
Available online at www.sciencedirect.com
ScienceDirect

J. Differential Equations 260 (2016) 5481–5509

www.elsevier.com/locate/jde

Lagrangian formulation and a priori estimates 

for relativistic fluid flows with vacuum

Juhi Jang a, Philippe G. LeFloch b,∗, Nader Masmoudi c

a Department of Mathematics, University of Southern California, Los Angeles, CA 90058, USA
b Laboratoire Jacques-Louis Lions & Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 

4 Place Jussieu, 75252 Paris, France
c Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, NY 10011, New York, USA

Received 7 November 2015; revised 29 November 2015

Available online 28 December 2015

Abstract

We study the evolution of a compressible fluid surrounded by vacuum and introduce a new symmetriza-
tion in Lagrangian coordinates that allows us to encompass both relativistic and non-relativistic fluid flows. 
The problem under consideration is a free boundary problem of central interest in compressible fluid dynam-
ics and, from the mathematical standpoint, the main challenge to be overcome lies in the loss of regularity in 
the fluid variables near the free boundary. Based on our Lagrangian formulation, we establish the necessary 
a priori estimates in weighted Sobolev spaces which are adapted to this loss of regularity.
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1. Introduction

We study here the Euler equations describing the evolution of a relativistic compressible fluid, 
that is, the system (cf. for instance [9])

∂t

(
ρ̃ − ε2p(ρ)

) + div(ρ̃ u) = 0,

∂t

(
ρ̃ u

) + div
(
ρ̃ u ⊗ u) + grad

(
p(ρ)

) = 0, (1.1)

in which the mass density ρ = ρ(t, x) and the velocity vector of the fluid u = u(t, x) (with t ≥ 0
and x ∈R

3) are the main unknowns and satisfy the physical constraints

ρ ≥ 0, |u| < 1/ε. (1.2)

The parameter 1/ε represents the light speed and, in (1.1), the pressure p = p(ρ) is a given 
function of the density, while the “modified density” ρ̃ is defined by

ρ̃ = ρ̃(ρ,u) := ρ + ε2p

1 − ε2 |u|2 . (1.3)

We also set x = (xi)1≤i≤3 and use the standard notation for the divergence divu := ∑
i ∂xi

ui =
∂iui (with implicit summation on i) and for the gradient grad(p) = (

∂ip
)

1≤i≤3.
Under the standard physical assumption that p′(ρ) ≥ 0 (and vanishes if and only if ρ = 0), 

the Euler equations (1.1) away from the vacuum state form a strictly hyperbolic system of four 
conservation laws [3], which, however, is non-strictly hyperbolic at the vacuum ρ = 0. We are 
interested in the evolution of a compressible fluid region surrounded by vacuum, in particular 
when a fluid is continuously in contact with vacuum. This is a classical problem in fluid dynamics 
and, from the mathematical standpoint, the main technical challenge to be overcome lies in the 
loss of regularity in the fluid variables near the free boundary between the fluid and the vacuum 
region. Specifically, we require that the normal acceleration of the fluid near the boundary is 
non-vanishing and bounded:

C ≤ |∂νp
′(ρ)| ≤ C (1.4)

for some constants 0 < C ≤ C < +∞, where ν ∈ R
3 denotes the normal unit vector to the 

free fluid-vacuum boundary. This vacuum boundary condition, the so-called “physical vacuum” 
boundary, can be realized by some self-similar solutions and stationary solutions for different 
physical systems such as Euler equations with damping and Euler–Poisson systems for gaseous 
stars [4,6,11,12,14].

Let us mention several earlier works on the above problem which attracted a lot of atten-
tion in recent years. Coutand and Shkoller [1,2] successfully established an existence result for 
non-relativistic compressible fluids (that is, the system (1.1) with ε = 0) by degenerate parabolic 
regularizations, while, independently, Jang and Masmoudi developed a hyperbolic-type weighted 
energy estimates for all spatial derivatives including normal derivatives in order to prove the ex-
istence of solutions in one space dimension [5] as well as in several space dimensions [7]. We 
also mention that in a recent work [12], Makino addressed some existence result for the Euler–
Poisson system based on the Nash–Moser–Hamilton theory. We refer to [6,7] for a historical 
background and a bibliography on the subject.
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As far as relativistic fluids are concerned, earlier investigations on compactly supported solu-
tions to the relativistic Euler equations include Makino and Ukai [13] and, for the equations in 
several space variables, LeFloch and Ukai [10]. In these works, a stronger regularity property is 
implied on the fluid variables near the free boundary between the fluid and the vacuum. A general 
existence theory for relativistic compressible fluids encompassing the above vacuum condition 
(1.4) is therefore still lacking.

The goal of this article is to present a new Lagrangian formulation of the relativistic Euler 
equations and is to derive the necessary a priori bounds satisfied by solutions subject to (1.4)
based on such our formulation.

An outline of the paper is as follows. In Section 2, we present the compressible fluid flow 
equations, discuss its reduction to a second-order hyperbolic system in Lagrangian variables, 
and also derive the relativistic vorticity equation. In Section 3, we introduce the free boundary 
problem of interest and present the a priori estimates. Section 4 includes a discussion on non-
relativistic flows as well as the existence theory for special cases such as radially symmetric 
flows.

2. Lagrangian formulation for relativistic fluid flows

2.1. Equations of state

The Euler equations in Minkowski spacetime read

∂t

( ρ + ε2p

1 − ε2 |u|2 − ε2 p
)

+ ∂k

( ρ + ε2p

1 − ε2 |u|2 uk

)
= 0,

∂t

( ρ + ε2p

1 − ε2 |u|2 uj

)
+ ∂k

( ρ + ε2p

1 − ε2 |u|2 ujuk + p δjk

)
= 0, (2.1)

where (ρ, u) : [0, T ] × R
3 → R+ × R

3 is the main unknown, defined on some time interval 
[0, T ). As pointed out in the introduction, it is convenient to introduce the variable ρ̃, so that the 
Euler equations read

∂t

(
ρ̃ − ε2 p

) + ∂k

(
ρ̃ uk

) = 0,

∂t

(
ρ̃ uj

) + ∂k

(
ρ̃ ujuk + p δjk

) = 0. (2.2)

Observe that, by letting formally ε → 0 in (2.1) we find ρ̃ → ρ and we recover the non-
relativistic Euler equations.

As it is required by the physics of the problem, the sound speed c(ρ) := p′(ρ)1/2 is assumed 
to be real and smaller than the light speed, that is,

0 < c(ρ) < ε−1 provided ρ > 0. (2.3)

For concreteness, the pressure p is assumed to be a power-law of the particle number N , that is,

p = a
Nγ ,
γ − 1
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where N is related to the energy density

ρ = N + ε2 a

γ − 1
Nγ

and γ ∈ (1, 2) is a constant referred to as the adiabatic exponent of gases and a > 0 is a normal-
ization constant. Hence, the pressure is determined implicitly by

ρ = ε2p + κ p1/γ , κγ := γ − 1

a
.

It is easily checked that the sound speed does not exceed the light speed, since

c2 = p′(ρ) = 1

ε2 + γ−1
aγ

N1−γ
≤ 1

ε2
.

We also define the function

h = h(ρ) by dh := 1

N
dp

and, from now on, adopt the normalization a := γ − 1, so that the equation of state of the fluid 
finally reads

p(ρ) = Nγ , h(ρ) = γ

γ − 1
Nγ−1, with ρ = N + ε2Nγ , (2.4)

where γ ∈ (1, 2).

2.2. The energy equation and the number density equation

We recall the energy pair (V , H) associated with the relativistic Euler equations

∂tV + ∂jHj = 0, (2.5)

with

V := ε−2
(

(1 + κε2)(ρ̃ − ε2p) − Q(ρ)

(1 − ε2|u|2)1/2

)
,

Hj := ε−2
(

(1 + κε2)ρ̃ uj − Q(ρ)uj

(1 − ε2|u|2)1/2

)
,

where

Q(ρ) := exp

⎛⎝ ρ∫
ds

s + ε2p(s)

⎞⎠ , κ :=
1∫

p(s)

s2
ds.
1 0
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Here the function Q is determined so that, as ε → 0, the pair (V , H) tends to the standard energy 
pair of the non-relativistic Euler equations. Indeed, as ε → 0 we have

V ∼ 1

2
ρ|u|2 + ρ

ρ∫
0

p(s)

s2
ds,

Hj ∼ uj

(
ρ V + p(ρ)

)
.

