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Abstract

Global weak solutions of a strictly hyperbolic system of balance laws in one-space dimension
are constructed by the vanishing viscosity method of Bianchini and Bressan. For global existence,
a suitable dissipativeness assumption has to be made on the production term g. Under this
hypothesis, the viscous approximations u®, that are globally defined solutions to uf + A(u®) uf +
gw®) = euf,, satisfy uniform BV bounds exponentially decaying in time. Furthermore, they
are stable in L1 with respect to the initial data. Finally, as ¢ — 0, u® converges in Llloc to
the admissible weak solution u of the system of balance laws u; + (f(u)), + g(u) =0 when
A = Df.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The object of this work is to establish the existence of a global solution to the
Cauchy problem for hyperbolic systems of balance laws

up+ fu)x +gu) =0, (1.1)
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u(0, x) = uo(x), (1.2)

by the method of vanishing viscosity. Here x € R, u(f,x) € R", f : R" — R" and
g : R" — R". We assume that the system is strictly hyperbolic, i.e. A(u) = Df (u) has
n real distinct eigenvalues

M) < lo(m) < -+ < Ay(u), (1.3)

and thereby n linearly independent right eigenvectors r;(u), i =1,...,n.

Over the years, four different techniques have been developed for constructing weak
solutions, namely the random choice method of Glimm, the front tracking method, the
vanishing viscosity method and the functional analytic method of compensated compact-
ness. Expositions of the current state of the theory together with relevant bibliography
may be found in the books [7,9,16,17].

For systems of balance laws, the existence of local in time BV solutions was first
established by Dafermos and Hsiao [10], by the random choice method of Glimm [11].
Because of the presence of the production term g(u), small oscillations in the solution
may amplify in time, hence in general one does not have long-term stability in BV.
Global existence was established in [10] under a suitable dissipativeness assumption on
g. (See also [14,1]). Here, we study such problems by the vanishing viscosity method.
Namely, we construct solutions to (1.1) as the ¢ | O limit of a family {u®} of functions
that satisfy the parabolic system

uf + AuHus + gw®) = eus,. (1.4)

The vanishing viscosity method has been studied extensively. The scalar conservation
law was treated by Oleinik [15] in one-space dimension and by Kruzkov [12] in several
space dimensions. The case of systems of conservation laws, which had been open for
a long time, has been recently treated in a fundamental paper by Bianchini and Bressan
[6] (see also [2-5]). Here, we extend the analysis of Bianchini and Bressan to systems
of balance laws.

One should not expect global existence unless the source g(u) is dissipative. Con-
sider a constant equilibrium solution u*. In particular, g(u*) = 0. If we linearize the
hyperbolic system (1.1) about u* and then decompose the solution u along the right
eigenvectors of A(u™), the resulting linear system is

n
vig 4 4 @i+ Y BjuF)v; =0, (1.5)
j=1

where Bj; are the entries of the n x n matrix

B(w) = [ri(w), ..., ra@)] ™ Dg)lri(w), ..., ra()]. (1.6)



472 C.C. Christoforou / J. Differential Equations 221 (2006) 470-541

The natural condition that renders the above linear system stable in L! is that the
matrix B(u™*) is strictly column diagonally dominant, i.e.

Bi(u*) =Y |BiH)|zp>0, i=1,....n (1.7)
J#i

Under the above hypothesis, we prove global existence of solutions for system (1.1).
The principal result is the following:

Theorem 1.1. Consider the Cauchy problem

ui + Aw®) ul + gu®) = eut,, (1.8)

u?(0, x) = ug(x). (1.9)

Assume that the matrices A(u) have real distinct eigenvalues A (u) < h(u) < -+ <
An(u) and thereby n linearly independent eigenvectors ri(u), ro(u), ..., rp(u). Under

the assumption that the matrix B(u™) defined by (1.6) is strictly diagonally dominant,
there exists a constant 8y > 0 such that if ug — u* € L' and

TV{ug} < 0o, (1.10)

then for each ¢ > 0 the Cauchy problem (1.8)-(1.9) has a unique solution u®, defined
for all t > 0. Moreover,

TV{ut (t, )} <C e M TV{uo}, (1.11)

where i is a positive constant that depends on B(u*). Furthermore, if v¢ is another
solution of (1.8) with initial data v, then

lluf () = v* (@)l 1 <L e M lug — voll 1. (1.12)

Finally, as ¢ — 0, u® converges in LlloC to a function u, which is the admissible weak

solution u of (1.1)—(1.2), when the system is in conservation form, A = Df.

The exponential decay is induced by the dissipative source term. It should be noted
that the dissipativeness assumption (1.7) depends on the choice of right eigenvectors
of A(u). It is possible to state this condition in an invariant fashion (see [1]). In the
proof of the above proposition, the heart of the matter is to obtain BV a priori bounds
on solutions of (1.4), independent of ¢; in particular, to show that TV{u®(t, -)} remains
bounded, and indeed decays exponentially fast to zero, as t — oo. Our treatment
follows closely the fundamental paper of Bianchini and Bressan [6] for conservation
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laws. To begin with, by rescaling the coordinates, t ~ t/¢, x ~ x /e, system (1.8)—(1.9)
reduces to

ur + Ay —uyy +egu) =0, (1.13)
u(0, x) = ug(x) = ug(ex). ’
The total variation of the initial data ug does not change with ¢, while the L' norm
does. Our goal is to establish a bound

TVi{u(t, )} < Ce TV {up) (1.14)

for all times >0, with C depending solely on the total variation of up and not on
Il 1.

In order to establish the stability estimate (1.12) in Theorem 1.1, we shall also work
with the linearized evolution equation which governs an infinitesimal perturbation z
of u:

7t + A(W)zy +eDg(u)z — zxx + (z @ A(u))uy =0, (1.15)
and establish a bound of the form
lz() 1 <L e *H1z(0) [l 1. (1.16)

The proof of Theorem 1.1 is carried out in two steps: In Section 2, we prove (1.14)
and (1.16) over a time interval of length O(J, ) by using standard parabolic estimates.
We also obtain exponential decay in L' of higher-order derivatives of u, and z. In
Sections 3-7, we extend the validity of these estimates up to + = oo, by using the
hyperbolic structure of the system. The reason of this two-step approach is that the
parabolic estimates apply even when the derivatives of the initial data are large, but
are only valid on a finite time interval, whose length depends on TV{uo}; whereas,
the hyperbolic estimates are valid for all times, but require initial values with small
derivatives. Thus the parabolic estimates are employed in order to show that the size
of derivatives attenuates in finite time and eventually enters and remains in the regime
where the hyperbolic estimates apply. Finally, in Section 8 by rescaling the coordinates
backwards, we complete the proof of Theorem 1.1.

2. Parabolic estimates

In this section, we establish bounds (1.14) and (1.16) over an initial time interval
by means of parabolic estimates. We rewrite system (1.15) as

2+ A%z +eDg(u)z — 2y = (A — Au))zy — (z @ A(w))uy,
+e(Dg(u*) — Dg(u))z, 2.1

where A* = A(u™) and D is the gradient operator with respect to the state vector u.
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Lemma 2.1. Under hypothesis (1.7), for all t > 0, the Green’s kernel G of the
parabolic system

wy + A*wy — Wy +eDgw)w =0 (2.2)
satisfies the bounds
_ K _ K _
G @)1 <ke™*H, [Gx (D]l <\—/;e o [Gxx ()1 <7e i (2.3)

for some appropriate constant K.

Proof. It suffices to establish the estimates for the corresponding Green’s kernel of the
system

w; + Awy — Wiy +eBUHw =0 2.4)

obtained by diagonalizing the principal part of (2.2). The Green’s function of (2.4) is
given by R(u*)_1 G, where R(u*) is the matrix of the right eigenvectors of A(u*) and
A = diag(Z]). Without loss of generality, we denote the Green’s kernel of (2.4) by G,
ie.

G;+AGX—Gxx+€BG=0, (25)

G(0,x) = o(x), ’
where B = B(u*) is strictly diagonally dominant. Perform the Fourier transform to
(2.5) with respect to x. By using G to denote the Fourier transform of G and ¢ to
denote the Fourier variable, we arrive at

G =—8G - (itA+¢B)G,

J 26
60,8 =1. (2.6)
Thus

Gt, &) = e C1eWEAeBN G (0, &), 2.7)

which implies

1 x? . R v

G(t, x) = e W x| (CATEBN G, . 2.8
(0= 5 e s 0.9] 28)

Let G, be the Green’s function to the system

w; + Awy +Bw =0, (2.9
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then
iEA+eB)t A v
Ga(t, x) = [e*“- +eB) G (0, 5)] . (2.10)

In view of (1.7), a straightforward calculation establishes the exponential decay of
Gy(t) in L!

