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Abstract

We give a complete algebraic characterization of the non-degenerated centers for planar trigonometric 
Liénard systems. The main tools used in our proof are the classical results of Cherkas on planar analytic 
Liénard systems and the characterization of some subfields of the quotient field of the ring of trigonometric 
polynomials. Our results are also applied to some particular subfamilies of planar trigonometric Liénard 
systems. The results obtained are reminiscent of the ones for planar polynomial Liénard systems but the 
proofs are different.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction and main results

The aim of this paper is to characterize the non-degenerated centers for the planar systems 
associated to the second order trigonometric Liénard differential equations θ̈ = g(θ) + f (θ)θ̇ , 
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where f, g are trigonometric polynomials with real coefficients and the dot denotes the derivative 
with respect to the time.

The analysis of equations of this form is motivated by a number of problems resulting from 
pendulum-like equations appearing in the literature. Equations of this form, like θ̈ + sin(θ) =
εθ̇ cos(nθ), or the Josephson equation θ̈ + sin(θ) = ε[a − (1 + γ cos(θ)) θ̇ ], are considered in 
[9,16,17] or [2,14,18,19], respectively. Also the perturbed whirling pendulum, θ̈ = sin θ(cos θ −
γ ) + ε(cos θ + α) θ̇ , see [15] falls in this class. Here a, γ, α and ε are real constants and n ∈N.

As usual we will write the above second order trigonometric differential equation as the au-
tonomous planar system {

θ̇ = y,

ẏ = g(θ) + yf (θ),
(1)

and we will assume that f (0) = 0, g(0) = 0, g′(0) < 0, where the prime denotes the derivative 
with respect to θ . These hypotheses on g imply that the origin is either a center or a weak focus. 
Our main result is:

Theorem 1. System (1) has a center at the origin if and only if

(i) Either f = αg for some α ∈R, or
(ii) There exist a real trigonometric polynomial p and two real polynomials f1 and g1 satisfying 

p′(0) = 0, g1(p(0))p′′(0) < 0, and such that

f (θ) = f1(p(θ))p′(θ), g(θ) = g1(p(θ))p′(θ). (2)

The proof of this result is based on the following tools. First, the characterization of the 
non-degenerated centers for analytic differential equations given by Cherkas in [3], developed 
in [5] and later improved for polynomial Liénard systems in [4]. Secondly, a version of Luröth 
Theorem (see [20] or Theorem 5 below) for trigonometric polynomials given in [7,13] and stated 
as Theorem 7. We will recall these results in Section 2.

From condition (2), by introducing the functions

F(θ) =
θ∫

0

f (s) ds, G(θ) =
θ∫

0

g(s) ds, (3)

if follows that, for trigonometric Liénard systems having a center of type (ii),

F(θ) = F1(p(θ)), G(θ) = G1(p(θ)), (4)

for some polynomial functions F1 and G1, with p′(0) = 0, G′
1(p(0))p′′(0) < 0. This equivalent 

expression is commonly used to characterize the centers of polynomial Liénard systems, see [4].
We want to remark that the centers of item (i) in the theorem have explicit global first inte-

grals,

H(θ, y) =
{

y2 − 2G(θ), when α = 0,

(1 + αy) exp
(
α2G(θ) − αy

)
, when α �= 0.

(5)
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On the other hand, the centers of item (ii) correspond to orbitally reversible centers with respect 
to a given curve, see [4,6,21], or the proof of the sufficiency part of the theorem.

Nevertheless the case of item (i) can also be written similarly that the one of item (ii) simply 
taking f1 = α, g1 = 1, and p = G, but notice that in this case G does not need to be necessarily 
a trigonometric polynomial.

There are several differences between polynomial and trigonometrical polynomials that make 
that our proof of Theorem 1 is not a simple consequence of the parallel result for the polynomial 
case (see [4] or Theorem 4 below). Two of the more are:

• The primitive of a polynomial is again a polynomial, while the primitive of a trigonometric 
polynomial is a trigonometrical polynomial plus kθ for some k ∈ R.

• The ring of polynomials is a Unique Factorization Domain while the ring of trigonometric 
polynomials is not. This can be seen for instance looking at the celebrated identity sin2 θ =
1 − cos2 θ = (1 + cos θ)(1 − cos θ). It holds that sin θ divides the right hand expression but 
it does not divide either 1 + cos θ or 1 − cos θ .