It can be checked that the above function is strictly convex [13] in the conservative variable 
ω = (ρ, ρu), and

∇2
ωV ≥ C1 away from the vacuum,

where the constant C1 is uniform on every compact subset of 
{
ρ > 0, |u| < ε

}
, excluding there-

fore the vacuum.
From the mass density equation in (2.1) and the energy equation (2.5), we deduce that any 

solution (ρ, u) : R+ × R
3 → R+ × R

3 to the Euler equations (2.1) also satisfies the following 
number density equation

∂tg + ∂j

(
g uj

) = 0,

g := N
, 
 = 
(u) := (1 − ε2|u|2)−1/2. (2.6)

In the following we will work with (2.6) together the second equation in (2.2). Note that the 
Cauchy problem is posed by prescribing, at the initial time t = 0, the initial density ρ0 and the 
initial velocity u0 of the fluid

ρ(0, x) = ρ0(x), u(0, x) = u0(x), x ∈R
3 (2.7)

with, of course,

ρ0 ≥ 0, |u0| < 1/ε. (2.8)

We are interested in the situation where the density is positive in some smooth open set � ⊂R
3

and vanishes identically outside this set, i.e.

ρ0

{
> 0, x ∈ �,

= 0, x ∈ R
3 \ �.

(2.9)

2.3. Lagrangian coordinates and notation

We are going to now reformulate the fluid equations above in terms of the Lagrangian coordi-
nates ηj = ηj (t, x) defined by the following ordinary differential equation with prescribed initial 
data:

∂tηj = uj (t, η),

ηj (0, x) = xj . (2.10)
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We introduce the Jacobian matrix of this transformation, that is, A−1 := (∇xη
) = (

∂iηj

)
and 

J := det
(∇xη

)
. We use Einstein’s summation convention and the notation F,k to denote the k-th 

partial derivative of F : ∂kF . Both expressions will be used throughout the paper. Differentiating 
the inverse of deformation tensor, since A · [Dη] = I , one obtains

∂tA
k
i = −Ak

r ∂tη
r ,s As

i ; ∂lA
k
i = −Ak

r ∂lη
r ,s As

i . (2.11)

Differentiating the Jacobian determinant, one obtains

∂tJ = JAs
r∂tη

r ,s ; ∂lJ = JAs
r∂lη

r ,s . (2.12)

For the cofactor matrix JA, from (2.11) and (2.12), one obtains the following Piola identity:

(JAk
i ),k = 0 . (2.13)

For a given vector field F , we use DF , divF , curlF to denote its full gradient, its divergence, 
and its curl:

[DF ]ij ≡ F i,j

divF ≡ F r,r

[curlF ]i ≡ εijkF
k,j

where εijk is the Levi-Civita symbol: it is 1 if (i, j, k) is an even permutation of (1, 2, 3), −1 if 
(i, j, k) is an odd permutation of (1, 2, 3), and 0 if any index is repeated.

We introduce the following Lie derivatives along the flow map η:

[DηF ]ir ≡ As
rF

i,s

divηF ≡ As
rF

r ,s

[curlηF ]i ≡ εijkA
s
jF

k,s

which indeed correspond to Eulerian full gradient, Eulerian divergence, and Eulerian curl writ-
ten in Lagrangian coordinates. In addition, it is convenient to introduce the anti-symmetric curl 
matrix CurlηF :

[CurlηF ]ij ≡ As
jF

i,s −As
i F

j ,s .

Note that CurlηF is a matrix version of a vector curlηF and that |CurlηF |2 = 2|curlηF |2 holds. 
We will use both curlη and Curlη . We end this section by recalling the following property of the 
Lagrangian curl:

if ωk = Ar
kf,r , curlηω = 0.
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2.4. Lagrangian formulation

By introducing the modified velocity

χj := (1 + ε2h)
∂tη
j ,

we arrive at the following equivalent formulation of the Euler equations

∂tg + gAk
j ∂kuj = 0, g ∂tχ

j + Ak
j∂kp = 0. (2.14)

Furthermore, from ∂tJ − JAk
j ∂kuj = 0, we deduce that g0(x) := g(0, x)(= N(0, x)
(0, x))

enjoys g0 := gJ = 
NJ . Therefore, N can be expressed in terms of the main unknown η by

N = g0


J
= g0

J (1 − ε2|∂tη|2)−1/2
.

In turn, the second equation in (2.14) reads

g0∂t

(
(1 + ε2h)
∂tη

j
)

+ JAk
j ∂kN

γ = 0, (2.15)

in which the spatial derivative terms take also the form

JAk
j ∂kN

γ = ∂k

(
g

γ

0 Ak
jJ

1−γ 
−γ
)

and, using the expression of 
,

JAk
j ∂kN

γ = ∂k

(
g

γ

0 Ak
jJ

1−γ
)

−γ − g

γ

0 Ak
jJ

1−γ γ
−γ−1ε2
3∂tη
i∂t ∂kη

i .

On the other hand, the time derivative in (2.15) takes the form

∂t

(
(1 + ε2h)
∂tη

j
)

= (1 + ε2h)
∂2
t ηj + ∂tη

j
(
(1 + (2 − γ )ε2h) ε2
3∂tη

i∂2
t ηi − (γ − 1)ε2h
∂t logJ

)
=

(
(1 + ε2h) δ

j
i + (1 + (2 − γ )ε2h) ε2
2∂tη

i∂tη
j
)


∂2
t ηi − (γ − 1)ε2h
∂tη

j ∂t logJ.

(2.16)

The latter term can be expressed as a second-order term in η, by writing ∂tJ = JAk
i ∂k∂tη

i so 
that

g0(γ − 1)ε2h
∂tη
j ∂t logJ = γg

γ

0 
−γ J 1−γ Ak
i ∂k∂tη

i∂tη
j . (2.17)

Plugging (2.16)–(2.17) in the equation (2.15) and collecting the terms, we thus find a second-
order equation in η

g0B
j
∂2ηi + g

γ
Ck ∂k∂tη

i + ∂k

(
g

γ
AkJ 1−γ

) = 0,
i t 0 ij 0 j
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in which the coefficients are given by

B
j
i :=

(
(1 + ε2h) δ

j
i + (1 + (2 − γ )ε2h) ε2
2∂tη

i∂tη
j
)


γ+1,

Ck
ij := − γ ε2
2J 1−γ

(
Ak

i ∂tη
j + Ak

j ∂tη
i
)
.

Finally, by letting

g0 = wα, g
γ

0 = w1+α where α = (γ − 1)−1

we arrive at the following second-order formulation in Lagrangian coordinates

wα B
j
i ∂2

t ηi + w1+αCk
ij ∂k∂tη

i + ∂k

(
w1+αAk

jJ
−1/α

) = 0. (2.18)

Importantly, we have the symmetry property Bj
i = Bi

j and Ck
ij = Ck

ji , while Bj
i is positive defi-

nite.
In Lagrangian coordinates, we prescribe the reference density function ρ0 ≥ 0 (which de-

termines the initial data g0 = wα) so that it is positive in some smooth open set � ⊂ R
3 and 

vanishes identically outside this set (cf. (2.9) above) and we can then pose the Cauchy problem 
of interest by requiring that

η(0, x) = x, ηt (0, x) = η1(x), x ∈ � (2.19)

for some data η1 (which is precisely the velocity data u0 in (2.19) expressed in Lagrangian 
coordinates).

2.5. Relativistic vorticity

One additional set of equations will be required in our analysis. Observe that the second 
equation in (2.14) can be rewritten as


∂tχ
j + Ak

j ∂kh = 0. (2.20)

Note that this equation allows us to control the spatial derivatives ∂kh by the time derivative 
∂tχ . By taking the curl of that equation in Lagrangian coordinates, we obtain Curlη(
∂tχ) = 0, 
implying


Curlη∂tχ + [Curlη,
]∂tχ = 0,

with

[Curlη,
]∂tχ = Al
i
,l ∂tχ

j − Al
j
,l ∂tχ

i .

Since [∂t , Curlη]χ = ∂tA
l
iχ

j ,l −∂tA
l
jχ

i,l , this equation can be written as

∂tCurlηχ = [∂t ,Curlη]χ − 
−1[Curlη,
]∂tχ, (2.21)

which we refer to as the Lagrangian relativistic vorticity equation.
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By integrating (2.21) in time, we deduce that

Curlηχ = Curlηχ
∣∣
t=0 +

t∫
0

[∂t ,Curlη]χ ds −
t∫

0


−1[Curlη,
]∂tχ ds. (2.22)

For the purpose of the energy estimates, we will need to derive the equation for the curl of η and 
estimate them. From the definition of χ , we see that

Curlηχ = 
(1 + ε2h)Curlη∂tη + [Curlη,
(1 + ε2h)]∂tη.

Hence, (2.22) reads as

Curlη∂tη + [
(1 + ε2h)]−1[Curlη,
(1 + ε2h)]∂tη

= [
(1 + ε2h)]−1
(

Curlηχ
∣∣
t=0 +

t∫
0

[∂t ,Curlη]χ ds −
t∫

0


−1[Curlη,
]∂tχ ds
)
. (2.23)

We observe that the boxed term in (2.23) is not of lower order. By using (2.20), we rewrite it so 
that it does not contain two spatial derivatives of η:

= [
(1 + ε2h)]−1(
,l (1 + ε2h) + 
ε2h,l )(A
l
i∂tη

j − Al
j ∂tη

i)

= ε2
2∂tη
m∂tη

m,l
(
Al

i∂tη
j − Al

j ∂tη
i
) − ε2
(1 + ε2h)−1(∂tχ

i∂tη
j − ∂tχ

j ∂tη
i)

= ε2
2(∂tη
m∂tη

m,l
(
Al

i∂tη
j − Al

j ∂tη
i
) − ∂2

t ηi∂tη
j + ∂2

t ηj ∂tη
i).

