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Abstract

We consider the energy supercritical wave maps from Rd into the d-sphere Sd with d ≥ 7. Under an 
additional assumption of 1-corotational symmetry, the problem reduces to the one dimensional semilinear 
wave equation

∂2
t u = ∂2

r u + (d − 1)

r
∂ru − (d − 1)

2r2
sin(2u).

We construct for this equation a family of C∞ solutions which blow up in finite time via concentration of 
the universal profile

u(r, t) ∼ Q

(
r

λ(t)

)
,

where Q is the stationary solution of the equation and the speed is given by the quantized rates

λ(t) ∼ cu(T − t)
�
γ , � ∈N

∗, � > γ = γ (d) ∈ (1,2].
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The construction relies on two arguments: the reduction of the problem to a finite-dimensional one thanks 
to a robust universal energy method and modulation techniques developed by Merle, Raphaël and Rodni-
anski [49] for the energy supercritical nonlinear Schrödinger equation, then we proceed by contradiction to 
solve the finite-dimensional problem and conclude using the Brouwer fixed point theorem.
Crown Copyright © 2018 Published by Elsevier Inc. All rights reserved.
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1. Introduction

Let (N, h) be a complete smooth Riemannian manifold of dimension d with ∂N = ∅. We de-
note spacetime coordinates on R1+d as (t, x) = (xα) with 0 ≤ α ≤ d . A wave map � :R1+d 	→ N

is formally defined as a critical point of the Lagrangian

L(�, ∂�) =
∫

R1+d

gαμ
〈
∂α�,∂μ�

〉
h
dtdx,

where g = diag(−1, 1, · · · , 1) is the Minkowski metric on R1+d and ∂α = ∂
∂xα

. In the local 
coordinates on (N, h), the critical points of L satisfy the equation

�g�
k + gαμ�k

ij (�)∂α�i∂μ�j = 0, 1 ≤ k ≤ d, (1.1)

where �k
ij are Christoffel symbols associated to the metric h of the target manifold N , and �g

stands for the Laplace–Beltrami operator on (R1+d, g) defined by

�gu = ∂tt − 	.

A special case is when the target manifold N = Sd ↪→R1+d , equation (1.1) becomes

∂2
t � − 	� = �(|∇�|2 − |∂t�|2). (1.2)

Under the assumption of 1-corotational symmetry, namely that the solution takes the form

�(x, t) =
(

cos(u(|x|, t))
x
|x| sin(u(|x|, t))

)
,

equation (1.2) reduces to the semilinear wave equation

{
∂2
t u = ∂2

r u + (d−1)
r

∂ru − (d−1)

2r2 sin(2u),

(u, ∂ u) | = (u ,u ),
(1.3)
t t=0 0 1
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where u(t) : r ∈ R+ → u(r, t) ∈ R+. The set of solutions to (1.3) is invariant by the scaling 
symmetry

�u(r, t) := (u, ∂tu
)
(r, t) 	−→ �uλ(r, t) :=

(
u,

1

λ
∂tu

)(
r

λ
,

t

λ

)
, ∀λ > 0.

The problem (1.3) exhibits a conserved energy

E(�u)(t) =
+∞∫
0

(
|∂tu|2 + |∂ru|2 + (d − 1)

r2 sin2(u)

)
rd−1dr = const., (1.4)

which satisfies

E(�uλ) = λd−2E(�u).

This means that the wave map problem (1.3) is energy subcritical if d = 1, critical if d = 2 and 
supercritical if d ≥ 3.

The Cauchy problem for wave maps has been extensively studied, see for examples, Shatah 
and Shadi Tahvildar-Zadeh [62], Shatah and Struwe [60,61], Struwe [63], Tataru [66,67]. It is 
well understood that the Cauchy problem is locally well posed for initial data in Hs ×Hs−1 with 
s > d

2 (see Klainerman and Machedon [33] for d ≥ 3, Klainerman and Selberg [34] for d = 2, 
Keel and Tao [32] for d = 1) and the solution can be continued as long as the Hs-norm remains 
bounded. We refer the reader to the paper by Krieger [35] for a survey on these results and a 
detailed list of references. It is well known that the solution u(r, t) may develop singularities in 
some finite time (see for example, [13] and [59]). In this case, we say that u(r, t) blows up in a 
finite time T < +∞ in the sense that

lim
t→T

‖∇u(t)‖L∞ = +∞.

Here we call T the blowup time. In this paper, a blowup solution is called Type I if

lim sup
t→T

(T − t)‖∇u(t)‖L∞ < +∞, (1.5)

otherwise, it is called Type II.
In the energy critical case d = 2, Struwe [64,65] proved that blowup cannot be self-similar. 

A solution u is said to be self-similar if it is of the form

u(r, t) = ϕ(y), y = r

T − t
,

where T is a positive constant and ϕ is a smooth function solving the ordinary differential equa-
tion

(1 − y2)ϕyy +
(

d − 1

y
− 2y

)
ϕy − (d − 1)

2y2 sin(2ϕ) = 0. (1.6)

Note that Struwe’s result does not imply that blowup actually occurs. However, numerical evi-
dences by Bizon, Chmaj and Tabor [6], Isenberg and Liebling [31] strongly suggest singularity 
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development for certain positively curved targets. Later, the existence of finite time blowup so-
lutions for equivariant wave maps from (2 + 1) Minkowski space to the S2-sphere has been 
constructively proved by Krieger, Schlag and Tataru [36], Cârstea [12], Rodnianski and Ster-
benz [57], Raphaël and Rodnianski [53]. It is worth mentioning the work by Côte et al. [18,19]
where the authors establish a classification of blowup solutions of topological degree one1 with 
energies less than 3E(Q, 0), where Q(r) = 2 arctan(r) is the unique (up to scaling) non trivial 
solution to the equation

Qrr + 1

r
Qr = sin(2Q)

2r2 .

In particular, they show that a blowup solution of degree one is essentially a decomposition of 
the form

�u(t) = �h +
(

Q

( ·
λ(t)

)
,0

)
+ �ε(t), λ(t) = o(T − t),

where �h and �ε are of topological degree zero, E(�h) is less than 2E(Q, 0) and E(�ε)(t) goes to 
zero as t → T . This result reveals the universal character of the known blowup constructions for 
degree one of [36] and [53].

In the supercritical energy case d ≥ 3, we have the following explicit solution of (1.6)

ϕ0(y) = 2 arctan

(
y√

d − 2

)
. (1.7)

This self-similar solution was found by Turok and Spergel [68] for d = 3 (see also Shatah [59]
for an earlier result) and by Bizon and Biernat [4] for d ≥ 4. For d = 3, the solution (1.7) is 
proved to be stable by Donninger [20], Donninger, Schörkhuber and Aichelburg [21], Costin, 
Donninger and Xia [16]. This stability is recently proved for all odd dimensions by Chatzikaleas, 
Donninger and Glogic [14]. This self-similar solution is expected to be generic through numerical 
simulations in [5] and [4]. When 3 ≤ d ≤ 6, we note that there exists an infinite sequence of 
globally regular solutions ϕn for (1.6) (see [3]) where the index n denotes the number of zeros 
of ϕ′

n in (0, 1).
When d ≥ 7, Biernat [1] shows the existence of a stationary solution Q for equation (1.3), 

namely that Q solves

Q′′ + (d − 1)

r
Q′ − (d − 1)

2r2 sin(2Q) = 0, Q(0) = 0, Q′(0) = 1. (1.8)

The solution Q is unique (up to scaling) and admits the behavior for r large,

Q(r) = π

2
− a0

rγ
+ o

(
1

rγ

)
, (1.9)

for some a0 = a0(d) > 0 and γ = γ (d) is given by

1 Following the definition in [18], a solution �u is of degree n if E(�u) is finite and u(r = 0, t) = 0, u(r = ∞, t) = nπ .
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γ (d) = 1

2
(d − 2 − γ̃ ) ∈ (1,2] for d ≥ 7, (1.10)

where

γ̃ =
√

d2 − 8d + 8.

It happens that the asymptotic behavior of the stationary solution Q given by (1.9) plays an 
important role in the construction of Type II blowup solutions for an analogous problem for the 
heat flow

∂tu = ∂2
r u + (d − 1)

r
∂ru − (d − 1)

2r2 sin(2u). (1.11)

In [27], we construct for equation (1.11) a family of C∞ solutions which blow up in finite time 
via concentration of the profile

u(r, t) ∼ Q

(
r

λ(t)

)
,

where λ is given by the quantized rates

λ(t) ∼ (T − t)
�
γ as t → T ,

for � ∈ N
∗ satisfying 2� > γ . Note that the same blowup rate was obtained by Biernat and Seki 

[2] through a matched asymptotic method. More precisely, we have successfully adapted the 
strategy developed by Merle, Raphaël and Rodnianski [49] for the study of the energy supercriti-
cal nonlinear Schrödinger equation to construct for equation (1.11) type II blowup solutions. The 
method relies on a two step procedure:

• Construction of a suitable approximate blowup profile through iterated resolutions of elliptic 
equations. The tail computation allows us to formally derive the blowup speed.

• Implementation of a robust universal energy method to control the solution in the blowup 
regime through the derivation of suitable Lyapunov functional, which relies on neither spec-
tral estimates nor the maximum principle and may be easily applied to various settings.

The method of [49] has been also proved to be success for the construction of type II blowup 
solutions for the energy supercritical semilinear heat and wave equations by Collot [10,11].

In this paper, by considering the case when

d ≥ 7,

we ask whether we can carry out the analysis in [27] to construct solutions for equation (1.3)
which blow up in finite time via concentration of the profile Q. The following theorem is our 
main result.

Theorem 1.1 (Existence of type II blowup solutions to (1.3) with prescribed behavior). Let d ≥ 7
and γ be defined as in (1.10), we fix an integer

� ∈N
∗ with � > γ,
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and two numbers σ ∈ R+, s ∈ N such that

0 < σ − d

2
� 1 and 1 � s = s(�) → +∞ as � → +∞.

Then there exists an open set of initial data of the form

(u0, u1) = (Q,0) + (ε0, ε1), (ε0, ε1) ∈ O ⊂ (Ḣ σ ∩ Ḣ s
)× (Ḣ σ−1 ∩ Ḣ s−1

)
,

such that the corresponding solution to equation (1.3) satisfies

u(r, t) = Q

(
r

λ(t)

)
+ ε

(
r

λ(t)
, t

)
(1.12)

where

λ(t) = c(u0, u1)(T − t)
�
γ (1 + ot→T (1)), c(u0, u1) > 0, (1.13)

and

lim
t→T

‖(ε(t), λ∂t ε(t))‖Ḣμ×Ḣμ−1 = 0, ∀μ ∈ [σ, s] . (1.14)

Remark 1.2. Since γ ∈ (1, 2) for d ≥ 8 and γ = 2 for d = 7, the condition � > γ requests that 
� ≥ 2 for d ≥ 8 and � ≥ 3 for d = 7. As for the case � = γ , which only happens in the case d = 7
with � = γ = 2, we expect that the blowup rate (1.13) would involve some logarithmic correction 
of the form

λ(t) ∼ T − t

| log(T − t)|ν for some ν > 0.

This logarithmic gain would be related to the growth of the approximate profile at infinity. Al-
though our analysis would be naturally extended to this case, this seems to require some crucial 
modification in the construction of an approximate profile and this would be treated in a separate 
work.

Remark 1.3. The proof of Theorem 1.1 involves a detailed description of the set of initial data 
leading to the type II blowup with the quantization of the blowup rate (1.13). In particular, given 
� ∈ N

∗, L � 1 and s ∼ L, our initial data is of the form

�u0 = �Qb(0) + �q0, (1.15)

where �Qb is a deformation of the ground state �Q = (Q, 0), and b = (b1, · · · , bL) correspond 
to possible unstable directions of the flow in the Ḣ s × Ḣ s−1 topology in a suitable neighbor-

hood of �Q. We show that for all �q0 ∈ O ⊂
(
Ḣ σ ∩ Ḣ s

)
×
(
Ḣ σ−1 ∩ Ḣ s−1

)
, where the set 

O is built on the linearized operator (see Definition 3.1 for its precise description of O) and 
for all 

(
b1(0), b�+1(0), · · · , bL(0)

)
small enough, there exists a choice of unstable directions (

b2(0), · · · , b�(0)
)

such that the solution of (1.3) with initial data (1.15) satisfies the conclusion 
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of Theorem 1.1. The control of (� − 1) unstable modes is done through a topological argument 
based on Brouwer’s fixed point theorem. In some sense, the set of blowup solutions we construct 
lies on a (� − 1) codimension manifold in the radial class whose proof would require some Lip-
schitz regularity of the set of initial data we consider and it would be addressed separately in 
detail.

Remark 1.4. It is worth mentioning that our analysis relies only on the study of supercritical 
Sobolev norms built on the linearized operator, thus, the finiteness of the H 1 norm of the initial 
data is not requested. Roughly speaking, the initial data (u0, u1) can be taken smooth and com-
pactly supported, namely that if u = Q + ε, we take ε(r) ∼ −Q(r) for r � 1. Since the energy 
is conserved, our constructed solution can be taken to be of finite energy or even compactly sup-
ported. As a matter of fact, the finite energy together with the constructed manifold mentioned 
in the previous remark ensures that the original solution � to the wave map equation (1.2) is 
smooth up to the blowup time.

Remark 1.5. We note from (1.12) that

∂ru(0, t) ∼ λ−1(t) ∼ (T − t)
− �

γ � (T − t)−1 as t → T .

This implies that our constructed solution is of Type II blowup in the sense of (1.5).

Remark 1.6. Following the work by Côte et al. [18,19] where the question of the classification 
of the flow near the special class of stationary solution Q are considered in the energy critical 
setting, i.e. d = 2, we would address the same question for the energy supercritical case d ≥ 7. 
In Theorem 1.1, the constructed blowup solutions exhibit the decomposition of the form (1.12). 
Here we ask for a converse problem, namely that if blowup does occur for a solution �u, in which 
energy regime and in what sense does such the decomposition (1.12) always hold?

Remark 1.7. It is worth mentioning the work of Krieger–Schlag–Tataru [36], where the authors 
constructed for equation (1.3) in the critical case d = 2 blowup solutions of the form

u(r, t) = Q(rλ(t)) + ε(r, t), r ≤ t,

where ε has local energy going to zero as t → 0 and λ(t) = t−1−ν with ν > 1
2 arbitrary. Analo-

gous results are also established in [37,38] (see also [22]) for the critical semilinear wave equation 
and the critical Yang–Mills problem. The existence of the continuum of blowup rates established 
in [36–38] is an interesting phenomena and it is different from our result where the blowup rate 
(1.13) is discretely quantized. The discrete quantization of blowup rates has been previously de-
rived in [53], [55], [49], [27], [11], [10], ..., where the constructions of blowup solutions are 
based on the modulation theoretic approach. A remarkable difference between the two methods 
is the smoothness of the constructed solutions. This is to say that the solutions obtained in [36]
is not smooth, which is contrary with the ones obtained by the modulation technique. We sus-
pect that such an existence of a continuum of blowup rates only happens in hyperbolic problems. 
A more evidence is due to the work by Collot–Ghoul–Masmoudi [15] for the Burger’s equa-
tion with a transverse viscosity, where the authors observe that there also exist blowup solutions 
with a continuum of blowup rates if one does not impose smoothness on the solution before the 
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blowup time. An interesting question after our work is that whether there exist blowup solutions 
to equation (1.3) in the case d ≥ 7 with a continuum of blowup rates?

Let us briefly explain the main steps of the proof of Theorem 1.1, which follows the strategy 
developed in [49] for the energy supercritical nonlinear Schrödinger equation. We would like to 
mention that this kind of method has been successfully applied for various nonlinear evolution 
equations. In particular in the dispersive setting for the nonlinear Schrödinger equation both in the 
mass critical [43–46] and mass supercritical [49] cases; the mass critical gKdV equation [39–41]; 
the energy critical [24], [30] and supercritical [11] wave equation; the two dimensional critical 
geometric equations: the wave maps [53], the Schrödinger maps [48] and the harmonic heat flow 
[54,55] and [27]; the semilinear heat equation in the energy critical [58] and supercritical [10]
cases; and the two dimensional Keller–Segel model [56], [25]. In all those works, the method 
relies on two arguments:

• Reduction of an infinite dimensional problem to a finite dimensional one, through the deriva-
tion of suitable Lyapunov functional and the robust energy method as mentioned in the two 
step procedure above.

• The control of the finite dimensional problem thanks to a topological argument based on 
index theory.

Note that this kind of topological arguments has proved to be successful also for the construction 
of type I blowup solutions for the semilinear heat equation in [9], [47], [51] (see also [50], [23]
for the case of logarithmic perturbations, [7], [8] and [26] for the exponential source, [52] for the 
complex-valued case), the Ginzburg–Landau equation in [42] (see also [69] for an earlier work), 
a non-variational parabolic system in [28,29] and the semilinear wave equation in [17].

For the reader’s convenience and for a better explanation, let’s first introduce notations used 
throughout this paper.

Notation. The equation (1.3) can be put in the following first-order form:

∂t �u = �F(�u), �u(t) : Rd → R×R, (1.16)

where we denote by

�u =
(

u1

u2

)
, �F(�u) =

(
u2

∂2
r u1 + d−1

r
∂ru1 − d−1

2r2 sin(2u1)

)
.

In what follows the notation �u always refers to a vector whose coordinates are 
(
u1
u2

)
. The stationary 

solution of (1.16) is denoted by

�Q =
(

Q

0

)
,

where Q is introduced in (1.8) and (1.9).
We denote by

〈
u,v
〉= ∫

d

uv and
〈�u, �v〉= ∫

d

�u.�v =
∫
d

u1v1 +
∫
d

u2v2.
R R R R
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For each d ≥ 7, we define {
h̄ = ⌊ d2 − γ

⌋ ∈N
∗,

δ = ( d2 − γ
)− h̄, δ ∈ (0,1),

(1.17)

where �x� ∈ Z stands for the integer part of x which is defined by �x� ≤ x < �x� + 1.2

For each k ∈N, we denote by

k ∧ 2 := k mod 2.

Given a large odd integer L � 1, we set

k = L + h̄ + 1. (1.18)

We fix σ ∈R+ such that

σ >
d

2
and

∣∣∣∣σ − d

2

∣∣∣∣≤ 1

L2 � 1. (1.19)

Given b1 > 0 and λ > 0, we define

B0 = 1

b1
, B1 = B

1+η
0 , 0 < η ≤ 1

L2 � 1, (1.20)

and denote by

fλ(r) = f (y) with y = r

λ
.

Let χ ∈ C∞
0 ([0, +∞)) be a positive non increasing cutoff function with supp(χ) ⊂ [0, 2] and 

χ ≡ 1 on [0, 1]. For all M > 0, we define

χM(y) = χ
( y

M

)
. (1.21)

We introduce the first order differential operators

�f = y∂yf, Df = f + y∂yf, � �f =
(

�f1

Df2

)
.

The linearized operator near the stationary solution �Q is then defined by

H =
[

0 −1
L 0

]
, (1.22)

so that

�F( �Q + �q) = −H �q + �N(�q),

2 Note that δ �= 0. Indeed, if δ = 0, then there is m ∈ N such that 2γ = d − 2m ∈ N. This only happens when γ = 2 or 
γ = 3 because γ ∈ (1, 2]. The case γ = 2 gives d = 7 and m = 3 /∈N. The case γ = 3 gives d = 17 /∈ N.
2 2 2 2
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where

L = −∂yy − (d − 1)

y
∂y + Z

y2 , with Z(y) = (d − 1) cos(2Q(y)), (1.23)

and �N is the purely nonlinear term

�N(�q) =
(

0
(d−1)

2y2 [sin(2Q + 2q1) − sin(2Q) − 2 cos(2Q)q1]

)
=
(

0

N(q1)

)
. (1.24)

We denote by H ∗ the adjoint of H ,

H ∗ =
[

0 L
−1 0

]
satisfying

〈
H �u, �v〉= 〈�u,H ∗�v〉.

We let the matrix

J =
[

0 −1
1 0

]
, (1.25)

and define the adapted norm for k ∈ N∗,

‖�u‖2
k =
∫
Rd

u1L
ku1 +

∫
Rd

u2L
k−1u2. (1.26)

Note that the norm defined by (1.26) is actually positive thanks to the factorization of L (see 
Lemma 2.2 below),

L = A ∗A .

For k ∈N, we define the suitable derivative for any smooth function f :

f2k = L kf, f2k+1 = A L kf, f0 = f. (1.27)

Strategy of the proof. We now summary the main ideas of the proof of Theorem 1.1, which 
follows the road map in [27] and [49].

(i) Renormalized flow. Following the scaling invariance of (1.3), let us make the change of vari-
ables

�w(y, s) :=
(

w1

w2

)
(y, s) =

(
u1

λu2

)
(r, t), y = r

λ(t)
,

ds

dt
= 1

λ(t)
,

which leads to the following renormalized flow:

∂s �w + b1� �w = �F( �w), with b1 = −λs
. (1.28)
λ
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As we will show later that b1 → 0 as s → +∞, the leading part of the solution �w(y, s) is given 
by the ground state profile �Q(y). That is why, we introduce

�q(y, s) = �w(y, s) − �Q(y),

then �q solves

∂s �q + H �q + b1��q = −b1� �Q + �N(�q), (1.29)

where the nonlinear term is given by (3.12).

(ii) Properties of the linearized operators L and H . The linear operator L admits the follow-

ing factorization (see Lemma 2.2 below)

L = A ∗A , A f = −�Q∂y

(
f

�Q

)
, A ∗f = 1

yd−1�Q
∂y

(
yd−1�Qf

)
, (1.30)

which simplifies the computation of L −1 (see Lemma 2.6 below). The factorization (1.30) im-
mediately follows

L (�Q) = 0. (1.31)

Note from (1.9) that

�Q ∼ c0

yγ
as y → +∞,

with γ defined in (1.10). We can compute the kernel of L k through the iterative scheme

L φk+1 = −φk, φ0 = �Q, (1.32)

which displays a non trivial tail at infinity (see Lemma 2.9 in [27])

φk(y) ∼ cky
2k−γ for y � 1. (1.33)

The identity (1.31) also yields

H (� �Q) = �0.