The first difference produces the family (i) in Theorem 1. Notice again that for this family of 
centers, neither F nor G need to be trigonometric polynomials for a system (1) with a center at the 
origin. The second difference is overcome by using a isomorphism between the field of quotients 
of trigonometrical polynomials Rt (θ) and the field of rational functions R(x), see Section 2 for 
details. As we will see, this transformation allows to work with rational functions instead of 
dealing with trigonometric polynomials and then use the usual divisibility tools. This approach 
turns out to be very useful for questions dealing with trigonometric polynomials, see for instance 
[7,8,11,13] for other situations where it is used.

The explicit characterization of the centers provided in Theorem 1 can be applied to list all 
the centers for concrete subfamilies of system (1). As usual, the degree of a real trigonometric 
polynomial is given by the highest harmonic in its Fourier expansion. For instance, we prove:

Corollary 2. Consider the Liénard differential systems (1) with either f or g trigonometric poly-
nomials of prime degree. Then the origin is a center if and only if one of the following conditions 
holds:

(a) f (θ) = αg(θ) for some α ∈R,
(b) f (θ) = f1(G(θ))g(θ), with G ∈ Rt [θ ], f1 ∈R[x],
(c) g(θ) = g1(F (θ))f (θ), with F ∈ Rt [θ ], g1 ∈ R[x] and g1(0)f ′(0) < 0,
(d) f (θ) = f1(cos θ) sin θ and g(θ) = g1(cos θ) sin θ with f1, g1 ∈ R[x] and g1(1) < 0.

The proof of this corollary and other applications of Theorem 1 are given in Section 4.
The case of degenerated centers for system (1), that is g(0) = g′(0) = · · · = g(2k)(0) = 0, 

g(2k+1)(0) < 0 for some k > 0, together with some monodromy conditions, could be treated with 
similar tools following the ideas of [10].

2. Preliminary results

Next result of Cherkas ([3]) characterizes theoretically the non-degenerated centers for ana-
lytic Liénard systems.
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Theorem 3. The Liénard differential system

ẋ = y,

ẏ = g(x) + yf (x),
(6)

with f, g real analytic in a neighborhood of zero with g(0) = 0, g′(0) < 0 has a center at the 
origin if and only if there exists a real analytic function z defined in a neighborhood of zero with 
z(0) = 0, z′(0) = −1 such that

F(x) = F(z(x)) G(x) = G(z(x)), (7)

where F and G are given in (3).

Moreover, Theorem 3 implies that all centers orbitally reversible, see again [4,6,12,21]. Nev-
ertheless it is difficult to apply it for characterizing the centers for polynomial Liénard systems 
of a given degree. In this situation, the following result of Christopher ([4]) gives an algebraic 
and effective solution to the problem.

Theorem 4. The Liénard differential system (6) with f, g real polynomials with g(0) = 0, 
g′(0) < 0 has a center at the origin if and only if there exist real polynomials q , f1 and g1
satisfying q ′(0) = 0, g1(q(0))q ′′(0) < 0, and such that

f (x) = f1(q(x))q ′(x), g(x) = g1(q(x))q ′(x).

Theorem 1 can be seen as the trigonometric version of the above result.
To state Lüroth Theorem and its variants, first we introduce some notation. Let R(x) denote 

the quotient field of the ring of polynomials R[x] with coefficients in R and let Rt (θ) denote the 
quotient field of the ring of trigonometric polynomials Rt [θ ], also with coefficients in R. It is 
well-known that Rt (θ) is isomorphic to R(x) by means of the map � : Rt (θ) → R(x) defined 
by

�(sin θ) = 2x

1 + x2
and �(cos θ) = 1 − x2

1 + x2
. (8)

Finally, we will denote by R(U1, U2, . . . , Un) the subfield of R(x) (resp. Rt (θ)) generated by 
Uj ∈ R(x) (resp. Uj ∈ Rt (θ)) for j = 1, 2, . . . , n.

Given a real trigonometric polynomial p we call deg(p) = � the degree of the Fourier series 
corresponding to p, that is

p(θ) =
�∑

k=−�

ake
kiθ , a−k = ak, with a� �= 0.

It holds that

�(p(θ)) = M(x)

2 �
, withM ∈R[x], deg(M) ≤ 2� and gcd(M(x),1 + x2) = 1. (9)
(1 + x )
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Moreover, the converse is also true: for each M under the above hypotheses, there exists a 
trigonometric polynomial, p, of degree �, such that �(p(θ)) = M(x)

(1+x2)�
, see [7,8].

From (8) it can be seen that

�(p′(θ)) = M̃(x)

(1 + x2)�
:=

1
2

dM(x)
dx

(1 + x2) − �xM(x)

(1 + x2)�
(10)

and the degree of M̃ is at most 2�, see [11].
To contextualize the result that we need, let us recall first the Lüroth theorem ([20]), then the 

version used in [4] to prove Theorem 4 and finally the version given in [7,13], see Theorem 7.