By rearranging terms, we write the curl equation (2.23) as

[Dη∂tη]mi (δ
j
m + ε2
2∂tη

j ∂tη
m) − (δm

i + ε2
2∂tη
i∂tη

m)[Dη∂tη]mj
+ ε2
2(∂2

t ηj ∂tη
i − ∂2

t ηi∂tη
j )

= [
(1 + ε2h)]−1
[
Curlηχ

∣∣
t=0 +

t∫
0

[∂t ,Curlη]χ ds −
t∫

0


−1[Curlη,
]∂tχ ds
]j

i
. (2.24)

We next define the symmetric matrix

S
j
m := (δ

j
m + ε2
2∂tη

j ∂tη
m)

and the anti-symmetric matrices

R
j := ε2
2(∂2ηj ∂tη

i − ∂2ηi∂tη
j )
i t t
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X
j
i := [
(1 + ε2h)]−1

[
Curlηχ

∣∣
t=0 +

t∫
0

[∂t ,Curlη]χ ds −
t∫

0


−1[Curlη,
]∂tχ ds
]j

i

Then, (2.24) can be written as

[Dη∂tη]mi S
j
m − Sm

i [Dη∂tη]mj + R
j
i = X

j
i (2.25)

Notice that S is symmetric and positive definite, hence, letting U := S−1, we get the following 
equivalent expression to the curl equation (2.25):

Um
i [Dη∂tη]jm − [Dη∂tη]imU

j
m + Um

i Rl
mU

j
l = Um

i Xl
mU

j
l .

2.6. Relativistic Euler equations as a second-order hyperbolic system

So far, we have reformulated the relativistic Euler equations as a second-order quasi-linear 
hyperbolic system in Lagrangian coordinates, where η = (ηj (t, x)) ∈ R

3 is the main unknown, 
and have identified the corresponding curl structure. We summarize such formulations in the 
following proposition.

Proposition 2.1. Suppose (ρ, u) are smooth solutions to relativistic Euler equations (2.1) writ-
ten in Eulerian coordinates. Let wα = N0
0, where N0 = N0(ρ0) is the initial particle number 
density determined by (2.4) and 
0 = (1 − ε2|u0|2)−1/2. Then the solution η to the ODE (2.10)
satisfies the following second-order quasi-linear hyperbolic system

wα B
j
i ∂2

t ηi + wα+1Ck
ij ∂k∂tη

i + ∂k

(
wα+1Ak

jJ
−1/α

) = 0, (2.26)

where

B
j
i =

(
(1 + ε2h) δ

j
i + (1 + (1 − 1

α
)ε2h) ε2
2∂tη

i∂tη
j
)


2+1/α,

Ck
ij = − (1 + 1

α
)ε2
2J−1/α

(
Ak

i ∂tη
j + Ak

j ∂tη
i
)
, (2.27)

and furthermore, admits the following structure

Um
i [Dη∂tη]jm − [Dη∂tη]imU

j
m + Um

i Rl
mU

j
l = Um

i Xl
mU

j
l , (2.28)

where

U
j
i = (S−1)

j
i where S

j
m = (δ

j
m + ε2
2∂tη

j ∂tη
m),

R
j
i = ε2
2(∂2

t ηj ∂tη
i − ∂2

t ηi∂tη
j ),

X
j
i = [
(1 + ε2h)]−1

[
Curlηχ

∣∣
t=0 +

t∫
[∂t ,Curlη]χ ds −

t∫

−1[Curlη,
]∂tχ ds

]j

i
. (2.29)
0 0
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Here we recall that

χj = (1 + ε2h)
∂tη
j , h = (1 + α)w(
J )−1/α, 
 = (1 − ε2|∂tη|2)−1/2. (2.30)

Conversely, if (η, ηt ) (with J being bounded away from zero and above) are smooth solutions to 
the above system, (ρ, u) is a solution to the Eulerian system.

We observe that this proposition can be justified at least away from vacuum, where smooth 
solutions are available in Eulerian coordinates; for instance, see [10,13].

In the next section, based on the above reformulation (2.26)–(2.30) of the relativistic Euler 
equations in Lagrangian coordinates, we will establish the a priori estimates for smooth solutions 
in the presence of a physical vacuum.

3. The free boundary problem for the relativistic Euler system

3.1. Main result

In this section, we consider a vacuum free boundary problem for relativistic Euler equations 
in Lagrangian coordinates. We first prescribe a class of w: w is the prescribed function in � with 
smooth boundary ∂� and it vanishes at the boundary like a distance function:

w = 0 on ∂�,

C d(x, ∂�) ≤ w ≤ C d(x, ∂�). (3.1)

The regularity for w will be specified in the next subsection. (See (3.3).)
We can pose the Cauchy problem of interest by requiring that

η(0, x) = x, ηt (0, x) = η1(x), x ∈ � (3.2)

for some given data η1. Note that due to degeneracy of w we do not need to impose the boundary 
condition on ∂�. We are interested in the free boundary value problem associated with the non-
linear hyperbolic system (2.26), that is, we search for solutions that are supported in a domain 
� with smooth boundary ∂�. It is a moving boundary value problem, since ηt , the velocity of 
the fluid, need not vanish along the boundary, and the moving domain in Eulerian coordinates is 
given by �(t) = η(t)(�).

Observe that the condition imposed near the boundary is singular in nature and special care 
will be required to handle derivatives of η, especially in the direction normal to the boundary.

For simplicity of the presentation, we consider the case when the initial domain is taken as

� = T
2 × (0,1),

where T2 is a two-dimensional period box in x1, x2. The result can be extended to the general 
case in the same way as done in [7]. The initial boundary is given as

∂� = {x3 = 0} ∪ {x3 = 1} as the reference vacuum boundary.
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We use Latin letters i, j, k, . . . to denote 1, 2, 3 and that we use Greek letters β , κ , σ , τ to denote 
1, 2, only. We use ∂m

τ to denote ∂m1
1 ∂

m2
2 and |m| to denote |m| = m1 +m2. To sufficiently regular 

functions (η, η̃) : � → R
3 ×R

3, we associate the following energy functionals (defined for any 
integer N ≥ 0):

E
(I)
N [η, η̃] :=

∑
|m|+n≤N

∫
�

wα+n∂m
τ ∂n

3 η̃j B
j
i ∂m

τ ∂n
3 η̃i dx,

E
(II)
N [η] :=

∑
|m|+n≤N

∫
�

wα+n+1J−1/α|divη∂
m
τ ∂n

3 η|2 dx,

E
(III)
N [η, η̃] :=

∑
|m|+n≤N

∫
�

wα+n+1 [Dη∂
m
τ ∂n

3 η]jmUi
m[Dη∂

m
τ ∂n

3 η]ji dx,

E
(IV)
N [η, η̃] :=

∑
|m|+n≤N

∫
�

wα+n+1 |∂m
τ ∂n

3 Curlηχ |2 dx.

Here Bj
i , Ui

m, χ are given in (2.27), (2.29) and (2.30) with ∂tη replaced by η̃. In particular, 
for sufficiently smooth functions η : [0, T ] × � → R

3, we write the corresponding energies as 
follows:

E
(I)
N := E

(I)
N (t) = E

(I)
N [η(t, ·), ∂tη(t, ·)] =:

∑
|m|+n≤N

E(I )
m,n,

E
(II)
N := E

(II)
N (t) = E

(II)
N [η(t, ·)] =:

∑
|m|+n≤N

E(II)
m,n,

E
(III)
N := E

(III)
N (t) = E

(III)
N [η(t, ·), ∂tη(t, ·)] =:

∑
|m|+n≤N

E(III)
m,n ,

E
(IV)
N := E

(IV)
N (t) = E

(IV)
N [η(t, ·), ∂tη(t, ·)].

Note that E(II)
N is bounded by E(III)

N . The total energy of interest is the sum

EN := E
(I)
N + E

(III)
N + E

(IV)
N .