Furthermore, knowing L −1 we can define the inversion of H as follows

H −1 =
[

0 L −1

−1 0

]
. (1.34)

More generally, the kernel of H k is computed by

H �Tk+1 = − �Tk with �T0 = � �Q =
(

φ0

0

)
. (1.35)

In particular, we have
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�T2k =
(

φk

0

)
, �T2k+1 =

(
0

φk

)
. (1.36)

(iii) Tail dynamics. Following the approach in [27] and [49], we look for a slowly modulated 
approximate solution to (1.28) of the form

�w(y, s) = �Qb(s)(y),

where

b = (b1, · · · , bL), �Qb(s)(y) = �Q(y) +
L∑

k=1

bk
�Tk(y) +

L+2∑
k=2

�Sk(y, b) (1.37)

with a priori bounds

bk ∼ bk
1, | �Sk(y, b)| � bk

1y
k−2−k∧2−γ ,

so that �Sk is in some sense homogeneous of degree k in b1, and behaves better than �Tk at infinity. 
The construction of �Sk with the above a priori bounds is possible for a specific choice of the 
universal dynamical system which drives the modes (bk)1≤k≤L. This is so called the tail compu-
tation. Let us illustrate the procedure of the tail computation. We plug the decomposition (1.37)
into (1.28) and choose the law for (bk)1≤k≤L which cancels the leading order terms at infinity.

– At the order O(b1): we cannot adjust the law of b1 for the first term3 and obtain from (1.29),

b1(H �T1 + � �Q) = 0.

– At the order O(b2k
1 , b2k), k = 1, · · · , (L + 1)/2: We obtain

(b2k−1)s �T2k−1 + b1b2k−1� �T2k−1 + b2kH �T2k + H �S2k = b2k
1

�N2k−1( �Q, �T1, · · · , �T2k−1),

where �N2k−1 corresponds to nonlinear interaction terms. Note from (1.36), (1.33) and (1.35), we 
have

� �T2k−1 ∼ (2k − 1 − γ ) �T2k−1 for y � 1, H �T2k = − �T2k−1,

and thus,

(b2k−1)s �T2k−1 + b1b2k−1� �T2k−1 + b2kH �T2k ∼ [(b2k−1)s + (2k − 1 − γ )b1b2k−1 − b2k

] �T2k−1.

Hence the leading order growth for y large is canceled by the choice

(b2k−1)s + (2k − 1 − γ )b1b2k−1 − b2k = 0.

We then solve for

H �S2k = −b2k
1 (� �T2k−1 − (2k − 1 − γ ) �T2k−1) + b2k

1
�N2k−1( �Q, �T1, · · · , �T2k−1),

3 if (b1)s = −c1b1, then −λs/λ ∼ b1 ∼ e−c1s , hence after an integration in time, | logλ| � 1 and there is no blowup.
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and check the improved decay

|S2k(y, b)| � b2k
1 y2k−2−γ for y � 1.

– At the order O(b2k+1
1 , b2k+1), k = 1, · · · , (L + 1)/2: we obtain an elliptic equation of the form

(b2k)s �T2k + b1b2k� �T2k + b2k+1H �T2k+1 + H �S2k+1 = b2k+1
1

�N2k( �Q, �T1, · · · , �T2k).

From (1.36), (1.33) and (1.35), we have

(b2k)s �T2k + b1b2k� �T2k + b2k+1H �T2k+1 ∼ [(b2k)s + (2k − γ )b1b2k − b2k+1
] �T2k,

which leads to the choice

(b2k)s + (2k − γ )b1b2k − b2k+1 = 0,

for the cancellation of the leading order growth at infinity. We then solve for the remaining �S2k+1
term and check that | �S2k+1(y)| � b2k+1

1 y2k−2−γ for y large. We refer to Proposition 2.13 for all 
details of the tail computation. Note that for k large enough, the profile �Tk and �Sk have irrelevant 
growth at infinity. For this reason we cut �Tk and �Sk in the zone y ∼ B1 in order to obtain a suitable 
approximate profile, namely that the approximation (1.37) is replaced by

�Qb(s)(y) = �Q(y) + χB1

(
L∑

k=1

bk
�Tk(y) +

L+2∑
k=2

�Sk(y, b)

)
.

All the computation is then done in the zone y ∼ B1 or in the original variable r ∼ λB1 ∼
(T − t)

1−η
(

�
γ

−1
)
, which is slightly beyond the light cone.4

(iv) The universal system of ODEs. The above procedure leads to the following universal system 
of ODEs after L iterations,

⎧⎨
⎩

(bk)s + (k − γ )b1bk − bk+1 = 0, 1 ≤ k ≤ L, bL+1 = 0,

−λs

λ
= b1,

ds

dt
= 1

λ
.

(1.38)

The set of solutions to (1.38) (see Lemma 2.16 below) is explicitly given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

be
k(s) = ck

sk , 1 ≤ k ≤ L,

c1 = �
�−γ

, � ∈ N, � > γ,

ck+1 = − γ (�−k)
�−γ

ck, 1 ≤ k ≤ � − 1, � ≥ 2,

cj = 0, j ≥ � + 1,

λ(s) ∼ s
− �

�−γ .

(1.39)

4 In [36–38], the approximate solutions are constructed inside the light cone.
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In the original time variable t , this implies that λ(t) goes to zero in finite time T with the asymp-
totic

λ(t) ∼ (T − t)
�
γ .

Moreover, the linearized flow of (1.38) near the solution (1.39) is explicit and displays � − 1
unstable directions (see Lemma 2.17 below).

(iv) Decomposition of the flow and modulation equations. Let the approximate solution Qb be 
given by (1.37) which by construction generates an approximate solution to the renormalized 
flow (1.28),

��b = ∂s
�Qb + b1� �Qb − �F( �Qb) = �Mod +O(b2L+2

1 ),

where the modulation equation term is roughly of the form

�Mod =
L∑

k=1

[
(bk)s + (k − γ )b1bk − bk+1

] �Tk.

We localize �Qb in the zone y ≤ B1 to avoid the irrelevant growing tails for y � 1
b1

. We then take 
initial data of the form

�u0(y) = �Qb(0)(y) + �q0(y),

where �q0 is small in some suitable sense and b(0) is chosen to be close to the exact solu-
tion (1.39). By a standard modulation argument, we introduce the decomposition of the flow

�w(y, s) = ( �Qb(s) + �q)(y, s), (1.40)

where L + 1 modulation parameters (b(t), λ(t)) are chosen in order to manufacture the orthog-
onality conditions:

〈
H k �q, ��M

〉
= 0, 0 ≤ k ≤ L, (1.41)

where ��M (see (3.4)) is some fixed direction depending on some large constant M , generating 
an approximation of the kernel of the powers of H . This orthogonal decomposition (1.40), 
which follows from the implicit function theorem, allows us to compute the modulation equations 
governing the parameters (b(t), λ(t)) (see Lemmas 4.3 and 4.4 below),

∣∣∣∣λs

λ
+ b1

∣∣∣∣+
L∑

k=1

∣∣(bk)s + (k − γ )b1bk − bk+1
∣∣� ‖�q‖loc + b

L+1+ν(δ,η)
1 , (1.42)

where ‖�q‖loc measures a spatially localized norm of the radiation �q and ν(δ, η) > 0.

(v) Control of Sobolev norms. According to (1.42), we need to show that local norms of �q are 
under control and do not perturb the dynamical system (1.38). This is achieved via high order 
mixed energy estimates which provide controls of the Sobolev norms adapted to the linear flow 
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and based on the powers of the linear operator H . In particular, we have the following coercivity 
of the high energy under the orthogonality conditions (1.41) (see Lemma A.4),

Ek(s) := ‖�q(s)‖2
k

� ‖�q(s)‖2
Ḣk×Ḣ k−1,

where k is given by (1.18) and the norm is defined by (1.26). The energy estimate is of the form

d

ds

{
Ek + b1M

λ2k−d

}
�

b
2L+1+2ν(δ,η)
1

λ2k−d
for some ν(δ, η) > 0, (1.43)

where the right hand side is the size of the error ��b in the construction of the approximate 
profile �Qb above, and M corresponds to an additional Morawetz type term (see (4.44) for a 
precise definition of M) which is needed to control Ek locally (see Proposition 4.6). Note that 
the successful key in deriving such a Morawetz type control is due to the fact that the linear 
operator L is positive in Ḣ 1 for d ≥ 7. An integration of (1.43) in time by using initial smallness 

assumptions, b1 ∼ be
1 and λ(s) ∼ b

�
�−γ

1 yields the estimate

‖�q‖2
Ḣk×Ḣ k−1 � Ek(s) � b

2L+2ν(δ,η)
1 ,

which is good enough to control the local norms of �q and close the modulation equations (1.42).
Note that when establishing the formula (1.43), we need to deal with a nonlinear term which 

is roughly of the form 
q2

1
y2 . In order to archive the control of this term, we derive the following 

monotonicity formula for the low Sobolev norm

Eσ = ‖�q‖Ḣ σ ×Ḣ σ−1 ,
d

ds

{
Eσ

λ2σ−d

}
�

b
1+ �

�−γ (2σ−d)+ε

1

λ2σ−d
for some ε > 0.

Integrating in time yields the bound

Eσ (s) � b
�

�−γ
(2σ−d)

1 ,

which is enough to close the estimate for the nonlinear term.
The above scheme designs a bootstrap regime (see Definition 3.2 for a precise definition) 

which traps blowup solution with speed (1.13). According to Lemma 2.16 and 2.17, such a 
regime displays (� − 1) unstable modes (b2, · · · , b�) which we can control through a topological 
argument based on the Brouwer fixed point theorem (see the proof of Proposition 3.6), and the 
proof of Theorem 1.1 follows.

The paper is organized as follows. In Section 2, we give the construction of the approximate 
solution �Qb of (1.3) and derive estimates on the generated error term ��b (Proposition 2.13) as 
well as its localization (Proposition 2.15). We also give in this section some elementary facts 
on the study of the system (1.38) (Lemmas 2.16 and 2.17). Section 3 is devoted to the proof 
of Theorem 1.1 assuming a main technical result (Proposition 3.7). In particular, we give the 
proof of the existence of the solution trapped in some shrinking set to zero (Proposition 3.6) such 
that the constructed solution satisfies the conclusion of Theorem 1.1. Readers not interested in 
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technical details may stop there. In Section 4, we give the proof of Proposition 3.7 which gives 
the reduction of the problem to a finite-dimensional one; and this is the heart of our analysis.

Acknowledgments. The authors would like to thank C. Collot for his helpful discussion con-
cerning this work and the anonymous referee for a careful reading and suggestions to improve 
the presentation of the paper.

2. Construction of an approximate profile

This section is devoted to the construction of a suitable approximate solution to (1.3) by using 
the same approach developed in [49]. Similar approaches can also be found in [54], [30], [56], 
[58], [10], [11] and [27]. The key to this construction is the fact that the linearized operator H
around �Q is completely explicit in the radial setting thanks to the explicit formulas of the kernel 
elements.

Following the scaling invariance of (1.3), we introduce the following change of variables:

�w(y, s) =
(

w1

w2

)
(y, s) =

(
u1

λu2

)
(r, t), y = r

λ(t)
,

ds

dt
= 1

λ(t)
, (2.1)

which leads to the following renormalized flow:

∂s �w + b1� �w = �F( �w), with b1 = −λs

λ
. (2.2)

Let us assume that the leading part of the solution of (2.2) is given by the harmonic map 
�Q = (Q0 ), where Q is the unique solution (up to scaling) of the equation

Q′′ + (d − 1)

y
Q′ − (d − 1)

2y2 sin(2Q) = 0, Q(0) = 0, Q′(0) = 1. (2.3)

We aim at constructing an approximate solution of (2.2) close to �Q. The natural way is to lin-
earize equation (2.2) around �Q, which generates the operator defined by (1.22). Let us now recall 
the properties of H in the following subsection.

2.1. Structure of the linearized operator

In this subsection, we recall the main properties of the linearized operator H close to �Q, 
which is the heart of both construction of the approximate profile and the derivation of the 
coercivity properties serving for the high Sobolev energy estimates. Let us start by recalling 
the following result from Biernat [1], which gives the asymptotic behavior of the harmonic 
map Q:

Lemma 2.1 (Development of the harmonic map Q). Let d ≥ 7, there exists a unique solution Q
to equation (2.3), which admits the following asymptotic behavior: For any k ∈N

∗,
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(i) (Asymptotic behavior of Q)

Q(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y +
k∑

i=1
ciy

2i+1 +O(y2k+3) as y → 0,

π

2
− a0

yγ

[
1 +O

(
1

y2

)
+O
(

1

yγ̃

)]
as y → +∞,

(2.4)

where γ is defined in (1.10), γ̃ = √
d2 − 8d + 8 and the constant a0 = a0(d) > 0.

(ii) (Degeneracy)

�Q > 0, �Q(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y +
k∑

i=1
c′
iy

2i+1 +O(y2k+3) as y → 0,

a0γ

yγ

[
1 +O

(
1

y2

)
+O
(

1

yγ̃

)]
as y → +∞.

(2.5)

Proof. The proof can be found at pages 184–185 in [1]. �
A remarkable fact is that the linearized operator L admits the following factorization.

Lemma 2.2 (Factorization of L ). Let d ≥ 7 and define the first order operators

A w = −∂yw + V

y
w = −�Q∂y

(
w

�Q

)
, (2.6)

A ∗w = 1

yd−1 ∂y

(
yd−1w

)+ V

y
w = 1

yd−1�Q
∂y

(
yd−1�Qw

)
, (2.7)

where

V (y) := � log(�Q) =

⎧⎪⎨
⎪⎩

1 +O(y2) as y → 0,

−γ +O
(

1

y2

)
+O
(

1

yγ̃

)
as y → +∞.

(2.8)

We have

L = A ∗A , L̃ = A A ∗, (2.9)

where L̃ stands for the conjugate Hamiltonian.

Remark 2.3. The adjoint operator A ∗ is defined with respect to the Lebesgue measure

+∞∫
0

(A u)wyd−1dy =
+∞∫
0

u(A ∗w)yd−1dy.
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Remark 2.4. The factorization (2.9) immediately implies that

L w = 0 if and only if w ∈ span{�Q,�},

where

� = −�Q

y∫
1

dx

xd−1(�Q)2 ,

which admits the asymptotic behavior

�(y) =

⎧⎪⎪⎨
⎪⎪⎩

1

dyd−1 +O(y) as y → 0,

1

a0γ (d − 2 − 2γ )yd−2−γ
+O
(

1

yd−γ

)
as y → +∞.

(2.10)

Remark 2.5. We have

L (�w) = �(L w) + 2L w − �Z

y2 w. (2.11)

Since L (�Q) = 0, one can express the definition of Z through the potential V as follows:

Z(y) = V 2 + �V + (d − 2)V . (2.12)

Let Z̃ be defined by

L̃ = −∂yy − d − 1

y
∂y + Z̃

y2 , (2.13)

then, a direct computation yields

Z̃(y) = (V + 1)2 + (d − 2)(V + 1) − �V. (2.14)

The factorization of L allows us to compute L −1 in an elementary two step processes as 
follows:

Lemma 2.6 (Inversion of L ). Let f be a C∞ radially symmetric function and L w = f , then

w = −�Q

y∫
0

A w(x)

�Q(x)
dx with A w = 1

yd−1�Q

y∫
0

f (x)�Q(x)xd−1dx. (2.15)

Proof. See Lemma 2.5 in [27]. �



2986 T. Ghoul et al. / J. Differential Equations 265 (2018) 2968–3047
Knowing L −1, we can easily defined the inversion of H as follows:

H −1 =
[

0 L −1

−1 0

]
. (2.16)

By a direct check, we have

H 2k = (−1)k
[
L k 0

0 L k

]
and H 2k+1 = (−1)k

[
0 −L k

L k+1 0

]
, (2.17)

and

H ∗2k = (−1)k
[
L k 0
0 L k

]
and H ∗(2k+1) = (−1)k

[
0 L k+1

−L k 0

]
. (2.18)

2.2. Admissible functions

We define a class of admissible functions which display a suitable behavior both at the origin 
and infinity.

Definition 2.7 (Admissible function). Fix γ > 0, we say that a smooth vector function �f ∈
C∞(R+, R) × C∞(R+, R) is admissible of degree (p1, p2, ι) ∈ N ×R × {0, 1} if

(i) ι is the position:

�f =
(

f

0

)
if ι = 0, �f =

(
0

f

)
if ι = 1.

(ii) f admits a Taylor expansion to all orders around the origin,

f (y) =
p∑

k=p1−ι,k even

cky
k+1 +O(yp+2);

(iii) f and its derivatives admit the bounds, for y ≥ 1,

∀k ∈N, |∂k
yf (y)| � yp2−γ−ι−k.

Remark 2.8. Note from (2.5) that � �Q = (�Q
0

)
is admissible of degree (0, 0, 0).

One note that H naturally acts on the class of admissible function in the following way:

Lemma 2.9 (Action of H and H −1 on admissible functions). Let �f be an admissible function 
of degree (p1, p2, ι) ∈ N ×R × {0, 1}, then:

(i) � �f is admissible of degree (p1, p2, ι).
(ii) H �f is admissible of degree (max{ι, p1 − 1}, p2 − 1, (ι + 1) ∧ 2)).
(iii) H −1 �f is admissible of degree (p1 + 1, p2 + 1, (ι + 1) ∧ 2)).

Proof. The proof directly follows from the definitions of �, H and H −1, and we refer the 
reader to Lemma 2.8 in [27] for a similar proof. �
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The following lemma is a consequence of Lemma 2.9:

Lemma 2.10 (Generators of the kernel of H k). Let the sequence of profiles

H �Tk+1 = − �Tk, k ∈ N, �T0 = � �Q, (2.19)

then

(i) �Tk is admissible of degree (k, k, k ∧ 2) for k ∈ N.
(ii) � �Tk − (k − γ ) �Tk is admissible of degree (k, k − 1, k ∧ 2) for k ∈N.

Proof. (i) We note from (2.5) that �T0 = � �Q is admissible of degree (0, 0, 0). By induction and 
part (iii) of Lemma 2.9, the conclusion simply follows. For item (ii), we refer to Lemma 2.9 in 
[27] for an analogous proof. �
Remark 2.11. From item (i) of Lemma 2.10, we see that the profile Tk has only one null coor-
dinate, which depends on the index k. For simplicity we make use the following notation

�T2i =
(

T2i

0

)
, �T2i+1 =

(
0

T2i+1

)
. (2.20)

We end this subsection by introducing a simple notion of homogeneous admissible function.

Definition 2.12 (Homogeneous admissible function). Let L � 1 be an integer and b =
(b1, · · · , bL). We say that a vector function �f (y, b) is homogeneous of degree (p1, p2, ι, p3) ∈
N ×R × {0, 1} ×N if it is a finite combination of monomials

�g(y)

L∏
k=1

b
mk

k ,

with �g(y) admissible of degree (p1, p2, ι) in the sense of Definition 2.7 and

(m1, · · · ,mL) ∈ N
L,

L∑
k=1

kmk = p3.

We set

deg( �f ) := (p1,p2, ι,p3).

2.3. Slowly modulated blow-up profile

In this subsection, we use the explicit structure of the linearized operator H to construct an 
approximate blow-up profile. In particular, we claim the following:

Proposition 2.13 (Construction of the approximate profile). Let d ≥ 7 and L � 1 be an odd in-
teger. Let M > 0 be a large enough universal constant, then there exist a small enough universal 
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constant b∗(M, L) > 0 such that the following holds true. Let a C1 map

b = (b1, · · · , bL) : [s0, s1] 	→ (−b∗, b∗)L,

with a priori bounds in [s0, s1]:

0 < b1 < b∗, |bk| � bk
1, 2 ≤ k ≤ L. (2.21)

Then there exist homogeneous profiles

�Sk = �Sk(y, b), 2 ≤ k ≤ L + 2,

such that

�Qb(s)(y) = �Q(y) +
L∑

k=1

bk(s) �Tk(y) +
L+2∑
k=2

�Sk(y, b) ≡ �Q(y) + ��b(s)(y), (2.22)

generates an approximate solution to the renormalized flow (2.2):

∂s
�Qb + b1� �Qb − �F( �Qb) = ��b + �Mod, (2.23)

with the following property:

(i) (Modulation equation)

�Mod =
L∑

k=1

[
(bk)s + (k − γ )b1bk − bk+1

]⎡⎣ �Tk +
L+2∑

j=k+1

∂ �Sj

∂bk

⎤
⎦ , (2.24)

where we use the convention bj = 0 for j ≥ L + 1.
(ii) (Estimate on the profiles) The profiles (Sk)2≤k≤L+2 are homogeneous with

deg(�Sk) = (k, k − 1, k ∧ 2, k) for 2 ≤ k ≤ L + 2,

∂ �Sk

∂bm

= �0 for 2 ≤ k ≤ m ≤ L.

(iii) (Estimate on the error ��b) The generated error term is of the form

��b =
(

0

�b

)
,

where �b satisfies for all 0 ≤ m ≤ L,

– (Global weight bound)∫
y≤2B1

|∇m+h̄�b|2 +
∫

y≤2B1

|�bL
m+h̄�b| � b

2m+4+2(1−δ)−CLη
1 , (2.25)

where B1, h̄, δ are defined in (1.20) and (1.17).
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– (Improved local bound)

∀M ≥ 1,

∫
y≤M

|∇m+h̄�b|2 +
∫

y≤M

|�bL
m+h̄�b| � MCb2L+6

1 . (2.26)

Remark 2.14. From item (ii) of Proposition 2.13, we make the abuse of notation

�S2i =
(

S2i

0

)
, �S2i+1 =

(
0

S2i+1

)
. (2.27)

Proof. We aim at constructing the profiles (�Sk)2≤k≤L+2 such that ��b(y) defined from (2.23) has 
the least possible growth as y → +∞. The key to this construction is the fact that the structure 
of the linearized operator H defined in (1.22) is completely explicit in the radial sector thanks 
to the explicit formulas of the elements of the kernel of L . This procedure will lead to the 
leading-order modulation equation

(bk)s = −(k − γ )b1bk + bk+1 for 1 ≤ k ≤ L, (2.28)

which actually cancels the worst growth of �Sk as y → +∞.