Theorem 5 (Lüroth theorem). Let K be a non-trivial subfield of R(x). Then K =R(u) for some 
u ∈ K.

Theorem 6. Let K be a subfield of R(x) containing a non-constant polynomial. Then K =R(p)

for some polynomial p.

Theorem 7. Let K be a subfield of Rt (θ) containing a non-constant trigonometric polynomial. 
Then either K =R(tan(nθ

2 )) for some n ∈N or K = R(r) for some trigonometric polynomial r .

The possibilities for the generator of K appearing in Theorem 7 not having an equivalent 
version in Theorem 6 are essentially due to the well-known identity

1

1 + tan2(θ)
= cos2(θ).

Next consequence of Theorem 7 is the one that we will use in this paper.

Proposition 8. Let K = R(U, V ) be the subfield of Rt (θ) generated by the two elements 
U,V ∈ Rt (θ). Assume that:

(a) U is a non-trivial trigonometric polynomial, that is U ∈Rt [θ ] and it is non-constant.
(b) There exists a real analytic function z, defined in a neighborhood of zero, with z(0) = 0, 

z′(0) = −1 and such that

U(θ) = U(z(θ)), V (θ) = V (z(θ)).

Then K =R(r) for some trigonometric polynomial r satisfying r ′(0) = 0.

Proof. By Theorem 7, if W is a generator of K then W is either tan(nθ/2), for some n ∈ N, 
or a trigonometric polynomial. Notice that the property U(θ) = U(z(θ)), satisfied also by V , is 
inherited for all the elements of K. Hence, in particular, it holds that W(θ) = W(z(θ)).

In any case, taking derivatives at zero,

W ′(θ) = W ′(z(θ))z′(θ) ⇒ W ′(0) = −W ′(0) ⇒ W ′(0) = 0.

Since d
dθ

tan(nθ/2)
∣∣
θ=0 = n/2 �= 0, this implies that W = r is a trigonometric polynomial and 

r ′(0) = 0, as we wanted to prove. �
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3. Proof of Theorem 1

First we prove sufficiency. Under conditions of item (i) the origin is a center because it is a 
monodromic critical points and the first integrals given in (5) are well defined at this point.

Assume that conditions (2) of item (ii) hold, that is f (θ) = f1(p(θ))p′(θ) and g(θ) =
g1(p(θ))p′(θ) for some real polynomials f1 and g1 and some trigonometric polynomial p, sat-
isfying p′(0) = 0, p′′(0)g1(p(0)) < 0. Then, by using the non-invertible map

(θ, y) → (
θ̄ , ȳ

) = (
p(θ) − p(0), y

) =
(p′′(0)

2
θ2 + 0(θ3), y

)
,

we can rewrite system (1) in the form

˙̄θ = p′(θ)ȳ, ˙̄y = p′(θ)
(
g1

(
θ̄ + p(0)

) + ȳf1
(
θ̄ + p(0)

)) = p′(θ)
(
ĝ1(θ̄ ) + ȳf̂1(θ̄)

)
,

for some f̂1, ̂g1 ∈ R[x]. After the new parametrization of the time ds
dt

= p′(θ), the above system 
is transformed into

dθ̄

ds
= ȳ,

dȳ

ds
= ĝ1(θ̄) + ȳf̂1(θ̄ ).

This new system is nonsingular at the origin because ĝ1(0) = g1(p(0)) �= 0. So, it has a local 
analytic first integral, and this first integral can be pulled back to a first integral of system (1)
around the singularity, producing a center. See [4, Thm. 9b] for more details or [1, Lem. 2] for 
another application of this idea in a different context for proving the existence of a center.

Now we prove necessity. It follows from Theorem 3 that system (1) has a center at the origin 
if and only if there is a real analytic function z in a neighborhood of the origin such that z(0) = 0
and z′(0) = −1 which satisfies (7),

F(θ) = F(z(θ)), G(θ) = G(z(θ)). (11)

We consider two different subcases.

Case 1: Either F or G are trigonometric polynomials. Assume for instance that G is a trigono-
metric polynomial and f �= 0. If f = 0 the proof is trivial. The case when F is a trigonometric 
polynomial follows using similar ideas.