G20l 1 <cre M. 2.11)

By employing the properties of convolution and (2.8), we deduce

o

o 1
g R
L ox* | 2/nt

G(1) e 4 || G 2.12)

Ox*

L!

Estimates (2.3) follow easily for « = 0, 1, 2, if one recalls the corresponding bounds
for the heat kernel. O

For future use, we define the following constants:

. 1 2 . .
f=(——+) ., e=r*ady, a=sup(|DA|+ID*Al+|D%*l), (2.13)
400k o b u

where x is the constant in (2.3). By means of parabolic arguments, we establish the
following results:

Proposition 2.2. Let u, z be solutions of systems (1.13), (1.15) respectively, satisfying
the bounds

llx ()11 <o, Nzl L1 < doe ™M, (2.14)

for some constant 0 < ¢ < 1 and for all t € [0, 7] and ¢ € [0, gg]. Then for t €0, 7]
the following estimates hold:

2Ky _
luxx (O L1, ||Zx(l)||L1<t17€ our (2.15)
5K25() B
lxxx N1, Nzex Ol < e, (2.16)
161730
lttxxx (OllLoo, lzxx (@)L < 132 e s (2.17)

where K and u > 0 are the constants in (2.3) and (1.7).
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Proof. The infinitesimal perturbation z of u is a solution to (2.1), so we can express z
in terms of the Green’s function G as follows

t
2(t) = G(1) % z(0) + / Gt —5) % [(A" — A))zx(s) — (z @ A(u))ux(s)lds
0

'
+8/ G(t —s) * (Dg(u™) — Dg(u))z(s) ds, (2.18)
0

where * denotes convolution and ff ey is the derivative of y in the direction of f, i.e.
Vpy. Differentiating with respect to x yields

t
2(0) = Gx(1) % 2(0) + f Galt = 5) % [(A* — A@W)zx(s) — (= » A@W)itx ()] ds
0
t
+e / Gyt — 5) % (Dg(u) — Dg(u))=(s) ds.
0

(2.19)

Assume that t < 7 is the first time at which (2.15) holds as an equality, then we
estimate ||z (7)|l;1 via (2.19). By (2.14) and Lemma 2.1, we get

lzx(@ Nzt < NG @1 [120)]l +/0 1Gx (T =)L [II(A* — A@))zx (9l 1

+ 11z @ A@))ux(s)ll 1 + ell(Dg ™) — Dg(M))Z(S)IILl]dS

K Tk —eu(t—s)
< —=e Mo +

———— || DA >
7 | =[P Al e e )
2@ e 1D AL el 1 + el D2 [ ()1 26 2 | s

0
< |:K—\/§ + 16k%053 + exc a632ﬁ:| e oH,

(2.20)
For values of ¢ in [0, o], the above estimate simplifies to
K50 1 K50 1 K50 —spt 2K5() —eut
4 —_—t——t —— — —_— , 2.21
IIZ;C(T)IILI<[\/%+25\/%Jrg'loéx\/E e < e (221

which contradicts the choice of 7. Hence estimate (2.15) holds over the interval [0, £].
Moreover, a solution of (2.1) is z = uy, hence the same bound holds for |[[u,(?)| 1.
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To prove the remaining estimates, we argue in the same manner. We first express
Zyx (1) 1n terms of the Green’s kernel G,

t
2at) = G, (%) 2, (%) +e [ 6t =9 (D) - Doz} as
2

t
+ /; Gy(t—s)* {(A* —Au))zx(s) — (z @ A(u))ux(s)} ds (2.22)

2
and then estimate ||zyx(¢)||;1 and ||zxx(#)|lz via the above equation. [J

Proposition 2.3. Let u = u(t, x), z = z(t, x) be solutions of (1.13), (1.15), respectively,
such that

0 0
TV 07 ° < - 0 < - 2.23
{u(0, )} T 1z(0) 1 I (2.23)
Then u, 7 are well-defined on the whole interval [0, f] satisfying the bounds
o —eut o —eut A~
l[eex ()l 1 S5 Kozl S5e M, telo,1]. (2.24)

Proof. We follow the same idea as before. We write the solution z in terms of the
Green’s kernel G:

t
2(t,x) = G(t) x z(0) + f Gt — ) * [(A* — A))zx(s) — (z @ A(u))ux(s)] ds
0

t
+e/ G(t —s) * (Dg(u*) — Dg(u))z(s) ds. (2.25)
0
Assume that 7 < 7 is the first time at which (2.24) holds as an equality, then

T
Izl < xe 2Ol +/ Ke*‘?““*s)[||ux(s)||L1||DA||Loo||zx(s)||L1
0
Flz() eI DA Lo [lux ($)]l 1

s (9) 1102 126 It | ds. (2.26)

If one sets z = u,, then the above estimate proves bound (2.24.1) by a contradiction
argument. Having this, we derive the bound (2.24.2) on z as follows: by (2.15), (2.23)
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and (2.24.1), the above inequality reduces to

50 _ T _ 50 2K5() _
< Dpem enty [ 00 DAl 0 eus ) g
le@l < Pe +/0 ’ (2” iy e s

T 52
+8/ eig“r—0||D2g||Looe*€“Sds
0 4
50 —&UT 2 —E&UT 6% 2 —&UT
< 7¢ KT 4 2Kk3G|| DA || Loe ™ H ﬁ—}—sZHD gllzoete ™. (2.27)

0
For any ¢, 0 < e<egp, we get [|z(7)||1 < 706

choice of t. This completes the proof. [

~éHT which yields a contradiction by the

In particular, the assumption on [|z(0)| ;1 in the previous proposition can be relaxed
because z satisfies a linear homogeneous equation.

The estimates in the following corollary show that as long as the total variation of
u(t) and ||z(¢)||;1 satisfy the desired bounds, all higher order derivatives of u, and z
are small, with exponentially decaying L' norms. This will enable us to use tools of
hyperbolic type to extend estimates (1.14) and (1.16) to [f, 00).

Corollary 2.4. If the bounds (2.14) hold on a larger interval [0, T], then for all t €
[7, T1,

Il 1 e @llzoo, ze@llr = O(1)dge ™, (2.28)
It Ol 1 Nexx @z, Iz @]l = O FeH, (2.29)
w2, Nlzex Ol = O(1)3ge M. (2.30)

Proof. Apply the proof of Proposition 2.2 on the time interval [t — 7, ¢] and use
i~8% O

3. Outline of the proof of BV estimates

In the previous section, we established the desired bounds on the time interval [0, fl.
The next task is to extend the estimates to [, 00). This will require laborious analysis.
For the benefit of the reader we outline here a road map for the Sections 4-6.

The aim is to establish estimate (1.14) on the total variation of solutions of

U+ Ay —xx +eg() =0 (3.1
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for small TV {ug} over the time interval [, 00). In Section 4, we quote the construction
of viscous traveling waves selected by a center manifold technique, first presented in
[6]. We decompose the gradient

n
Uy = Z Vi T (3.2)
i=l1

into a sum of gradients of such waves. Using the same basis, the derivative u; is written
in the form

n

w+eg(u) =Y (wi — AFv)i;. (3.3)

i=1

In Section 5, we establish validity of decomposition (3.2)—(3.3). In Section 6, we study
the evolution of the component vector (v, w) and show that it satisfies a 2n x 2n
coupled-system of viscous balance laws with source terms of the form:

() LG (), = (3 ()-(3) e

where A is a diagonal matrix. Under the dissipativeness hypothesis of Theorem 1.1,
we show that the coupling matrix (l;; gb) is strictly diagonally dominant.