Furthermore, the regularity of the weight function w is determined by introducing the norms:

FM [w] :=
∑

|m|+n≤M

∫
�

wα+n+1 |∂m
τ ∂n

3 w|2 dx,

F
(I)
M [w] :=

∑
|m|+n≤M

∫
�

wα+n+1 |D∂m
τ ∂n

3 w|2 dx. (3.3)

We now state the result on the a priori estimates for solutions of (2.26) in the above energy 
spaces.
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Theorem 3.1 (A priori estimates). Let N ≥ 2α + 9 be fixed for given exponent α > 0 and let w
be given satisfying (3.1) and FN [Dw] < ∞. Suppose η and ηt solve (2.26) for t ∈ [0, T ] with 
EN = EN(t) = EN [η(t, ·), ηt (t, ·)] < ∞ and 1/C0 ≤ J ≤ C0 for some C0 ≥ 1 for the initial 
data η0 = x, η1 in (3.2) satisfying EN(0) = EN [η0, η1] < ∞. We further assume that η and ηt

enjoy the a priori bound: for any s = 1, 2, and 3,

[N/2]∑
|p|+q=0

|wq/2∂p
τ ∂

q

3 ηr ,s | +
[N/2]−1∑
|p|+q=0

|wq/2∂p
τ ∂

q

3 ηr
t ,s | < ∞ . (3.4)

Then we obtain the following a priori estimates:

d

dt

[
E(I )

m,n + (1 + 1

α
)E(II)

m,n

]
≤ F1

(
E

(I)
N , E

(III)
N

)
for |m| < N,

d

dt

[
E

(I )
N,0 + (1 + 1

α
)E

(II)
N,0 + G

]
≤ F1

(
E

(I)
N , E

(III)
N

)
for |m| = N, (3.5)

where for any δ > 0

|G| ≤ δE
(III)
N,0 + CδE

(III)
N−1,0

as well as

E
(III)
N ≤ F2

(
EN [η0, η1],E(I)

N , E
(III)
N , T

)
,

E
(IV)
N ≤ E

(IV)
N [η0, η1] + F3

(
E

(I)
N , E

(III)
N , T

)
, (3.6)

where F1, F2 and F3 are smooth functions in their arguments. Moreover, the a priori assumption 
(3.4) can be justified.

The proof of Theorem 3.1 is a direct consequence of the following two lemmas.

Lemma 3.2 (Energy estimates). Under the assumptions of Theorem 3.1, one has the energy 
inequality (3.5).

Lemma 3.3 (Gradient and curl estimates). Under the assumptions of Theorem 3.1, one obtains 
the energy bounds (3.6).

The structure exhibited by the second-order system and the curl system (2.26)–(2.30) is funda-
mental in order to derive the necessary estimates. The first energy inequality is a consequence of 
the wave-like structure of the second-order system, while the second energy bounds will follow 
from the vorticity equations. We observe that the energy functionals incorporate suitable powers 
of the weight function w. Higher powers are required for normal derivatives, while no such loss 
is encountered for tangential derivatives. The same algebraic structure of the change in weights 
has been identified for the non-relativistic flows in [7].
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While there is some similarity to the proof for the non-relativistic Euler flows as done in [7], 
our proof here involves some new ingredients and the estimates are not the same. The paper 
[7] derived the estimates for ∂tη and the full gradient of η from the energy estimates of the 
second-order hyperbolic system at the expense of loosing the positivity of the curl part in the 
energy and the method therein compensated a lost curl energy by an auxiliary estimate from the 
curl equation. The curl equation for the non-relativistic Euler flows is rather simple and elegant 
(i.e. almost an ODE) in Lagrangian coordinates, which is one of key ingredients used in [7], but 
such a simple structure does not seem to be available for the relativistic Euler equations. To get 
around this difficulty present for the relativistic Euler flows even at the formal level, we obtain the 
estimates for ∂tη and the divergence of η via the energy estimates at the expense of loosing the 
positivity of the full tangential derivative terms and recover the full gradient estimates from the 
relativistic vorticity equation. This new scheme is applied to the non-relativistic Euler equations 
and it gives an alternative way of deriving the estimates.

We observe that Theorem 3.1 can be extended to a larger class of quasilinear hyperbolic sys-
tems inheriting the same leading-order structure as in (2.26) and (2.28), so long as the coefficient 
matrices and tensors satisfy suitable algebraic conditions such as symmetry, anti-symmetry, and 
positive definiteness. For instance, taking into account lower-order forcing term such as a gravi-
tational coupling or damping terms would not add any further difficulty at this level.

3.2. Hardy inequality and embedding of weighted Sobolev spaces

Before we derive the energy estimates, we recall the following useful Hardy inequality and 
embedding results. First of all, for the Hardy inequality we have the following [8].

Lemma 3.4. (Hardy inequality) Let k be a real number and g a function satisfying 
∫ 1

0 sk(g2 +
g′2)ds < ∞.

If k > 1, then we have 
∫ 1

0 sk−2g2ds ≤ C
∫ 1

0 sk(g2 + |g′|2)ds.

If k < 1, then g has a trace at x = 0 and 
∫ 1

0 sk−2(g − g(0))2ds ≤ C
∫ 1

0 sk|g′|2ds.

Note that using Lemma 3.4 with k = α + 1, we get∫
�

wα−1|v|2dx ≤ C

∫
�

[wα+1|∂3v|2 + wα+1|v|2]dx. (3.7)

We will also use the following variant of Hardy inequality: for any fixed δ > 0,∫
�

wα−1|v|2dx ≤ δ

∫
�

wα+1|∂3v|2dx + Cδ

∫
�

wα+1|v|2dx. (3.8)

The above energy functionals induce a family of weighted Sobolev spaces. It is convenient to 
introduce the function spaces Xα,b, Yα,b , Zα,b to discuss the embedding results:

Xα,b ≡ {w α
2 F ∈ L2(�) :

∫
wα+n|∂m

τ ∂n
3 F |2dx < ∞ , 0 ≤ |m| + n ≤ b},
�
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Yα,b ≡ {w 1+α
2 DηF ∈ L2(�) :

∫
�

w1+α+n|Dη∂
m
τ ∂n

3 F |2dx < ∞ , 0 ≤ |m| + n ≤ b},

Zα,b ≡ {w 1+α
2 F ∈ L2(�) :

∫
�

w1+α+n|∂m
τ ∂n

3 F |2dx < ∞ , 0 ≤ |m| + n ≤ b}. (3.9)

Then as an application of the Hardy type embedding of weighted Sobolev spaces [8], we 
obtain the embedding of Xα,b, Yα,b , Zα,b into the standard Sobolev spaces Hs for sufficiently 
smooth w.

Lemma 3.5. For b ≥ �α�,

‖F‖
H

b−α
2

� ‖F‖Xα,b .

In particular, for b ≥ [α] + 4,

‖F‖∞ � ‖F‖Xα,b .

We have the similar embeddings for Yα,b and Zα,b: for b ≥ �α� + 1,

‖DF‖
H

b−α−1
2

� ‖F‖Yα,b and ‖F‖
H

b−α−1
2

� ‖F‖Zα,b .

We observe that the a priori bound in (3.4) in Theorem 3.1 can be justified in our energy 
function spaces by using Lemma 3.4 and Lemma 3.5, in other words |wq/2∂

p
τ ∂

q

3 ηr ,s | and 
|wq/2∂

p
τ ∂

q

3 ηr
t ,s | for 0 ≤ |p| + q ≤ [N/2] are bounded by EN .

The remaining part of this section is devoted to the proof of Lemma 3.2 and Lemma 3.3.

3.3. Proof of Lemma 3.2

The energy inequality (3.5) is due to the symmetric structure of the reformulation (2.26). 
While there is some similarity to the proof for non-relativistic Euler as done in [7], our proof 
here is not the same. Unlike in [7], we will not keep the precise curl structure at the level of the 
energy estimates, but aim to control the divergence part only at this point. Then the full energy 
will be recovered by exploiting the curl equations. We notice that the obvious difference lies in 
that Bj

i is a symmetric positive definite matrix and Ck
ij is a symmetric tensor for the current case, 

while Bj
i = δ

j
i and Ck

ij = 0 for the non-relativistic Euler case.
The proof consists of three steps: the zeroth order estimate, the derivation of high order equa-

tions, and the high order estimates. Let us start with the zeroth order estimate.

Step 1 – the zeroth order estimate: Multiply (2.26) by ηj
t and integrate to get

∫
wαη

j
t B

j
i ηi

tt dx +
∫

wα+1η
j
t C

k
ij ∂kη

i
t dx +

∫
η

j
t ∂k

(
wα+1Ak

jJ
−1/α

)
dx = 0.
� � �
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The first and second terms can be written as∫
�

wαη
j
t B

j
i ηi

tt dx = 1

2

d

dt

∫
�

wαη
j
t B

j
i ηi

t dx − 1

2

∫
�

wαη
j
t ∂tB

j
i ηi

t dx

∫
�

wα+1η
j
t C

k
ij ∂kη

i
t dx = −1

2

∫
�

η
j
t ∂k(w

α+1Ck
ij )η

i
t dx

by using the symmetry relation Bj
i = Bi

j and Ck
ij = Ck

ji . The third term can be written as

∫
�

η
j
t ∂k

(
wα+1Ak

jJ
−1/α

)
dx = d

dt

∫
�

αwα+1J−1/αdx

by using (2.12). Thus (3.5) is valid for m = 0 and n = 0 in the energy.