We know that G(θ) = G(z(θ)) with G being a non-trivial trigonometric polynomial because 
g′(0) < 0. Moreover, f �= 0. From (11) we get

f (θ) = f (z(θ)) z′(θ) and g(θ) = g(z(θ)) z′(θ), (12)

that is, g(θ)/f (θ) = g(z(θ))/f (z(θ)).
Now, consider the subfield of R(x), K =R

(
G, f/g

)
. By applying Proposition 8 with U = G, 

V = f/g it holds that K =R(p) for some trigonometric polynomial p with p′(0) = 0.
As a consequence,

G(θ) = G1

G2
(p(θ)) and

f

g
(θ) = f3

f4
(p(θ)) (13)

with G1/G2 ∈ R(x), f3/f4 ∈R(x) and gcd(G1, G2) = gcd(f3, f4) = 1.
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Following the ideas in [7] we will prove first that we can choose G2 = 1. From (8) and (9) we 
have that

G1

G2

( M

(1 + x2)�

)
= N

(1 + x2)j
, (14)

with M, N ∈ R[x], gcd(M, 1 + x2) = gcd(N, 1 + x2) = 1 and deg (M) ≤ 2� and deg(N) ≤ 2j . 
Adding, if necessary, a constant to p(θ) we can assume that deg (M) < 2�.

Now suppose, in order to get a contradiction, that deg(G2) ≥ 1. Thus we obtain

(1 + x2)d2�Ĝ1(M, (1 + x2)�)

(1 + x2)d1�Ĝ2(M, (1 + x2)�)
= N

(1 + x2)j
,

where Ĝ1 and Ĝ2 denote the homogenization of G1 and G2 and d1, d2 are their respective 
degrees.

First we show that gcd(Ĝ2(M, (1 + x2)�), (1 + x2)d2�Ĝ1(M, (1 + x2)�)) = 1. To see this we 
will prove that Ĝ2(M, (1 + x2)�) does not share roots (real or complex) with (1 + x2)d2� or with 
Ĝ1(M, (1 + x2)�)). Indeed, let z ∈ C be a root of Ĝ2(M, (1 + x2)�)) and suppose first that z is 
also a root of 1 + x2. If we write G2 = ∑d2

j=0 ajx
j with ad2 �= 0 we have

Ĝ2(M(x), (1 + x2)�) =
d2∑

j=0

ajM
j (x)(1 + x2)(d2−j)�

and, as a consequence, Ĝ2(M(z), (1 + z2)�) = ad2M
d2(z) = 0. Since ad2 �= 0 it holds that 

M(z) = 0 which contradicts to the fact that gcd(M, 1 + x2) = 1. So, 1 + z2 �= 0.
Assume now that z is also a root of Ĝ1(M(x), (1 + x2)�)). Since 1 + z2 �= 0, we obtain that

G1

(
M(z)

(1 + z2)�

)
= G2

(
M(z)

(1 + z2)�

)
= 0

which contradicts that gcd(G1, G2) = 1.
Therefore, we have that Ĝ2(M, (1 + x2)�) = (1 + x2)k for some 0 ≤ k ≤ d2�. Since 

Ĝ2(M, (1 + x2)�) = ad2M
d2 + (1 + x2)�L for some L ∈ R[x], ad2 �= 0 and gcd(M, 1 + x2) = 1

we get that k = 0 and then Ĝ2(M, (1 + x2)�) is a constant polynomial.
If we decompose the homogeneous polynomial Ĝ2(M, (1 + x2)�) in its real irreducible com-

ponents we will obtain that for each one of them, say T we have

T (M, (1 + x2)�) ∈R.

If deg(T ) = 2 this last property is impossible because(
aM + b(1 + x2)�

)2 + c2(1 + x2)2� ∈R

with a �= 0, c �= 0, b ∈R, never holds due to deg(M) < 2�.
If deg(T ) = 1 then it should happen that aM +b(1 +x2)� ∈R for some a, b ∈ R. Again using 

that deg(M) < 2� the only possibility is b = 0 and M ∈ R.
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Then the only irreducible factor of T is x. Hence G2(x) = xd2 for some d2 ≥ 0. If d2 > 0 then, 
since gcd(G1, G2) = 1, it holds that G1(0) �= 0 and deg(Ĝ1(M, (1 + x2)�)) = 2d1�. Therefore

G1

G2

( M

(1 + x2)�

)
= (1 + x2)d2�Ĝ1(M, (1 + x2)�)

(1 + x2)d1�
= Ĝ1(M, (1 + x2)�)

(1 + x2)(d1−d2)�
,

with deg(Ĝ1(M, (1 + x2)�)) = 2d1�, which is in contradiction with (14). Therefore d2 = 0
and G2 ∈ R. So we can take G2 = 1 and this yields that G(θ) = G1(p(θ)). Then g(θ) =
g1(p(θ))p′(θ), with g1 = G′