• Expansion of ��b. From (2.23) and (2.3), we write

∂s
�Qb + b1� �Qb − �F( �Qb)

= b1� �Q + ∂s�b + H ��b + b1��b − �N( ��b) := A1 − �N( ��b),

where �N is defined as in (1.24). Using the expression (2.22) of ��b and the definition (2.19) of 
�Tk (recall that H �Tk = − �Tk−1 with the convention �T0 = � �Q), we write

A1 = b1� �Q +
L∑

k=1

[
(bk)s �Tk + bkH �Tk + b1bk� �Tk

]
+

L+2∑
k=2

[
∂s

�Sk + H �Sk + b1��Sk

]

=
L∑

k=1

[
(bk)s �Tk − bk+1 �Tk + b1bk� �Tk

]
+

L+2∑
k=2

[
∂s

�Sk + H �Sk + b1��Sk

]

=
L∑

k=1

[
(bk)s + (k − γ )b1bk − bk+1

] �Tk

+
L∑

k=1

[
H �Sk+1 + ∂s

�Sk + b1bk

[
� �Tk − (k − γ ) �Tk

]+ b1��Sk

]

+
[
H �SL+2 + ∂s

�SL+1 + b1��SL+1

]
+
[
∂s

�SL+2 + b1��SL+2

]
.

We now write
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∂s
�Sk =

L∑
j=1

(bj )s
∂ �Sk

∂bj

=
L∑

j=1

[
(bj )s + (j − γ )b1bj − bj+1

]∂ �Sk

∂bj

−
L∑

j=1

[
(j − γ )b1bj − bj+1

]∂ �Sk

∂bj

.

Hence,

A1 = �Mod +
L+1∑
k=1

[
H �Sk+1 + �Ek

]
+ �EL+2,

where for k = 1, · · · , L,

�Ek = b1bk

[
� �Tk − (k − γ ) �Tk

]+ b1��Sk −
k−1∑
j=1

[
(j − γ )b1bj − bj+1

]∂ �Sk

∂bj

, (2.29)

and for k = L + 1, L + 2,

�Ek = b1��Sk −
L∑

j=1

[
(j − γ )b1bj − bj+1

]∂ �Sk

∂bj

. (2.30)

Recall from (3.12) that the nonlinear term is given by

�N( ��b) =
(

0

N(�b,1)

)
:=
(

0

A2

)
.

Let us denote

f (x) = sin(2x)

and use a Taylor expansion to write (see pages 1740 in [55] for a similar computation)

A2 = (d − 1)

2y2

⎡
⎢⎣L+2∑

i=2

f (i)(Q)

i!

⎛
⎝ L−1∑

k=2,even

biTi +
L+2∑
k=2

Sk,1

⎞
⎠

i

+ R2

⎤
⎥⎦

= (d − 1)

2y2

[
L+2∑
i=2

Pi + R1 + R2

]
,

where

Pi =
L+2∑ f (j)(Q)

j !
∑

cJ

L−1∏
b

ik
k T

ik
k

L+2∏
S

jk

k,1, (2.31)

j=2 |J |1=j,|J |2=i k=2,even k=2
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R1 =
L+2∑
j=2

f (j)(Q)

j !
∑

|J |1=j,|J |2≥L+3

cJ

L−1∏
k=2,even

b
ik
k T

ik
k

L+2∏
k=2

S
jk

k,1, (2.32)

R2 = �L+3
b,1

(L + 2)!
1∫

0

(1 − τ)L+2f (L+3)(Q + τ�b,1)dτ, (2.33)

with J = (i1, · · · , iL, j2, · · · , jL+2) ∈ N
2L+1 and

|J |1 =
L∑

k=1

ik +
L+2∑
k=2

jk, |J |2 =
L∑

k=1

kik +
L+2∑
k=2

kjk. (2.34)

In conclusion, we have

��b =
L+1∑
k=1

[
H �Sk+1 + �Ek − (d − 1)

2y2
�Pk+1

]
+ �EL+2 − (d − 1)

2y2 ( �R1 + �R2), (2.35)

where we write

�Pk =
(

0

Pk

)
, �R1 =

(
0

R1

)
, �R2 =

(
0

R2

)
.

• Construction of �Sk . From the expression of ��b given in (2.35), we construct iteratively the 
sequences of profiles (�Sk)1≤k≤L+2 through the scheme

{ �S1 = �0,
�Sk = −H −1 �Fk, 2 ≤ k ≤ L + 2,

(2.36)

where

�Fk = �Ek−1 − (d − 1)

2y2
�Pk for 2 ≤ k ≤ L + 2.

We claim by induction on k that �Fk is homogeneous with

deg( �Fk) = (k − 1, k − 2, (k − 1) ∧ 2, k) for 2 ≤ k ≤ L + 2, (2.37)

and

∂ �Fk

∂bm

= �0 for 2 ≤ k ≤ m ≤ L + 2. (2.38)

From item (iii) of Lemma 2.9 and (2.37), we deduce that �Sk is homogeneous of degree

deg(�Sk) = (k, k − 1, k ∧ 2, k) for 2 ≤ k ≤ L + 2,
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and from (2.38), we get

∂ �Sk

∂bm

= �0 for 2 ≤ k ≤ m ≤ L + 2,

which is the conclusion of item (ii).
Let us now give the proof of (2.37) and (2.38). We proceed by induction.

– Case k = 2: We compute explicitly from (2.29) and (2.31),

�F2 = �E1 − (d − 1)

2y2
�P2 = b2

1

[
� �T1 − (1 − γ ) �T1 + (d − 1)

2y2
�P2

]
,

which directly follows (2.38). From Lemma 2.10, we know that � �T1 − (1 − γ ) �T1 are admissible 
of degree (1, 0, 1). It remains to check that 1

y2
�P2 = ( 0

P2
y2

)
is admissible of degree (1, 0, 1). To do 

so, let us write from the definition (2.31),

P2

y2 = f ′′(Q)

y2 T 2
1 .

Using (2.4), one can check the bound

∀m,j ∈N
2,

∣∣∣∣∣∂m
y

(
f (j)(Q)

y2

)∣∣∣∣∣� y−γ−2−m as y → +∞. (2.39)

Since �T1 is admissible of degree (1, 1, 1), we have that

∀m ∈N, |∂m
y (T 2

1 )| � y−2γ−m as y → +∞.

By the Leibniz rule and the fact that 2γ > 2, we get that

∀m,j ∈N
2,

∣∣∣∣∣∂m
y

(
f (j)(Q)

y2 T 2
1

)∣∣∣∣∣� y−2−γ−m.

We also have the expansion near the origin,

f ′′(Q)

y2 T 2
1 =

k∑
i=0,even

ciy
i+1 +O(yk+2), k ≥ 1.

Hence, 1
y2

�P2 is admissible of degree (1, 0, 1), which concludes the proof of (2.37) for k = 2.

– Case k → k + 1: Estimate (2.38) holds by direct inspection. Let us now assume that �Sk is 
homogeneous of degree (k, k−1, k ∧2, k) and prove that �Sk+1 is homogeneous of degree (k+1,

k, (k + 1) ∧ 2, k + 1). In particular, the claim immediately follows from part (iii) of Lemma 2.9
once we show that �Fk+1 is homogeneous with
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deg( �Fk+1) = deg

(
�Ek + �Pk+1

y2

)
= (k, k − 1, k ∧ 2, k + 1). (2.40)

From part (ii) of Lemma 2.10 and the a priori assumption (2.21), we see that b1bk(�Tk −
(k − γ )Tk) is homogeneous of degree (k, k − 1, k ∧ 2, k + 1). From part (i) of Lemma 2.9 and 
the induction hypothesis, b1��Sk is also homogeneous of degree (k, k − 1, k ∧ 2, k + 1). By 

definition, b1
∂ �Sk

∂b1
is homogeneous and has the same degree as �Sk. Thus,

(
(j − γ )b1 − b2

b1

)(
b1

∂ �Sk

∂b1

)

is homogeneous of degree (k, k − 1, k ∧ 2, k + 1). From definitions (2.29) and (2.30), we derive

deg( �Ek) = (k, k − 1, k ∧ 2, k + 1), k ≥ 1.

It remains to check that the term 
�Pk+1
y2 is homogeneous of degree (k, k − 1, k ∧ 2, k + 1). From 

the definition (2.31), we see that if k is even, then Pk+1 = 0 and we are done. If k is odd, then we 
see that Pk+1

y2 is a linear combination of monomials of the form

MJ (y) = f (j)(Q)

y2

L−1∏
m=2,even

bim
m T im

m

L+2∏
m=2,even

S
jm

m,1,

with

J = (i1, · · · , iL, j2, · · · , jL+2), |J |1 = j, |J |2 = k + 1, 2 ≤ j ≤ k + 1.

Recall from part (i) of Lemma 2.10 that deg( �Tm) = (m, m, m ∧ 2), we then have

∀n ∈N, |∂n
y Tm| � ym−m∧2−γ−n as y → +∞,

and from the induction hypothesis and the a priori bound (2.21),

∀n ∈N, |∂n
y Sm,1| � bm

1 ym−1−m∧2−γ−n as y → +∞.

Together with the bound (2.39), we obtain the following bound at infinity,

|MJ | � b
|J |2
1 y

|J |2−γ−|J |1γ−2−∑L+2
m=2,even jm � bk+1

1 yk−1−γ .

The control of ∂n
y MJ follows by the Leibniz rule and the above estimates. The expansion near 

the origin can be checked by the same way. This concludes the proof of (2.40) as well as part (ii)

of Proposition 2.13.

• Estimate on ��b. From (2.35) and (2.36), the expression of ��b is now reduced to

��b = �EL+2 − (d − 1)

2 ( �R1 + �R2),

y
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where �EL+2 is defined by (2.30), �R1 = ( 0
R1

)
and �R2 = ( 0

R2

)
with R1, R2 being given by (2.32)

and (2.33). Note that the first coordinate of ��b is null, so we can write for simplicity

��b =
(

0

�b

)
=
(

0

EL+2 − (d−1)

y2 (R1 + R2)

)
. (2.41)

We start by controlling �EL+2 term. Since �SL+2 is homogeneous of degree (L + 2, L + 1,

1, L + 2) and thus so are ��SL+2 and b1
∂ �SL+2
∂b1

. This follows that �EL+2 is homogeneous of degree 
(L + 2, L + 1, 1, L + 3). Using part (ii) of Lemma 2.9 yields

deg(H 2m+2h̄+1 �EL+2) = (max{1,L − 2m − 2h̄ + 1},L − 2m − 2h̄,0,L + 3).

From the relation d − 2γ − 2h̄ = 2δ (see (1.17)), we estimate for all 0 ≤ m ≤ L,

∫
y≤2B1

|EL+2L
m+h̄EL+2| � b2L+6

1

∫
y≤2B1

y2L−2γ−2(h̄+m)yd−1dy

� b2L+6
1

∫
y≤2B1

y2(L−m+δ)−1dy

� b
(2L+6)−2(L−m+δ)(1+η)
1

� b
2m+4+2(1−δ)−CLη
1 ,

where η = η(L), 0 < η � 1.
We now turn to the control of the term R1

y2 , which is a linear combination of terms of the form 
(see (2.32))

M̃J = f (j)(Q)

y2

L−1∏
n=2,even

bin
n T in

n

L+2∏
n=2,even

S
jn
n ,

where we used the abuse notations (2.20) and (2.27), and

J = (i1, · · · , iL, j2, · · · , jL+2), |J |1 = j, |J |2 ≥ L + 3, 2 ≤ j ≤ L + 2.

Using the admissibility of �Tn and the homogeneity of �Sn, we get the bounds

|M̃J | � bL+3
1 y|J |2+j−1 � bL+3

1 yL+4 as y → 0,

and

|M̃J | � b
|J |2
1 y|J |2−jγ−2−γ as y → +∞,

where we used the fact that j ≥ 2 and 2 − jγ < 0, and similarly for higher derivatives by the 
Leibniz rule. Thus, we obtain the round estimate for all 0 ≤ m ≤ L,
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∫
y≤2B1

∣∣∣∣R1

y2 L m+h̄

(
R1

y2

)∣∣∣∣� b
2|J |2
1

∫
y≤2B1

y2|J |2−2m−2jγ−4+2δ−1dy

� b
2m+4+2(1−δ)−CLη
1 .

The term R2
y2 is estimated exactly as for the term R1

y2 using the definition (2.33). This concludes 

the proof of (2.25). The local estimate (2.26) directly follows from the homogeneity of �Sk and 
the admissibility of �Tk . This concludes the proof of Proposition 2.13. �

We now proceed to a simple localization of the profile �Qb to avoid the growth of tails in the 
region y ≥ 2B1 � B0. More precisely, we claim the following:

Proposition 2.15 (Estimates on the localized profile). Under the assumptions of Proposition 2.13, 
we assume in addition the a priori bound

|(b1)s | � b2
1. (2.42)

Consider the localized profile

�Qb(s)(y) = �Q(y) +
L∑

k=1

bk
�Tk +

L+2∑
k=2

�Sk with �Tk = χB1
�Tk, �Sk = χB1

�Sk, (2.43)

where B1 and χB1 are defined as in (1.20) and (1.21). Then

∂s
�Qb + b1� �Qb − �F( �Qb) = ��b + χB1

�Mod, (2.44)

where ��b satisfies the bounds:

(i) (Large Sobolev bound) For all 0 ≤ m ≤ L − 1,

‖ ��b‖2
2m+2h̄+2 +

∫ ∣∣∣∇m+h̄+1(�b)1

∣∣∣2 +
∫ ∣∣∣∇m+h̄(�b)2

∣∣∣2 � b
2m+2+2(1−δ)−CLη
1 , (2.45)

and

‖ ��b‖2
2L+2h̄+2 � b

2L+2+2(1−δ)(1+η)
1 , (2.46)

where h̄ and δ are defined by (1.17).

(ii) (Local bound) For all M ≤ B1
2 and 0 ≤ m ≤ L,

‖ ��b‖2
2m+2h̄+2,(y≤M) � MCb2L+6

1 . (2.47)

(iii) (Refined local bound near B0) For all 0 ≤ m ≤ L,

‖ ��b‖2
2m+2h̄+2,(y≤B0)

� b
2m+4+2(1−δ)−CLη
1 . (2.48)
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Proof. The proof is the same as Proposition 2.12 in [27] because the linear operator L is the 
same as the one defined in [27]. Although the definition of parameters h̄, δ, B0, B1 are slightly 
different from the ones defined in [27], the reader will have absolutely no difficulty to adapt that 
proof to the new situation. For that reason, we refer the reader to [27] for an analogous proof. We 
would like to mention the fact that the bound (2.45) is worse than (2.25) due to the localization 
effect of the approximate profile. In particular, replacing the profile �Ti by χB1

�Ti and �Sj by χB1
�Sj

would give a worst estimate on ��b in the zone B1 ≤ y ≤ 2B1, where we loose b2
1 approximately. 

However, this localization will be necessary for our analysis. �
2.4. Study of the dynamical system for b = (b1, · · · , bL)

The construction of the �Qb profile formally leads to the finite dimensional dynamical system 
for b = (b1, · · · , bL) by setting to zero the inhomogeneous �Mod term given in (2.24):

(bk)s + (k − γ )b1bk − bk+1 = 0, 1 ≤ k ≤ L, bL+1 = 0. (2.49)

The system (2.49) admits explicit solutions and the linearized operator near these solutions is 
explicit. In particular, we have the following.

Lemma 2.16 (Solution to the system (2.49)). Let � ∈N
∗ with γ < � � L, and the sequence

⎧⎪⎪⎨
⎪⎪⎩

c1 = �
�−γ

,

ck+1 = − γ (�−k)
�−γ

ck, 1 ≤ k ≤ � − 1,

ck+1 = 0, k ≥ �.

(2.50)

Then the explicit choice

be
k(s) = ck

sk
, s > 0, 1 ≤ k ≤ L, (2.51)

is a solution to (2.49).

The proof of Lemma 2.16 directly follows from an explicit computation which is left to the 
reader. We claim that the linearized flow of (2.49) near the solution (2.51) is explicit and displays 
(� − 1) unstable directions. Note that the stability is considered in the sense that

sup
s

sk|bk(s)| ≤ Ck, 1 ≤ k ≤ L.

In particular, we have the following result which was proved in [49]:

Lemma 2.17 (Linearization of (2.49) around (2.51)). Let

bk(s) = be
k(s) + Uk(s)

sk
, 1 ≤ k ≤ �, (2.52)

and note U = (U1, · · · , U�). Then, for 1 ≤ k ≤ � − 1,
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(bk)s + (k − γ )b1bk − bk+1 = 1

sk+1

[
s(Uk)s − (A�U)k +O(|U |2)

]
, (2.53)

and

(b�)s + (� − γ )b1b� = 1

sk+1

[
s(U�)s − (A�U)� +O(|U |2)

]
, (2.54)

where

A� = (ai,j )1≤i,j≤� with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a1,1 = γ (�−1)
�−γ

− (1 − γ )c1,

ai,i = γ (�−i)
�−γ

, 2 ≤ i ≤ �,

ai,i+1 = 1, 1 ≤ i ≤ � − 1,

a1,i = −(i − γ )ci, 2 ≤ i ≤ �,

ai,j = 0, otherwise.

Moreover, A� is diagonalizable:

A� = P −1
� D�P�, D� = diag

{
−1,

2γ

� − γ
,

3γ

� − γ
, · · · ,

�γ

� − γ

}
. (2.55)

Proof. Since we have an analogous system as the one in [49] and the proof is essentially the 
same as written there, we kindly refer the reader to see Lemma 3.7 in [49] for all details of the 
proof. �
3. Proof of Theorem 1.1 assuming technical results

This section is devoted to the proof of Theorem 1.1. We hope that the explanation of the 
strategy we give in this section will be reader friendly. We proceed in 3 subsections:

– In the first subsection, we give an equivalent formulation of the linearization of the problem 
in the setting (1.40).

– In the second subsection, we prepare the initial data and define the shrinking set SK (see 
Definition 3.2) such that the solution trapped in this set satisfies the conclusion of Theorem 1.1.

– In the third subsection, we give all arguments of the proof of the existence of solutions 
trapped in SK (Proposition 3.6) assuming an important technical result (Proposition 3.7) whose 
proof is left to the next section. Then we conclude the proof of Theorem 1.1.

3.1. Linearization of the problem

Let L � 1 be an odd integer, s0 � 1 and � > γ . We introduce the following notation

f = f χB1 .

We introduce the renormalized variables:

�w(y, s) =
(

u1

λu2

)
(r, t), y = r

λ(t)
, s = s0 +

t∫
dτ

λ(τ)
, (3.1)
0
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and the decomposition

�w(y, s) = ( �Qb(s) + �q )(y, s), (3.2)

where �Qb is defined by (2.43) and the modulation parameters

λ(s) > 0, b(s) = (b1(s), · · · , bL(s))

are determined from the L + 1 orthogonality conditions:

〈
�q,H ∗k ��M

〉
= 0, 0 ≤ k ≤ L, (3.3)

where ��M is a fixed direction depending on some large constant M defined by

��M =
L∑

k=0

ck,MH ∗k(χM� �Q), (3.4)

with

c0,M = 1, ck,M = (−1)k+1

∑k−1
j=0 cj,M

〈
H ∗j (χM� �Q), �Tk

〉
〈
χM� �Q,� �Q

〉 , 1 ≤ k ≤ L. (3.5)

Here, ��M is build to ensure the nondegeneracy

〈 ��M,� �Q
〉
=
〈
χM� �Q,� �Q

〉
� Md−2γ , (3.6)

and the cancellation

〈 ��M, �Tk

〉
=

k−1∑
j=0

cj,M

〈
H ∗j (χM� �Q), �Tk

〉
+ ck,M(−1)k

〈
χM� �Q,� �Q

〉
= 0. (3.7)

In particular, we have

〈
H i �Tk, ��M

〉
= (−1)k

〈
χM� �Q,� �Q

〉
δi,k, 0 ≤ i, k ≤ L. (3.8)

From (2.2), we see that �q satisfies

∂s �q − λs

λ
��q + H �q = −��b − �M + �L(�q) − �N(�q) ≡ �F, (3.9)

where
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�M = χB1
�Mod −
(

λs

λ
+ b1

)
� �Qb =

(
M1

M2

)
, (3.10)

�L(�q) =
(

0
(d−1)

y2

[
cos(2Q) − cos(2Qb,1)

]
q1

)
=
(

0

L(q1)

)
, (3.11)

�N(�q) =
(

0
(d−1)

2y2

[
sin(2Qb,1 + 2q1) − sin(2Qb,1) − 2q1 cos(2Qb,1)

])=
(

0

N(q1)

)
. (3.12)

We also need to write the equation (3.9) in the original variables. To do so, let the rescaled 
linearized operator:

Lλ = −∂rr − (d − 1)

r
∂r + Zλ

r2 with Zλ(r) = Z
( r
λ

)
, (3.13)

and the renormalized vector function

�v(r, t) =
(

q1
1
λ
q2

)
(y, s), r = λy,

dt

ds
= λ.

We compute

∂t �v = 1

λ2

(
λ
(
∂sq1 − λs

λ
�q1

)
∂sq2 − λs

λ
Dq2

)
,

then from (3.9), �v satisfies the equation

∂t �v + Hλ�v = 1

λ2
�Fλ, (3.14)

where

Hλ =
[

0 −1
Lλ 0

]
, �Fλ(r, t) =

(
λF1

F2

)
(y, s).

Note that

Lλv1(r, t) = 1

λ2 L q1(y, s), (3.15)

and by the factorization of L , we can write

Lλ = A ∗
λ Aλ,

where

A ∗
λ f = 1

rd−1 ∂r(r
d−1f ) + Vλ

r
f and Aλf = −∂rf + Vλ

r
f with Vλ(r) = V

( r
λ

)
.