Step 2 – the derivation of high order equations: Let m and n for 1 ≤ |m| + n ≤ N be fixed. 
Taking ∂m

τ ∂n
3 of w−α · (2.26) and by multiplying it back by wα+n, we first obtain

wα+nB
j
i ∂m

τ ∂n
3 ηi

tt +
∑

|p|+q<|m|+n

cp,qwα+n∂m−p
τ ∂

n−q

3 B
j
i ∂p

τ ∂
q

3 ηi
tt

+ w1+α+nCk
ij ∂k∂

m
τ ∂n

3 ηi
t +

∑
|p|+q<|m|+n

cp,qwα+n∂m−p
τ ∂

n−q

3

[
wCk

ij

]
∂k∂

p
τ ∂

q

3 ηi
t

+ wα+n∂m
τ ∂n

3

(
w∂k(A

k
jJ

−1/α) + (1 + α)∂kwAk
jJ

−1/α
)

= 0 (3.10)

We first claim that the last double-lined term in (3.10) can be written as follows:

wα+n ∂m
τ ∂n

3

(
w∂k(A

k
jJ

−1/α) + (1 + α)∂kwAk
jJ

−1/α
)

= −(1 + 1

α
)∂k

(
w1+n+αJ− 1

α Ak
j divη∂

m
τ ∂n

3 η
)

+ (1 + α)wα+nJ− 1
α ∂3w(A3

jA
σ
r − A3

rA
σ
j )∂m

τ ∂n
3 ηr ,σ +wα+nRm,n, (3.11)

where Rm,n consists of lower order terms:

Rm,n =Rm,n

(
∂m−(p+q)
τ ∂

n−(i+j)

3 w∂p
τ ∂i

3D
2η∂q

τ ∂
j

3 Dη, ∂m−(p+q)
τ ∂

n−(i+j)

3 ∂σ w∂p
τ ∂i

3Dη∂q
τ ∂

j

3 Dη,

∂q
τ ∂

j

3 w∂p
τ ∂i

3Dη∂m−(p+q)
τ ∂

n−(i+j)

3 D∂σ η, ∂q
τ ∂

j

3 Dw∂p
τ ∂i

3Dη∂m−(p+q)
τ ∂

n−(i+j)

3 Dη;
0 ≤ |p| + i ≤ |m| + n − 1 ;1 ≤ |q| + j ≤ |m| + n ; i + j ≤ n ;p + q ≤ m

)
.

(3.12)
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We observe that the structure encoded in (3.11) is different from the one in [7]. A new aspect is 
that instead of looking at the gradient of the full gradient plus divergence minus curl as suggested 
by the following identity

∂l(A
k
i J

−1/α) = −J−1/αAk
r [Dη∂lη]ir − 1

α
J−1/αAk

i divη∂lη − J−1/αAk
r [Curlη∂lη]ri

we will make use of the structure of the gradient of the divergence. To make it precise, first note 
that

∂l(A
k
i J

−1/α) = −J−1/αAk
rA

s
i ∂lη

r ,s − 1
α
J−1/αAk

i A
s
r∂lη

r ,s

= −(1 + 1

α
)J−1/αAk

i divη∂lη + J−1/α
[
Ak

i A
s
r − Ak

rA
s
i

]
∂lη

r ,s (3.13)

and moreover,

∂l∂k(A
k
i J

−1/α) = −(1 + 1

α
)∂k

(
J−1/αAk

i divη∂lη
)

+ ∂k

[
J−1/αAk

i A
s
r − J−1/αAk

rA
s
i

]
∂lη

r ,s (3.14)

after the cancelation due to the symmetry in k, s: 
[
Ak

i A
s
r − Ak

rA
s
i

]
∂k∂lη

r ,s = 0. We observe 
that the second term in (3.14) is lower order. Based on (3.13) and (3.14), we will establish the 
following equivalent expression to (3.11):

∂m
τ ∂n

3

(
w∂k(A

k
jJ

−1/α) + (1 + α)∂kwAk
jJ

−1/α
)

= −(1 + 1

α
)
[
w∂k

(
J− 1

α Ak
j divη∂

m
τ ∂n

3 η
)

+ (1 + n + α)∂kwJ− 1
α Ak

j divη∂
m
τ ∂n

3 η
]

+ (1 + α)J− 1
α ∂3w(A3

jA
σ
r − A3

rA
σ
j )∂m

τ ∂n
3 ηr ,σ +Rm,n (3.15)

We will present the details for normal derivatives (m = 0) on how the weight structure changes 
and move onto tangential and mixed derivatives. Our first claim is that

∂n
3

(
w∂k(A

k
jJ

−1/α) + (1 + α)∂kwAk
jJ

−1/α
)

= −(1 + 1

α
)
[
w∂k

(
J− 1

α Ak
j divη∂

n
3 η

)
+ (1 + n + α)∂kwJ− 1

α Ak
j divη∂

n
3 η

]
+ (1 + α)J− 1

α ∂3w(A3
jA

σ
r − A3

rA
σ
j )∂n

3 ηr ,σ +R0,n, (3.16)

where R0,n consists of lower order terms: for n ≥ 1

R0,n =R0,n(∂
n−(i+j)

3 w∂i
3D

2η∂
j

3 Dη,∂
n−(i+j)

3 ∂σ w∂i
3Dη∂

j

3 Dη,

∂
j

3 w∂i
3Dη∂

n−(i+j)

3 D∂σ η, ∂
j

3 Dw∂i
3Dη∂

n−(i+j)

3 Dη;
0 ≤ i ≤ n − 1 ;1 ≤ j ≤ n ; i + j ≤ n) (3.17)
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We will establish (3.16) inductively.
∗ Case of n = 1 in (3.16). Note that

∂3

(
w∂k(A

k
jJ

−1/α) + (1 + α)∂kwAk
jJ

−1/α
)

= w∂3∂k(A
k
jJ

− 1
α ) + ∂3w∂k(A

k
jJ

− 1
α ) + (1 + α)∂kw∂3(A

k
jJ

− 1
α )

+ (1 + α)∂3∂kwAk
jJ

− 1
α (3.18)

The second term in the right hand side of (3.18) is not lower order with respect to the weight. We 
rewrite it as

∂3w∂k(A
k
jJ

−1/α)

= −(1 + 1

α
)J−1/α∂3wAk

jA
s
r∂kη

r ,s

= −(1 + 1

α
)J−1/α∂kwAk

jA
s
r∂3η

r ,s +(1 + 1

α
)J−1/α(∂σ wAσ

j As
r∂3η

r,s −∂3wAσ
j As

r∂σ ηr ,s )

Now the second and third terms in (3.18) together become

∂3w∂k(A
k
jJ

−1/α) + (1 + α)∂kw∂3(A
k
jJ

−1/α)

= −(1 + 1

α
)(2 + α)∂kwJ−1/αAk

j divη∂3η + (1 + α)J−1/α∂kw(Ak
jA

s
r − Ak

rA
s
j )∂3η

r ,s

+ (1 + 1

α
)J−1/α(∂σ wAσ

j As
r∂3η

r ,s −∂3wAσ
j As

r∂σ ηr ,s )

but then, the second term in the right hand side when k = 3 reduces to ∂3w(A3
jA

s
r −

A3
rA

s
j )∂3η

r ,s = ∂3w(A3
jA

σ
r − A3

rA
σ
j )∂3η

r ,σ since when s = 3, A3
jA

3
r − A3

rA
3
j = 0. Hence by 

using (3.14) for the first term in (3.18), we see that (3.18) can be rewritten as

∂3

(
w∂k(A

k
jJ

−1/α) + (1 + α)∂kwAk
jJ

−1/α
)

= −(1 + 1

α
)
[
w∂k

(
J− 1

α Ak
j divη∂3η

)
+ (2 + α)∂kwJ−1/αAk

j divη∂3η
]

+ (1 + α)J− 1
α ∂3w(A3

jA
σ
r − A3

rA
σ
j )∂3η

r ,σ +R0,1, (3.19)

where

R0,1 := w∂k[J−1/αAk
i A

s
r − J−1/αAk

rA
s
i ]∂3η

r ,s

+ (1 + α)J− 1
α ∂κw(Aκ

j As
r − Aκ

r As
j )∂3η

r,s +(1 + α)∂3∂kwAk
jJ

−1/α

+ (1 + 1
)J−1/α

(
∂σ wAσ

j As
r∂3η

r,s −∂3wAσ
j As

r∂σ ηr ,s

)
.