1 ∈R[x], as we wanted to show.
Let us prove that f satisfies a similar property. From (13) we get

f (θ) = f3(p(θ))g(θ)

f4(p(θ))
= f3(p(θ))g1(p(θ))

f4(p(θ))
p′(θ) = f1(p(θ))

f2(p(θ))
p′(θ) (15)

with f1, f2 ∈ R[x] and gcd(f1, f2) = 1. Now we will show that f2 = 1.
From (8), (9) and (10) we have that

f1

f2

( M

(1 + x2)�

) M̃

(1 + x2)�
= N

(1 + x2)j
,

with M, N ∈R[x], M̃(x) = 1
2

dM(x)
dx

(1 +x2) − �xM(x), gcd(M, (1 +x2)�) = gcd(M̃, (1 +x2)�)

= gcd(N, (1 + x2)j ) = 1, where recall that deg(M) < 2�, and deg(M̃) ≤ 2� and deg(N) ≤ 2j . 
We remark that the polynomial N and the integer j are not necessarily equal to the ones used in 
the first part of the proof.

Now assume, in order to get a contradiction, that deg(f2) ≥ 1.
Thus we obtain

(1 + x2)d2�f̂1(M, (1 + x2)�)M̃

(1 + x2)(d1+1)�f̂2(M, (1 + x2)�)
= N

(1 + x2)j
, (16)

where f̂1 and f̂2 denote the homogenization of f1 and f2 and d1, d2 their respective degrees. 
Again, these dj are in general different to the ones used previously in this proof.

Proceeding as we did for Ĝ2(M, (1 +x2)�) we can show that f̂2(M, (1 +x2)�) does not share 
roots (real or complex) with (1 + x2)d2� or with f̂1(M, (1 + x2)�)). So, it follows from (16) that

Q(x) := M̃(x)

f̂2(M(x), (1 + x2)�)
=

1
2

dM(x)
dx

(1 + x2) − �xM(x)

f̂2(M(x), (1 + x2)�)

has to be a polynomial. If we write f2 = ∑d2
j=0 bjx

j , with bd2 �= 0, we have

f̂2(M(x), (1 + x2)�) =
d2∑

j=0

bjM
j (x)(1 + x2)(d2−j)�.

Assume to arrive to a contradiction that b0 = 0. Then f̂2(M(x), (1 + x2)�) = M(x)L(x), 
for some polynomial L. In particular, the fact that Q is polynomial implies that M divides 
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dM(x)
dx

(1 + x2). Since gcd(M, 1 + x2) = 1 this is impossible. Hence b0 �= 0. Therefore, since 
deg(M) < 2� we have that deg(f̂2(M, (1 + x2)�)) = 2�d2.

The degree of M̃ is at most 2�. Therefore, using again that Q is a polynomial, we conclude 
that d2 ∈ {0, 1}. If d2 = 0 we are done. So we will suppose that d2 = 1, to arrive again to a 
contradiction. Under this assumption,

f̂2(M(x), (1 + x2)�)) = b0(1 + x2)� + b1M(x),

M̃(x) = (
b0(1 + x2)� + b1M(x)

)
k,

for some 0 �= k ∈ R, and b1 �= 0. By using the expression of M̃ , the second equation above leads 
to the linear differential equation

dM

dx
= a + 2�x

1 + x2
M + b(1 + x2)�−1,

with a = 2kb1 �= 0 and b = 2kb0. If we write M(x) = (1 + x2)�P (x) then P(x) satisfies

dP

dx
= aP + b

1 + x2
.

Solving it we get that P(x) = − b
a

+ c exp
(
a arctan(x)

)
, for c ∈ R. So

M(x) = (1 + x2)�
(

− b

a
+ c exp

(
a arctan(x)

))
.

Since M must be a polynomial we get that c = 0 but then M(x) = −b(1 + x2)�/a which is not 
possible because gcd(M, 1 + x2) = 1 and � > 0.

Hence, d2 = 0 and f̂2(M, (1 + x2)�) is a constant. Now proceeding as we did for Ĝ2(M,

(1 + x2)�) we get that indeed f2 = 1, as we wanted to prove. Therefore (2) follows with some 
polynomial p, that satisfies p′(0) = 0. In particular g(θ) = g1(p(θ))p′(θ). Taking derivatives 
and evaluating on θ = 0 we get g′(0) = g̃1(p(0))p′′(0) < 0. This completes the proof of the 
theorem in this case.

Case 2: Neither G nor F are trigonometric polynomials. We can write F and G as

F(θ) = αθ + F1(θ), G(θ) = βθ + G1(θ)

being α, β ∈ R \ {0} and F1, G1 ∈Rt [θ ]. Note that the function

H(θ) = βF(θ) − αG(θ) = βF1(θ) − αG1(θ)

is a trigonometric polynomial. Moreover if H(θ) = c ∈ R we are in case (i) because taking 
derivatives 0 = βf − αg, that is, f/g = α/β ∈R and we are done.