The reader should keep in mind that Hλ, Lλ, A ∗
λ and Aλ act on functions depending on vari-

able r , while H , L , A ∗ and A act on functions depending on variable y.
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3.2. Preparation of the initial data

We describe in this subsection the set of initial data �u0 = (u(x, 0), ∂tu(x, 0)) of the problem 
(1.3) as well as the initial data for (b, λ) leading to the blowup scenario of Theorem 1.1. Our 
construction is build on a careful choice of the initial data for the modulation parameter b and 
the radiation �q at time s = s0. In particular, we will choose them in the following way:

Definition 3.1 (Choice of the initial data). Given η, σ and δ as in (1.20), (1.19) and (1.17). 
Consider the change of variable

V = P�U , (3.16)

where U = (U1, · · · , U�) is introduced in the linearization (2.52) and P� refers to the diagonal-
ization (2.55) of A�.

We assume that

• Smallness of the initial perturbation for the bk unstable modes:

|s
η
2 (1−δ)

0 Vk(s0)| < 1 for 2 ≤ k ≤ �. (3.17)

• Smallness of the initial perturbation for the bk stable modes:

|s
η
2 (1−δ)

0 V1(s0)| < 1, |bk(s0)| < s
− 5�(k−γ )

�−γ

0 for � + 1 ≤ k ≤ L. (3.18)

• Smallness of the data:

‖�q(s0)‖2
H k×H k−1 + ‖�q(s0)‖2

Ḣ σ ×Ḣ σ−1 < s
− 10L�

�−γ

0 , (3.19)

where

‖�q‖2
H k×H k−1 =

∫
|(q1)k|2 +

∫
|(q2)k−1|2

+
k−1∑
k=0

∫ |(q1)k|2
y2(1 + y2k−2−2k)

+
k−2∑
k=0

∫ |(q2)k|2
y2(1 + y2k−4−2k)

.

• Normalization: up to a fixed rescaling, we may always assume

λ(s0) = 1. (3.20)

In particular, the initial data described in Definition 3.1 belongs to the following set which 
shrinks to zero as s → +∞:

Definition 3.2 (Definition of the shrinking set). Given η, σ and δ as in (1.20), (1.19) and (1.17). 
For all K ≥ 1 and s ≥ 1, we define SK(s) as the set of all (b1(s), · · · , bL(s), �q(s)) such that
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|Vk(s)| ≤ 10s− η
2 (1−δ) for 1 ≤ k ≤ �,

|bk(s)| ≤ s−k for � + 1 ≤ k ≤ L,

‖�q(s)‖2
H k×H k−1 ≤ Ks−(2L+2(1−δ)(1+η)),

‖�q(s)‖2
Ḣ σ ×Ḣ σ−1 ≤ Ks

− �(2σ−d)
�−γ .

Remark 3.3. Note from (2.52) that the bounds given in Definition 3.2 imply that for η small 
enough,

b1(s) ∼ c1

s
, |bk(s)| � |b1(s)|k,

hence, the choice of the initial data (b(s0), q(s0)) belongs in SK(s0) if s0 is large enough.

Remark 3.4. Note from the coercive property given in Lemma A.4, the ‖�q(s)‖2
H k×H k−1 is 

controlled by the adapted Sobolev norm Ek = ‖�q‖2
k

defined in (1.26).

Remark 3.5. The introduction of the high Sobolev norm Ek is reflected on the following relation:

∣∣∣∣λs

λ
+ b1

∣∣∣∣+
L∑

k=1

|(bk)s + (k − γ )b1bk − bk+1| � C(M)
√

Ek + l.o.t, (3.21)

which is computed thanks to the (L + 1) orthogonality conditions (3.3) (see Lemmas 4.3 and 4.4
below).

3.3. Existence of solutions trapped in SK(s) and conclusion of Theorem 1.1

We claim the following proposition:

Proposition 3.6 (Existence of solutions trapped in SK(s)). There exists K1 ≥ 1 such that for 
K ≥ K1, there exists s0,1(K) such that for all s0 ≥ s0,1, there exists initial data for the unstable 
modes

(V2(s0), · · · ,V�(s0)) ∈
[
−s

− η
2 (1−δ)

0 , s
− η

2 (1−δ)

0

]�−1

,

such that the corresponding solution (b(s), q(s)) ∈ SK(s) for all s ≥ s0.

Let us briefly give the proof of Proposition 3.6. Let us consider K ≥ 1 and s0 ≥ 1 and 
(b1(s0), · · · , bL(s0), �q(s0)) as in Definition 3.1. We introduce the exit time

s∗ = s∗(b1(s0), · · · , bL(s0), �q(s0)) = sup{s ≥ s0 such that (b1(s), · · · , bL(s), �q(s)) ∈ SK(s)},

and assume that for any choice of

(V2(s0), · · · ,V�(s0)) ∈
[
−s

− η
2 (1−δ)

0 , s
− η

2 (1−δ)

0

]�−1

,
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the exit time s∗ < +∞ and look for a contradiction. By the definition of SK(s∗), at least one of 
the inequalities in that definition is an equality. Owing the following proposition, this can happen 
only for the components (V2(s∗), · · · , V�(s∗)). Precisely, we have the following result which is 
the heart of our analysis:

Proposition 3.7 (Control of (b1(s), · · · , bL(s), �q(s)) in SK(s) by (V2(s), · · · , V�(s))). There ex-
ists K2 ≥ 1 such that for each K ≥ K2, there exists s0,2(K) ≥ 1 such that for all s0 ≥ s0,2(k), the 
following holds: Given the initial data at s = s0 as in Definition 3.1, if (b1(s), · · · , bL(s), �q(s)) ∈
SK(s) for all s ∈ [s0, s1], with (b1(s1), · · · , bL(s1), �q(s1)) ∈ ∂SK(s1) for some s1 ≥ s0, 
then:

(i) (Reduction to a finite dimensional problem)

(V2(s1), · · · ,V�(s1)) ∈ ∂

⎡
⎣− K

s
η
2 (1−δ)

1

,
K

s
η
2 (1−δ)

1

⎤
⎦

�−1

.

(ii) (Transverse crossing)

d

ds

(
�∑

i=2

∣∣∣s η
2 (1−δ)Vi (s)

∣∣∣2
)
∣∣
s=s1

> 0.

Let us assume Proposition 3.7 and continue the proof of Proposition 3.6. From part (i) of 
Proposition 3.7, we see that

(V2(s∗), · · · ,V�(s∗)) ∈ ∂

[
− K

s
η
2 (1−δ)
∗

,
K

s
η
2 (1−δ)
∗

]�−1

,

and the following mapping

ϒ : [−1,1]�−1 	→ ∂
(
[−1,1]�−1

)

s
η
2 (1−δ)

0

(
V2(s0), · · · ,V�(s0)

)→ s
η
2 (1−δ)
∗
K

(
V2(s∗), · · · ,V�(s∗)

)
is well defined. Applying the transverse crossing property given in part (ii) of Proposition 3.7, 
we see that (b1(s), · · · , bL(s), �q(s)) leaves SK(s) at s = s0, hence, s∗ = s0. This is a contra-
diction since ϒ is the identity map on the boundary sphere and it can not be a continuous 
retraction of the unit ball. This concludes the proof of Proposition 3.6, assuming that Propo-
sition 3.7 holds.

Conclusion of Theorem 1.1 assuming Proposition 3.7 From Proposition 3.6, we know that there 
exist initial data (b1(s0), · · · , bL(s0), �q(s0)) with s0 � 1 such that

(b1(s), · · · , bL(s), �q(s)) ∈ SK(s) for all s ≥ s0.
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From (4.62), (4.63), we have

−λt = c(�u0)λ
�−γ

� [1 + o(1)] ,

which yields

−λ− �−γ
� λt = c(�u0)(1 + o(1)).

We easily conclude that λ vanishes in finite time T = T (�u0) < +∞ with the following behavior 
near the blowup time:

λ(t) = c(�u0)(1 + o(1))(T − t)
�
γ ,

which is the conclusion of item (i) of Theorem 1.1.
For the control of the Sobolev norms, we observe from (B.5) and Definition 3.2 that

‖�q(s)‖2
Ḣk×Ḣ k−1 � Ek(s) → 0 as s → +∞,

‖�q(s)‖2
Ḣ σ ×Ḣ σ−1 → 0 as s → +∞,

which concludes the proof of item (ii) of Theorem 1.1.

4. Reduction of the problem to a finite dimensional one

In this section, we aim at proving Proposition 3.7 which is the heart of our analysis. We 
proceed in three separate subsections:

– In the first subsection, we derive the laws for the parameters (b1, · · · , bL, λ) thanks to the 
orthogonality condition (3.3) and the coercivity of the powers of H .

– In the second subsection, we prove the main monotonicity tools for the control of the infinite 
dimensional part of the solution. In particular, we derive a suitable Lyapunov functional for the 
Ek energy as well as the monotonicity formula for the fractional Sobolev norm Eσ .

– In the third subsection, we conclude the proof of Proposition 3.7 thanks to the identities 
obtained in the first two parts.

4.1. Modulation equations

We derive here the modulation equations for (b1, · · · , bL, λ). The derivation is mainly based 
on the orthogonality (3.3) and the coercivity of the powers of H . Let us start with elementary 
estimates relating to the fixed direction ��M .

Lemma 4.1 (Estimate for ��M ). Given ��M as defined in (3.4), we have the followings:

c2k+1,M = 0, |c2k,M | � M2k for 0 ≤ k ≤ L − 1

2
, (4.1)

and ∫
| ��M |2 � Md−2γ ,

∫
|H ∗k ��M |2 � MC for k ∈N. (4.2)
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Moreover, we have the following orthogonality:

〈 ��M,H i �Tj

〉= 〈χM� �Q,� �Q〉δi,j , i ∈N, 1 ≤ j ≤ L. (4.3)

Remark 4.2. Since the second coordinate of �M is null, we write

��M =
(

�M

0

)
with

∫
|�M |2 � Md−2γ . (4.4)

Proof. Let us start with the proof of (4.1). From definition (3.5), (2.20), and the definition of 
� �Q we have

c1,M =
〈
χM� �Q, �T1

〉
〈
χM� �Q,� �Q〉 = 0.

Arguing by induction, we assume that

(Pk) c2j+1,M = 0, |c2j,M | � M2j , 0 ≤ j ≤ k,

and prove that (Pk+1) is true, namely that we prove

c2k+3,M = 0, |c2k+2,M | � M2k+2.

Indeed, by (3.5), (2.17) and (2.20) we write

c2k+3,M = 1〈
χM� �Q,� �Q〉

k+1∑
j=0

c2j,M

〈
χM� �Q,H 2j �T2k+3

〉= 0.

Similarly, we use 
〈
χM� �Q, � �Q〉 ∼ Md−2γ , the induction hypothesis and (ii) of Lemma 2.9 to 

estimate

|c2k+2,M | � 1

Md−2γ

k∑
j=0

|c2j,M |
∣∣∣〈χM� �Q,H 2j �T2k+2

〉∣∣∣

� 1

Md−2γ

k∑
j=0

M2j

∫
y≤M

yd−1y−γ y2(k+1−j)−γ dy � M2(k+1).

Thus, the statement (Pk+1) holds true. Note from (2.17) and (2.18) that H ∗2j = H 2j , we then 
estimate by using (ii) of Lemma 2.9,

∫
| ��M |2 �

L−1
2∑

j=0

L−1
2∑

i=0

|c2j,Mc2i,M |
∫

|(χM�Q)H 2(j+i)(χM�Q)|

�
L−1

2∑
j=0

L−1
2∑

i=0

M2(i+j)

∫
yd−1y−γ y−γ−2(j+i)dy � Md−2γ .
y≤M
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The estimate for 
∫ |H ∗k ��M | is obtained by a similar way. The orthogonality (4.3) is a direct 

consequence of (3.7). This concludes the proof of Lemma 4.1. �
From the orthogonality conditions (3.3) and equation (3.9), we claim the following:

Lemma 4.3 (Modulation equations). Given h̄, δ and η as defined in (1.17) and (1.20). For K ≥ 1, 
we assume that there is s0(K) � 1 such that (b1(s), · · · , bL(s), �q(s)) ∈ SK(s) for s ∈ [s0, s1] for 
some s1 ≥ s0. Then, the following estimates hold for s ∈ [s0, s1]:

L−1∑
k=1

|(bk)s + (k − γ )b1bk − bk+1| +
∣∣∣∣b1 + λs

λ

∣∣∣∣� b
L+1+(1−δ)(1+η)
1 , (4.5)

and

|(bL)s + (L − γ )b1bL| � C(M)
√

Ek + b
L+1+(1−δ)(1+η)
1 . (4.6)

Proof. Let

D(t) =
∣∣∣∣b1 + λs

λ

∣∣∣∣+
L∑

k=1

|(bk)s + (k − γ )b1bk − bk+1| ,

where we use the convention bk ≡ 0 if k ≥ L + 1.
We take the scalar product of (3.9) with H ∗i ��M, i = 0, · · · , L and use the orthogonality (3.3)

to write

〈
χB1

�Mod,H ∗i ��M

〉
−
(

λs

λ
+ b1

)〈
� �Qb,H

∗i ��M

〉

= −
〈
H �q,H ∗i ��M

〉
δi,L −

〈 ��b,H
∗i ��M

〉
+
〈
λs

λ
��q + �L(�q) − �N(�q),H ∗i ��M

〉
. (4.7)

From the definition (3.4), we see that ��M is localized in y ≤ 2M . From definition (2.24), we 
compute the left hand side of (4.7) by using the identity (3.8),

〈
χB1

�Mod,H ∗i ��M

〉
−
(

λs

λ
+ b1

)〈
� �Qb,H

∗i ��M

〉

= (−1)i
〈
� �Q, ��M

〉([
(bi)s + (i − γ )b1bi − bi+1

]
(1 − δ0,i ) −

(
λs

λ
+ b1

)
δ0,i

)

+O(MCb1D(t)).

We now estimate the terms on the right hand side of (4.7). Recall that L is an odd integer, we 
then use (2.17), the Cauchy–Schwartz inequality, (4.4) and (B.1) to estimate∣∣∣〈H �q,H ∗L ��M

〉∣∣∣= ∣∣∣〈H L+1 �q, ��M

〉∣∣∣= ∣∣∣〈L L+1
2 q1,�M

〉∣∣∣
� M2h̄

(∫ |(q1)L+1|2
1 + y2h̄

) 1
2
(∫

|�M |2
) 1

2

� M
d
2 −γ+2h̄

√
Ek.
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The error term is estimated by using (2.26) and (4.2),

∣∣∣〈H i ��b, ��M

〉∣∣∣≤
⎛
⎜⎝ ∫

y≤2M

|H i ��b|2
⎞
⎟⎠

1
2
⎛
⎜⎝ ∫

y≤2M

| ��M |2
⎞
⎟⎠

1
2

� MCbL+3
1 .

The remaining linear terms are estimated by using the following bound coming from (B.1) and 
Lemma A.3,

∫ |q1|2
y4(1 + y2k−4)

+
∫ |q2|2

y4(1 + y2k−6)
+
∫ |∂yq1|2

y2(1 + y2k−4)
+
∫ |∂yq2|2

y2(1 + y2k−6)

�
∫ |(q1)1|2

y2(1 + y2k−4)
+
∫ |(q2)1|2

y2(1 + y2k−6)
� Ek,

(4.8)

from which and the Cauchy–Schwartz inequality and (4.2), we obtain∣∣∣∣
〈
−λs

λ
��q + �L(�q),H ∗i ��M

〉∣∣∣∣� MCb1

(√
Ek + D(t)

)
.

Similarly, the nonlinear term �N(�q) = ( 0
N(q1)

)
is estimate by using (4.8) and the L∞ bound (B.6),

∣∣∣〈 �N(�q),H ∗i ��M

〉∣∣∣� MCb1

(√
Ek + D(t)

)
.

Put all the above estimates into (4.7) and use (3.6) together the bootstrap bound on Ek given in 
Definition 3.2, we conclude the proof of Lemma 4.3. �

From the bound for Ek given in Definition 3.2 and the modulation equation (4.6), we only 
have the pointwise bound

|(bL)s + (L − γ )b1bL| � b
L+(1−δ)(1+η)
1 ,

which is not good enough to close the expected one

|(bL)s + (L − γ )b1bL| � bL+1
1 .

We claim that the main linear term can be removed up to an oscillation in time leading to the 
improved modulation equation for bL as follows:

Lemma 4.4 (Improved modulation equation for bL). Under the assumption of Lemma 4.3, the 
following bound holds for all s ∈ [s0, s1]:∣∣∣∣∣∣(bL)s + (L − γ )b1bL − d

ds

⎧⎨
⎩

〈
H L �q,χB0�

�Q
〉

〈
χB0�Q,�Q + (−1)

L−1
2 L

L−1
2

(
∂SL+2
∂bL

)〉
⎫⎬
⎭
∣∣∣∣∣∣

� bδ
1

[
C(M)
√
Ek + b

L+(1−δ)(2+η)
]
. (4.9)
1
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Proof. We commute (3.9) with H L and take the scalar product with χB0�
�Q and write

d

ds

〈
H L �q,χB0�

�Q
〉
=
〈
H L �qs,χB0�

�Q
〉
+
〈
H L �q, b1,sy∂yχB0�

�Q
〉
. (4.10)

Recall that L � 1 is an odd integer, we estimate the last term in (4.10) by using (B.1) as fol-
lows:

∣∣∣〈H L �q, b1,sy∂yχB0�
�Q
〉∣∣∣= ∣∣∣∣(−1)

L−1
2

∫
L

L−1
2 q2y∂yχB0�Q

∣∣∣∣� b2
1

∫
y∼B0

|(q2)L−1|y1−γ

� b2
1

(∫ |(q2)L−1|2
1 + y2+2h̄

) 1
2

⎛
⎜⎝ ∫

y∼B0

y2+2h̄y2−2γ

⎞
⎟⎠

1
2

� b2
1

√
EkB

4+2h̄−2γ+d

0 = b
−(2h̄+δ)
1

√
Ek.

For the second term on the right hand side of (4.10), we write from (2.17) and (3.9),

(−1)
L−1

2

〈
H L �qs,χB0�

�Q
〉
=
∫

L
L−1

2 q2,sχB0�Q (4.11)

=
∫

χB0�QL
L−1

2

[
Dq2 − L q1 − (�b)2 − χB1(Mod)2

+
(

λs

λ
+ b1

)
D(Qb)2 + L(q1) − N(q1)

]
.

We now estimate all the terms of (4.11).

– The term Dq2: we use (4.8) to estimate

∣∣∣∣λs

λ

∫
χB0�QL

L−1
2 Dq2

∣∣∣∣� b1

∣∣∣∣
∫

L
L−1

2 (χB0�Q)(q2 + y∂yq2)

∣∣∣∣
� b1

(∫ ∣∣∣L L−1
2 (χB0�Q)(1 + yk−1)

∣∣∣2)
1
2

⎡
⎣(∫ |q2|2

1 + y2k−2

) 1
2

+
(∫ |∂yq2|2

1 + y2k−4

) 1
2
⎤
⎦

� b1

√
Ek

⎛
⎜⎝ ∫

y∼B0

y−2γ+2h̄+2

⎞
⎟⎠

1
2

� b1

√
EkB

−2γ+2h̄+2+d

0 := b
−(2h̄+δ)
1

√
Ek.

– The term L q2: we use (B.1) to estimate

∣∣∣∣
∫

χB0�QL
L+1

2 q2

∣∣∣∣�
(∫

|L (χB0�Q)(1 + yh̄+1)|2
) 1

2
(∫ |(q2)L−1|

2h̄+2

) 1
2

� b
−(2h̄+δ)
1

√
Ek.
1 + y
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– The error term (�b)2: we use (2.48) with m = L − h̄ − 1 to estimate∣∣∣∣
∫

χB0�QL
L−1

2 (�b)2

∣∣∣∣� ‖χB0�Q‖L2(y≤2B0)
‖L L−1

2 (�b)2‖L2(y≤2B0)

� b
−(2h̄+δ)
1 b

L+1+(1−δ)−CLη
1 .

– The terms L(q1) and N(q1) are estimated similarly by using (4.8) and the L∞ bound (B.6) for 
the nonlinear term, which results in∣∣∣∣

∫
L

L−1
2 (χB0�Q)(L(q1) − N(q1))

∣∣∣∣� b1b
−(2h̄+δ)
1

√
Ek.

– The terms χB1Mod2 and D(Qb)2: By (2.24), we write

∫
χB0�QL

L−1
2 (χB1 Mod2 −

(
λs

λ
+ b1

)
D(Qb)2)

=
∫

L
L−1

2 (χB0�Q)

⎛
⎝L−1∑

k=1

[
bk,s + (k − γ )b1bk − bk

]⎛⎝Tkδk∧2,1 +
L+2∑

j=k+1,odd

∂Sj

∂bk

⎞
⎠
⎞
⎠

+ [bL,s + (L − γ )b1bL

] ∫
L

L−1
2 (χB0�Q)

(
TL + ∂SL+2

∂bL

)

−
(

λs

λ
+ b1

)∫
L

L−1
2 (χB0�Q)D(Qb)2.

Note that L
L−1

2 Tk = 0 for k < L and L
L−1

2 TL = (−1)
L−1

2 �Q. We then use the admissibility of 
�Tk and the homogeneity of �Sk and Lemma 4.3 to estimate∣∣∣∣∣∣
∫

L
L−1

2 (χB0�Q)

⎛
⎝L−1∑

k=1

[
bk,s + (k − γ )b1bk − bk

]⎛⎝Tkδk∧2,1 +
L+2∑

j=k+1,odd

∂Sj

∂bk

⎞
⎠
⎞
⎠
∣∣∣∣∣∣

+
∣∣∣∣
(

λs

λ
+ b1

)∫
L

L−1
2 (χB0�Q)D(Qb)2

∣∣∣∣
� b

L+1+(1−δ)(1+η)
1

⎧⎨
⎩

L−1∑
k=1

L+2∑
j=k+1,odd

∣∣∣∣
∫

χB0�QL
L−1

2

(
∂Sj

∂bk

)∣∣∣∣+
∣∣∣∣
∫

(χB0�Q)L
L−1

2 (D(�b)2)

∣∣∣∣
⎫⎬
⎭

� b
L+1+(1−δ)(1+η)
1

⎧⎪⎨
⎪⎩

L−1∑
k=1

L+2∑
j=k+1,odd

b
j−k
1

∫
y≤2B0

y−2γ+j−L−1 + bL
1

∫
y≤2B0

y−2γ

+
L+2∑

k=2,odd

bk
1

∫
y≤2B0

yk−2γ−1

⎫⎪⎬
⎪⎭

� b
L+1+(1−δ)(1+η)
1

{
b

−2h̄−2δ
1 + b

L−2h̄−2δ
1 + b

1−2h̄−2δ
1

}
� b

−(2h̄+δ)
1 b

L+(1−δ)(2+η)
1 .
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We also write

[
bL,s + (L − γ )b1bL

] ∫
L

L−1
2 (χB0�Q)

(
TL + ∂SL+2

∂bL

)

= [bL,s + (L − γ )b1bL

] 〈
χB0�Q,(−1)

L−1
2 �Q + L

L−1
2

(
∂SL+2

∂bL

)〉
.

