1.

5291

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)
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4. Existence and uniqueness of solution
In this section, our aim is to establish the existence of a weak solution to (1.1)—(1.3) by us-
ing the Faedo—Galerkin method. Throughout this section 7 > 0 is a fixed time. The following

lemmas [13] are crucial for our main result.

Lemma 4.1. Let X, X and X be three Banach spaces with Xo C X C X1 and X;, i =0, 1
reflexive. Assume that X is compactly embedded in X. Let

, do
W={welL?0,T;Xp):0 = o e LP1(0,T; X))},
where 1 < p; <00, i =0, 1. Then with the norm
lwllLro,7:x0) + Il Lr10,7: 1)
W is compactly embedded in LP°(0, T'; X).
Lemma 4.2. Let X be a Banach space. Assume that € L? (0, T; X) and dy/dt € LP(0,T; X)
for some p € [1,00]. Then v € C([0, T]; X), after possibly being redefined on a set of measure
zero.
Theorem 4.1. Suppose that ug € HI%(Q). If f satisfies (1.4)—(1.8), if Bo <2|As|, and if 1/2 <

o <3/(2 — &) — 1, then there exists a unique global smooth solution u =u(x,t) to (1.1)—(1.3)
such that

uel™® (0, T Hg(sz)) and u, € L (0, T; L9(Q)), 4.1y

with g =1+ ﬁ Moreover, (1.1) and (1.3) define a continuous dynamical system S(t) on
H[%(SZ), and has a bounded absorbing set By C HI%(Q).

Proof. There are two parts for the proof. In the first part, the existence of a solution to problem
(1.1)—(1.3) is established. In the second part, we prove uniqueness.

Part I: Existence of solutions

Using the Faedo—Galerkin method, we construct approximate solutions to the problem. Given
a positive integer m, one can find a function u,,, = u,,(t) of the form

m
un() =Y dhOor, o=, (42)
|k|=0
where the coefficients d,’fl (), for0<t<T,l|k|=0,1,2,---,m, are chosen so that

(ttyys k) = P, 0k) — (1 +10) (=) "t k) + (f (), i), 4.3)
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and
m(0) = tom € X =span{ox}ff—g. Uom — uo in Hy asm— oo. (4.4)

Note that (4.3) is a system of nonlinear ODEs subject to the initial condition (4.4). Since we
are working in H [% C C(€2), the nonlinearity is locally Lipschitz in X,,. According to standard
existence theory for nonlinear ordinary differential equations, there exists a unique solution of
(4.3)—(4.4) for 0 <t < ty,. The a priori estimates for u,, are similar to those for «, following the
same proof, and so we can take ¢,, = T, independent of m. To illustrate this we follow the proof
of Lemma 3.1 to obtain uniform estimates.

First, we show that u,, is uniformly bounded in L*°(0, T'; L3(Q)).

Multiply equality (4.3) by d,’; (t),sum |k|=0,1,2,...,m, and recall (4.2) to discover

Uy s i) = P (U, ) — (1 4+ 10) (=) s, i) + (f (U), th) - 4.5

Taking the real part, we obtain

1d 2 ¢ 2 2 -
5 g 1m 1=+ W= L) 2um 1= = pllum]l +Re/f(um)um- (4.6)

Applying (1.4), we deduce

Re/ f Wit < —Bi f w272 + 1119

By Young’s inequality, one has

1

30 3p o
3p||um||2=3pf|um|2sﬂ1/|um|2"+z+p < ) €2

o+1\Bi(oc+1)

Then (4.6) can be rewritten as

1
d 2 e 2 / 2042 2 30 3p ° . 2n
- 2(=A)2 o+ < — ]I
g 1 1720 (=2)2um |7+ By [ lum 77+ pllumll” < p o1\ BT D + p €21

= pCy, 4.7)
which implies
lim 1> < e lluoll* + Co.