Otherwise H is a non-constant trigonometric polynomial. Moreover, by using (11) and (12)
notice that

H(θ) = H(z(θ)),
f

(θ) = f
(z(θ)).
g g
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Similarly that in Case 1, we consider the subfield of R(x), K =R
(
H, f/g

)
. By applying Propo-

sition 8 with U = H , V = f/g it holds that F = R(p) for some trigonometric polynomial p, 
satisfying p′(0) = 0.

Now, proceeding as in Case 1 with G replaced by H we conclude that H(θ) = H1(p(θ)) with 
H1 ∈R[x]. Moreover

f

g
(θ) = f3

f4
(p(θ)) (17)

for some f3, f4 ∈ R[x] and gcd(f3, f4) = 1. Since

g(θ)
(
β

f (θ)

g(θ)
− α

)
= βf (θ) − αg(θ) = H ′(θ),

by using the derivative of H(θ) = H1(p(θ)) and (17), it holds that

g(θ) = H ′(θ)

β
f (θ)
g(θ)

− α
= H ′(θ)

β
f3(p(θ))
f4(p(θ))

− α
= H ′(θ)f4(p(θ))

βf3(p(θ)) − αf4(p(θ))

= H ′
1(p(θ))f4(p(θ))

βf3(p(θ)) − αf4(p(θ))
p′(θ) = g1(p(θ))

g2(p(θ))
p′(θ),

with g1, g2 ∈ R[x], g2 �= 0 and gcd(g1, g2) = 1. Now proceeding as in the study (15) in Case 1, 
replacing f by g, and fj (p(θ)) by gj (p(θ)), for j = 1, 2 we can show that g2 = 1 and so 
g(θ) = g1(p(θ))p′(θ) with g1 ∈R[x], as we wanted to see.

Furthermore, from (17),

f (θ) = f3(p(θ))

f4(p(θ)
g(θ) = f3(p(θ)g1(p(θ))

f4(p(θ))
p′(θ) = f1(p(θ))

f2(p(θ)
p′(θ),

with f1, f2 ∈ R[x], gcd(f1, f2) = 1, and again we can prove that f2 = 1. Hence the theorem 
follows as in Case 1.

4. Applications

In the Corollary 2, using Theorem 1, we characterize the Liénard differential systems (1)
having a center at the origin when either f or g are trigonometric polynomials of prime degree.

Proof of Corollary 2. By applying Theorem 1 we know that the two families of centers corre-
spond to the ones given in item (i) and (ii) of the theorem. The first case, (a), corresponds to 
item (i).

Assume now that conditions of item (ii) of the Theorem hold. For convenience we use the 
following equivalent expressions to conditions (ii) of the theorem, see (4),

F(θ) = F1(p(θ)), G(θ) = G1(p(θ)), (18)

with p ∈ Rt [θ ], F1, G1 ∈ R[x], p′(0) = 0 and G′
1(p(0))p′′(0) < 0. Notice that F, G ∈ Rt [θ ], 

deg(F ) = deg(f ) and deg(G) = deg(g).
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From (18) it holds that

deg(f ) = deg(F ) = deg(F1)deg(p), and deg(g) = deg(G) = deg(G1)deg(p).

Assume first that deg(g) is prime. Therefore, one of the following situations happens:

(I) deg(G1) = 1 and deg(p) = deg(g), or
(II) deg(G1) = deg(g) and deg(p) = 1.

In case (I ), G1(x) = ax + b, 0 �= a ∈ R. Then G(θ) = ap(θ) + b, and consequently p(θ) =
(G(θ) − b)/a. Hence, by (18),

F(θ) = F1

(G(θ) − b

a

)
= F̂1(G(θ)).

Taking derivatives in this last expression we get that f (θ) = f1(G(θ))g(θ), with f1 = F̂ ′
1. There-

fore we have obtained the centers described in item (b).
In case (II ), p(θ) = a cos θ + b sin θ + c with a, b, c ∈ R, a2 + b2 �= 0. Taking into account 

that p′(0) = 0 we get that b = 0. Then a �= 0 and

F(θ) = F1(a cos θ + c) = F̂1(cos θ).

Taking once more derivatives, we obtain the centers of case (d).
The case where deg(f ) is prime gives rise to the centers of item (c), or again, to some centers 

in case (d). This completes the proof of the corollary. �
The following corollaries give the characterization of the centers of system (1) when f and g

are trigonometric polynomials of degree at most 3, in terms of the coefficients of the their re-
spective Fourier series and we also study in detail the degree 4 case.