In order to control the L! norms of v(t,-) and w(t,-) for t+ > £, we have to
show that e®®|®| and e®*|W| are integrable over the half-plane {t > 7,x € R}. We
analyze the form of the various source terms ® = (¢;) and ¥ = (;) that may be
regarded as the result of interactions between viscous waves. We employ a transversal
interaction functional that controls interaction between waves of different families (in
Section 6.1), as well as various “swept area” and “curve length” functionals that control
the interaction between waves of the same family (in Section 6.2). We also use energy
functionals on regions where the diffusion is dominant (in Section 6.3). Passing from
the conservation law (g = 0) to the balance law (1.1), system (3.4) becomes coupled
because of the presence of the production term g(u). An essential step in addressing
this difficulty is to establish additional estimates for handling the coupling. For that
purpose, supplementary Lyapunov functionals are constructed to those already devised
in [6]. By employing these functionals, one finally estimates the integral

[ e S aoin+windxar = 0w, (3.5)
! i

and this yields the desired a priori bound on [u,(z,-)||;1 in (1.14). Because of the
diagonal dominance assumption, we succeed in establishing exponential decay of the
total variation of u(z, -).
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Following the above outline, we finally establish the following key result:
Lemma 3.1. Let u be a solution of (1.13) such that for t € [, T], u satisfies
llux ()11 < dpe™ . (3.6)

Suppose the source terms in (3.4) satisfy
T n
[ e ¥ tonon+ o)) axdr <oy 37)
! i=1
fort e [7, T1, then we have the estimate

T n
% /esﬂ[ > (19t 01 + 1 (1. 1)) dx dr = O(1)35. (3.8)
! i=1

Assuming that the above lemma holds, we conclude the proof of the a priori BV bound
(1.14) as follows: Consider any initial data ug : R—R", with

0
Vi) S gmes lim uo() = € K, (3.9)

where x is given by (2.3). By Proposition 2.3, the solution to (1.13) exists on an initial
time interval [0, ], satisfying the bound

) 5 X
[RGIIES 4\/05 e (3.10)

According to Proposition 2.2, this solution can be prolonged in time as long as its total
variation remains small. Define the time

sup{ Z/ / M (165 (2, )]+ W (1, 2)]) dxdr<—] (3.11)

Suppose T < oo, then for all 7 € [7, T, decomposition (3.2) holds and one has

@l < 7 i@l

n R t
< e (eS”'nvi(ﬂnLl + / f eS“S|¢i<s,x>|dxds)
i=1 !

g
< e DYl (Dl 4 e 2 <doe . (3.12)
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Assuming Lemma 3.1 is valid, by (3.11) and (3.12) we obtain
r e ut 2 50
§ A M (1 (1, )| + W (2, 0)[) dx dt = O(1)55 < 5 (3.13)
- t
1

for sufficiently small d¢. This yields a contradiction with the choice of 7 in (3.11). Thus,

the solution u is globally defined and the total variation remains uniformly bounded

and, indeed, decays exponentially fast in time, TV{u(t)} < dpe~¢* for all t € [f, 00).
For convenience, we use throughout the following terminology:

Definition 3.2. We call a scalar function & = £(¢, x) controllable if (3.7) implies

T
ﬁ /ewfz(z,x)dxdr = 0. (3.14)
t

Thus Lemma 3.1 amounts to showing that |¢; (¢, x)| and |}, (¢, x)| are controllable for
alli=1,...,n.

4. Construction of viscous traveling waves

In this section, we consider the viscous traveling waves first constructed by Bianchini
and Bressan [6,5] by a center manifold argument [8]. We quote a summary of their
results and the main estimates. For each i, we consider the viscous traveling i-waves
U(x — o;t) that are solutions to the system of conservation laws with no source (g =
0), having speed g; ~ 4;(#*) and corresponding to trajectories that lie on the center
manifold C; C R" x R* x R

C;i = {(u,v, 0i) 1 v =i, lu—u*| <9, |vi| <9, lo; — AT < 5} 4.1

of the flow described in Section 4 in [6]. The unit vector 7; = 7;(u, v;, 0;) is defined in a
small neighborhood of (u*, 0, /) and tends to r}* = r;(u*) as (u, v;, 6;) — (u*, 0, A}).
We use the same notation as in [6]:

. OF . .o . . 0
. iy =S Fig= o
ou o0v; 0o;

4.2)

iu =

By the same convention, we denote higher-order derivatives of 7, by 7i yu, Fiuv, Tiuc
etc.
The following identity plays a key role in controlling the component source terms

¢; and y;:

(A) — LiD)F; = viFiufi + G — 61)Fi), 4.3)
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where ;1,- is the “generalized eigenvalue” defined as 1,- = (rj, A(u)r;). This identity is
fundamental since it corresponds to (A(u) — 4;I)r; = 0. By continuity, (4.3) implies

7i(u,0,0;) =ri(u), 4.4)

and Zi — 2i(u) as v; — 0. Furthermore, using (4.4), we deduce the following important
estimates:

i, v, 00) —ri(w) = O1) v, Fie=01)-v;, 4.5)
Fiwg = O) - v Fige = O() - v, (4.6)
12, vi, 07) — @) = O) - vi, i = O(1) - v;. 4.7)

Without loss of generality, we can assume that the eigenvectors r;(u*) form an or-
thonormal basis. Having this, we conclude

(Fi(u,v;, 07),7j(u,vj,0;)) =d; + O(1)dy,

(7. A7) = O0()dy  fori # . (4.8)

These estimates will be used in the forthcoming sections in order to control the
component source terms ¢;, ;.

5. Decomposition of the derivatives

Here, we decompose the gradient u#, and the time derivative u; pointwise along a
suitable basis using the construction of 7; defining C; as presented in the previous
section. Let u be a smooth solution of the system of viscous balance laws (1.13). For
each point x, given (u, uy, uyy) we determine u; via u; = uy, — A(u)uy + cg(u). We
seek (v, w) € R¥" such that

n
e =Y viFiu, vi, 07),
w (5.1)
w+eg(u) = (wi — AFvi)fi(u, vy, 6),

i=1

while the speed is given by

Gi = —0 (w—) . (5.2)
1%
The cutoff function 0 satisfies

s if |s|<0n,

_ / 7/
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- 61 / g \
/ 4 1 S

Fig. 1. Cutoff function 0(s).

as shown in Fig. 1. It is necessary to insert the cutoff function € in order to guaran-
tee that the speed o; remains close to A7 and therefore 7;(u, v;, ;) is well defined.
From now on, we use the abbreviation 91 = 0( L), The presence of eg(u) in the
decomposition of u; is crucial, as it corrects the speed of the viscous traveling waves
when passing from the system of conservation laws to the system of balance laws.
Decomposition (5.1) corresponds to viscous traveling waves U; such that

Ui(x) =ux), U'(x)=vii, U" =AW —a)U;.

From the first equation in (5.1) it follows, uy(x) = Y, Ul./ (x). In addition, if for all
i =1,...,n, the cutoff function 0 is the identity map, i.e. g; = A;‘ — w; /v;, then there
is also a good fit of the second derivative uy:

e (X) = g+ £g(w) + AWy = Y (wi — o) Fi + A@w) Y vifi

i

> (AW —oiDviFi = YU/ (x). (5.4)

i
The following lemma establishes the decomposition.

Lemma 5.1. For |u — u™|, |uy| and |uyy| sufficiently small, there is a unique solution
(v, w) to system (5.1). Moreover, the map (U, uy, uyy) — (v, w) is smooth outside the
manifolds N; = {(v, w); v = w; = O}, i =1,...,n; more precisely it is cll e
continuously differentiable with Lipschitz continuous derivatives on a neighborhood of
the point (u*,0,0).
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Proof. The uniqueness is immediate. To verify existence, we define the map:
G:R"x R" x R" — R

(v, w) > Y Giu, v, wy),

i=1

vifi <u, Vi, )L;k —0 <ﬁ>>
Gi (u, vy, wy) = o L (5.6)
(wi — )»;-kvi) f,’ (M, v;, /L;k -0 (—l))
i

and apply the implicit function theorem. We easily observe that the mapping G is well
defined and the Jacobian matrices are
~ Wi . ~
ViFiy + Hgﬁri,a —0iFi o

0G; _( 7 O)
v, wp)) — \—ATi Fi

+ 2
~ *o o~ [ 1k 1~ 1% )/ ~ L~
wiri)v—)ui v,-r,-,v—i——z iTi,o — 4 Oi _l) Tig 4 ()iri’a__v iYio
V: i i

(5.5)

1

= Mo+ M. 5.7

For (v, w) in a small neighborhood of (0, 0), Mg(u; -) is invertible and uniformly
bounded and M (u;-) — 0 as (v, w) — 0. Therefore the map (v, w) — G(u; v, w)
is C! and invertible in a small neighborhood of (0, 0). Thus given (u, uy, uyy), there
exists unique (v, w) such that

Gu, v, w) = Uy, tyy — A()uy) = (uy, u; + egu)) (5.8)

and (5.1) holds. Following the details in Lemma 5.2 in [6], one can show that G is ch!
on a neighborhood of (u*, 0, 0) with uniformly bounded second derivatives outside N;.
This completes the proof. [

The following lemma states the bounds on v and w that correspond to the bounds
on the uy, uyy and uyy, derived in Section 2.

Lemma 5.2. Assume that bounds (2.14) hold on [0, T]. Then, the components v;, w;
in (5.1) satisfy the estimates

loi I, Nlwi ()]l = O(1)dge M, (5.9)
loi (Ol oo, Nwi ) llzee, il 1, Twix Ol = O1)FFe M, (5.10)
lvix () llzoe, wix@lle = OM)dge e, (5.11)

for all t € [£,T].
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Proof. As shown in the previous lemma, the map

Glus ) (0, w) > (s Uy — A@uy) = (ux, ur + g u)) (5.12)
is locally invertible and continuously differentiable with Lipshitz continuous derivatives.
To prove the estimates follow closely the proof of Lemma 5.4 in [6] using the map G
in (5.12). O
6. The evolution of the components

This section investigates the evolution of the components v; and w; in the decom-
position (5.1).