α
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Note that

R0,1 = R0,1(wD2η∂3Dη,∂σ wDη∂3Dη,∂3DwDη,∂3wDηD∂σ η)

which consists of lower order terms. This verifies (3.16) for n = 1.
∗ Case of n ≥ 1 in (3.16). Suppose we have (3.16). By taking ∂3 of (3.16), we first obtain

∂n+1
3

(
w∂k(A

k
jJ

−1/α) + (1 + α)∂kwAk
jJ

−1/α
)

= −(1 + 1

α
)
[
w∂3∂k

(
J− 1

α Ak
j divη∂

n
3 η

)
+ ∂3w∂k

(
J− 1

α Ak
j divη∂

n
3 η

)]
− (1 + 1

α
)(1 + n + α)

[
∂kw∂3

(
J− 1

α Ak
j divη∂

n
3 η

)
+ ∂3∂kwJ− 1

α Ak
j divη∂

n
3 η

]
+ (1 + α)∂3

(
J− 1

α ∂3w(A3
jA

σ
r − A3

rA
σ
j )∂n

3 ηr ,σ

)
+ ∂3R0,n

We rewrite the first three terms in the right hand side after rearrangement as

− (1 + 1

α
)
[
w∂k

(
J− 1

α Ak
j divη∂

n+1
3 η

)
+ (2 + n + α)∂kw

(
J− 1

α Ak
j divη∂

n+1
3 η

)]
− (1 + 1

α
)
[
w∂k

(
∂3(J

− 1
α Ak

jA
s
r )∂

n
3 ηr,s

)
+ ∂3w∂3

(
J− 1

α A3
jA

s
r

)
∂n

3 ηr ,s

]
− (1 + 1

α
)
[
∂3w∂σ

(
J− 1

α Aσ
j divη∂

n
3 η

)
− ∂σ wJ− 1

α Aσ
j divη∂

n+1
3 η

]
− (1 + 1

α
)(1 + n + α)∂kw∂3

(
J− 1

α Ak
jA

s
r

)
∂n

3 ηr ,s ,

where the first line is the main structural expression. Thus, we see that

∂n+1
3

(
w∂k(A

k
jJ

−1/α) + (1 + α)∂kwAk
jJ

−1/α
)

= −(1 + 1

α
)
[
w∂k

(
J− 1

α Ak
j divη∂

n+1
3 η

)
+ (2 + n + α)∂kwJ− 1

α Ak
j divη∂

n+1
3 η

]
+ (1 + α)J− 1

α ∂3w(A3
jA

σ
r − A3

rA
σ
j )∂n+1

3 ηr ,σ +R0,n+1,

where

R0,n+1 = − (1 + 1

α
)
[
w∂k

(
∂3

(
J− 1

α Ak
jA

s
r

)
∂n

3 ηr ,s

)
+ ∂3w∂3

(
J− 1

α A3
jA

s
r

)
∂n

3 ηr,s

]
− (1 + 1

α
)
[
∂3w∂σ

(
J− 1

α Aσ
j divη∂

n
3 η

)
− ∂σ wJ− 1

α Aσ
j divη∂

n+1
3 η

]
− (1 + 1

α
)(1 + n + α)

[
∂kw∂3

(
J− 1

α Ak
jA

s
r

)
∂n

3 ηr,s +∂3∂kwJ− 1
α Ak

j divη∂
n
3 η

]
+ (1 + α)∂3

(
J− 1

α ∂3w(A3
jA

σ
r − A3

rA
σ
j )

)
∂n

3 ηr ,σ +∂3R0,n

which recovers (3.16) and (3.17) for n + 1.
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We will now move onto the tangential and mixed derivatives in (3.15). We first verify (3.15)
for n = 0.

∗ Case of |m| ≥ 1 and n = 0 in (3.15). Let us start with |m| = 1 and n = 0.

∂τ

(
w∂k(A

k
jJ

−1/α) + (1 + α)∂kwAk
jJ

−1/α
)

= w∂τ ∂k(A
k
jJ

−1/α) + ∂τw∂k(A
k
jJ

−1/α) + (1 + α)∂kw∂τ (A
k
jJ

−1/α)

+ (1 + α)∂τ ∂kwAk
jJ

−1/α (3.20)

Then the second term in the right hand side of (3.20) is indeed lower order since ∂τw behaves 
like w. Hence we can rewrite it as

∂τ

(
w∂k(A

k
jJ

−1/α) + (1 + α)∂kwAk
jJ

−1/α
)

= −(1 + 1

α
)
[
w∂k

(
J− 1

α Ak
i divη∂τ η

)
+ (1 + α)∂kwJ− 1

α Ak
i divη∂τ η

]
+ (1 + α)J− 1

α ∂3w(A3
jA

σ
r − A3

rA
σ
j )∂τ η

r ,σ +R1,0, (3.21)

where

R1,0 = w∂k[J− 1
α Ak

i A
s
r − J− 1

α Ak
rA

s
i ]∂τ η

r ,s +(1 + α)J− 1
α ∂σ w(Aσ

j As
r − Aσ

r As
j )∂τ η

r ,s

− (1 + 1

α
)J−1/α∂τwAk

jA
s
r∂kη

r ,s +(1 + α)∂τ ∂kwAk
jJ

−1/α (3.22)

We observe R1,0 can be put into the following form

R1,0 =R1,0(wD2η∂τDη, ∂σ wDηD2η, ∂τDwDη)

which consists of essentially lower order terms with respect to the derivatives and weights. One 
can take more tangential derivatives of (3.20) to obtain

∂m
τ

(
w∂k(A

k
jJ

−1/α) + (1 + α)∂kwAk
jJ

−1/α
)

= −(1 + 1

α
)
[
w∂k

(
J− 1

α Ak
i divη∂

m
τ η

)
+ (1 + α)∂kwJ− 1

α Ak
i divη∂

m
τ η

]
+ (1 + α)J− 1

α ∂3w(A3
jA

σ
r − A3

rA
σ
j )∂m

τ ηr ,σ +Rm,0, (3.23)

where Rm,0 having the form in (3.12) consists of lower order terms.
∗ Case of |m| ≥ 1 and n ≥ 1 in (3.15). The expression (3.15) can be derived by taking ∂τ con-

secutively of (3.16). The point is that ∂τw behaves like w, unlike the action of ∂3, the weight 
structure will not change under ∂τ . Since the procedure is similar to the previous cases we omit 
the details.
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Step 3 – High order energy estimates: We will now perform the energy estimates for (3.10) for 
1 ≤ |m| + n ≤ N . The energy inequality will be obtained by multiplying (3.10) by ∂m

τ ∂n
3 η

j
t and 

integrating over the domain. We will derive the estimates line by line.
• The first line in (3.10). The first term in (3.10) yields the energy term corresponding m, n in 

E
(I)
N plus a commutator term

∫
�

wα+n∂m
τ ∂n

3 η
j
t B

j
i ∂m

τ ∂n
3 ηi

tt dx = 1

2

d

dt

∫
�

wα+n∂m
τ ∂n

3 η
j
t B

j
i ∂m

τ ∂n
3 ηi

t dx + R1

= 1

2
E(I )

m,n + R1,

where

R1 = −1

2

∫
�

wα∂m
τ ∂n

3 η
j
t ∂tB

j
i ∂m

τ ∂n
3 ηi

t dx �
∫
�

wα+n∂m
τ ∂n

3 η
j
t B

j
i ∂m

τ ∂n
3 ηi

t dx

since |∂tBB−1| is bounded due to the a priori bound (3.4). The second term in the first line of 
(3.10) yields essentially lower order nonlinear terms since |p| + q < |m| + n. By using (3.4), 
Lemma 3.4 and Lemma 3.5, one can deduce that those lower order terms are bounded by a 
continuous function of E(I)

N and E(III)
N .

• The second line in (3.10). The first term can be written

∫
�

w1+α+n∂m
τ ∂n

3 η
j
t C

k
ij ∂k∂

m
τ ∂n

3 ηi
t dx

= −1

2

∫
�

∂m
τ ∂n

3 η
j
t ∂k

(
w1+α+nCk

ij

)
∂m
τ ∂n

3 ηi
t dx (by integration by parts)

�
∫
�

wα+n∂m
τ ∂n

3 η
j
t B

j
i ∂m

τ ∂n
3 ηi

t dx,

where the last step is due to (3.4). The second term in the second line is lower-order with re-
spect to number of the derivatives and the weight and hence by standard nonlinear estimates 
using (3.4), Lemma 3.4 and Lemma 3.5, we see that it is bounded by a continuous function of 
E

(I)
N and E(III)

N .

• The third line in (3.10). We will use the expression (3.11). Multiplying (3.11) by ∂m
τ ∂n

3 η
j
t

and integrating, we have∫
�

wα+n∂m
τ ∂n

3 η
j
t ∂m

τ ∂n
3

(
w∂k(A

k
jJ

−1/α) + (1 + α)∂kwAk
jJ

−1/α
)

dx

= −(1 + 1

α
)

∫
∂m
τ ∂n

3 η
j
t ∂k

(
w1+n+αJ− 1

α Ak
j divη∂

m
τ ∂n

3 η
)

dx
�
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+(1 + α)

∫
�

wα+n∂m
τ ∂n

3 η
j
t J− 1

α ∂3w(A3
jA

σ
r − A3

rA
σ
j )∂m

τ ∂n
3 ηr ,σ dx

+
∫
�

wα+n∂m
τ ∂n

3 η
j
t Rm,ndx

=: (I ) + (II) + (III)

For (I ), by integration by parts, we obtain

(I ) = (1 + 1

α
)

∫
�

∂k∂
m
τ ∂n

3 η
j
t

(
w1+n+αJ− 1

α Ak
j divη∂3η

)
dx

= 1

2

d

dt
(1 + 1

α
)

∫
�

w1+n+αJ− 1
α |divη∂

m
τ ∂n

3 η|2dx

− 1

2
(1 + 1

α
)

∫
�

w1+n+α∂t (J
− 1

α )|divη∂
m
τ ∂n

3 η|2dx

− (1 + 1

α
)

∫
�

∂k∂
m
τ ∂n

3 ηjw1+n+αJ− 1
α ∂tA

k
j divη∂

m
τ ∂n

3 ηdx

The first term is the energy term E(II)
m,n in E

(II)
N and the last two terms are commuta-

tors. Since J , ∂tJ , ∂tA are bounded due to (3.4), those commutators are bounded by ∫
�

w1+n+α|divη∂
m
τ ∂n

3 η|2dx and 
∫
�

w1+n+α|D∂m
τ ∂n

3 η|2dx, which are in turn bounded by E(III)
N . 