Injecting all the above estimates into (4.10) yields

d

ds

〈
H L �q,χB0�Q

〉
= [bL,s + (L − γ )b1bL

]
G(s) + b

−(2h̄+δ)
1 O

(√
Ek + b

L+(1−δ)(2+η)
1

)
,

where we write for short

G(s) =
〈
χB0�Q,�Q + (−1)

L−1
2 L

L−1
2

(
∂SL+2

∂bL

)〉
∼ b

−2h̄−2δ
1 . (4.12)

Thus, we have

d

ds

⎡
⎣
〈
H L �q,χB0�

�Q
〉

G(s)

⎤
⎦− [bL,s + (L − γ )b1bL

]

=O
(

b
4h̄+4δ
1

∣∣∣∣〈H L �q,χB0�
�Q
〉 d

ds
G(s)

∣∣∣∣
)

+ bδ
1O
(√

Ek + b
L+(1−δ)(2+η)
1

)
.

From (2.17) and (B.1), we estimate

∣∣∣〈H L �q,χB0�
�Q
〉∣∣∣= ∣∣∣∣
∫

χB0�QL
L−1

2 (q2)

∣∣∣∣�√Ek

⎛
⎜⎝ ∫

y∼B0

y−2γ+2+2h̄

⎞
⎟⎠

1
2

� b
−2h̄−δ−1
1

√
Ek.

(4.13)

Note that 
∣∣ d
ds

χB0

∣∣ � b1 and has support on B0 ≤ y ≤ 2B0, and that ∂SL+2
∂bL

does not de-
pend on bL, we can use the bounds on b1, · · · , bL−1 given in Lemma 4.3 to obtain the esti-
mate ∣∣∣∣ dds

G(s)

∣∣∣∣� b1b
−2h̄−2δ
1 .

Hence, we obtain

d

ds

⎡
⎣
〈
H L �q,χB0�

�Q
〉

G(s)

⎤
⎦− [bL,s + (L − γ )b1bL

]= bδ
1O
(√

Ek + b
L+(1−δ)(2+η)
1

)
,

which concludes the proof of Lemma 4.4. �
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4.2. Monotonicity for Ek

We derive in this subsection the main monotonicity formula for Ek. We claim the following 
which is the heart of this paper:

Proposition 4.5 (Lyapunov monotonicity for Ek). Given h̄, δ and η as defined in (1.17) and 
(1.20). For K ≥ 1, we assume that there is s0(K) � 1 such that (b1(s), · · · , bL(s), �q(s)) ∈ SK(s)

for s ∈ [s0, s1] for some s1 ≥ s0. Then, the following estimate holds for s ∈ [s0, s1]:

d

dt

{
Ek

λ2k−d

[
1 +O

(
b

η(1−δ)
1

)]}

� b1

λ2k−d+1

[√
Ekb

L+(1−δ)(1+η)
1 + EkE

1
2 +O
(

1
L

)
σ + Ekb

η(1−δ)
1 + Ek

N2γ−1 + C(N)Ek,loc

]
,

(4.14)

where

Ek,loc =
∫

y≤N

|(q1)k|2 +
∫

y≤N

|(q2)k−1|2, (4.15)

with N � 1 being a fixed constant.

Proof. By the definition of Ek, (3.15) and equation (3.14), we write

d

dt

[
Ek

λ2k−d

]
= d

dt

[
1

λ2k−d

∫
q1L

kq1 +
∫

q2L
k−1q2

]
= d

dt

[∫
v1L

k

λ v1 +
∫

v2L
k−1
λ v2

]

= 2
∫

∂tv1L
k

λ v1 + 2
∫

∂tv2L
k−1
λ v2 +

∫
v1[∂t ,L

k

λ ]v1 +
∫

v2[∂t ,L
k−1
λ ]v2

= 2
∫

1

λ
(F1)λL

k

λ v1 + 2
∫

1

λ2 (F2)λL
k−1
λ v2 +

∫
v1[∂t ,L

k

λ ]v1

+
∫

v2[∂t ,L
k−1
λ ]v2, (4.16)

where the commutator is defined by

[∂t ,L
k
λ ]f = ∂t (L

k
λ f ) − L k

λ (∂tf )

=
k−1∑
m=0

L m
λ

(
[∂t ,Lλ]L k−1−m

λ f
)

=
k−1∑
m=0

L m
λ

(
∂tZλ

r2 L k−1−m
λ f

)
, (4.17)

and we recall from (3.9),
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F1 = −(�b)1 − M1, M1 = χB1(Mod)1 −
(

λs

λ
+ b1

)
�(Qb)1, (4.18)

F2 = −(�b)2 − M2 + L(q1) − N(q1), M2 = χB1(Mod)2 −
(

λs

λ
+ b1

)
D(Qb)2. (4.19)

• The error term ��b: we use (2.46) to estimate

∣∣∣∣
∫

1

λ

(
(�b)1
)
λ
L k

λ v1 +
∫

1

λ2

(
(�b)1
)
λ
L k−1

λ v2

∣∣∣∣
= 1

λ2k−d+1

∣∣∣∣
∫

(�b)1L
kq1 +

∫
(�b)2L

k−1q2

∣∣∣∣
= 1

λ2k−d+1

∣∣∣∣
∫ (

(�b)1
)
k
(q1)k +

∫ (
(�b)2
)
k−1(q2)k−1

∣∣∣∣
� 1

λ2k−d+1

√
Ekb

L+1+(1−δ)(1+η)
1 . (4.20)

• The nonlinear term N(q1): we write

∣∣∣∣
∫

1

λ2

(
N(q1)
)
λ
L k−1

λ v2

∣∣∣∣= 1

λ2k−d+1

∣∣∣∣
∫

N(q1)L
k−1q2

∣∣∣∣�
√

Ek

λ2k−d+1
‖(N(q1))k−1‖L2 . (4.21)

– Estimate for y < 1: By (3.12), we can write

N(q1) = q2
1

y
� with � = −d − 1

y

1∫
0

(1 − τ) sin
(
(2Qb)1 + 2τq1

)
dτ.

Using the expansion (B.2) of �q near the origin, we write

q2
1

y
= 1

y

⎛
⎝ k−1∑

i=0,even

ciTi + r1

⎞
⎠

2

=
k−1∑

i=0,even

c̃iy
i+1 + r̃1, (4.22)

where

|c̃i | � Ek and
k−1∑
j=0

yj |∂j
y r̃1| � yk− d

2 Ek for y < 1.

Let τ ∈ [0, 1] and

vτ = (Qb)1 + τq1.

We obtain from Proposition 2.13 and (B.2) the expansion

vτ =
k−1∑

ĉiy
i+1 + r̂1,
i=0,even
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where

|ĉi | � 1 and
k−1∑
j=0

|yj ∂
j
y r̂1| � yk− d

2 for y < 1.

By the Taylor expansion of sin(x) at x = 0, we write

� =
k−1∑

i=0,even

c̄iy
i + r̄1, (4.23)

where

|c̄i | � 1 and
k−1∑
j=0

|yj ∂
j
y r̄1| � yk− d

2 −1 for y < 1.

Thus, we can write from (4.22) and (4.23) the expansion of N(q1) near the origin as follows:

N(q1) =
k−1∑

i=0,even

c′
iy

i+1 + r ′
1, (4.24)

where

|c′
i | � Ek and

k−1∑
j=0

|yj ∂
j
y r ′

1| � Eky
k− d

2 for y < 1.

From the definition of A and A ∗, one can check that

|(r ′
1)k−1| �

k−1∑
i=0

∂i
yr

′
1

yk−1−i
� Eky

− d
2 +1 for y < 1.

Using the fact that A (y) = O(y2) for y < 1, we obtain

∣∣∣∣∣∣
⎛
⎝ k−1∑

i=0,even

c′
iy

i+1

⎞
⎠

k−1

∣∣∣∣∣∣� y2Ek.

Hence, we derive the estimate

‖(N(q1)
)
k−1‖L2(y<1) � Ek. (4.25)

– Estimate for y > 1: Let us rewrite from the definition (3.12) of N(q1),

N(q1) = Z2ψ, Z = q1

y
, ψ = −(d − 1)

1∫
(1 − τ) sin(2(Qb)1 + 2τq1)dτ. (4.26)
0
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Note from the definitions of A and A ∗ that

∀k ∈ N, |fk| �
k∑

i=0

|∂i
yf |

yk−i
,

from which and the Leibniz rule, we write

∫
y≥1

∣∣∣(N(q1)
)
k−1

∣∣∣2 �
k−1∑
k=0

∫
y≥1

|∂k
yN(q1)|2

y2k−2k−2

�
k−1∑
k=0

k∑
i=0

∫
y≥1

|∂i
yZ

2|2|∂k−i
y ψ |2

y2k−2k−2

�
k−1∑
k=0

k∑
i=0

i∑
m=0

∫
y≥1

|∂m
y Z|2|∂i−m

y Z|2|∂k−i
y ψ |2

y2k−2k−2
.

We aim at using (B.3) and (B.6) to prove that for 0 ≤ k ≤ k − 1, 0 ≤ i ≤ k and 0 ≤ m ≤ i,

Ak,i,m :=
∫

y≥1

|∂m
y Z|2|∂i−m

y Z|2|∂k−i
y ψ |2

y2k−2k−2
� b2

1EkE
1+O
(

1
L

)
σ , (4.27)

from which and (4.25), we derive the estimate

‖(N(q1)
)
k−1‖L2 � b1

√
EkE

1
2 +O
(

1
L

)
σ . (4.28)

Let us prove (4.27). We distinguish in 3 cases:

– The initial case k = 0, then m = i = k = 0. From (4.26), it is obvious to see that |ψ | is uni-
formly bounded. We estimate from (B.3) and (B.8),

A0,0,0 =
∫

y≥1

|q1|4|ψ |2
y2k+2

yd−1dy �
∥∥∥∥q1

y

∥∥∥∥
2

L∞(y≥1)

∫
y≥1

|q1|2
y2k

� b2
1EkE

1+O
(

1
L

)
σ .

– Case k ≥ 1 and k − i = 0. We first use the Leibniz rule to write

∀l ∈N, |∂l
yZ|2 �

l∑
j=0

|∂j
y q1|2

y2+2l−2j
, (4.29)

from which and the uniform bound of ψ , we have
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Ak,k,m �
m∑

j=0

k−m∑
l=0

∫
y≥1

|∂j
y q1|2|∂l

yq1|2
y2k−2j−2l+2

=
m∑

j=0

k−m∑
l=0

Bj,l,0,

where

Bj,l,0 =
∫

y≥1

|∂j
y q1|2|∂l

yq1|2
y2k−2j−2l+2

for 0 ≤ j + l ≤ k− 1.

We consider two cases:

– If 0 ≤ j ≤ L+1
2 , we estimate from (B.8) and (B.5),

Bj,l,0 �
∥∥∥∥∥∂

j
y q1

y

∥∥∥∥∥
2

L∞(y≥1)

∫
y≥1

|∂l
yq1|2

y2k−2l−2j

� E
1+O
(

1
L

)
σ b

2j+2+ 2γ (j+1)
L

+O
(

1
L2

)
1 E

j
k−σ

σ E
1− j

k−σ

k
� b2

1EkE
1+O
(

1
L

)
σ ,

where we used the following fact

2j + 2γ (j + 1)

L
− j (2L + 2(1 − δ)(1 + η))

k− σ
= 2γ

L
+O
(

1

L2

)
> 0.

– If j ≥ L+1
2 + 1, then l ≤ k − 1 − j ≤ L−3

2 + h̄. We simply change the role of j and l in the 
above estimate resulting in the same estimate.

– Case k ≥ 1 and k − i ≥ 1. Let us write from (4.27) and (4.29),

Ak,m,i �
m∑

j=0

i−m∑
l=0

∫
y≥1

|∂j
y q1|2|∂l

yq1|2
y2k−2j−2l+2

|∂k−i
y ψ |2

y−2(k−i)
. (4.30)

At this stage, we need to precise the decay of |∂n
y ψ | to archive the bound (4.27). To do so, let 

us recall that �Ti is admissible of degree (i, i, i ∧ 2) (see Lemma 2.10) and �Si is homogeneous of 
degree (i, i − 1, i ∧ 2, i) (see Proposition 2.13). We estimate for j ≥ 1 and y ≥ 1,

|∂j
y (Qb)1| =

∣∣∣∣∣∣∣∂
j
y

⎛
⎜⎝

L−1
2∑

i=0

b2iT2i +
L+1

2∑
i=1

S2i

⎞
⎟⎠
∣∣∣∣∣∣∣

� 1

yγ+j
+

L−1
2∑

i=0

b2i
1 y2i

yγ+j
1{y≤2B1} �

b
−Cη
1

yγ+j
.

Let τ ∈ [0, 1] and vτ = (Qb)1 + τq1. We use the Faa di Bruno formula to write for 1 ≤ n ≤ k −1,
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|∂n
y ψ |2 �

1∫
0

∑
m∗=n

|∂m1+···+mn
vτ

sin(vτ )|2
n∏

i=1

|∂i
y(Qb)1 + ∂i

yq1|2mi dτ

�
∑

|m|2=n

n∏
i=1

(
b

−C(L)η
1

y2γ+2i
+ |∂i

yq1|2
)mi

, |m|2 =
n∑

i=1

imi. (4.31)

Hence, we need to estimate terms of the form

Bi,j,n :=
∫ |∂j

y q1|2|∂l
yq1|2

y2k−2j−2l+2−2n

n∏
i=1

(
b

−C(L)η
1

y2γ+2i
+ |∂i

yq1|2
)mi

, (4.32)

where (j, l, n) ∈ N ×N ×N
∗ and mi ∈ {0, 1, · · · , n} satisfying

1 ≤ j + l + n ≤ k− 1, |m|2 =
n∑

i=1

imi = n.

We consider two cases:

– Case 1: mi = 0 for L − 2 ≤ i ≤ n (if n < L − 2 then we are in this case as well). We now use 
(B.7) with p = 0 to estimate

n∏
i=1

(
b

−C(L)η
1

y2γ+2i
+ |∂i

yq1|2
)mi

�
n∏

i=1

(
b

−C(L)η
1

y2γ+2i
+ b2i

1

)mi

�
n∏

i=1

(
b

−C(L)η
1

y2γ+2i
+ 1

y2i

)mi

1{1≤y≤B0} +
n∏

i=1

(
b

−Cη+2γ+2i

1 + b2i
1

)mi

1{y≥B0}

� 1

y2n
1{1≤y≤B0} + b2n

1 1{y≥B0}.

Thus, we have

Bj,l,n �
∫

1≤y≤B0

|∂j
y q1|2|∂l

yq1|2
y2k−2j−2l+2

+ b2n
1

∫
y≥B0

|∂j
y q1|2|∂l

yq1|2
y2k−2j−2l+2−2n

By the similar estimate as for Bi,l,0, we derive the bound

Bj,l,n � b2
1EkE

1+O
(

1
L

)
σ .

– Case 2: there exists i∗ ∈ {L −2, · · · , n} (n ≤ L −3, this case does not occur) such that mi∗ �= 0. 
Since L � 1 and the fact that

0 ≤
n∑

imi = n − i∗mi∗ ≤ k− 1 − (L − 2)mi∗ ,

i=1,i �=i∗
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we deduce that

mi∗ = 1, mi = 0 for h̄ + 2 ≤ i �= i∗ ≤ n.

We then write

n∏
i=1

(
b

−C(L)η
1

y2γ+2i
+ |∂i

yq1|2
)mi

=
(

b
−C(L)η
1

y2γ+2i∗ + |∂i∗
y q1|2
)

h̄+2∏
i=1

(
b

−C(L)η
1

y2γ+2i
+ |∂i

yq1|2
)mi

�
(

b
−C(L)η
1

y2γ+2i∗ + |∂i∗
y q1|2
)

h̄+2∏
i=1

(
b

−C(L)η
1

y2γ+2i
+ b2i

1

)mi

�
(

b
−Cη
1

y2γ+2n
+ |∂i∗

y q1|2
y2n−2i∗

)
1{1≤y≤B0} +

(
b

2n+2γ−Cη

1 + b2n−2i∗
1 |∂i∗

y q1|2
)

1{y≥B0}.

Thus, we have

Bj,l,n �
∫

1≤y≤B0

|∂j
y q1|2|∂l

yq1|2
y2k−2j−2l+2

(
b

−Cη
1

y2γ
+ |∂i∗

y q1|2
y−2i∗

)

+ b2n
1

∫
y≥B0

|∂j
y q1|2|∂l

yq1|2
y2k−2j−2l+2−2n

(
b

2γ−Cη

1 + b−2i∗
1 |∂i∗

y q1|2
)

.

Since i∗ ≥ L − 3, we can use the interpolation bound (B.5) to control 
∫ |∂i∗

y q1|2 directly, then the 
rest terms are controlled by the L∞ bound (B.8) resulting in

Bj,l,n � b2
1EkE

1+O
(

1
L

)
σ .

This concludes the proof of (4.27) as well as (4.28).

• The small linear term L(q1): we write

∣∣∣∣
∫

1

λ2

(
L(q1)
)
λ
L k−1

λ v2

∣∣∣∣= 1

λ2k−d+1

∣∣∣∣
∫

L(q1)L
k−1q2

∣∣∣∣�
√

Ek

λ2k−d+1
‖(L(q1))k−1‖L2 .

We claim that

‖(L(q1))k−1‖L2 � b
2(1−C(L)η)
1

√
Ek. (4.33)

Let us rewrite from (3.11) the definition of L(q1),

L(q1) = �q1 with � = (d − 1)

2 [cos(2Q) − cos(2Q + 2(�b)1)] ,

y
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where

(�b)1 =
L∑

i=1,even

biTiχB1 +
L+2∑

i=2,even

Si(b, y)χB1 .

From the asymptotic behavior of Q given in (2.4), the admissibility of �Ti and the homogeneity 
of �Si , we deduce that � is a regular function both at the origin and at infinity. We then apply the 
Leibniz rule (B.13) with φ = � to write

(�q1)k−1 =
k−1∑
m=0

(
q1
)
m
�k−1,k−1−m,

where �k−1,k−1−m with 0 ≤ m ≤ k − 1 are defined by the recurrence relation given in 
Lemma B.2. In particular, we have the following estimate

|�k−1,k−1−m| � b
2(1−C(L)η)
1

1 + y2γ+k−1−m
for 0 ≤ m ≤ k− 1.

Hence, from the coercivity bound (B.1) and 2γ − 1 ≥ 1, we estimate

∫
|L(q1)k−1|2 � b

2(1−η)
1

k−1∑
m=0

∫ |(q1)m|2
1 + y4γ−2+2(k−m)

� b
4(1−C(L)η)
1 Ek,

which concludes the proof of (4.33). Hence, we have

∣∣∣∣
∫

1

λ2

(
L(q1)
)
λ
L k−1

λ v2

∣∣∣∣� b
2(1−C(L)η)
1

λ2k−d+1
Ek. (4.34)

• The commutator term: By (4.17), we write

∫
v1[∂t ,L

k

λ ]v1 +
∫

v2[∂t ,L
k−1
λ ]v2

= − λs

λ2k−d+2

[
k−1∑
m=0

∫
q1L

m

(
�Z

y2 L k−1−mq1

)
+

k−2∑
m=0

∫
q2L

m

(
�Z

y2 L k−2−mq2

)]

= − λs

λ2k−d+2

⎡
⎢⎢⎣2

[
k+1

2

]
−1∑

m=0

∫
(q1)k

(
�Z

y2 (q1)2m

)
k−2−2m

+2

[
k−1

2

]
−1∑

m=0

∫
(q2)k−1

(
�Z

y2 (q2)2m

)
k−3−2m

⎤
⎥⎥⎦
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� b1

λ2k−d+1

√
Ek

⎡
⎢⎢⎣
[
k+1

2

]
−1∑

m=0

∥∥∥∥
(

�Z

y2 (q1)2m

)
k−2−2m

∥∥∥∥
L2

+

[
k−1

2

]
−1∑

m=0

∥∥∥∥
(

�Z

y2 (q2)2m

)
k−3−2m

∥∥∥∥
L2

⎤
⎥⎥⎦,

where we used in the last line the fact that 
∣∣∣λs

λ

∣∣∣∼ b1 from the modulation equation (4.5) and the 
Cauchy–Schwartz inequality. We note from (1.23) and (2.8) that

�Z

y2 =
k∑

i=0

diy
2i+1 +O(y2k+3) for y → 0,

and

∀j ∈N,

∣∣∣∣∂j
y

(
�Z

y2

)∣∣∣∣� 1

y2γ+1+j
for y → +∞.

Applying Lemma B.2 with φ = �Z
y2 , we write

[
k+1

2

]
−1∑

m=0

(
φ(q1)2m

)
k−2−2m

=

[
k+1

2

]
−1∑

m=0

k−2−2m∑
j=0

(q1)2m+jφk−2−2m,k−2−2m−j ,

[
k−1

2

]
−1∑

m=0

(
φ(q2)2m

)
k−3−2m

=

[
k−1

2

]
−1∑

m=0

k−3−2m∑
j=0

(q2)2m+jφk−3−2m,k−3−2m−j ,

where we compute from the recurrence formula of Lemma B.2,

φk−2−2m,k−2−2m−j � 1

1 + y2γ+1+k−2−2m−j
, φk−3−2m,k−3−2m−j � 1

1 + y2γ+1+k−3−2m−j
.