Lemma 6.1. The unique solution (v, w) of decomposition (5.1) satisfies a 2n X 2n
system of balance laws with source of the form:

()G )L () G ) ()] () e

. . o . . g .
where A is the n x n diagonal matrix with entries {1;} and the matrix (lj( gb) is

diagonally dominant. More precisely,
b
IBS = Byl = O(lu — u™, |v], lw)), |Hijl, |Kijl = O(lu —u™|, Jv], [w]),  (6.2)
and if (u,v, w) = (u*,0,0),
Bf = B = B*) = [n "), ..., ra@)] " DguIr1@®),....ra@"].  (6.3)
Furthermore, the component source terms in (6.1) satisfy the bounds
b i = O - > (lvjvil + [vjavil + vjwil + [vjwi ] + [wjwil + v cwil
J#
+ vj Vil + V) xwix| + [wjwi | + |wj ywix|) — Transversal

4+ 0(1) - Z [vjxw; —vjw;j | —> Change in speed, Linear
j

2
Wi
v; <—J> ‘ “ A{lw;vj1<36,) —> Change inspeed, Quadratic
Vi /x

+0(1)-Z
j

+0) - (10l + [wjil) - lwj — 0jv;]. — Cutoff (6.4)
j
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Proof. Explicit computations are given in Appendix A. [

In view of the above lemma, the component source terms @, ¥ belong to the four
categories given in (6.4). See page 250 in [6] for a short explanation on why these
terms arise.

In the following subsections, we prove that all terms that appear in the compo-
nent source of (6.1) are controllable. We employ an interaction potential to control the
transversal terms in Section 6.1. The terms that belong to the change in speed category
whether linear or quadratic, are handled by means of the area and length functionals
of suitable planar curves introduced in Section 6.2. Last, in Section 6.3, by employ-
ing energy methods, it is shown that the cutoff terms are monitored by terms in the
preceding categories and are therefore controllable.

6.1. Transversal terms

To begin with, we establish an a priori bound on the contribution of the transversal
terms. Having a solution u(¢, x) of parabolic system (1.13) and assuming

lux ()1 <doe™ M, 1 €0, T], (6.5)

by the results in Section 5, decomposition (5.1) holds and therefore, the components v;
and w; exist according to Lemma 5.1 and satisfy the bounds in Lemma 5.2. Assuming

T
Z/ /e“”(ldn(t,x)l + 1Y; (2, x)|) dx di < do, (6.6)
— Jt
l
we must prove the following estimate

T
| [ 3 e twgond  tugoed + gl + fojwal + fjel + i
f ;
J#k

100k |+ 10wl + [V xwi x| + [w) cwi o |) dx dt = O(1)53. (6.7)

As a consequence of strict hyperbolicity there exists a constant ¢ > 0 such that

inf Jj—sup iizc>0, Vi<j (6.8)
X

1,x

The proof of the following lemma follows closely that one of Lemma 7.1 in [6].
However, it worths stating it in order to indicate the role of the e-term in (6.1) and
the treatment of the dissipation.
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Lemma 6.2. Let (v, w) be solution of (6.1) defined for t € [0, T]. Then for i # j,

od
/ / S (Jvi vl + v wi| + |w; wjl) dxdt = () (6.9)
Proof. We introduce the interaction potential functional
0.5 = [[ K= ez dxay. (6.10)
where the kernel K is given by
1
- s>0,
K(s) = ? (6.11)
_ cs/2 s <0
c

and apply it on the pairs (v;, v;), (v;, w;), (w;, w;) fori < j. Suppose first that system
(6.1) is homogeneous. Then for i < j, the derivative of Q(v;, v;) with respect to time
is

d -
EQ(W 0, v(0) = / K& —y) |:ng)i (x) (Ui,xx (x) = (4ii (xX))x

—e Y BL(0)u ) + Hik(x)wk(x)) lv; (I

k

+ i (x)|sgnv; () (vj,xx(y) — (2jv;(M)x

—e ) (Bju + ij(y)wk(y))>] dy dx.

k

Integrating by parts and using the fact that c'(s) — 2K”(s) is the delta function yield

d
EQ(Ui(t),Uj(t)) < —/Ivi(x)l lvj ()l dx — 2euQ(vi (1), v;(1))

+e///c<x—y> S B+ Y 1 Hguwe o] | 10,0
k

k#i

+ [vi ()] Z|Bkvk<y>|+Z|H,kwk(y)| dx dy.
k#i
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Let M = sup{||B*|loos | H llo. 11B”lloos 11K lloo - Multiplying by e®, integrating over
[7, T] and using (5.9) yields

T
/: /egutlvi(X)vj(x)ldxdt
t
& T
<Eu Y [ e Ao+ puoii
k t

ol (el + Tl [dr + e Qi @), v; (@)

01)53

cp

1 .
<levi(ﬂllullv‘/(ﬂllu + Me™ . (6.12)

Similarly we prove the corresponding estimates for the transversal terms |v; w;|, |w; wj|
always for the homogeneous system (6.1). To prove bound (6.9) for the non-homo-
geneous system, we employ the fundamental solution that satisfies system (6.1) in the
homogeneous case with initial data the delta function. Suppose that it has components
I'; and fi corresponding to v; and w;. Therefore, in view of the above analysis, it
follows

1

T
/ /ee‘”|r,-(t, x5, T, x,s", y) | dxdt <~ (1 + 0<1>5%) ; (6.13)
max{s,s’} l ¢

for i<j. The same result holds for all pairs (I, l:j), (fi, I';) and (fi, fj). Now we
can write the solution (v, w) of system (6.1) in the form

t
vi(t,x) = /F,-(t,x,O, y)v; (0, y)dy—}—/ /Fi(t,x,s,y)¢i(s,y)dyds, (6.14)
0

~ t ~
w;(t,x) = /Fj(t,x,O, »w; (0, y)dy + j(; /Fj(t,x,s,y)lﬁj(s,y)dyds.
(6.15)

Using (6.13)—(6.15) we deduce

T
/ /eg‘"|v,'(t,x) v (t, x)|dx dt
0

0o [ o) (o [ 1000

as well as the corresponding estimates for |v;w;| and |w;w;|. The proof follows
easily. [
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The following lemma shows how to treat the transversal terms |v; yv;l, |v; wjl,
[viw; | and |w;w; | for all i # j. Here, we choose to present only the proof for

|Ui,xvj|'

Lemma 6.3. Let v; and v; be the i-th and j-th components of the solution v of (6.1),
for i # j. Assume (6.5) and (6.6) hold, then for i # j

T
ﬁ /66“’|vi,x(t,x)||vj(t,x)|dx dt = 0(1)5(2). (6.16)
13

Proof. It suffices to show that the quantity

T—1
I(T) = sup / /es‘”lvi,x(t, Xt +1,x + &) dx dt (6.17)
(1,6)€l0,T1xR JO

is of order 5(2), since I (T) is an upper bound of the integral (6.16). By (6.5) and Lemma
52, forall t € [, T]

loi 1, o )1 <o e, Vi Ol 1. [0 ()| o <kOGe ™M, (6.18)
1. ()l oo 1.2 (0]l 1 <kdoe ™, (6.19)

for some constant k. Without loss of generality, we can assume limy_, Z,-(t, x) =0.
These imply that (7T') is bounded, (7)< (k5(2))2T. We perform the integration in (6.17)
first over [0, 1] and then over [1, T — t]. On the time interval [0, 1],
1 1
/ /eg”tlvi,x(t,x)vj(t +t,x+Oldxdt < / Myl p1llvjl oo dt
0 0
< (k032 (6.20)
For t > 1, we express v; , in terms of the Green’s kernel G of the heat equation,

1 K2
24/t

G(t,x) = e 4
vi,x(tsx) = /GX(L)’)Uz(t_ 1s-x_y)dy

1 ~
+ [ [ oxn[a= G @ —sx—nayas

1 n
_5/ /Gx(s,y) [Z(Bfkvk+Hikwk)(t—s,x—y):| dyds. (6.21)
0 k=1
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We now control the integration (6.17) over [1, T — 1],

T—1
/ /68“t|v,’,x(t,x)vj(t+r,x+5)|dxdt
1

T—1
</|Gx(1,y>|dy- sup //esmlv,-(t—s,x—y)vj(t—i—r,x+£)|dxdt
S’y’T?é
1

1
~ T—1
+||ﬂv,~,x||Loo/ ﬁcx<s,y>|dyds sup / /;fs”tlvi(t—s,x—y)vj(t+‘c,x+§)|dxdt
S’y”r’é 1
0