Corollary 9. System (1) with f and g trigonometric polynomials of degree at most 3,

f (θ) = a0 + a1 cos θ + a2 sin θ + a3 cos(2θ) + a4 sin(2θ) + a5 cos(3θ) + a6 sin(3θ),

g(θ) = b0 + b1 cos θ + b2 sin θ + b3 cos(2θ) + b4 sin(2θ) + b5 cos(3θ) + b6 sin(3θ),

has a center at the origin if and only if a0 + a1 + a3 + a5 = 0, b0 + b1 + b3 + b5 = 0, b2 + 2b4 +
3b6 < 0, and one of the following conditions holds:

(I) a1 = a3 = a5 = b1 = b3 = b5 = 0;
(II)

(
a0, a1, a2, a3, a4, a5, a6

) = α
(
b0, b1, b2, b3, b4, b5, b6

)
for some α ∈ R.

Corollary 10. System (1) with f and g trigonometric polynomials of degree 4,

f (θ) = a0 + a1 cos θ + a2 sin θ + a3 cos(2θ) + a4 sin(2θ) + a5 cos(3θ)

+ a6 sin(3θ) + a7 cos(4θ) + a8 sin(4θ),
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g(θ) = b0 + b1 cos θ + b2 sin θ + b3 cos(2θ) + b4 sin(2θ) + b5 cos(3θ)

+ b6 sin(3θ) + b7 cos(4θ) + b8 sin(4θ),

with b2
7 + b2

8 �= 0, has a non-degenerated center at the origin if and only if a0 + a1 + a3 + a5 +
a7 = 0, b0 + b1 + b3 + b5 + b7 = 0 and b2 + 2b4 + 3b6 + 4b8 < 0, and one of the following 
conditions holds.

(I) a1 = a3 = a5 = a7 = b1 = b3 = b5 = b7 = 0.
(II)

(
a0, a1, a2, a3, a4, a5, a6, a7, a8

) = α
(
b0, b1, b2, b3, b4, b5, b6, b7, b8

)
for some α ∈ R.

(III) There exit a real trigonometric polynomial

p(θ) = p0 + p1 cos θ + p2 sin θ + p3 cos(2θ) + p4 sin(2θ),

with p2
3 + p2

4 �= 0, p(0) = p0 + p1 + p3 = 0, p′(0) = −p2 − 2p4 = 0 and two real polyno-
mials f1(x) = 2αcx + b and g1(x) = 2cx + d , such that

f (θ) = f1(p(θ))p′(θ), g(θ) = g1(p(θ))p′(θ), (19)

c �= 0 and g1(0)p′′(0) = −(p1 + 4p3)d < 0. In particular, it holds that 
(
a5, a6, a7, a8

) =
α
(
b5, b6, b7, b8

)
.

Proof of Corollaries 9 and 10. The equalities f (0) = a0 + a1 + a3 + a5 + a7 = 0, g(0) = b0 +
b1 + b3 + b5 + b7 = 0 and g′(0) = b2 + 2b4 + 3b6 + 4b8 < 0, are the conditions to have a weak 
focus at the origin.

Cases (I ) correspond to the case (d) of Corollary 2. The second cases (II ) correspond to 
item (a) in Corollary 2. Notice that

c2 sin θ + c4 sin(2θ) + c6 sin(3θ) + c8 sin(4θ)

= (
c2 − c6 + 2(c4 − 2c8) cos θ + 4c6 cos2 θ + 8c8 cos3 θ

)
sin θ.

Finally, the case (III ) in Corollary 10 happens when the trigonometric polynomial p of 
Theorem 1 is of degree 2 and f1 and g1 are degree 1 polynomials in p. Notice that this type of 
cases only appears when the degrees of f and g are not prime.

From Theorem 1 we know that (19) holds for some real trigonometric polynomial

p̃(θ) = p̃0 + p̃1 cos θ + p̃2 sin θ + p̃3 cos(2θ) + p̃4 sin(2θ),

of degree at most 2 and for some real polynomials f̃1(x) = 2̃ax + b̃ and ̃g1(x) = 2̃cx + d̃ . From 
the condition b2

7 + b2
8 �= 0 we have that p̃2

3 + p̃2
4 �= 0 and ̃c �= 0. Taking p(θ) = k(p̃(θ) − p̃(0))

and the corresponding f1 and g1 for a suitable k ∈ R we get all the conditions (III ).
To prove that 

(
a5, a6, a7, a8

) = α
(
b5, b6, b7, b8

)
holds notice that

f (θ) = 2αcp(θ)p′(θ) + bp′(θ) and g(θ) = 2c p(θ)p′(θ) + d p′(θ).