We then use the coercivity bound of A and A ∗ given in Lemmas A.2 and A.3 to estimate

[
k+1

2

]
−1∑

m=0

∥∥∥∥
(

�Z

y2 (q1)2m

)
k−2−2m

∥∥∥∥
2

L2

+

[
k−1

2

]
−1∑

m=0

∥∥∥∥
(

�Z

y2 (q2)2m

)
k−3−2m

∥∥∥∥
2

L2

�

[
k+1

2

]
−1∑

m=0

k−2−2m∑
j=0

∫ |(q1)2m+j |2
1 + y2(2γ−1+k−2m−j)

+

[
k−1

2

]
−1∑

m=0

k−3−2m∑
j=0

∫ |(q2)2m+j |2
1 + y2(2γ−1+k−2m−j−1)

�

[
k+1

2

]
−1∑

m=0

k−2−2m∑
j=0

∫ |(q1)k|2
1 + y2(2γ−1)

+

[
k−1

2

]
−1∑

m=0

k−3−2m∑
j=0

∫ |(q2)k−1|2
1 + y2(2γ−1)

� Ek

N2(2γ−1)
+
∥∥∥∥ (q1)k

1 + y2γ−1

∥∥∥∥
2

L2(y≤N)

+
∥∥∥∥ (q2)k−1

1 + y2γ−1

∥∥∥∥
2

L2(y≤N)

.
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Thus, we obtain∣∣∣∣
∫

v1[∂t ,L
k

λ ]v1 +
∫

v2[∂t ,L
k−1
λ ]v2

∣∣∣∣
� b1

λ2k−d+1

√
Ek

[ √
Ek

N2γ−1 +
∥∥∥∥ (q1)k

1 + y2γ−1

∥∥∥∥
L2(y≤N)

+
∥∥∥∥ (q2)k−1

1 + y2γ−1

∥∥∥∥
L2(y≤N)

]
,

� b1

λ2k−d+1

[
Ek

N2γ−1 + C(N)Ek,loc

]
, (4.35)

where Ek,loc is defined by (4.15).

• The modulation term: Let us introduce the vector function

�ϒ = Cϒ

(
�TL + ∂ �SL+1

∂bL

+ ∂ �SL+2

∂bL

)
χB1 , (4.36)

where

Cϒ =
〈
H L �q,χB0�

�Q
〉

〈
χB0�Q,�Q + (−1)

L−1
2

(
∂SL+2
∂bL

)
L−1

〉 , |Cϒ| � bδ−1
1

√
Ek. (4.37)

The size of the coefficient Cϒ is computed from (4.12) and (4.13). The introduction of χL is to 
take advantage of the improved modulation equation (4.9). Let us write

∫
1

λ
(M1)λL

k

λ v1 +
∫

1

λ2 (M2)λL
k−1
λ v2 = 1

λ2k−d+1

[∫
M1L

kq1 +
∫

M2L
k−1q2

]

= 1

λ2k−d+1

[∫
∂sϒ1L

kq1 +
∫

∂sϒ2L
k−1q2

]

+ 1

λ2k−d+1

[∫
(M1 − ∂sϒ1)L kq1 +

∫
(M2 − ∂sϒ2)L k−1q2

]

= d

dt

[
1

λ2k−d
�0

]
+ 1

λ2k−d+1

[
(2k− d)

λs

λ
�0 − �1 + �2

]

where M1 and M2 are introduced in (4.18) and (4.19),

�0 =
∫

ϒ1L
kq1 +

∫
ϒ2L

k−1q2 + 1

2

∫
ϒ1L

kϒ1 + 1

2

∫
ϒ2L

k−1ϒ2,

�1 =
∫

(M1 − ∂sϒ1)L kq1 +
∫

(M2 − ∂sϒ2)L k−1q2,

�2 =
∫

ϒ1L
k
(
∂sq1 + ∂sϒ1

)+ ∫ ϒ2L
k−1(∂sq2 + ∂sϒ2

)
.

We claim that
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|�0| � Ekb
η(1−δ)
1 , |�1| + |�2| � Ekb

1+η(1−δ)
1 +

√
Ekb

L+1+(1−δ)(1+η)
1 , (4.38)

from which and −λs

λ
∼ b1 we obtain

∫
1

λ
(M1)λL

k

λ v1 +
∫

1

λ2 (M2)λL
k−1
λ v2

= d

dt

[
1

λ2k−d
O
(
Ekb

η(1−δ)
1

)]
+O
(
Ekb

1+η(1−δ)
1 +

√
Ekb

L+1+(1−δ)(1+η)
1

)
. (4.39)

Let us start the estimate of �0. By the Cauchy–Schwartz inequality, we write

|�0| �
√

Ek

(‖(ϒ1)k‖L2 + ‖(ϒ2)k−1‖L2

)+ ‖(ϒ1)k‖2
L2 + ‖(ϒ2)k−1‖2

L2 .

We use the admissibility of �Tk , the homogeneity of �Sk together with the fact that L
L+1

2 TL = 0
to estimate

‖(ϒ1)k‖2
L2 + ‖(ϒ2)k−1‖2

L2 � C2
ϒ

[∫ ∣∣∣∣
(

χB1

∂SL+1

∂bL

)
k

∣∣∣∣
2

+
∫ ∣∣∣∣
(

χB1

(
TL + ∂SL+2

∂bL

))
k−1

∣∣∣∣
2
]

� C2
ϒ

⎡
⎢⎣ ∫
y≤2B1

b2
1

1 + y2(−L+γ+k)
+
∫

B1≤y≤2B1

1

1 + y2(−L+γ+k)
+
∫

y≤2B1

b4
1

1 + y2(−L+γ+k−1)

⎤
⎥⎦

� b2δ−2
1 Ek

[
b2

1b
(2−2δ)(1+η)
1 + b

(2−2δ)(1+η)
1 + b4

1b
−2δ(1+η)
1

]
� b

2η(1−δ)
1 Ek. (4.40)

This concludes the proof of (4.38) for �0.
We now prove the estimate (4.38) for �1. From the Cauchy–Schwartz inequality, we write

|�1| �
√

Ek

[∥∥(M1 − ∂sϒ1
)
k

∥∥
L2 +
∥∥∥(M2 − ∂sϒ2

)
k−1

∥∥∥
L2

]
.

We only deal with the second coordinate because the first one is estimated in the same way. Let 
us write

M2 − ∂sϒ2 =
L−1∑

k=1,odd

[
(bk)s + (k − γ )b1bk − bk−1

]⎛⎝Tk +
L+2∑

j=k+1,odd

∂Sj

∂bk

⎞
⎠χB1

−
(

λs

λ
+ b1

)
D(Qb)2 +

[
(bL)s + (L − γ )b1bL − d

ds
Cϒ

](
TL + ∂SL+2

∂bL

)
χB1

− Cϒ

d

ds

[(
TL + ∂SL+2

∂bL

)
χB1

]
.

Since L
L+1

2 Tk = 0 for 1 ≤ k ≤ L, we use the admissibility of �Tk to estimate

L∑
k=1,odd

∥∥∥(χB1Tk

)
k−1

∥∥∥2
L2

�
L∑

k=1,odd

∫
y2(k−γ−k) �

∫
y2(−γ−h̄−1) � b

2(1−δ)(1+η)
1 .
y∼B1 y∼B1
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From the homogeneity of �Sk , we have

L∑
k=1,odd

L+2∑
j=k+1,odd

∥∥∥∥
(

∂Sj

∂bk

χB1

)
k−1

∥∥∥∥
2

L2

�
L∑

k=1,odd

L+2∑
j=k+1,odd

∫
y≤2B1

b4
1

1 + y2(−j+1+γ+k)

� b
2(1−δ)(1+η)
1 .

Similarly, since 
∣∣ d
ds

χb1

∣∣� b1 and ∂SL+2
∂bL

does not depend on bL, we have the estimates

∥∥∥(D(Qb)2
)
k−1

∥∥∥2
L2

� b
2(1−δ)(1+η)
1 ,

∥∥∥∥
(

d

ds

(
TL + ∂SL+2

∂bL

)
χB1

)
k−1

∥∥∥∥
2

L2

� b2
1b

2(1−δ)(1+η)
1 .

Gathering all these above estimates together with the modulation equations (4.5), (4.9) and the 
estimate (4.37) yields∥∥∥(M2 − ∂sϒ2

)
k−1

∥∥∥
L2

� b
1+η(1−δ)
1

√
Ek + b

L+1+(1−δ)(2+η)
1 , (4.41)

which follows the estimate (4.38) for �1.
We now turn to the proof of (4.38) for �2. We only deal with the second coordinate because 

the same proof holds for the first one. Let us write from equation (3.9),

∫
ϒ2L

k−1 (∂sq2 + ∂sϒ2)

=
∫

L k−1ϒ2

(
λs

λ
Dq2 − L q1 − (�b)2 − M2 + ∂sϒ2 + L(q1) − N(q1)

)
.

Using the admissibility of �TL, the homogeneity of �SL+2 and the fact that L
L+1

2 TL = 0, we have

∣∣∣L k−1ϒ2

∣∣∣� |Cϒ|
(

1

1 + y−L+1+γ+2k−2
1{B1≤y≤2B1} + b2

1

1 + y−L+γ+2k−2
1{y≤2B1}

)

� bδ−1
1

√
Ek

b
1+η
1

1 + yk−1+γ+h̄
1{y≤2B1}. (4.42)

From (4.42), the coercivity bound (B.3) and −λs

λ
∼ b1, we estimate

∣∣∣∣λs

λ

∫
L k−1ϒ2Dq2

∣∣∣∣

� b
1+δ+η
1

√
Ek

⎡
⎣(∫ |q2|2

1 + y2(k−1)

) 1
2

+
(∫ |∂yq2|2

1 + y2(k−2)

) 1
2
⎤
⎦
⎛
⎜⎝ ∫

y≤2B1

1

1 + y2(γ+h̄)

⎞
⎟⎠

1
2

� b
1+δ+η
1 Ekb

−δ(1+η)
1 � b

1+η(1−δ)
1 Ek.
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Similarly, we have

∣∣∣∣
∫

L k−1ϒ2L q1

∣∣∣∣� bδ−1
1

√
Ek

(∫ |(q1)2|2
1 + y2(k−2)

) 1
2

⎛
⎜⎝ ∫

y≤2B1

1

1 + y2(γ+h̄+1)

⎞
⎟⎠

1
2

� b
1+η(1−δ)
1 Ek.

Using (2.46) and (4.40) yields

∣∣∣∣
∫

L k−1ϒ2(�b)2

∣∣∣∣� ∥∥∥((�b)2
)
k−1

∥∥∥
L2

∥∥∥(ϒ2
)
k−1

∥∥∥
L2

� b
1+η(1−δ)
1

√
Ekb

L+(1−δ)(1+η)
1 .

From (4.41) and (4.40), we have

∣∣∣∣
∫

L k−1ϒ2
(
M2 − ∂sϒ2

)∣∣∣∣� ∥∥∥(M2 − ∂sϒ2
)
k−1

∥∥∥
L2

∥∥∥(ϒ2
)
k−1

∥∥∥
L2

� b
1+2η(1−δ)
1 Ek + b

1+η(1−δ)
1

√
Ekb

L+(1−δ)(1+η)
1 .

Note from the definition (3.11) of L(q1) that

|L(q1)| � b
2(1−η)
1 |q1|
1 + y2γ

.

Thus, by using (4.42) and the coercivity bound (B.3), we derive

∣∣∣∣
∫

L k−1ϒ2L(q1)

∣∣∣∣� b
1+η(1−δ)
1 Ek.

For the nonlinear term N(q1) defined in (3.12), we note that |N(q1)| � q2
1

y2 , we then use (4.42), 
the coercivity bound (B.1) and the bootstrap bound given in Definition 3.2 to estimate

∣∣∣∣
∫

L k−1ϒ2N(q1)

∣∣∣∣� b
δ+η
1

√
Ek

∫
y≤2B1

q2
1

y2(1 + y2k−2)
(1 + yk−1−γ−h̄)

� b
δ+η
1

√
EkEkb

(−L+γ )(1+η)

1 � b
1+η(1−δ)
1 Ek.

This finishes the proof of (4.38) for �2.
A collection of the estimates (4.20), (4.21), (4.28), (4.34), (4.35) and (4.39) into the identity 

(4.16) yields the formula (4.14). This concludes the proof of Proposition 4.5. �
4.3. Local Morawetz control

We establish in this subsection the so-called Morawetz type identity in order to control the 
local term Ek,loc involved in the formula (4.14). In particular, we have the following:
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Proposition 4.6 (Local Morawetz control). Let 0 < ν � 1 and A � 1 be small and large enough 
constants, we define

φA(y) =
y∫

0

χA(ξ)ξ1−νdξ, (4.43)

and

M = −
∫ [∇φA.∇(q1)k−1 + (1 − ν)

2
	φA(q1)k−1

]
(q2)k−1. (4.44)

Then the following bounds hold for all s ∈ [s0, s1] for s0 large enough,

|M| ≤ C(A,M)Ek, (4.45)

and

d

dt

[ M
λ2k−d

]
≥ 1

λ2k−d+1

(
ν

2Nν
Ek,loc − C(M)

Aν
Ek − C(A,M)

√
Ekb

L+1+(1−δ)(1+η)
1

)
, (4.46)

where the large constants M , N and Ek,loc are introduced in (3.4) and (4.15).

Proof. The estimate (4.45) simply follows from the coercivity bound (B.1). We aim at proving 
the bound

d

ds
M ≥ ν

2Nν
Ek,loc − C(M)

Aν
Ek − C(A,M)

√
Ekb

L+1+(1−δ)(1+η)
1 , (4.47)

which immediately implies (4.46). Indeed, from −λs

λ
∼ b1 and the bound (4.45), we have

d

dt

[ M
λ2k−d

]
= 1

λ2k−d+1

d

ds
M− (2k− d)λs

λ2k−d+1λ
M

≥ 1

λ2k−d+1

[
ν

2Nν
Ek,loc − C(M)

Aν
Ek − C(A,M)

√
Ekb

L+1+(1−δ)(1+η)
1

]

− C(A,M)
b1

λ2k−d+1
Ek.

Since b1(s) ≤ b1(s0) ∼ 1
s0

, we can take s0 = s0(A) large such that b1(s0) ≤ 1
A

, then the estimate 
(4.46) follows.

Let us give the proof of (4.47). We first claim the following:

Lemma 4.7 (Morawetz type identity at the linear level). Let A � 1 and 0 < ν � 1, there holds 
the following:
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∫ [∇φA.∇(q1)k−1 + (1 − ν)

2
	φA(q1)k−1

]
L (q1)k−1

−
∫ [∇φA.∇(q2)k−1 + (1 − ν)

2
	φA(q2)k−1

]
(q2)k−1 � ν

Nν
Ek,loc − 1

Aν
Ek. (4.48)

Proof. The proof follows exactly the same lines as Lemma 3.8 in [11] because we have the 
same definition φA and a similar structure of the linear operator L . Although the potential Z

y2 is 
different from the one defined in [11], it still satisfies

1

2
y∂y

(
Z

y2

)
≥ − 1

y2

[(
d − 2

2

)2

− κ(d)

]
for some κ(d) > 0 and d ≥ 7,

thanks to the asymptotic behavior (2.4) and the fact that (d−2)2

4 − (d − 1) ≥ 1
4 for d ≥ 7. For that 

reason, we refer the interested reader to [11] for details of the proof. �
We now use the identity (4.48) to derive the formula (4.47). We compute from the definition 

of M and the equation (3.9),

d

ds
M = −

∫
∇φA.∇

(
q2 − λs

λ
�q1 − (�b)1 − M1

)
k−1

(q2)k−1

−
∫

1 − ν

2
	φA

(
q2 − λs

λ
�q1 − (�b)1 − M1

)
k−1

(q2)k−1

+
∫

∇φA.∇(q1)k−1

(
L q1 + λs

λ
Dq2 + (�b)2 + M2 − L(q1) + N(q1)

)
k−1

+
∫

1 − ν

2
	φA(q1)k−1

(
L q1 + λs

λ
Dq2 + (�b)2 + M2 − L(q1) + N(q1)

)
k−1

.

(4.49)

From the definitions of A and A ∗, the coercivity bound (B.1), −λs

λ
∼ b1 and the compactness 

of the support of ∇φA and 	φA, we have the estimate

∣∣∣∣λs

λ

∫ [∇φA.∇ (�q1)k−1 + (1 − ν)

2
	φA (�q1)k−1

]
(q2)k−1

∣∣∣∣
+
∣∣∣∣λs

λ

∫ [∇φA.∇(q1)k−1 + (1 − ν)

2
	φA(q1)k−1

]
(Dq2)k−1

∣∣∣∣ � C(A)b1Ek.

Again from the compactness of the support of ∇φA and 	φA, we use the Cauchy–Schwartz 
inequality and the local bound (2.47) for �� to obtain the estimate

∣∣∣∣
∫ [∇φA.∇ ((�b)1)k−1 + (1 − ν)

2
	φA ((�b)1)k−1

]
(q2)k−1

∣∣∣∣
+
∣∣∣∣
∫ [∇φA.∇(q1)k−1 + (1 − ν)

2
	φA(q1)k−1

]
((�b)2)k−1

∣∣∣∣ � C(A)
√

Ekb
L+3
1 .
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For the small linear term L(q1) and the nonlinear term N(q1), we use the Cauchy–Schwartz 
inequality, the bounds (4.33) and (4.28) to estimate∣∣∣∣

∫ [∇φA.∇(q1)k−1 + (1 − ν)

2
	φA(q1)k−1

]
(L(q1) − N(q1))k−1

∣∣∣∣ � C(A)b1Ek.

It remains to control the modulation term. We use the fact that χB1Ti = Ti for y ≤ 2A � B1 and 
(Ti)k−1 = 0 for 1 ≤ i ≤ L to deduce that

L∑
i=1,even

∫ [∇φA.∇ (Ti)k−1 + (1 − ν)

2
	φA (Ti)k−1

]
(q2)k−1

+
L∑

i=1,odd

∫ [∇φA.∇(q1)k−1 + (1 − ν)

2
	φA(q1)k−1

] (
χB1Ti

)
k−1 = 0.

For the term ∂Sj

bi
for j ≥ i + 1, we recall that Sj is homogeneous of degree (j, j − 1, j ∧ 2, j). 

Thus, 
∣∣∣ ∂Sj

bi

∣∣∣� C(A)b1 for y ≤ 2A. We then use Lemma 4.3 to derive the bound for 1 ≤ i ≤ L,

L+2∑
j=i+1,even

∣∣∣∣[(bi)s + (i − γ )b1bi − bi+1
] ∫ [∇φA.∇

(
χB1

∂Sj

∂bi

)
k−1

+ (1 − ν)

2
	φA

(
χB1

∂Sj

∂bi

)
k−1

]
(q2)k−1

∣∣∣∣
+

L+2∑
j=i+1,odd

∣∣∣∣[(bi)s + (i − γ )b1bi − bi+1
] ∫ [∇φA.∇(q1)k−1

+ (1 − ν)

2
	φA(q1)k−1

](
χB1

∂Sj

∂bi

)
k−1

∣∣∣∣
� C(A,M)

(
b1Ek +

√
Ekb

L+2+(1−δ)(1+η)
1

)
.

Injecting all the above estimates and identity (4.48) to (4.49) yields the formula (4.47). This 
concludes the proof of Proposition 4.6. �
4.4. Monotonicity for Eσ

We now in the position to derive the monotonicity formula for Eσ . We claim the following.

Proposition 4.8 (Lyapunov monotonicity for Eσ ). Given h̄, δ and η as defined in (1.17)
and (1.20). For K ≥ 1, we assume that there is s0(K) � 1 such that (b1(s), · · · , bL(s), �q(s)) ∈
SK(s) for s ∈ [s0, s1] for some s1 ≥ s0. Then, the followings hold for s ∈ [s0, s1]:

d

dt

(
Eσ

λ2σ−d

)
≤ b1

λ2σ−d+1

√
Eσ b

�
�−γ

(
σ− d

2

)
1

[
b

1
L

(
γ
2 − 1

4

)
+O
(

1
L

∣∣∣σ− d
2

∣∣∣)
1 + b

γ−1
2

1

]
. (4.50)
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Proof. We compute from definition of Eσ and equation (3.14),

d

dt

[
Eσ

λ2σ−d

]
= d

dt

[∫
|∇σ v1|2 +

∫
|∇σ−1v2|2

]

= 2
∫

∇σ v1.∇σ

(
v2 + 1

λ
(F1)λ

)
+ 2
∫

∇σ−1v2.∇σ−1
(

−Lλv1 + 1

λ2 (F2)λ

)

= −2
∫

∇σ−1v2.∇σ−1
(

Zλ

r2 v1

)
+ 2
∫

∇σ v1.∇σ

(
1

λ
(F1)λ

)

+ 2
∫

∇σ−1v2.∇σ−1
(

1

λ2 (F2)λ

)

≤ C

√
Eσ

λ2σ−d+1

{∥∥∥∥∇σ−1
(

Z

y2 q1

)∥∥∥∥
L2

+ ∥∥∇σF1
∥∥

L2 +
∥∥∥∇σ−1F2

∥∥∥
L2

}
, (4.51)

where Z, F1 and F2 are defined in (1.23) and (3.9).

– Estimate for the potential term: From the expansion (B.2), we have

∫
y≤1

∣∣∣∣∇σ−1
(

Z

y2 q1

)∣∣∣∣
2

� Ek.

For y ≥ 1, we note from the asymptotic behavior (2.4) that 
∣∣∣∂j

y

(
Z
y2

)∣∣∣� 1
y2+j for j ∈ N. We then 

use the Leibniz rule and interpolation bound (B.5) with �σ − 1� + 2 > σ to obtain the estimates

∫
y≥1

∣∣∣∣∇�σ−1�
(

Z

y2 q1

)∣∣∣∣
2

� E
k−�σ−1�−2

k−σ
σ E

�σ−1�+2−σ
k−σ

k
,

∫
y≥1

∣∣∣∣∇k−1
(

Z

y2 q1

)∣∣∣∣
2

� Ek.