Therefore, one has that u,, is uniformly bounded in L*°(0, T'; L*()).
Following exactly the same argument as in the proofs of Lemmas 3.2-3.4, we obtain

1
IVum|* < | Vuol* + (cl + ;) (luol® + C}) 2 Ey .

and
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2B +c4E
A < |Aup? + =22

So we infer that u,, is uniformly bounded in L*°(0, T’; H2(Q)).
Secondly, we prove that u), € L*°(0, T; L4(2)), withg =1 + ﬁ
For for allv € L2 t2(2), we have

(U, ) = (U, V) — (1 + V) (L) U, v) + (f (Um), V). (4.8)

Applying (1.8), together with Holder inequality and Gagliardo—Nirenberg inequality, we have

|ty V)] < 1 Wy V)] + (1 + D) ((=2) s, )|+ | (f (um), v) |
< Clllum 101+ (=LY w101 + N 130 E3 10 12042 + [10]1)

< Clvll2o+2. 4.9

Therefore, u), is uniformly bounded in L*°(0, T'; L?(2)).

With these estimates, we pass to limits as m — 00, to build a weak solution of our problem
(1.1)—(1.3).

Using our uniform bound on u,,, there exists a subsequence {u};°; C {un},,_, and a func-
tionu € L*°(0, T} Hg(Q)) with u’ € L*°(0, T; L1(2)), such that

U] — U * —weakly in L*°(0, T; HIE(SZ)), (4.10)
u,, —~u' =u, *—weaklyin L>(0,T; LI (). 4.11)
And we obtain
{um}o_, is bounded in L*(0, T; Hp (), (4.12)
{u),})°°_, is bounded in L*(0, T; LY (). (4.13)

By the Sobolev embedding theorem, we infer
{um)S>_, is bounded in L*(0, T; H?(Q)). (4.14)
Let W = {v:veL*0,T; H3(Q),v € L2(0, T; LI())}. Since H3 () is compactly em-
bedded in L%($2), W is compactly embedded in L2(0, T; L*(2)) by Lemma 4.1. By (4.13)
and (4.14), u,, € W. Then, there exists a subsequence u,,; which satisfies
U] —> U strongly in L?(0, T; L*(2)) and a.e. (4.15)
Applying (1.8), (4.15) and Lemma 3.3, we infer that
F i) = f(u) x —weakly in L°°(0, T; LY(R)). (4.16)

By (4.3), fixing k, we deduce that
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(1> 01) = P (i, @) — (1 +0) (= 2) "t 1) + (f (1), ) - (4.17)

Applying (4.10), (4.11) and (4.16), we obtain that there exists a subsequence {un};° C {um}5,_
such that

(=) Uy, ) = ((—A)%u, wy) s« —weakly in L>°(0, T),
Uy, ) = (u', wg) *x —weakly in L*°(0, T),
(f ump), wr) = (f (u), wr) x —weakly in L*°(0, T).

Then from (4.17), we have
(ur, ) = p(u, o) — (1 +iv) (L) u, i) + (f (), k) -
The above equality holds for any fixed k. By the density of the basis wy, we obtain
e, @) = p(u, ) — (1 +v) (=) u, ) + (f (), ), forall p € H*(Q).
Hence, u satisfies (1.1) and (4.1). By the uniform bound on u,, and Lemma 4.2, we obtain
um € C([0, T, LY(2)).
Then, we have
U1 (0) — u(0) weakly in L7().
But from (4.4), we obtain u,;(0) — ug in H2(2). Hence, we deduce that u(0) = uo.
Part II: Uniqueness
Assume that there are two solutions # and v to the problem (1.1)—(1.3). Let ¥ = u — v. Then
Vi =p¥ — (1 +i)(=L)"Y + (fw) — f(v), (4.18)

with the initial condition v/ (0) = 0. Taking the inner product in L? of (4.18) with ¢ and taking
the real part, we obtain

ld, o CAT 2
EEIIWII + I 2Y 17 =plY " +Re (f () — f(v),u —v). (4.19)

Applying (1.6), we deduce that

1

d
fw) = f)y= [ —of0+00- v))do
0

= (Bl +61u = v)*7 + v+ 020 = 0) ) + 29 ) lu = vl,
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for some 61, 6, € (0, 1). Then by Corollary 3.3 we have

Re (f(u) — f(v),u —v) < Clly|1%, (4.20)

and so

d 2 2
— <C . 4.21
dtlll/fll =Cllyl 4.21)
Since ¥ (0) =0, we obtain ¢y =0. O
5. The global attractor and its dimensions

Next, we establish the existence of the global attractor and estimate its Hausdorff and fractal
dimensions.