1
~ T—1
+ ||)~i||L°O/ﬁGx(s, v)| dyds sup / /e””|v,-,x(t—s,x—y)vj(t+r,x+é)| dx dt
1
0

$,9,7,¢

1 T
+ supy ||v,-<t’>||Loo/0 /|Gx(s,y>|dyds/0 /e“?’”|¢>,~<r,x>|dxdt

1 T—1
—i—s/o |G (s, y)| dyds supé/1 /egl”|Biﬁ1v1+...Bfnvn—i-Hilwl
5.7,

+ oot Higwy|(t—s, x—y)|vj(t+1, x+&) | dx dt. (6.22)

The first two terms belong to the category of transversal terms that are already treated
in Lemma 6.2. In fact, for fixed t' > 0 and sufficiently small dp, we can prove

T 1+ O(1)82 8%
/ /eemw(z,x)vj(z+r’,x)|dxdz<&45% < (6.23)
0 ¢ ¢

by following the same steps as in the proof of Lemma 6.2 and by employing as
interaction potential functional

Qi (1), v (t + ) = /f Kx —y)vit, x)v;(t + t',y)dxdy. (6.24)
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Using (6.23) as well as the bounds (6.18), (6.19), we obtain

T—-t
/ /e*:’”lv,-,x(t,x)vj(l—i—f,x—i—f)ldxdl
1

1 - 2\ 832 - 2 2
< ==+ ixllze— ) - =2 + ||l poo —=I(T) + k&2 —=5
<ﬁ+||,,x||L ﬁ> o Vil = 1(T) + ko =00
femm R (6.25)
E— n _—. .
NG O ep

Hence by virtue of (6.20) and (6.25) and for sufficiently small 9 > 0, we deduce

M5(2)e_5”

=00)5 (6.26
NG (1)og (6.26)

1 2\ 1653 4
1(T)<2(k83)* + (ﬁ + kéoﬁ> TO + k(sgﬁ +8n

and this yields the result. [

Similarly we estimate the contribution of the remaining transversal terms |v; yw x|,
[vix wj x| and |w; yw; x|. Thus we have shown that all transversal terms are controllable,
hence (6.7) is valid.

6.2. Swept area and length curve functionals

In this section, we study the interaction of viscous waves of the same family that
arise from the rate of change of speed o;. For each i, we prove the following estimates:

T
ﬁ /e“” lwi Vi — wiv; | dx dt = O(1)03, 6.27)
t

T
w:
[ / e vy ? (—)
t lw; /vi| <301 Vi /x

To accomplish this goal, we should first introduce the following planar curves: For
i=1,...,n

2
dxdt = O(1)3. (6.28)

"/i(t,x)=</ vi(t,y)dy,/ wi(t,y)dy>, (6.29)
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"?,-(t,x)=(/ wi(ny)dy,/ Ui(t’Y)d)’)' (6.30)

These curves y; and 7; evolve in time according to the following equations:

X X

Bfk vg + Hip wi dy, /

—00

=(/ ¢,-(t,y)dy,/ !ﬁi(t,y)dy), (6.31)

b
Kix vk + Bik Wk dy)

—00

n
Vi FAVix = Vixx TE Z (/
k=1

n X X
- » - b
Vit +’“i?i,x — Vixx +e E (/ Ki,k Ve + Bi,k wkdy»/ B}:’k Uk"l‘Hi,k wkdy>

k=1 —00 —0o0

=<f ‘pi(th)de/ ¢i(t,y)dy>. (6.32)

With an ordered pair of curves (y, &), we associate the area functional A to be
1
A, O = > 17, () A S (D) dx dy, (6.33)
x<y

More precisely, we are interested in the functionals A(y;, y ;) and A@;, 7y j)- Lemma
5.2 implies

0<AGL 7)) Ay T)) = O e H. (6.34)

If 7; is a closed curve, A(y;,7;) provides an upper bound for the sum of the areas
of the regions enclosed by the curve counting the corresponding winding number.
See also [4]. This is the only one functional considered in the case of conservation
laws, i.e. when (6.1) is decoupled. In order to eliminate the effect of the coupling of
system (6.1) on integral (6.27), it is necessary to introduce the functionals .4 applied
on the pair (y;,y;) for i # j and (y;,7;). It will be shown that the area functionals
are monotonically decreasing and in particular exponentially decaying, because of the
presence of the dissipative source, which appears as the e-term in system (6.31)—(6.32).
The following lemma is a generalization of Lemma 8.1 in [6].

Lemma 6.4. Let (v, w) be solution to (6.1) for t € [0, T] and assume that the maps
x > v(t,x), x — w(t,x) and x — At,x) are CV'. Then the area functionals
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satisfy:

d
25 TAG©,7;0) + AGi (0, 5;1)]
ij

S - Z/EWW"J(’” A Vixx ()] dx
+ Zesut(ﬂvi(t)ﬂu||Wj(t)||L1 Flwi @l Ol + o @l prll O
i'j

g Ol 1 Oll1) + O(e e85, (6.35)

Proof. For i = 1,...,n, at each x where y; , # 0, define the vector #,(x) in R? to be

w;(x) v (x)
Wi,x' ’ |Vi,x|

Vi) AT =y | (0), T), ie.  n;(x) = (— ) (6.36)

For fixed x, consider the projection of y; along the vector #;(x),

y e () = (0, 7;,(0). (6.37)

The time derivatives of the area functionals A(y;, y ;) and Ay j» V) are

qu 1 .
A1) = 5 [ [ 55061000 A1 O 1) A 7500

x<y

91000 A7 ()} dx dy,

dA A — 1 A A A
20 = E// Sgn())j,x(x)/\Vi,x(y)){/j,xt(x) A i ()

x<y
T2 A Vi (y)} dxdy.

By adding the above derivatives, one observes that the terms pair together and the
space of integration becomes the whole space R’:

d 1
E(A(Vi’yj)"‘fl(yj?yi)) = 5// sgn (i x () A7 ONi () A (D ]dxdy

1
*t3 / / 58 (7 () A i x ONj () Ay (D] dx dy.
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From (6.36) and (6.37), it follows

d
E(A(%a 7)) +AG; )
1
=3 / e [ / sgn(nl-<x>,y,,x<y>><n,-(x>,yj,xt<y>>dy] dx
1
+§/Ivj,x(x)| [f 58"(’7,‘(35),Vi,x()’))('?j(x)aVi,xt()’)>d)’i| dx

I d o, d @
=5 [ 1S (V00 1y 15 (1Y) dx. 638)

Having x fixed, investigate »"'*“7i as a function of y in order to compute the time
derivative

d
TV 1 (x),y; ) .
dt ( yx !

By an approximation argument, one can assume that the projection has the required
regularity for almost every (7, x) € R? and a finite number of local extremum points
attained at

Nis7j N7 nis7j ni»7j ni»7j
y—p ,...<y_1 <y0 <y1 <~~c<yp, . (639)

changlng monotonicity across every point, as shown in Fig. 2. Denote ya’ hi by
yy”, for simplicity. Note y0 = x. For i # j, choose yoj to be near x so that

g1 (X), .4 (1)) = 58001;6), 7.5 (7). In view of the above,
sgn(1;(), 7. (0) = = (= Dsgnln; (0, 77,057, fory e (557, 547).
00,7 (0)) =0, ()., (57) =0, (6.40)

58"(’71 (X) V] xx(yotj» = ( 1)1Sgn<171 (X) V] xx(x)>
Hence, the time derivative becomes

d

TV, "77) - sgn(n; (x X
S (V) = 30 senn (0,7 N1 (), 7,00 () dy

o yal

Z a \/"',j sgn<}7i(x)’ yj,xx(x»(_l)a(ni(x)’ "/j,xt()’)) dy
o Va1

—sgn{; (). 7 2D (=D i) 7, (05). (6.41)
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=
[
&
B
N ] "L',f' 0j 4] 0
L 75 () (b) y_]l xyoj y1’ y2J '.U:i] ¥

(a) -
Fig. 2. (a) The curve 7;(y) and the vector 7;(x) perpendicular to yj’x(y',‘fj). (b) Graph of X'”(X)‘U ).

A similar computation yields
(6.42)

d , / g
7 (TVy17) = —sgnin; (), 71,05 (0)2 (=17 61,2, 31, (7).