By interpolation and the bootstrap bounds given in Definition (3.2), we have

∫ ∣∣∣∣∇σ−1
(

Z

y2 q1

)∣∣∣∣
2

≤ CE
k−�σ−1�−2
k−1−�σ−1�

σ E
1

k−1−�σ−1�
k

≤ CK2b

2�
�−γ

(
σ− d

2

)
+O
(

1
L

∣∣∣σ− d
2

∣∣∣)
1 b

2L+2(1−δ)(1+η)
L+h̄−�σ−1�

1 .

Since 
∣∣σ − d

2

∣∣� 1, we note that �σ −1� ≥ d−3
2 = γ + h̄+ δ − 3

2 . We then compute the exponent

2L + 2(1 − δ)(1 + η)

L + h̄ − �σ − 1� = 2

[
1 + (1 − δ)(1 + η) + �σ − 1� − h̄

L
+O
(

1

L2

)]

≥ 2

[
1 + γ − 1

2 + η(1 − δ)

L
+O
(

1

L2

)]
.

Since b1(s) ∼ 1
s

≤ 1
s0

, we can take s0 = s0(K) large enough to obtain the bound

∫ ∣∣∣∣∇σ−1
(

Z

2 q1

)∣∣∣∣
2

≤ b

2�
�−γ

(
σ− d

2

)
1 b

2+ 2γ−1
2L

+O
(

1
L

∣∣∣σ− d
2

∣∣∣)
1 . (4.52)
y
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We now turn to the estimate for the last term in (4.51). We only deal with the F2 term since 
the same estimate holds for F1. Let us recall form (3.9),

F2 = −(�b)2 − M2 + L(q1) − N(q1).

– Estimate for the error term (�b)2: we apply (2.45) with j = �σ − 1� − h̄ and j = �σ� − h̄ to 
find that

‖∇�σ−1�(�b)2‖2
L2 � b

2�σ−1�−2h̄+2+2(1−δ)−CLη
1 � b

2γ+1−CLη

1 ,

‖∇�σ�(�b)2‖2
L2 � b

2�σ�−2h̄+2+2(1−δ)−CLη
1 � b

2γ+3−CLη

1 ,

where we used the fact that 2�σ − 1� ≥ d − 3 and 2�σ� ≥ d − 1 for 
∣∣σ − d

2

∣∣� 1 and d =
2γ + 2h̄ + 2δ from (1.17). Note that �σ� − �σ − 1� = 1 and σ − 1 − �σ − 1� ≥ σ − d

2 for ∣∣σ − d
2

∣∣� 1, we have by interpolation

‖∇σ−1(�b)2‖2
L2 � b

(2γ+1−CLη)(�σ�−σ+1)

1 b
(2γ+3−CLη)(σ−1−�σ−1�)
1

= b
2γ+1−CLη

1 b
2(σ−1−�σ−1�)
1 � b2

1b

2�
�−γ

(
σ− d

2

)
1 b

2γ−1
2

1 , (4.53)

for η and 
∣∣σ − d

2

∣∣ small enough.

– Estimate for the modulation term M2: From Lemma 4.3, the admissibility of �Tk and homo-
geneity of �Sk , we estimate

∥∥∥∇σ−1M2

∥∥∥
L2

�
√

Ek

⎡
⎣ L∑

k=1,odd

⎛
⎝∥∥∥∇σ−1 (χB1Tk

)∥∥∥
L2

+
L+2∑

j=k+1,odd

∥∥∥∥∇σ−1
(

χB1

∂Sj

∂bk

)∥∥∥∥
L2

⎞
⎠
⎤
⎦

+ b
L+1+(1−δ)(1+η)
1

∥∥∥∇σ−1 (D(Qb)2)

∥∥∥
L2

�
√

EkB
L−σ+h̄+δ
1 + b

L+1+(1−δ)(1+η)
1 b

2(1−η)
1 B

h̄+δ
1 � b1b

�
�−γ

(
σ− d

2

)
1 b

γ−1
2

1 ,

(4.54)

for η and 
∣∣σ − d

2

∣∣ small enough.

– Estimate for the small linear term L(q1): From the asymptotic behavior (2.4) of Q and the 
definition (3.11) of L(q1), we have by Leibniz rule

∀j ∈ N,

∣∣∣∂j
y (L(q1))

∣∣∣� b
2(1−C(L)η)
1

j∑
i=0

|∂i
yq1|

1 + y2γ+j−i
.

From the bounds (B.3) and (B.5), we have the estimate

∫
|∇�σ−1�L(q1)|2 � E

k−(2γ+�σ−1�)
k−σ

σ E
2γ+�σ−1�−σ

k−σ

k
,

∫
|∇k−2L(q1)|2 � Ek.
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By interpolation and the same computation of the exponent as for the potential term, we obtain 
the estimate

∥∥∥∇σ−1L(q1)

∥∥∥2
L2

� b
2+ 2�

�−γ

(
σ− d

2

)
1 b

γ−1
2

1 . (4.55)

– Estimate for the nonlinear term N(q1): We claim that

∥∥∥∇σ−1N(q1)

∥∥∥2
L2

� b
2+ 2�

�−γ

(
σ− d

2

)
1 b

γ
2L

1 . (4.56)

For y < 1, we use the expansion (4.24) to deduce that

∥∥∥∇σ−1N(q1)

∥∥∥2
L2(y<1)

� Ek.

For y ≥ 1, we shall control 
∥∥∇�σ−1�N(q1)

∥∥2
L2(y≥1)

and 
∥∥∇�σ�N(q1)

∥∥2
L2(y≥1)

, then obtain the 
result by interpolation. From (4.26), the Leibniz rule and estimate (4.31), we write

∫
y≥1

|∂�σ−1�
y N(q1)|2 �

�σ−1�∑
j=0

j∑
i=0

i∑
k=0

∫
y≥1

|∂k
y q1|2|∂i−k

y q1|2|∂�σ−1�−j
y ψ |2

y4+2(j−i)

�
�σ−1�∑
j=0

j∑
i=0

i∑
k=0

∑
m∈I

∫
y≥1

|∂k
y q1|2|∂i−k

y q1|2
y4+2(j−i)

�σ−1�−j∏
l=1

(
b

−Cη
1

y2γ+2l
+ |∂l

yq1|2
)ml

,

where I = {m ∈ N
�σ−1�−j :∑�σ−1�−j

l=1 lml = [σ − 1] − j}.
From the Hardy inequality (A.3) and (B.5), we have the estimate

∥∥∥∥∥ ∂k
y q1

y−k+σ− d
2

∥∥∥∥∥
2

L∞(y≥1)

�
∫ |∂k+1

y q1|2
y2(−k−1+σ)

+ |∂k
y q1(1)|2 � Eσ for k = 0, · · · , [σ − 1], (4.57)

from which we derive for every m ∈ I ,

y2(�σ−1�−j)

y
∑

l ml(2σ−d)

�σ−1�−j∏
l=1

(
b

−Cη
1

y2γ+2l
+ |∂l

yq1|2
)ml

=
�σ−1�−j∏

l=1

(
b

−Cη
1

y2γ+2σ−d
+ |∂l

yq1|2
y−2l+2σ−d

)ml

� b
−Cη
1 .

Hence, we have∫
y≥1

|∂�σ−1�
y N(q1)|2

�
�σ−1�∑
j=0

j∑
i=0

i∑
k=0

∑
m∈I

b
−Cη
1

∫ |∂k
yq1|2|∂i−k

y q1|2
y4−2i+2�σ−1�−C(2σ−d)
y≥1
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�
�σ−1�∑
j=0

j∑
i=0

i∑
k=0

∑
m∈I

b
−Cη
1

∥∥∥∥∥ |∂k
y q1|2

y−2k+2σ−d

∥∥∥∥∥
L∞(y≥1)

∫
y≥1

|∂i−k
y q1|2

y4−2i+2k+2�σ−1�−C(2σ−d)

� b
−Cη
1 Eσ E

k−(2+�σ−1�−C(2σ−d))
k−σ

σ E
2+�σ−1�−σ−C(2σ−d)

k−σ

k
� E

2+O
(

1
L

)
σ b

2
(
2+�σ−1�−σ

)(
1+ γ

2L

)
1 ,

where in the last estimate, we used the bootstrap bound on Ek given in Definition (3.2), the 

smallness |2σ − d| + η =O
(

1
L2

)
from (1.19) and (1.20) and the following algebra

− Cη + 2 + �σ − 1� − σ − C(2σ − d)

k− 1

(
2L + 2(1 − δ)(1 + η)

)
= 2
(
2 + �σ − 1� − σ

)(
1 + γ

L

)
+O
(

1

L2

)
≥ 2
(
2 + �σ − 1� − σ

)(
1 + γ

2L

)
for L � 1.

Similarly, we have the estimate

∫
y≥1

|∂�σ�
y N(q1)|2 � E

2+O
(

1
L

)
σ b

2
(
2+�σ�−σ

)(
1+ γ

2L

)
1 .

By interpolation and the fact that �σ� − �σ − 1� = 1 for |σ − d/2| � 1, we have

∫
|∂σ−1

y N(q1)|2 � E
2+O
(

1
L

)
σ b

2
(
1+ γ

2L

)((
2+�σ−1�−σ

)(�σ�−σ+1
)+(2+�σ�−σ

)(
σ−1−�σ−1�))

1

= E
2+O
(

1
L

)
σ b

2
(
1+ γ

2L

)
1 � b

�
�−γ

(2σ−d)

1 b
2
(
1+ γ

2L

)
1 ,

which concludes the proof of (4.56).
We note that the bounds (4.53) and (4.54) also hold for ‖∇σ (�b)1‖2

L2 and ‖∇σ M1‖2
L2 by 

using the same computation. We then inject the estimates (4.52), (4.53), (4.54), (4.55) and (4.56)
into the identity (4.51) to obtain the desired formula (4.50). This concludes the proof of Proposi-
tion 4.8. �
4.5. Conclusion of Proposition 3.7

We give the proof of Proposition 3.7 in this subsection in order to complete the proof of 
Theorem 1.1. Note that this section corresponds to Section 6.1 of [49]. Here we follow exactly 
the same lines as in [49] and no new ideas are needed. We divide the proof into 2 parts:

– Part 1: Reduction to a finite dimensional problem. Assume that for a given K > 0 large 
and an initial time s0 ≥ 1 large, we have (b1(s), · · · , bL(s), �q(s)) ∈ SK(s) for all s ∈ [s0, s1] for 
some s1 ≥ s0. By using (4.5), (4.9), (4.14) and (4.50), we derive new bounds on V1(s), bk(s) for 
� + 1 ≤ k ≤ L and Eσ and Ek, which are better than those defining SK(s) (see Definition 3.2). 
It then remains to control (V2(s), · · · , V�(s)). This means that the problem is reduced to the 
control of a finite dimensional function (V2(s), · · · , V�(s)) and then get the conclusion (i) of 
Proposition 3.7.
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– Part 2: Transverse crossing. We aim at proving that if (V2(s), · · · , V�(s)) touches

∂ŜK(s) := ∂

(
− K

s
η
2 (1 − δ)

,
K

s
η
2 (1 − δ)

)�−1

at s = s1, it actually leaves ∂ŜK(s) at s = s1 for s1 ≥ s0, provided that s0 is large enough. We 
then get the conclusion (ii) of Proposition 3.7.

• Reduction to a finite dimensional problem. We give the proof of item (i) of Proposition 3.7 in 
this part. Given K > 0, s0 ≥ 1 and the initial data at s = s0 as in Definition 3.1, we assume for all 
s ∈ [s0, s1], (b1(s), · · · , bL(s), �q(s)) ∈ SK(s) for some s1 ≥ s0. We claim that for all s ∈ [s0, s1],

|V1(s)| ≤ s− η
2 (1−δ), (4.58)

|bk(s)| � s−(k+η(1−δ)) for � + 1 ≤ k ≤ L, (4.59)

Eσ ≤ K

2
s
− 2�(σ− d

2 )

�−γ , (4.60)

Ek ≤ K

2
s−(2L+2(1−δ)(1+η)). (4.61)

Once these estimates are proved, it immediately follows from Definition 3.2 of SK that if

(b1(s1), · · · , bL(s), �q(s1)) ∈ ∂SK(s1),

then (V2, · · · , V�))(s1) must be in ∂ŜK(s1), which concludes the proof of item (i) of Proposi-
tion 3.7.

Before going to the proof of (4.58)–(4.61), let us compute explicitly the scaling parameter λ. 
To do so, let us note from (2.52) and the a priori bound on U1 given in Definition 3.2 that 

b1(s) = c1
s

+ U1
s

= �
(�−γ )s

+O
(

1
s1+cη

)
. From the modulation equation (4.5), we have

−λs

λ
= �

(� − γ )s
+O
(

1

s1+cη

)
, (4.62)

from which we write ∣∣∣∣ dds

{
log
(
s

�
�−γ λ(s)

)}∣∣∣∣� 1

s1+cη
.

We now integrate by using the initial data value λ(s0) = 1 to get

λ(s) =
( s0

s

) �
�−γ [

1 +O
(
s−cη
)]

for s0 � 1. (4.63)

This implies that

s
− �

�−γ

0 � s
− �

�−γ

� s
− �

�−γ

0 . (4.64)

λ(s)
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– Improved control of Ek: We aim at using (4.14) to derive the improved bound (4.61). From the 
Morawetz formula (4.47), we have

b1Ek,loc

λ2k−d
≤ C(N)b1

d

ds

[ M
λ2k−d

]
+ C(M,N)

Aν

b1Ek

λ2k−d
+ C(A,M,N)

λ2k−d

√
Ekb

L+2+(1−δ)(1+η)
1 ,

from which and the monotonicity formula (4.14), we write

d

ds

{
Ek

λ2k−d

[
1 +O(b

η(1−δ)
1 )

]}
≤ C(N,M)b1

d

ds

[ M
λ2k−d

]

+ b1

λ2k−d

{
C(A,M,N)

√
Ekb

L+(1−δ)(1+η)
1

+C(M)

[
Kb

�
�−γ

(2σ−d)+η(1−δ)+O
( |2σ−d|

L

)
1 + 1

N2γ−1 + C(N)

Aν

]
Ek

}

≤ C(N,M)

s

d

ds

[ M
λ2k−d

]
+ 1

λ2k−d

[(
C(M)(

√
K + 1)s−(2L+1+2(1−δ)(1+η))

)]
,

where we used the bootstrap bounds given in Definition 3.2, b1 ∼ 1
s

≤ 1
s0

and the constants 
s0, A, N, M, L is fixed large enough. Integrating in time by using λ(s0) = 1 and |M| ≤
C(A, M)Ek yields for all s ∈ [s0, s1),

Ek(s) ≤ C(M)λ(s)2k−d

⎡
⎣Ek(s0) +

(√
K + 1
) s∫

s0

τ−(2L+1+2(1−δ)(1+η))

λ(τ )2k−d
dτ

⎤
⎦

+ C(N,M)

[M(s)

s
− M(s0)

s0
λ(s)2k−d

]
+ C(M,N)λ(s)2k−d

s∫
s0

|M(τ )|
τ 2λ(τ)2k−d

≤ C(M)λ(s)2k−d

⎡
⎣Ek(s0) +

(√
K + 1
) s∫

s0

τ−(2L+1+2(1−δ)(1+η))

λ(τ )2k−d
dτ

⎤
⎦ ,

for s0 large enough. Using (4.64), we estimate

λ(s)2k−d

s∫
s0

τ−(2L+1+2(1−δ)(1+η))

λ(τ )2k−d
dτ

� s
− �(2k−d)

�−γ

s∫
s0

τ
�(2k−d)

�−γ
−(2L+1+2(1−δ)(1+η))

dτ � s−(2L+2(1−δ)(1+η)).

Here we used the fact that the integral is divergent because

�(2k− d) − [2L + 1 + 2(1 − δ)(1 + η)] = 2γL +OL→+∞(1) � −1.

� − γ � − γ
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Using again (4.64) and the initial bound (3.19), we estimate

λ(s)2k−dEk(s0) ≤
( s0

s

) �(2k−d)
�−γ

s
− 10L�

�−γ

0 � s−(2L+2(1−δ)(1+η)),

for L large enough. Therefore, we obtain

Ek(s) ≤ C
(√

K + 1
)

s−(2L+2(1−δ)(1+η)) ≤ K

2
s−(2L+2(1−δ)(1+η)),

for K = K(M) large enough. This concludes the proof of (4.61).

– Improved control of Eσ . We can improve the control of Eσ by using the monotonicity for-
mula (4.50). Indeed, we see from (4.50) that there exists a small constant 0 < ε � 1 such that

d

ds

[
Eσ

λ2σ−d

]
≤ b1

√
Eσ

λ2σ−d
b

�
�−γ

(
σ− d

2

)
+ε

1 ,

from which we obtain

Eσ (s) ≤ λ2σ−d

⎡
⎣Eσ (s0) + √

K

s∫
s0

b1

λ2σ−d
b

2�
�−γ

(
σ− d

2

)
+ε

1

⎤
⎦ .

We estimate from the initial bound (B.5) on Eσ (0) and (4.62),

Eσ (s0)λ
2σ−d(s) ≤ Cs

− 10L�
�−γ

0

( s0

s

) �
�−γ (2σ−d) ≤ s

− 2�
�−γ

(
σ− d

2

)
.

Note that b1
λ2σ−d b

2�
�−γ

(
σ− d

2

)
+ε

1 ≤ 1
s1+ε , the integral is convergent. Thus, we have the estimate

√
K

s∫
s0

b1

λ2σ−d
b

2�
�−γ

(
σ− d

2

)
+ε

1 ≤ C
√

Ks
− 2�

�−γ

(
σ− d

2

)
.

Hence, by choosing K large enough such that 1 + C
√

K ≤ K
2 , we deduce the improve 

bound (4.60).

– Control of the stable modes bk’s. We now close the control of the stable modes (b�+1, · · · , bL), 
in particular, we prove (4.59). We first treat the case when k = L. Let

b̃L = bL +
〈
H L �q,χB0�

�Q
〉

〈
χB0�Q,�Q + (−1)

L−1
2 L

L−1
2

(
∂SL+2
∂bL

)〉 ,
then from (4.12), (4.13) and (4.61),

|b̃L − bL| � b
−(1−δ)

√
Ek � b

L+η(1−δ)
.
1 1
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Hence, we have from the improved modulation equation (4.9),

|(b̃L)s + (L − γ )b1b̃L| � b1|b̃L − bL| + bδ
1

[
C(M)
√

Ek + b
L+(1−δ)
1

]
� b

L+1+η(1−δ)
1 .

This follows ∣∣∣∣∣ dds

{
b̃L

λL−γ

}∣∣∣∣∣� b
L+1+η(1−δ)
1

λL−γ
.

Integrating this identity in time from s0 and recalling that λ(s0) = 1 yields

b̃L(s) � Cλ(s)L−γ

⎛
⎝b̃L(s0) +

s∫
s0

b1(τ )L+1+η(1−δ)

λ(τ )L−γ
dτ

⎞
⎠ .

Using the fact that b1(s) ∼ 1
s
, the initial bounds (3.18) and (3.19) together with (4.64), we esti-

mate

λ(s)L−γ b̃L(s0) �
( s0

s

) �(L−γ )
�−γ

(
s
− 5�(L−γ )

�−γ

0 + s
η(1−δ)
0 s

− 5L�
�−γ

0

)
� s−L−η(1−δ),

and

λ(s)L−γ

s∫
s0

b1(τ )L+1+η(1−δ)

λ(τ )L−γ
dτ � s

− �(L−γ )
�−γ

s∫
s0

τ
�(L−γ )

�−γ
−L−1−η(1−δ)

dτ

� s−L−η(1−δ).

Therefore,

bL(s) � |b̃L(s)| + |b̃L(s) − bL(s)| � s−L−η(1−δ),

which concludes the proof of (4.59) for k = L. Now we will propagate this improvement that 
we found for the bound of bL to all bk for all � + 1 ≤ k ≤ L − 1. To do so we do a descending 
induction where the initialization is for k = L. Let assume the bound

|bk| � b
k+η(1−δ)
1 ,

for k + 1 and let’s prove it for k. Indeed, from (4.5) and the induction bound, we have

∣∣∣∣(bk)s − (k − γ )
λs

λ
bk

∣∣∣∣� bL+1
1 + |bk+1| � b

k+1+η(1−δ)
1 ,

which follows ∣∣∣∣ dds

{
bk

λk−γ

}∣∣∣∣� b
k+1+η(1−δ)
1

λk−γ
.

Integrating this identity in time as for the case k = L, we end-up with
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bk(s) � Cλ(s)k−γ

⎛
⎝bk(s0) +

s∫
s0

b1(τ )k+1+η(1−δ)

λ(τ )k−γ
dτ

⎞
⎠

� s−k−η(1−δ),

where we used the initial bound (3.18), (4.64) and k ≥ � + 1. This concludes the proof of (4.59).

– Control of the stable mode V1. We recall from (2.52) and (3.16) that

bk = be
k + Uk

sk
, 1 ≤ k ≤ �, V = P�U ,

where P� diagonalize the matrix A� with spectrum (2.55). From (2.53), and (4.5), we estimate 
for 1 ≤ k ≤ � − 1,

|s(Uk)s − (A�U)k| � sk+1|(bk)s + (k − γ )b1bk − bk+1| + |U |2 � s−L+k + |U |2.
From (2.54), (4.5) and the improved bound (4.59), we have

|s(U�)s − (A�U)�| � s�+1 (|(bk)s + (k − γ )b1b� − b�+1| + |b�+1|) + |U |2 � s−η(1−δ) + |U |2.
Using the diagonalization (2.55), we obtain

sVs = D�V +O(s−η(1−δ)). (4.65)

Using (2.55) again yields the control of the stable mode V1:

|(sV1)s | � s−η(1−δ).

Thus from the initial bound (3.18),

|sη(1−δ)V1(s)| ≤
( s0

s

)1−η(1−δ)

s
η(1−η)
0 V1(s0) + 1 � s

η(1−δ)
0 ,

which yields (4.58) for s0 ≥ s0(η) large enough.