For (II), we divide into cases. If n ≥ 1, since

(II)

1 + α
=

∫
�

w
α+n

2 ∂m
τ ∂n

3 η
j
t J− 1

α ∂3w(A3
jA

σ
r − A3

rA
σ
j )w

α+n
2 ∂σ ∂m

τ ∂n−1
3 ηr ,3 dx

we deduce that it’s bounded by 
∫
�

wn+α|∂m
τ ∂n

3 ηt |2dx and 
∫
�

wn+α|∂σ ∂m
τ ∂n−1

3 Dη|2dx, which 

are in turn bounded by E(I)
N and E(III)

N . If n = 0, however, it is not immediate to see that it can be 
controlled by our energy because it involves full tangential derivatives with only wα weight. For 
1 ≤ |m| ≤ N − 1,

∣∣∣∣ (II)

1 + α

∣∣∣∣ =
∣∣∣∣∣∣
∫
�

w
α
2 ∂m

τ η
j
t J− 1

α ∂3w(A3
jA

σ
r − A3

rA
σ
j )w

α
2 ∂m

τ ηr ,σ dx

∣∣∣∣∣∣
�

∫
�

wα|∂m
τ ηt |2dx +

∫
�

wα|∂m+1
τ η|2dx

�
∫
�

wα|∂m
τ ηt |2dx +

∫
�

wα+2|∂m+1
τ Dη|2dx +

∫
�

wα+1|∂m+1
τ η|2dx

� E
(I) + E

(III)
(since |m| ≤ N − 1),
N N
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where we have used Hardy inequality (3.7). Now let n = 0 and |m| = N , namely full tangential 
derivatives. The previous trick via Hardy inequality would not directly work for this case. We 
will aim to show the second inequality in (3.5) with the new term G. We will write it as two terms 
first

(II)

1 + α
=

∫
�

∂m
τ η

j
t wαJ− 1

α ∂3wA3
jA

σ
r ∂m

τ ηr ,σ dx −
∫
�

∂m
τ η

j
t wαJ− 1

α ∂3wA3
rA

σ
j ∂m

τ ηr ,σ dx

=: (II)1 − (II)2 (3.24)

and rewrite the first term (II)1 by performing integration by parts in time and then space:

(II)1 = d

dt

∫
�

∂m
τ ηjwα∂3wJ− 1

α A3
jA

σ
r ∂m

τ ηr ,σ dx −
∫
�

∂m
τ ηjwα∂3wJ− 1

α A3
jA

σ
r ∂m

τ ηr
t ,σ dx

−
∫
�

∂m
τ ηjwα∂3w∂t (J

− 1
α A3

jA
σ
r )∂m

τ ηr ,σ dx

= d

dt

∫
�

∂m
τ ηjwα∂3wJ− 1

α A3
jA

σ
r ∂m

τ ηr ,σ dx +
∫
�

∂m
τ ηj ,σ wα∂3wJ− 1

α A3
jA

σ
r ∂m

τ ηr
t dx

+
∫
�

∂m
τ ηj ∂σ (wα∂3wJ− 1

α A3
jA

σ
r )∂m

τ ηr
t dx −

∫
�

∂m
τ ηjwα∂3w∂t (J

− 1
α A3

jA
σ
r )∂m

τ ηr ,σ dx

Note that the boxed term is the same as the other term (II)2 in (3.24), so they cancel out. Hence

(II)

1 + α
= d

dt

∫
�

∂m
τ ηjwα∂3wJ− 1

α A3
jA

σ
r ∂m

τ ηr ,σ dx

+
∫
�

∂m
τ ηj ∂σ (wα∂3wJ− 1

α A3
jA

σ
r )∂m

τ ηr
t dx −

∫
�

∂m
τ ηjwα∂3w∂t (J

− 1
α A3

jA
σ
r )∂m

τ ηr ,σ dx

=: d

dt
(i) + (ii) − (iii)

We can now employ the Hardy inequality (3.7) and (3.8) for (i), (ii) and (iii). We will present 
the detail for (i).

|(i)| =
∣∣∣∣∣∣
∫
�

w
α−1

2 ∂m
τ ηj ∂3wJ− 1

α A3
jA

σ
r w

α+1
2 ∂m

τ ηr ,σ dx

∣∣∣∣∣∣
≤ Cθ

∫
wα−1|∂m

τ η|2dx + θ

∫
wα+1|∂m

τ Dη|2dx by Cauchy-Swartz
� �
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≤ Cθδ

∫
�

wα+1|∂m
τ Dη|2dx + CδCθ

∫
�

wα+1|∂m
τ η|2dx

+ θ

∫
�

wα+1|∂m
τ Dη|2dx (by (3.8)).

We can choose θ and δ small if necessary. This justifies the existence and estimate of G in the 
second inequality in (3.5). Estimation of (ii) and (iii) follows similarly by Hardy inequality:

|(ii)| + |(iii)| � E
(I)
N + E

(III)
N .

For (III) containing lower order terms, by using (3.4), Lemma 3.4 and Lemma 3.5, one can 
deduce that it bounded by a continuous function of E(I)

N and E(III)
N . This concludes the proof of 

Lemma 3.2.

3.4. Proof of Lemma 3.3

Let G = ∂m
τ ∂n

3 η be given for fixed m and n. By taking a number of derivatives of (2.28), we 
obtain

Ur
i [Dη∂tG]jr − [Dη∂tG]irUj

r + ε2
2Ur
i (∂2

t Gl∂tη
r − ∂2

t Gr∂tη
l)U

j
l = Tm,n, (3.25)

where

Tm,n := ∂m
τ ∂n

3

[
Ur

i Xl
rU

j
l

]
−

∑
|p|+q≥1

∂p
τ ∂

q

3

[
Ur

i As
r

]
∂m−p
τ ∂

n−q

3 ∂tη
j ,s

−
∑

|p|+q≥1

∂p
τ ∂

q

3

[
U

j
r As

r

]
∂m−p
τ ∂

n−q

3 ∂tη
i,s

−
∑

|p|+q≥1

∂p
τ ∂

q

3

[
ε2
2Ur

i U
j
r ∂tη

r
]
∂m−p
τ ∂

n−q

3 ∂2
t ηl

+
∑

|p|+q≥1

∂p
τ ∂

q

3

[
ε2
2Ur

i U
j
r ∂tη

l
]
∂m−p
τ ∂

n−q

3 ∂2
t ηr (3.26)

In turn, we integrate in time (3.25) to get

Ur
i [DηG]jr − [DηG]irUj

r + ε2
2Ur
i (∂tG

l∂tη
r − ∂tG

r∂tη
l)U

j
l = Sm,n, (3.27)

where Sm,n consists of lower order terms:

Sm,n :=
(
Ur

i [DηG]jr − [DηG]irUj
r + ε2
2Ur

i (∂tG
l∂tη

r − ∂tG
r∂tη

l)U
j
l

) ∣∣∣
t=0

+
t∫
Tm,ndt +

t∫
∂t (U

r
i As

r )G
j ,s dt −

t∫
∂t (U

j
r As

r )G
i,s dt
0 0 0
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+
t∫

0

∂t (ε
2
2Ur

i U
j
r ∂tη

r )∂tG
ldt −

t∫
0

∂t (ε
2
2Ur

i U
j
r ∂tη

l)∂tG
rdt (3.28)

We will derive the estimates for G by taking the matrix scalar product of (3.27) with 
w1+α+n[DηG]. The first term gives a control of [DηG]:∫

�

w1+α+n[DηG]jr Ur
i [DηG]ji dx (3.29)

The second term can be integrated by parts:

∫
�

w1+α+n[DηG]irUj
r [DηG]ji dx =

∫
�

w1+α+nAs
rG

i,s U
j
r Ak

i G
j ,k dx

= −
∫
�

w1+α+nAs
rA

k
i G

i,sk U
j
r Gjdx −

∫
�

(w1+α+n),k Ak
i A

s
rG

i,s U
j
r Gjdx

−
∫
�

w1+α+n(As
rU

j
r Ak

i ),k Gi,s Gjdx =: (a) + (b) + (c). (3.30)