Substitute (6.41), (6.42) in (6.38) and apply identities (6.40), to get
d
Z(-A(Viv 7))+ A7)

1 d 1 d :
— i ().7; Z NICONT
= E/Wi,x(x)'dt (TVyx” ! V./) dx + 2/|yj,x(x)|dt (TVy,(’?./ x /) dx

= —/ 196 QO 1sgn(n; (). 7, 0 D (=D 0;(x). 7} 1 (yé}’j) —jVjx (yé;j)

Yi’j . , ydj
_SZ/OO (B,-kvk+ijwk,Kjkvk+Bjkwk) dy+/oo (¢j,lﬁj)dy)dx
k7 _

— [ lsentn; 0.3 T 07 0,05 (53) = B ()
a/
Jai
b Yo
Kik vk + B, wk) dy + f (¢, ) dy) dx
—00

i
Ya

—& Z/ (Bfk v + Hip wy,
T /o
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< - / 7200 A 7w (567 ) 1 + 10O 1Ol + g Ol O]
-2 / 91,0 (O lsgn (1, (0). 7 () o (), m (1)) dy dx
- / 177500 A s (387 ) 1 4 10 Ol WOl + Ty Ol 0]

- / 17 (0lsgnin; (0). 7, ) (), mi () dy dx., (6.43)

where

m(y) = <Z Blﬁk v (y) + Hie wi (y), Z Kk v (y) + B,bk wk(y)) .
k k

In a similar way, the area functional applied on the curves y and 7 is treated:
d - ~
t
M@l @l L+ Twi DN LY@l

o Ol b Ol + Ty Ol 1 Ol
=5 [ s cotsentn 0.5 00 0. k) v
=5 [ ntsentn; . 5N 0 kN dydx. 6

and

ki(y) = (Z Kk vi(y) + Blbk wi(y), Z Bfk ve(y) + Hik wk(y)) .
k k

From (6.43), (6.44) and (5.9), it follows

d -
o Z(A(yi, )+ AGL 7))
lh]

<Y - / 1.0 () A9 ()] dx + OW)Soe ™ Y (Il (Ol 1 + 1 ()l 1)
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+ Z% {// —17ix () 1sgn(n; (x), 7 () <i7,' (x), (Bﬁj(y) vi(y), B;j(y) wj(y))>
i

+ 3 (i, w00, (BL0) we), B we») ) )
k#j

+ ) [(=wi (), v (0), (Hje () wi (), K j (0) ve ()] dx dy
k

10 (580 (0, 7.0 ) (1060, (B3, 000300, B (0 w; )

+ Y (i, v o), (B ) we ), BE6) we» )|
k#j

+ ) [ =wi (), v (0), (K je() v (), Hjg (0) we ()] dx dy} :

k

Observe that the integrand p; ,(x) A 7; ,,(x) is exactly the component source term
w; xV; — w;V; x. Now, interchange j and k and use the approximate estimates (6.2) for
the matrices BY, B®, K and H. It is important that the B? and B’ are close to B.
Thus,

d _
o Z(A(V,-, 7))+ AGH )
L]

—/ 1.0 () A7 () dx + O30 Y e M (I (Ol 1 + 1 (Ol 1)

- [——/f{ S 1B 1- Z|Hk,~|]|v,»<x>w,-<y>—wl-<x>v,-<y)|dydx

i,j=l,n k#£j k

—%f/{ LN Z|Hk,]|vl-<x)v,(y>—wi(x>w,-<y>|dydx

k#j

+eOM (vl lwill o+ gl il + ||wj||L1||wi||L1)] : (6.45)
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Therefore, the diagonal dominance property and (5.9) imply

d N
7 E _ (AQis 7)) +AQL 7))
L]

<Y / 1910 () A P e (0)] dx
+OM30e 3 U, Ot + I, Ol

—en Y (AGi 7)) + AL §)) +0(1)e M 55, (6.46)
iJ
and this yields the result. [

Finally, to get estimate (6.27), multiply (6.35) by ¢* and integrate over [, T]. Then
(6.6), and (6.34) establish the result.

The length functional L applied to the curve y is defined to be the length of this
curve. If 7 is a curve that moves along the curvature then the length is monotonically
decreasing. See [4]. We consider the y; curves defined in (6.29), so the length functional
takes the form

Li(t) = L(y;(1) = /\/viz(t,x) + w?(t, x) dx (6.47)
and satisfies
0<Li (1) <Nlvi ()1 + lwi (1 = O1)doe . (6.48)

Since the evolution equation (6.31) of 7; contains a dissipative term, L£(y;) decays
exponentially as y; evolves in time.

Lemma 6.5. Let (v, w) be solution of (6.1) for t € [0,T]. Assume that the maps
X = v, x), x = w(t,x) and x — At, x) are C11 and that Vix(t, x) # 0 for every
x. Then

j—t(ﬁi(f)) < _W/|]ﬁ|<351 i (l:))—;)x 2 dx —eul;(1)
F g Ol + 1Y Ol + O(1) eMdge ™ H. (6.49)
Proof. To begin with, it is easy to verify that
Diex i P = Gies Viea) = 07 <ﬁ> 2’ P _ 1
Vi Jx

ial® w2\
I+ —
()
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Because of the assumption that y; , # 0, one can integrate by parts and employ the
above identities and (5.9)

<yl)(’ ’yl Xt)

hY; ’VIX”))l)C

_ / (Vi,x’ Vi,xx) _ (yi,x’ (j'i'yi,x)X) + (yi,xv (q’)i’ l//1)> d
Wi,x' Wi,x' |’))i,x|

~ / <yi,x’ (Zk ( ik Ve + Hig w") 2k (Kik Ve + B"bk wk))) dx.

|yi,x|
wj
~ / <v_)
( w; 2)3/2
- ( )
%
1Ol + I Dl

/ > B, ||vk|+Z|H,k||wk|+Z|K,k||vk|+Z|B,k||wk| dx

k#i k#i

(wi) 2
V; x

d
Eﬁi(t) =

2
[vi

g2
/B”vl +B w

,/v +w

! / i dx + ;O 1 + I Ol
—_— V; X i 1 i 1
S +90)32 ) <, k k

—euli(t) 4+ e 4nMdge°H

and this yields the result. [

Now, we establish bound (6.28) via (6.49). The L* bound of v;(¢) is given in (5.10),

and hence
/ SHE i 2 (ﬂ) (&)
|5E1 <301 Vi /x Vi /x

351+ 9512 (——ﬁ (1) = £l () + 1Ol + 1 Ol + sMaoesm> .

2
dx

L
<301

i
Vi

Finally, we integrate over [7, T] and apply (6.48) and (6.6), to get (6.28).
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6.3. Energy method

It now remains to show that the cutoff terms in (6.4) are controllable, i.e. for each
i=1,...,n,

T
/: /e“”(lvi,ﬂ + |w,~,x|)|w,~ — O;vi|dx dt = (’)(1)5(2). (6.50)
t

It is easy to see that there is no contribution from the component source terms of this
< 51. The

interaction of waves of the same family due to the wrong choice of speed is treated by
employing energy functionals. We introduce, in advance, additional cutoff functions, #
and (, that simplify the interaction. Consider a smooth even function n : R — [0, 1]
that satisfies

category, when the cut-off function 0; is not active, i.e. in the region ‘%

30
0 if |s| ng
n(s) = (6.51)
. 46,
1if |S|>?

with bounded derivatives

)<, ()< 652)
01 5

Similarly, we define { to be

0
{s) =1 (|s| - g) <n(s), (6.53)

as shown in Fig. 3. For shorthand, we will be using #; = n(’f—i") and {; = C(%)‘ In the
following lemma, we establish some useful relations between v;, w; and v; ., which
we apply afterwards to the cutoff terms. The aim is to reduce the integrand of (6.50)
into controllable terms and other new terms and to treat the latter by means of energy

methods.