Theorem 5.1. Under the conditions of Theorem 4.1, there exists a global attractor A of the
semigroup {S(t)};>0 of operators generated by problem (1.1)—(1.3), i.e., there is a set A such
that

i) S@) A=At eRH,
(i) tl_l)rgo dist(S(t)B, A) =0, for any bounded 1B C Hg(Q), where

dist(X,Y)=sup inf ||[x — y||E.
xeX €Y

Proof. It suffices to check conditions (i)—(iii) in Theorem 2.2. Define the Banach space E =
H[%(Q) and S(z) : H[%(Q) — HS(Q) the solution operator.

Setting B = {ug € H,%(SZ) : ||M0||12L,2 < R}, by the results of Lemmas 3.1-3.4 and their corol-
laries, we deduce that

IS@uolyyy =l < Eo+ Ev+ Ea,  forall £ >0,

which implies that S(¢) is uniformly bounded in HI%(Q).
By the results stated in the corollaries of Lemmas 3.1-3.4, we infer that

IS(®uolizy = lulfyy < Co+ Ci+Co, foralls = n(R).

Therefore, the set B; = {u € HI%(Q) : ||u||§12 < Co+ C1 + C»} is a bounded absorbing set for the
P
semigroup of operators S(#).
Using Lemma 3.5 and the compact embedding H §+"‘(Q) <~ H g(Q), we infer that the semi-

group of operators S(¢) : H 1% — H 3 is completely continuous for ¢ sufficiently large.
Applying Theorem 2.2 completes the proof. O

We now show that both the Hausdorff and fractal dimensions of the maximal attractor A are
finite. To the end, we first rewrite (1.1) in the abstract form:
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du
I = F(u), 5.1

where

F(u)=pu—1+iv)(=2)%+ f@w).

Let u(t) = S(t)ug be the solution to (1.1)—(1.3) with 1o € A. Then we consider the first variation
equation of (1.1)—(1.3),

v =F (u@))v, (5.2)
with the initial condition
v(0) = vo € L*(Q), (5.3)
and require v to be Q2-periodic. Here,
F'u@®)v=pv—>1+iv) (=A% + ' (w)wv.
We know that given ug € A C H[%(SZ), Sug € A C le(Q)~ Hence, applying standard

methods, we can show that for all vy € L2($2), the linear initial-boundary value problem (5.2)
and (5.3) possesses a unique solution

v(t) € L*(0, T; Hy(2)) N L®(0, T; L*(Q)),  forallT > 0. (5.4)
This then defines a solution operator Si(¢, up) such that v(t) = S1(¢, ug)vg. In addition, we can
prove that the semigroup operator S(t) is differentiable in L?(£2), and its Fréchet derivative

8§S(H)ug = S1(¢, ug). In fact, if we define u;(t) = S()(ug + vg) and

w(t) = S(1)(uo +vo) — S(Nuo — S1(z, up)vo = u1 () — u(r) — v(t),

then w(¢) satisfies

wy = pw — (1 +iv)(=A) w4+ O+ ¥,
{ w(0) =0 5.5
where
O = f(u)) — fw)— f'w(u —u),
and

V= f'(u)w.