For (a), we integrate by parts again to get

(a) =
∫
�

w1+α+ndivηGU
j
r [DηG]jr dx +

∫
�

(w1+α+n),s As
rA

k
i G

i,k U
j
r Gjdx

+
∫
�

w1+α+n(As
rA

k
i U

j
r ),s Gi,k Gjdx

and hence,∫
�

w1+α+n[DηG]irUj
r [DηG]ji dx = (a) + (b) + (c)

=
∫
�

w1+α+ndivηGU
j
r [DηG]jr dx

+
∫
�

(w1+α+n),s As
rA

k
i G

i,k U
j
r Gjdx −

∫
�

(w1+α+n),k Ak
i A

s
rG

i,s U
j
r Gjdx

+
∫
�

w1+α+n(As
rA

k
i U

j
r ),s Gi,k Gjdx −

∫
�

w1+α+n(As
rU

j
r Ak

i ),k Gi,s Gjdx

It is clear that the last two terms are lower-order. The first term in the right-hand-side is bounded 
by
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∣∣∣∣∣∣
∫
�

w1+α+ndivηGU
j
r [DηG]jr dx

∣∣∣∣∣∣
≤ 1

8

∫
�

w1+α+nUr
i [DηG]jr [DηG]ji dx + C

∫
�

w1+α+n|divηG|2 dx.

The middle two terms need a special attention because they may not have the right weights, for 
instance the second term when s = 3 and the third term when k = 3 would have stronger weight 
wα+n than the desired weight w1+α+n. This can be overcome through the Hardy inequality. Here 
is the estimate of the third term when k = 3.

(1 + α + n)

∣∣∣∣∣∣
∫
�

wα+n∂3wA3
i [DηG]irUj

r Gjdx

∣∣∣∣∣∣
≤ 1

16

∫
�

w1+α+nUr
i [DηG]jr [DηG]ji dx + C

∫
�

wα+n−1|G|2dx

(by the Cauchy-Schwarz inequality)

≤ 1

16

∫
�

w1+α+nUr
i [DηG]jr [DηG]ji dx + δ

∫
�

w1+α+n|DG|2dx

+ Cδ

∫
�

w1+α+n|G|2dx by (3.8)

≤ 1

8

∫
�

w1+α+nUr
i [DηG]jr [DηG]ji dx + Cδ

∫
�

w1+α+n|G|2dx,

where the last step can be achieved by choosing δ > 0 appropriately.
The last term in the left-hand-side of (3.27) can be bounded by∣∣∣∣∣∣

∫
�

w1+α+nε2
2Ur
i (∂tG

l∂tη
r − ∂tG

r∂tη
l)U

j
l [DηG]ji dx

∣∣∣∣∣∣
≤ 1

8

∫
�

w1+α+nUr
i [DηG]jr [DηG]ji dx + C

∫
�

w1+α+n|∂tG|2dx

It now remains to estimate the right-hand-side of (3.27):∫
�

w1+α+n[DηG]Sm,ndx ≤ 1

8

∫
�

w1+α+n[DηG]jr Ur
i [DηG]ji dx + C

∫
�

w1+α+n|Sm,n|2dx

Note that Sm,n consists of initial data and the time integral of lower order terms. Standard non-
linear estimates by using (3.4), Lemma 3.4 and Lemma 3.5 and the integration by parts in time 
when necessary (for instance, see [7]) yield
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∫
�

w1+α+n|Sm,n|2dx ≤ F(EN [η0, η1],E(I)
N ,E

(III)
N , t),

where F is a smooth function. This establishes the first inequality of (3.6).
We further examine the dependence of initial data on Sm,n. It contains some terms depending 

on the initial data: [Ur
i [DηG]jr −[DηG]irUj

r + ε2
2Ur
i (∂tG

l∂tη
r − ∂tG

r∂tη
l)U

j
l ]∣∣

t=0 plus some 
functions of ∂p

τ ∂
q

3 Curlηχ |t=0 · t for 0 ≤ |p| ≤ m and 0 ≤ q ≤ n, which come from X in Tm,n – 

see (3.28), (3.26), and (2.29). Thus we needed the initial boundedness of not only E(I)
N and E(III)

N

but also E(IV)
N . We observe that E(IV)

N contains one more time derivative than E(III)
N and we cannot 

recover it by the estimates that have been presented so far. In order to estimate E(IV)
N , we will 

directly use (2.22). Then since

∂m
τ ∂n

3 Curlηχ = ∂m
τ ∂n

3 Curlηχ
∣∣
t=0 +

t∫
0

∂m
τ ∂n

3 [∂t ,Curlη]χ ds −
t∫

0

∂m
τ ∂n

3

(

−1[Curlη,
]∂tχ

)
ds

by performing integration by parts in time for the second and third terms when necessary [7], 
one can deduce that∫

�

w1+α+n
∣∣∂m

τ ∂n
3 Curlηχ

∣∣2
dx

≤
∫
�

w1+α+n
∣∣∂m

τ ∂n
3 Curlηχ

∣∣
t=0

∣∣2
dx +F

(
E

(I)
N , E

(III)
N , t

)
,

which completes the proof the lemma.

4. Concluding observations

4.1. The Euler equations of non-relativistic fluids

The new a priori estimates in Theorem 3.1 are trivially valid for solutions to the Euler equa-
tions of non-relativistic fluids:

∂tρ + ∂k(ρ uk) = 0,

∂t (ρ uj ) + ∂k

(
ρ ujuk + p δjk

) = 0. (4.1)

Note that the second-order formulation above is simplified drastically when ε = 0: we find 
Ck

ij |ε=0 ≡ 0 and

wα B
j
i |ε=0∂

2
t ηi + ∂k

(
w1+αAk

jJ
−1/a

) = 0,

with

B
j |ε=0 := δ

j

γ+1 = δ

j
,
i i i
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which leads us to the second-order formulation in Lagrangian coordinates for non-relativistic 
fluids

wα ∂2
t ηj + ∂k

(
w1+αAk

jJ
−1/α

) = 0. (4.2)

Similarly, the curl equation (2.22) reduces to the non-relativistic curl equation when ε = 0

Curlη∂tη = Curlu0 +
t∫

0

[∂t ,Curlη]∂tηds. (4.3)

The non-relativistic fluids enjoy much elegant structure as it can be seen from (4.2) and (4.3). 
We observe that based on the new estimates obtained in Lemmas 3.2 and 3.3 (of course the proof 
for the non-relativistic case is much simpler), one can establish the existence of the solutions to 
(4.2) justifying Theorem 3.1 corresponding to ε = 0 by a duality argument similar to [7].

4.2. The non-relativistic limit ε → 0

Theorem 3.1 is valid for any fixed number ε ≥ 0 and it covers both relativistic and non-
relativistic fluids. The non-relativistic Euler equations are recovered by letting formally ε → 0
in the relativistic Euler equations and hence, a natural question arises: can one establish the con-
vergence of the solutions of the relativistic Euler equations indexed by ε to the solutions of the 
non-relativistic Euler equations when ε → 0 in the presence of vacuum? The estimates in The-
orem 3.1 have a uniform-in-ε bound for all sufficiently small ε, and they allure the validity of 
the non-relativistic limit ε → 0 at least at the formal level. A rigorous justification, of course, 
requires an existence theory for the relativistic Euler equations.

4.3. Final remark

As presented in the previous sections, the relativistic Euler equations exhibit an intriguing 
structure and it is highly non-trivial to establish the existence of the solutions satisfying the a 
priori estimates given in Theorem 3.1. In the case where the curl becomes trivial, there is no 
need to keep track of the evolution of the curl and the control of the divergence energy would 
suffice both for getting the estimates and for the existence theory. In that situation, the existence 
result follows from our a priori estimates by a similar argument as done in [5,7]. Those cases 
cover, for instance, 1 + 1 dimensional flows and 1 + 3 spherically symmetric flows.

To be more specific, let us briefly discuss here the existence theory for 1 + 1 dimensional 
fluid flows where � is the interval [0, 1]. In that case, the main unknown is a scalar function 
η : [0, T ] × [0, 1] → R, and J = A−1 = ∂xη. The second-order Lagrangian formulation corre-
sponding to (2.26) reads as

wα B∂2
t η + wα+1C∂x∂tη + ∂x

(
wα+1J−(1+α)/α

) = 0, J = ∂xη,

where B and C depending on ∂tη, ∂xη are scalar functions exhibiting the same structure as 
in (2.27) (take i, j, k = 1). Since the energy estimates in Lemma 3.2 yield the necessary bounds 
for the total energy of ∂tη and ∂xη in the desired weighted norms, the duality argument and the 
approximate schemes developed in [5,7] apply along similar lines. The existence problem for 
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general relativistic fluids in a vacuum remains open, and we conjecture that this problem does 
admit a solution which has precisely the regularity implied by our a priori bounds. We leave its 
rigorous justification for future study.
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