Lemma 6.6. If |w;/v;|>361/5, then

[wi | <2|vi x| +O) - do Z(|Uj| + vjxl + [wjl), (6.54)
J#i
5 X
[vil <2—51|vi,x| + O(1) - do Z(|Uj| + vj x| + [wjl). (6.55)

J#i
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S
Fig. 3. The cutoff functions 7(s) and {(s).
If |w; /vi| <01, then
|vi.| <201 ]0i| + O1) - 30 Y (Jvj] + 02| + [w,]). (6.56)
J#i
Proof. As a result of the decomposition (5.1), the identity
uy +eg(u) + Aw)uy = uyy (6.57)

can be written as

D (wi = Avi + Y v AW

=D viFi + Y i | Y viFiufy + viaFiy — Oi i
i i j

Taking the inner product with 7;, yields
Vi = wi + (4 — 2Dvi + ©;, (6.58)

where

O = Y (wj — L i)+ Y (Fr  AGOIF) s — DY (i Frafk)vjue

J#i J#i J#E Kk
_Z<rltr/vvvjx+2rlﬂrjo')v H/X_Z<rlv‘>vjx
J# J# J#
= O(1) -0 Y _(lv;l + [vjl + [wj]). (6.59)

J#
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From this point, the proof follows easily if one adjusts the argument in the proof of
Lemma 9.1 in [6] to this setting. [

Now, we reduce the integrand of (6.50) to an expression that is easier to deal with.
As it is mentioned in the beginning of this section, the quantity |w; — 0;v;| vanishes

when |w; /v;| <Jd;. Otherwise, |w; — 0;v;| <|w;|. By means of the cutoff function { and
the relation (6.54), one has

wi — Opvi <|Gwi| <G [ 2lviel + O30 D (w1 + [vjxl + [w )
J#
Applying Schwarz’s inequality, the integrand in (6.50) becomes

(lvi x| + lwi xDw; — 0;v;]

< (il + lwix DG | 21vixl + O30 > [vjl + vyl + [wj]
J#i

<3007 ALwi +O) <80 Y (Jvie I+ wiel) (10 1+ vjx [+ w;l).  (6.60)
J#i

because {; <n; and one may take O(1)dy < 1. By virtue of the results in Section 6.1,
it suffices to show

T T
f /eg’”r]ivl%x dxdt = O(1) - 82, / /68’” w? dxdt = O(1)- 35, (6.61)
t t

foralli =1,...,n.
To begin with, we study the term #; v%x. Upon multiplying the evolution equation of
v; given in (6.1) by u;v; and integrating by parts, we get

2
V?
/nivi%x dx = —/ (17,-?) —i—eZnivi (Bl.ﬁkvk +H,-kwk) dx
t k

- v2
+ / <77i,t + ’Iini,x - ni,xx) ?l dx

2
~ V7
- /r],-)»i,x?’dx—Z/ni’xvivi,xdxjtfnivi(bi dx. (6.62)
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In what follows, we show that the integrals on the right-hand side of (6.62) can be
bounded by controllable functions. We start by computing #; , + 4ifl; x — 1 xx"

Nit + ;“i’/li,x — i xx

1 w; v w; w; \2
= \Vi— —di— | +2n; 'x<—’> —n?(—')
v; vi vi \Vi /, Vi Jy

1 w;
—en! Z ((Kikvk + Bl.bkwk) ol (B,'ﬁkvk + Hikwk) v_zl) . (6.63)
k ! i

Applying (4.7) and (6.54) and by account of (6.52), we deduce that for sufficiently
small oo, |4 — 47| = O(1)dg << 91, therefore the third integral on the right-hand side

of (6.62) is expressed by
< v2
= / ()Vi — /1;") ”i,x?l + nviviy | dx

2 2
~ V; ~ VU:
/ii’xni?’dx [ ()v,- — /l;f)x ni?’dx

- 1
< i = 47 |l / §|’7;||wi,xvi — Vi Wi + o 25 MV ,x
+01) -0 Y (il + [i2v)e] + [vixw;l) | dx
J#i
1 2
< [ lwixvi — vixwi| + SMiVix dx
+0(1) -0 3 (105,001 + 1vicvjial + i1 (6.64)
J#

By the definition of #;, the derivative 7 is nonzero on the region % < |w;i/vi| < 01.
This, together with Lemma 6.6 yields
w
o1 v; ( l)
Vi /x

’ w;
NiVivix | —
Vi J
’ Wi / w;
Mivivj | — ) |+ |Mvivje | —
Vi /x Vi Jx

+(9(1)-502[
]

J#
< O |wixvi — wivg | + O(1) - 50|'1,|Z(|U1wzx|+|vjvzx|

’ wi
mvjw; | —
Vi /x
J#

<2

[7; xVivix| =

_|_

+|U/ xWix| + |Uj xUtxl

+ |ijlx| + |w vix||—

) . (6.65)

i i
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Combining (6.63)—(6.65) and (6.62), we arrive at the following estimate

1
E/nivzxdx
2 #
< - / ’71 + 82’7;1)1 (Bikvk + Hikwk) dx
2
" 2
it (Ui )x

dx

1 1
+§/|ﬂ§|(|vi¢i|+|wi¢,~|) dx—i—E/

+0(1) |:/ |w; xv; — w;v; x| dx

+50/ |’1,|Z<|U1w1x| + v v x|

J#

"" |v]xwtx|

)dx} /|n,v,¢l|dx

+O(1)/|w1xvl lew,|dx+(’)(1)5o /|lev]|+|lew]|+|levjx|d-x
J#

+|ijle| +|ijzx|+|wjle|

i

&
5 / " Z ((Kikvk + Bibkwk)vi - (Bfkvk + Hikwk)wi) dx. (6.66)
3

Recalling the dissipativeness hypothesis and multiplying by ¢®*, we obtain the desired
integral

2
Vs
< - f (ﬁﬂfni?') dx + O()edge 2 M
t

1
+3 / 1 || + lwii]) dx + O(1) / My vvr — wivi o] d

i

“" |ijw1x| + |U]xle|

2
/" 2
V; x

+OOZ/ |v1Av/|+|Utxw]| +|szv1x|) dx+/€8#t|77ivi¢i|dx- (6.67)
J#

“1‘0(1)50[ 8w|’7,| Z (lvjwl x|+ |U]Ul x|
J#

wj 1
L) a —
v ) x+2/

i

dx

FHlwjwi x| + [w;v; x|
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Finally, to show that niv%x is controllable, we integrate over [7, T Assuming (6.6)
holds and recalling (6.5), (6.9), (6.27) and (6.28), we conclude

T
ﬁ /egmnivi%x dx dt
t
. T
< feaﬂ’nivf(ﬂdx+0(l)858Mﬁ e M dy
P
T T
+O(1)ﬁ /ew (lvig; | + lwi ;1) dx—i—(’)(])[ /ewlwi,xvi — wiv; x| dx
+O(1)50/ / cut Z <|vjwtx| + |v]vl x|+ |v/ xWix| + |v/ xVixl

J#

+lwjviy] + |w,-w,»,x|) dx dr

T N2
o [ e ()
i JIgH<a Vi / x

+502/ /6” (Ivixvjl + lvixw;j| + [vixvj«l) dx dt = O(1) - 3. (6.68)
J#i

T
dxdt—l—Z[ /e£“t|v,-q.’>i|dxdt
i

Now, we proceed to derive the corresponding estimate for {;w; . We start out again
by multiplying the evolution equation of w; given in (6.1) by Cl w; and integrating by
parts

2
W
fCl-wi%x dx = —/ (Cij> +gZCiwi (K,-kvk +Bibkwk) dx
t k
2

~ w?
+ [ ((i,t + )viCi,x - Ci,xx) 71 dx
- w?
— /Ci/li,xjdx_z/Ci,xwiwi,xdx'i‘/giwi‘pidx- (6.69)

We investigate the integrals on the right-hand side of (6.69) one by one. The expression
(o + 2ilix — i xx 18 given by (6.63), replacing #; by (;. If {; # 0, then |w’| > ﬁ
and Lemma 6.6 implies

wiwi x| < 2Mviawix] + O30 Y (1] + [vjel + [wl) [wi x|
J#L

< 0+ wh + 080 Y (Jvjwiel + [vjawi| + [wjwi ). (6.70)
J#
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By employing the above bound, we derive an estimate analogous to (6.64):

2
- w? 1 1
/ii,xCijdx < 0(1)/|wi,xvi _Ui,xwi|dx+E/Wivi%xdx+§/Ciwlx

+O() - 50/2 |wzxvjl+|wzxvjx|+|w1xw]|) dx. (6.71)
J#
wi

Furthermore, if % < ‘v—‘ < 01, then
1

2 2 2
Wi |wi xv; — v xw;| 2 Wi 2
‘Uz’ (U_z>x = U,'2 ZWw zx_2|wzxle| _l‘_ U_z Vix
1
> wzx—(wzx+vﬁx)51—5%vﬁx>§(wi2’x—vzx). (6.72)
Consequently, the upper bound of wi%x yields
w; 01 w; \ |2
|Ci,xwiwi,x| < 9y C; (_l> Vi Wj x <_|C;| 3|y <_l) + |vi,x|2
Vi Kk 2 Vi J
w; 2
= O) |vi <v> AII"J’I 6 | +O) - lvi . (6.73)

We now substitute (6.73), (6.71) in (6.69) and also use (6.63) as well as (6.65). By
virtue of the diagonal dominance property, yields

1
5 / e L w? dx

2
< —/(68’”@'%) dX+(9(1)/e£“’(|vilﬁi|+|wi¢i|)dx
t

wj 2
vi | —
Vi J

+O(1)/e8utniv3x dx+/68’”|Ciwiwi|dx+O(1)/ew’|wi,xvi — v w;i|dx

dx

+O()S3eMe™H + O(l)f et

u’ |<01

+O(1)52/ 5/«”2 |w1xvj|+|w1xvjx|+|wtxw]|)dx
J#

+ |U] xw1x| + |U] xle|

w;
Vi

w;
- D . (6.74)
v;

+0(1)502/ MG (Iv]wlxl+|vjvzx|
J#

+Hwjw; x| + |w;vi x|
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In view of (6.9), (6.27) and (6.28), (6.6) implies

T
[ /ewfz;,-wix dxdt =O() - 5. (6.75)
t

Therefore, #; ”12,x and Ciwﬁx are controllable, and thus (6.60) implies the validity of
(6.50).