If o > 1/2, applying Taylor’s formula for the function f at the point # and using Corollary 3.3,
we deduce that
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@] < Cluy —ul®,

Hence, taking the inner product of (5.5) with w and taking the real part, we have

1d 2 2 a2

EEIIwII = pllwl* = I(=2)2w[|” + Re(P, w) + Re(V¥, w)

< Cllwl? + Clluy —ul*.
Using an integrating factor, we infer that
t
wl? < C(t)/ luy —ul|*de for t >0,
0
for a continuous function C(¢). By an argument similar to that in the proof of uniqueness of the
solution, we deduce that for some function C(t)
lur —ul® < Cr0)|u1 (0) — u(©)* = C1 (1) |v(O)[|*.
Therefore, we have
lw* < G2 v )1,

Hence,

1S () (o + vo) = S(B)ug — S1(D)vo*
lv(0) 12

< C(D)|lv(O)|]>, forall0<t<T,

where C»(T') also depends on the data p, v, o, 0, etc., and Cop where || Al 2 < Cp. This inequal-
ity shows that the semigroup operator S(¢) is uniformly differentiable on .A. Furthermore, the
differential in L2(2) of S(¢) at ug € A is S (¢, ug) : vo € L2(2) — L3(), vy — S1 (¢, uo)vo.

For any given positive integer m, we consider {vo1, vo2, -+, Vom} C LZ(Q) being linearly
independent, and the corresponding solutions vi(¢) = S1(¢, ug)vor, v2(t) = S1(¢, ug)voz, - -,
U (1) = S1(¢, ug)vom, of (5.2) and (5.3). Then it follows from (5.2) that

t

[VI@) A AV (D) amp2 = V©O1) A=+ AVOm) | Amp2 €XP fReTr(F/(u(T)) o Qn(t)dr |,
0

where Q,,(t) = O (7, ug, vo1, Vo2, - - -, Vo) is the orthogonal projection in L2(§) onto the

space spanned by vi(7), v2(1), - -+, U (7). At a given time 7, let {{;(7)} € L2(Q), j €N, be
an orthonormal basis of L2(2) with Y1(t), Y2 (1), - - -, ¥ (T) spanning the subspace

O (T)L? = span{vi (v), v2(7), - - -, U (T)}.

We see that v (1) € HY () for a.e. T from (5.4), so Yi(t) € H! (2) for a.e. t. Hence, we obtain
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ReTr(F'(u(t)) 0 Qum(1)) = ) Re (F'(u(1)) 0 Qum(D)¥; (1), ¥;(7))

™

~
I
—-

|

Re (F'(u(0)¥; (), ¥j(1)) .-

j=1

We deduce that

ReTrF'(u(t)) oRe (F'(u(x)¥; (1), ¥; (7)) = pllyr; 11> — ||<—A>%w,-||2+Reff’(u>|w,-|2
<P+ 12+ B2 117 = I(=2) 2 ;1%
Hence, we have
ReTrF'(u(1)) 0 Qm(7) < (0 + v+ Ballull3D) D I I* = D I =2) 211>
j=1 j=1

Since {1,@}’}‘21 is an orthonormal set in L%(2),

m

2
E I¥;ll"=m.
j=1

It follows from the Sobolev-Lieb—Thirring inequality [38] that
m
D=2 Ty = kI m T —m,
j=1

where constant « is independent of the family {; }’}1: | and the parameters of the equation. So
we infer that

ReTr(F'(u(7)) 0 Qm(T)) < (p + y2 + Bollull2)m — ic|Q|%m' .
Fori=1,2,---,mand vy; € L2, we define

t

gm(t) = sup sup l/RQTV(F/(M(T))OQm(T))dT ,

upeA v [I<1

qm = limsup gy, (t).

— o0
Then by Corollary 3.3, we obtain

Gm < icim — kym' %,

where k1 = p + y2 + B2CZ,, ko = k|2|%. This shows that if m is defined by
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1
m= (ﬂ> F1, (5.6)

K2
then g,, < 0. Hence, by the results of [38], we obtain

Theorem 5.2. Assume the conditions of Theorem 4.1 and let A be the global attractor of
(1.1)=(1.3). Then the Hausdor{f dimension of A is less than or equal to m, and the fractal dimen-
sion is less than or equal to 2m, where m is given in (5.6).
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