• Transverse crossing. We give the proof of item (ii) of Proposition 3.7 in this part. We compute 
from (4.65) and (2.55) at the exit time s = s1:

1

2

d

ds

(
�∑

k=2

|s η
2 (1−δ)Vk(s)|2

)
∣∣
s=s1

=
(

sη(1−δ)−1
�∑

k=2

[η
2
(1 − δ)V2

k (s) + sVk(Vk)s

])
∣∣
s=s1

=
(

sη(1−δ)−1

[
�∑

k=2

[
kγ

k − γ
+ η

2
(1 − δ)

]
V2

k (s) +O
(

1

s
3
2 η(1−δ)

)])
∣∣

s=s1
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≥ 1

s1

⎡
⎣c(d, �)

�∑
k=2

|s
η
2 (1−δ)

1 Vk(s1)|2 +O

⎛
⎝ 1

s
η
2 (1−δ)

1

⎞
⎠
⎤
⎦

≥ 1

s1

⎡
⎣c(d, �) +O

⎛
⎝ 1

s
η
2 (1−δ)

1

⎞
⎠
⎤
⎦> 0,

where we used item (i) of Proposition 3.7 in the last step. This completes the proof of Proposi-
tion 3.7.

Appendix A. Coercivity of the adapted norms

In this section we aim at proving the coercivity of the adapted norms Ek defined by (see (1.26))

Ek := ‖�q‖2
k

=
∫
Rd

q1L
kq1 +

∫
Rd

q2L
k−1q2 =

∫
Rd

|(q1)k|2 +
∫
Rd

|(q2)k−1|2,

where we exploit the notation

f0 = f, f2k+1 = A f2k = A L kf, f2k+2 = A ∗f2k+1 = L k+1f for k ∈N.

To do so, we first recall some results in [27] concerning the coercivity estimates for the operator 
A , A ∗ under some suitable orthogonality condition. As a consequence, we then obtain the 
coercivity of Ek.

We recall from Lemma 4.1 that the direction ��M defined in (3.4) is of the form

��M =
(

�M

0

)
with �M =

L−1
2∑

k=0

(−1)kc2k,ML k(χM�Q), (A.1)

where L � 1 is an odd integer. We denote by Drad as the set of all radially symmetric functions. 
For simplicity, we write

∫
f :=

+∞∫
0

f (y)yd−1dy.

We have the following:

Lemma A.1 (Hardy inequalities). Let d ≥ 7 and f ∈Drad , then

(i) (Control near the origin)

∫
y≤1

|∂yf |2
y2i

≥ (d − 2 − 2i)2

4

∫
y≤1

f 2

y2+2i
− C(d)f 2(1), i = 0,1,2.

(ii) (Control away from the origin for the non-critical exponent) Let α > 0, α �= d−2 , then
2
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∫
y≥1

|∂yf |2
y2α

≥
(

d − (2α + 2)

2

)2 ∫
y≥1

f 2

y2+2α
− C(α,d)f 2(1), (A.2)

∫
y≥1

|∂yf |2
y2α

≥
(

d − (2α + 2)

2

)2
∥∥∥∥∥ f

yα+1− d
2

∥∥∥∥∥
2

L∞(y≥1)

− C(α,d)f 2(1), (A.3)

(iii) (Control away from the origin for the critical exponent) Let α = d−2
2 , then

∫
y≥1

|∂yf |2
y2α

≥ 1

4

∫
y≥1

f 2

y2+2α(1 + logy)2 − C(d)f 2(1).

(iv) (Weighted Hardy inequality) For any μ > 0, k ≥ 2 be an integer and 1 ≤ j ≤ k − 1,

∫ |∂j
y f |2

1 + yμ+2(k−j)
�j,μ

∫ |∂k
yf |2

1 + yμ
+
∫

f 2

1 + yμ+2k
. (A.4)

Proof. See Lemma B.1 in [49]. �
We have the following coercivity of A ∗ and A :

Lemma A.2 (Weight coercivity of A ∗). Let α ≥ 0, and f ∈ Drad satisfying

i = 0,1,2,

∫ |∂yf |2
y2i (1 + y2α)

+
∫

f 2

y2i+2(1 + y2α)
< +∞,

then

i = 0,1,2,

∫ |A ∗f |2
y2i (1 + y2α)

≥ cα

(∫ |∂yf |2
y2i (1 + y2α)

+
∫

f 2

y2i+2(1 + y2α)

)
, (A.5)

for some cα > 0.

Proof. See Lemma A.2 in [27]. �
We also have the following coercivity of A .

Lemma A.3 (Weight coercivity of A ). Let p ≥ 0 and i = 0, 1, 2 such that |2p + 2i −
(d − 2 − 2γ )| �= 0, where γ ∈ (1, 2] is defined by (1.10). For all f ∈ Drad with

∫ |∂yf |2
y2i (1 + y2p)

+
∫

f 2

y2i+2(1 + y2p)
< +∞,

and

〈f,�M 〉 = 0 if 2i + 2p > d − 2γ − 2, (A.6)
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where �M is defined in (3.4), we have

∫ |A f |2
y2i (1 + y2p)

�
∫ |∂yf |2

y2i (1 + y2p)
+
∫

f 2

y2i+2(1 + y2p)
. (A.7)

Proof. See Lemma A.3 in [27]. �
From the coercivity estimates of A and A ∗ given in Lemmas A.3 and A.2, we can turn to the 

core of this part: the coercivity of the adapted norm Ek. In particular, we have the following.

Lemma A.4 (Coercivity of Ek). Let L � 1 be an odd integer and k be defined as in (1.18), 
there exists a constant c = c(L, M) > 0 such that for all radially symmetric vector function �q
satisfying

k−1∑
k=0

∫ |(q1)k|2
y2(1 + y2k−2−2k)

+
k−2∑
k=0

∫ |(q2)k|2
y2(1 + y2k−4−2k)

< +∞, (A.8)

and

〈�q,H ∗i ��M

〉= 0 for 0 ≤ i ≤ L, (A.9)

there holds:

k−1∑
k=0

∫ |(q1)k|2
y2(1 + y2k−2−2k)

+
k−2∑
k=0

∫ |(q2)k|2
y2(1 + y2k−4−2k)

≤ cEk. (A.10)

Proof. By (2.18), we see that the condition (A.9) is equivalent to

〈
L iq1,�M

〉= 0 and
〈
L iq2,�M

〉= 0 for 0 ≤ i ≤ L − 1

2
. (A.11)

Recall that

Ek =
∫

|(q1)k|2 +
∫

|(q2)k−1|2. (A.12)

We will write indifferently q to denote q1 and q2, and try to control the term of the form 
∫ |qk|2

with k = k or k = k − 1. Let us rewrite

qk = A qk−1 or qk = A ∗qk−1,

and apply Lemma A.3 or Lemma A.2 with i = p = 0 to find that

∫
|qk|2 �

∫ |qk−1|2
2 .
y
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If k − 1 = 0, we are done, if not, we repeat this step again by writing

qk−1 = A ∗qk−2 or qk−1 = A qk−2,

and so forth. Note that 1
y2 � 1

1+y2 and that the orthogonal condition in Lemma A.3 is fulfilled 
thanks to (A.11). Then, applying Lemma A.3 or Lemma A.2 with the appropriate values of i and 
p would give

∫
|qk|2 �

∫ |qk−1|2
y2 � · · · �

∫ |q1|2
y2(1 + y2k−2)

�
∫ |q|2

y2(1 + y2k−1)
.

This concludes the proof of Lemma A.4. �
Appendix B. Interpolation bounds

We derive in this section interpolation bounds on �q which are the consequence of the coerciv-
ity property given in Lemma A.4. We have the following:

Lemma B.1 (Interpolation bounds). Suppose that Ek and Eσ satisfy the bootstrap bounds in 
Definition 3.2 and that �q satisfies the orthogonal condition (3.3), there holds:

(i) Weighted bounds for �q:

∫
|(q1)k|2 +

∫
|(q2)k−1|2 +

k−1∑
i=0

∫ |(q1)i |2
y2(1 + y2k−2i−2)

+
k−1∑
i=0

∫ |(q2)i |2
y2(1 + y2k−2i−4)

≤ c(M)Ek.

(B.1)

(ii) Expansion near the origin: for y < 1,

�q =
k∑

i=1

ci
�Tk−i + �r, |ci | �

√
Ek, (B.2)

where �Tk is defined as in (2.19) for all k ∈ N, and �r satisfies the bounds

k−1∑
i=0

|yi∂i
yr1| � yk− d

2
√

Ek,

k−2∑
i=0

|yi∂i
yr2| � yk−1− d

2
√

Ek.

(iii) Weighted bounds for ∂i
y �q:

k∑
i=0

∫ |∂i
yq1|2

1 + y2k−2i
+

k−1∑
i=0

∫ |∂i
yq2|2

1 + y2k−2i−2
≤ c(M)Ek, (B.3)

hence,

‖�q ‖2
k k−1 ≤ c(M)Ek and ‖�q ‖2

β β−1 ≤ c(M)E
k−β
k−σ

σ E
β−σ
k−σ for σ ≤ β ≤ k. (B.4)
Ḣ ×Ḣ Ḣ ×Ḣ k
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Moreover, for j ∈N and p > 0 satisfying σ ≤ j + p ≤ k, we have

∫
y≥1

|∂j
y q1|2
y2p

≤ c(M)E
k−(j+p)

k−σ
σ E

(j+p)−σ
k−σ

k
. (B.5)

(iv) Weighted L∞ control: Let a > 0 satisfying σ − d
2 ≤ p ≤ k − d

2 , then

∥∥∥∥ q1

yp

∥∥∥∥
2

L∞(y≥1)

� E
k− d

2 −p

k−σ
σ E

p−σ+ d
2

k−σ

k
. (B.6)

Let j ∈N
∗ and p ≥ 0 such that 1 ≤ j ≤ k − d

2 and 0 ≤ p ≤ k − j − d
2 , then

∥∥∥∥∥∂
j
y q1

yp

∥∥∥∥∥
2

L∞(y≥1)

� E
k−j−p− d

2
k−σ

σ E

j+ d
2 −σ

k−σ

(
1− p

k−j− d
2

)
+ p

k−j− d
2

k
. (B.7)

Moreover, if 1 ≤ j + p � L, then

∥∥∥∥∥∂
j
y q1

yp

∥∥∥∥∥
2

L∞(y≥1)

� b
2(j+p)+ 2γ (j+p)

L
+O
(

1
L2

)
1 E

1+O
(

1
L

)
σ . (B.8)

Proof. (i) The estimate (B.1) directly follows from Lemma A.4.
(ii) Without loss of generality, we assume that h̄ is an even integer so that k = L + h̄ + 1 is 

also an even integer. By (2.20), the expansion (B.2) is equivalent to

q1 =
k

2∑
i=1

c2iTk−2i + r1 =
k

2∑
i=1

c2iφ k

2 −i
+ r1,

q2 =
k

2 −1∑
i=1

c2i+1Tk−2i−1 + r2 =
k

2 −1∑
i=1

c2i+1φ k

2 −i−1 + r2,

(B.9)

where we recall that T2k = T2k+1 = φk with φk being defined as in (1.32). We only deal with the 
expansion of q1 because the same proof holds for q2. We claim that for 1 ≤ m ≤ k

2 , (q1)k−2m

admits the Taylor expansion at the origin

(q1)k−2m =
m∑

i=1

ci,mφm−i + (r1)m, (B.10)

with the bounds

|ci,m| �
√

Ek,
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2m−1∑
j=0

|∂j
y (r1)m| � y2m− d

2 −j
√

Ek, for y < 1.

The expansion (B.2) for q1 then follows from (B.10) with m = k

2 .
We proceed by induction in m for the proof of (B.10). For m = 1, we write from the definition 

(2.7) of A ∗,

(e1)1(y) = (q1)k−1(y) = 1

yd−1�Q

y∫
0

(q1)k�Qxd−1dx + d1

yd−1�Q
.

Note from (B.1) that 
∫ |(q1)k−1|2

y2 � Ek and from (2.5) that �Q ∼ y as y → 0, we deduce that 
d1 = 0. Using the Cauchy–Schwartz inequality, we derive the pointwise estimate

|(e1)1(y)| ≤ 1

yd

⎛
⎝ y∫

0

|(q1)k|2xd−1dx

⎞
⎠

1
2
⎛
⎝ y∫

0

x2xd−1dx

⎞
⎠

1
2

� y− d
2 +1
√

Ek for y < 1.

We remark from (B.1) that there exists a ∈ (1/2, 1) such that

|(e1)1(a)| = |(q1)k−1(a)|2 �
∫

y<1

|(q1)k−1|2Ek.

We then define

(r1)1(y) = −�Q

y∫
a

(e1)1

�Q
dx,

and obtain from the pointwise estimate of (e1)1,

|(r1)1(y)| � y− d
2 +2
√

Ek for y < 1.

By construction and the definition (2.6) of A , we have

L (r1)1 = A ∗(q1)k−1 = (q1)k = L (q1)k−2.

Recall that span(L ) = {�Q, �} where � admits the singular behavior (2.10). From (B.1), we 

have 
∫ |(q1)k−2|2

y2 � Ek < +∞. This implies that there exists c1,1 ∈R such that

(q1)k−2 = c1,1�Q + (r1)1 = c1,1φ0 + (r1)1.

Moreover, from (B.1) there exists a ∈ (1/2, 1) such that

|(q1)k−2(a)|2 �
∫

|(q1)k−2|2 � Ek,
y<1
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which follows

|c1,1| �
√

E2k, |(q1)k−2| � y− d
2 +2
√

E2k for y < 1.

Since A (r1)1 = (e1)1, we then write from the definition (2.6) of A ,

|∂y(r1)1| � |(e1)1| +
∣∣∣∣ (r1)1

y

∣∣∣∣� y− d
2 +1
√

Ek for y < 1.

This concludes the proof of (B.10) for m = 1.
We now assume that (B.10) holds for j = 1, · · · , m for some m ≥ 1, and prove that (B.10)

holds for j = 1, · · · , m + 1. The term (r1)m+1 is built as follows:

(r1)m+1 = −�Q

y∫
a

(e1)m+1

�Q
dx,

where a ∈ (1/2, 1) and

(e1)m+1 = 1

yd−1�Q

y∫
0

(r1)m�Qxd−1dx.

We now use the induction hypothesis to estimate

|(e1)m+1| =
∣∣∣∣∣∣

1

yd−1�Q

y∫
0

(r1)m�Qxd−1dx

∣∣∣∣∣∣
� 1

yd

√
Ek

y∫
0

x2m+ d
2 dx � y2m− d

2 +1
√

Ek.

Then, we have

|(r1)m+1| =
∣∣∣∣∣∣�Q

y∫
a

(e1)m+1

�Q
dx

∣∣∣∣∣∣� y2m− d
2 +2
√

Ek.

By construction, we have

L (r1)m+1 = rm.

From the induction hypothesis and the definition (2.19) of Tk , we write

L (q1)k−2(m+1) = (q1)k−2m =
m∑

ci,mφm−i + (r1)m =
m∑

ci,mL φm+1−i + L rm+1.
i=1 i=1
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The singularity (2.10) of � at the origin and the bound 
∫
y<1

|(q1)k−2(m+1)|2
y2 � Ek implies that

(q1)k−2(m+1) =
m∑

i=1

ci,mφm+1−i + cm+1,m�Q + (r1)m+1.

From (B.1), we see that there exists a ∈ (1/2, 1) such that

|(q1)k−2(m+1)(a)|2 �
∫

y<1

|(q1)k−2(m+1)|2 � Ek,

from which we derive the bound |cm+1,m| � √
Ek. For the estimate on ∂j

y (r1)m+1, we note that 
by construction

(r1)m+2 := A (r1)m+1 = (e1)m+1, (r1)m+3 := L (r1)m+1 = (r1)m,

(r1)m+4 := A L (r1)m+1 = A (r1)m = (e1)m, (r1)m+5 := L 2(r1)m+1 = (r1)m−1, · · ·
(r1)3m+1 := L m(r1)m+1 = (r1)1, (r1)3m+2 := A L m(r1)m+1 = (e1)1.

A brute force computation using the definitions of A and A ∗ and the asymptotic behavior (2.8)
ensure that for any function f , we have

∂
j
y f =

j∑
i=0

Pi,j fi with |Pi,j | � 1

yj−i
. (B.11)

Hence, we have for 0 ≤ j ≤ 2m + 1 and y < 1,

|∂j
y rm+1| �

j∑
i=0

|rm+1+i |
yj−i

�
√

Ek

j∑
i=0

y2m+2−i− d
2

yj−i
� y2m+2− d

2 −j
√

Ek.

This concludes the proof of (B.10) as well as (B.2).
(iii) We use (B.11), (B.1) and the expansion (B.2) to estimate

k∑
i=0

∫ |∂i
yq1|2

1 + y2k−2i
+

k−1∑
i=0

∫ |∂i
yq2|2

1 + y2k−2i−2

� Ek +
k−1∑
i=0

∫
y<1

|∂i
yq1|2 +

k−2∑
i=0

∫
y<1

|∂i
yq2|2 +

k−1∑
i=0

∫
y>1

|∂i
y(q1)|2
y2k−2i

+
k−2∑
i=0

∫
y>1

|∂i
y(q2)|2

y2k−2i−2

� Ek +
k−1∑
i=0

i∑
j=0

∫
y>1

|(q1)j |2
y2k−2j

+
k−2∑
i=0

i∑
j=0

∫
y>1

|(q2)j |2
y2k−2j−2

� Ek,

which concludes the proof of (B.3). The estimate (B.4) simply follows from an interpolation. 
The estimate (B.5) follows from (A.2) and the interpolation (B.4).



T. Ghoul et al. / J. Differential Equations 265 (2018) 2968–3047 3043
(iv) We apply the Hardy inequality (A.3) to q1 with α = σ − 1, the bound (B.5) with j = 1
and p = σ − 1, and the expansion (B.2) to find that

∥∥∥∥∥ q1

yσ− d
2

∥∥∥∥∥
2

L∞(y≥1)

�
∫

y≥1

|∂yq1|2
y2(σ−1)

+ |q1(1)|2 � Eσ .

Similarly, we have ∥∥∥∥∥ q1

yk− d
2

∥∥∥∥∥
2

L∞(y≥1)

�
∫

y≥1

|∂yq1|2
y2(k−1)

+ |q1(1)|2 � Ek.

An interpolation of the two estimates yields the bound (B.6).
For 1 ≤ j ≤ k − d

2 , we have from Sobolev and the bound (B.4),

‖∇j q1‖2
L∞ + ‖∇ d

2 +j q1‖2
L2 � E

k−j− d
2

k−σ
σ E

j+ d
2 −σ

k−σ

k
. (B.12)

We apply (A.3) to ∂j
y q1 with α = k − j − 1, then use (B.5) and (B.2) to estimate

∥∥∥∥∥ ∂
j
y q1

yk−j− d
2

∥∥∥∥∥
2

L∞(y≥1)

�
∫

y≥1

|∂j+1
y q1|2

y2k−2j−2
+ |∂j

y q1(1)|2 � Ek.

We interpolate for 0 ≤ p ≤ k − j − d
2 ,

∥∥∥∥∥∂
j
y q1

yp

∥∥∥∥∥
L∞(y≥1)

� E
k−j−p− d

2
k−σ

σ E

j+ d
2 −σ

k−σ

(
1− p

k−j− d
2

)
+ p

k−j− d
2

k
.

If 1 ≤ j + p � L, then we have

k− j − p − d
2

k− σ
= 1 +O

(
1

L

)
.

Recall from (1.19) and (1.20) that |σ − d/2| + η =O
(

1
L2

)
, we compute the exponent

[
j + d

2 − σ

k− σ

(
1 − p

k− j − d
2

)
+ p

k− j − d
2

]
(2L + 2(1 − δ)(1 + η))

= 2(j + p) + 2γ (j + p)

L
+O
(

1

L2

)
.



3044 T. Ghoul et al. / J. Differential Equations 265 (2018) 2968–3047
This yields ∥∥∥∥∥ ∂
j
y q1

yk−j− d
2

∥∥∥∥∥
2

L∞(y≥1)

� E
1+O
(

1
L

)
σ b

2(j+p)+ 2γ (j+p)
L

+O
(

1
L2

)
1 .

This concludes the proof of (B.7) and (B.8) as well as the proof of Lemma B.1. �
For the estimates of the linear and commutator terms in derivation of the monotonicity for-

mula (4.14), we need the following Leibniz rule for L k whose proof can be found in [27], 
Lemma C.1:

Lemma B.2 (Leibniz rule for L k). Let φ be a smooth function and k ∈ N, we have

L k+1(φf ) =
k+1∑
m=0

f2mφ2k+2,2m +
k∑

m=0

f2m+1φ2k+2,2m+1, (B.13)

and

A L k(φf ) =
k∑

m=0

f2m+1φ2k+1,2m+1 +
k∑

m=0

f2mφ2k+1,2m, (B.14)

where

– for k = 0,

φ1,0 = −∂yφ, φ1,1 = φ,

φ2,0 = −∂2
yφ − d − 1 + 2V

y
∂yφ, φ2,1 = 2∂yφ, φ2,2 = φ,

– for k ≥ 1

φ2k+1,0 = −∂yφ2k,0,

φ2k+1,2i = −∂yφ2k,2i − φ2k,2i−1, 1 ≤ i ≤ k,

φ2k+1,2i+1 = φ2k,2i + d − 1 + 2V

y
φ2k,2i+1 − ∂yφ2k,2i+1, 0 ≤ i ≤ k − 1,

φ2k+1,2k+1 = φ2k,2k = φ,

φ2k+2,0 = ∂yφ2k+1,0 + d − 1 + 2V

y
φ2k+1,0,

φ2k+2,2i = φ2k+1,2i−1 + ∂yφ2k+1,2i + d − 1 + 2V

y
φ2k+1,2i , 1 ≤ i ≤ k,

φ2k+2,2i+1 = −φ2k+1,2i + ∂yφ2k+1,2i+1, 0 ≤ i ≤ k,

φ2k+2,2k+2 = φ2k+1,2k+1 = φ.
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[3] P. Biernat, P. Bizoń, M. Maliborski, Threshold for blowup for equivariant wave maps in higher dimensions, Nonlin-

earity 30 (4) (2017) 1513, http://stacks .iop .org /0951 -7715 /30 /i =4 /a =1513.
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