Therefore f (θ) −α g(θ) = (b −αd)p′(θ). Since p′ has degree 2, the above equality implies that 
the degree 3 and 4 terms of f and g coincide up the multiplicative constant α, as we wanted to 
prove. �
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If one wishes to have the explicit conditions among the coefficients of f and g to characterize 
the centers of family (III ) of Corollary 10, there is a systematic procedure to get them. Define 
the two trigonometric polynomials

s1(θ) := f (θ) − (
2αcp(θ)p′(θ) + bp′(θ)

)
, s2(θ) := g(θ) − (

2c p(θ)p′(θ) + d p′(θ)
)
,

where α, b, c and d are real constants and in f we take 
(
a5, a6, a7, a8

) = α
(
b5, b6, b7, b8

)
. Hence 

these polynomials have 21 free variables: the 9 coefficients of g; the first 5 coefficients of f ; three 
of the coefficients of p (p1, p3 and p4); and α, b, c and d .

By our results the functions s1 and s2 must be identically zero. Hence we expand in Fourier 
series both functions and we take all their coefficients. Finally, with the system generated by 
equating to zero each of these coefficients, we use the elimination method of parameters to elim-
inate the 6 parameters of p1, p3, p4, b, c and d . Then we obtain the desired center conditions. 
We omit them because are really huge and the reader can obtain the conditions following the 
approach we have described. Instead, we show some subcases of the system considered in Corol-
lary 10 where we apply this approach to characterize all the centers of type (III ).

In the first one we assume that a3 = a4 = b3 = b4 = 0. Then, the equations obtained with this 
elimination method are:

b0 = 0, a0 = 0, a1 + αb5 + αb7 = 0, b1 + b5 + b7 = 0,

a2b6 − αb2b6 = 0, a2b8 − αb2b8 = 0, b2
5b7 + b2

6b7 + 6b5b
2
7 + 6b6b7b8 = 0

9b2b7 − 10b5b6 − 9b6b7 − 30b5b8 − 45b7b8 = 0,

3b2b5 + 17b5b6 + 15b6b7 + 60b5b8 + 90b7b8 = 0,

9a2b7 − 10αb5b6 − 9αb6b7 − 30αb5b8 − 45αb7b8 = 0,

3a2b5 + 17αb5b6 + 15αb6b7 + 60αb5b8 + 90αb7b8 = 0,

9b3
7 − 2b2

6b7 + 2b5b6b8 − 6b6b7b8 + 6b5b
2
8 + 9b7b

2
8 = 0,

2b2
5b6 + 12b5b6b7 + 9b6b

2
7 + 6b2

5b8 + 45b5b7b8 + 54b2
7b8 = 0,

9b6b
3
7 − 2b3

6b7 − 18b2
6b7b8 + 9b5b

2
7b8 + 54b3

7b8 − 36b6b7b
2
8 = 0,

2b3
6 − 9b6b

2
7 + 12b2

5b8 + 63b5b7b8 + 81b2
7b8 + 27b2b

2
8 − 9b6b

2
8 = 0,

2b3
5 − 18b2

6b7 − 63b5b
2
7 + 27b3

7 − 99b6b7b8 − 18b5b
2
8 − 27b7b

2
8 = 0,

2b5b
2
6 + 18b2

6b7 − 9b5b
2
7 − 81b3

7 + 63b6b7b8 − 18b5b
2
8 − 27b7b

2
8 = 0,

4b4
6b7 − 36b2

6b
3
7 + 81b5

7 + 48b3
6b7b8 − 216b6b

3
7b8 + 180b2

6b7b
2
8 − 243b3

7b
2
8 + 216b6b7b

3
8 = 0.

Solving them and doing some tedious but straightforward computations we get that when 
a3 = a4 = b3 = b4 = 0 all the centers are inside classes (I ) and (II ) of Corollary 10.

Similarly, when we consider the subfamily of the system studied in Corollary 10, with a1 =
a2 = a5 = a6 = 0 and b1 = b2 = b5 = b6 = 0, we can prove that all non-degenerated centers are 
again the ones given in classes (I ) and (II ).
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An example of case (III ) is given by the following conditions

a0 = b0 = 0, a2 = α/2, a3 = α − a1, a4 = 2a1 − α,(
a5, a6, a7, a8

) = α
( − 3,−3/2,2,−3/2

)
, b1 = (1 + b4)/2,

b2 = 1/2, b3 = (1 − b4)/2, b5 = −3, b6 = −3/2, b7 = 2, b8 = −3/2,

where α and a1 are arbitrary real constants and b4 < 5 (this condition comes from g′(0) < 0). 
In this example f1(x) = 2αx + 3α − a1, g1(x) = 2x + (5 − b4)/2 and p(θ) = −1 − sin θ +
cos(2θ) + 1

2 sin(2θ).
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