The four estimates (6.9), (6.27), (6.28) and (6.50) together with Lemma 6.1 prove
Lemma 3.1. Thus, we have proven that the solution u is globally defined and satisfies
a priori the BV bound

TV{u(t)} = O(1) e " TV{up}. (6.76)

More precisely, under assumption (6.6) it is proven that the interaction of the waves is
in fact quadratic with respect to TV{ug}:

fw/egﬂt(lqﬁi(t,x)l + 1Y (1, 0)) dx dt = O(1) - 32, 6.77)
t

Hence, all the estimates (6.27), (6.28) and (6.50) are of order 5(3).

7. Stability of approximate solutions

Let u be the solution of the viscous hyperbolic system of balance laws

U+ Aw)uy +egu) —uy, =0, (7.1)
u(0,x) = u(x) = up(ex), (7.2)

where g is dissipative. If the total variation of u( is sufficiently small, then the solution
u(t, x) is globally defined and satisfies the BV bound

TV, u()<C e TV uy, (7.3)

for all t >0, where C is a constant independent of ¢. This section discusses the stability
of solutions to (7.1)—(7.2). Consider the infinitesimal perturbation z = z(¢, x) of u and
its evolution equation

2t + (AW 2)x + eDg(u)z — Zxx = (ux @ A(u))z — (z @ A(u))uy. (7.4)
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1)(1" ), B ,yfu (t’,), ~ u(t )
/// ’ / /,’ e -
/ 2 »-w(’s/{r*- + ,(.S’f”) /

/'/ /?‘ 2 /

/ / ‘

’// ‘,"‘ “/’
/‘ - 7 {F » ™~ ,‘”‘
) u

Fig. 4. The solution u® to (7.1)—~(7.2), t € [0, 1].

Lemma 7.1. Under the assumptions of Theorem 1.1, we have the following bound on
the infinitesimal perturbation z of u

izl <Le™H1z(0)l1, (1.5

for some constant L.

The proof of the above lemma generalizes the proof of the BV bound of u and
follows the same strategy. After decomposing z along a suitable basis obtained in a
similar fashion as that for the gradient u, and studying the evolution of the components
of this ‘generalized’ decomposition, we proceed with the proof of this lemma.

Beforehand, assuming that the above lemma holds, we claim that (7.5) implies that
the solutions to (7.1)—(7.2) are stable in L!. Indeed, having initial data & and © with
small total variation and

u* = lim &= lim v,
X—>—00 X—>—00

for each t € [0, 1] we construct a path of initial data to system (7.1)
' (x) = tu(x) + (1 —vx). (7.6)

Then the total variation of " is small and the solution u*(z, -) to (7.1)—(7.6) is globally
defined satisfying the BV a priori bound (7.3).
Consider the tangent vector

du®
(t, x) (7.7)

T
t, =
2. %) dt

to the path 7 +— u®(¢, x), as shown in Fig. 4. By direct computation, we obtain that
z" is a solution to (7.4) with initial data

290, x) = i(x) — v(x). (7.8)
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Therefore, by Lemma 7.1, z* satisfies (7.5) for every t € [0, 1]. Thus, for every ¢ > 0,
we deduce

1 du’c
) — v ()l </ ") as
0 T Ll
1
< Le**?#’/ li — 8l de=Le M @a—ol,. (7.9
0

This proves that all solutions with small total variation are uniformly stable in L!.
In view of the above discussion, the bound in Lemma 7.1 is crucial to the stability
estimate (7.9).

In Section 5, we discussed extensively the decomposition given in (5.1). Observe
that the speeds og;(¢, x) of the viscous traveling waves selected in the decomposition
might be discontinuous as a function of (¢, x). However, for each i, we can modify the
speeds to smooth functions and decomposition (5.1) still holds with the new choice of
speeds. By this modification, it is not difficult to see that the components v; and w;
still satisfy a system of form (6.1) and the component source terms are controled as
before

Z/ /ew'(|q>i| + ;) dx dt < do. (7.10)
i=1""

From now on, we consider decomposition (5.1) along the gradients of viscous traveling
waves whose speeds ¢; are smooth functions of (¢, x).

We now return to Lemma 7.1. Having u as a reference solution of (7.1), we con-
sider the infinitesimal perturbation z of u, which satisfies the perturbed equation (7.4).
Observe that z = u, or u; are solutions to (7.4). In order to prove the L' bound (7.5),
we employ the same techniques applied to prove the BV bound (7.3) on u with some
appropriate modifications. By Proposition 2.3, bound (7.5) holds over an initial time
interval [0, f]. For later times, we decompose z into a suitable basis 7; i = 1...,n,
and study the evolution of the components of this decomposition.

We denote the flux of z by

y=zx — Au)z. (7.11)

We decompose (z, y) pointwise along a suitable basis so that the decomposition must
be compatible with (5.1), when (z,y) = (uy,u; + €g(u)). Given u and v, we seek
(p,q) € R?" so that

n
z =) pifi <u Vis A — 0<2)) :
i=1 pi
- qi
y =Y (g — i p)F (u vi, A — 0 (—)) :

i=1 pi

(7.12)
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where 0 is the cutoff function defined at (5.3). We use the following notation:

F=F (u,u,-,/ljf—f)(ﬂ)), (7.13)
Pi

0; =0 <2> and 1 = (7, Aw)#). (7.14)
In general, 7; # 7;. Using the above notation, the fundamental identity (4.3) becomes
(A(u) — L]) P = i (Fifi + Frw Gi — 72+ 00). (7.15)

The following lemma corresponds to Lemma 5.1 and establishes the validity of the
decomposition (7.12).

Lemma 7.2. If |u — u*| and |v| are sufficiently small, then given (z,y) € R*", system
(7.12) has a unique solution (p,q). Moreover, the map (z,y) — (p,q) is Lipschitz

continuous and in particular, it is smooth outside the manifolds N; = {(p, q) € R¥":

p,-:q,-:O},i:l,...,n.

Proof. The proof is similar to that of Lemma 5.1. The uniqueness is immediate, because
z and y are uniquely determined by p and g. We define the map

-~

G:R" x R" — R

(P.a) Y Gipi.ai),

i=1

R pifi (M,Ui,if—9<£))
Gi(pi»qi) = pi

' . (7.17)
(qi — 47 Pi)Fi (u vi, AT — 0 (2))
Pi

We prove that the Jacobian matrices of @ are uniformly bounded and invertible for
small v;. Indeed,

(7.16)

A i A A o
A5 . 0; i —0;Fi ¢
G (rl 0N, | i
N Ly qi 7 A xN di A w3 A qi 7 A
a(pla ql) et —201-7'1"0-_)»[- 9,»—'}’,'70— /1[ Qiri,G_ ;Birl‘,a
i L L

= /\//Ti,o + -/\//Yi,l- (7.18)
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By virtue of (4.5), 7; s = O(1)v;, hence M\l — 0 for |v| small and therefore, the
Jacobian matrix is invertible. By the implicit function theorem, for each (z,y) in a
small neighborhood of the origin of R>", there exist unique p and g so that (z,y) =
g(p.q), ie. (7.12) holds. Moreover, the map G is Lipschitz continuous on the whole
space and in particular, it is smooth outside the manifolds N;, i = 1,...,n. This
completes the proof. [

Our goal is to study the evolution of the components p; and g; of the decomposition
(7.12) and in particular, to prove that they satisfy a parabolic system of a similar
form to (6.1). However, the map G defined in the previous lemma is only Lipschitz
continuous and hence the same holds for p and ¢ as functions of ¢ and x. This raises
some difficulties because the derivatives of p and g may not even exist everywhere. We
overcome these difficulties by approximating z and y by smooth functions. See more
details in [6]. Therefore, without loss of generality, we shall assume that z and y are
smooth functions.

The following lemma passes the information for the perturbation z and y stated in
Corollary 2.4 to the components p; and g;.

Lemma 7.3. Assume that bound (1.5) holds for t € [0, T]. Then for all t € [f, T] the
perturbed components p;, q; satisfy the estimates

Ipi Nz, llgi @l = O)doe™H, (7.19)
Ipi @)llzse, Ngi Oz, Npix @l i@l = O1)dgeH, (7.20)
1pix @z, Nlgix@®lre = O1)d5e . (7.21)

Proof. As long as (7.5) holds, using standard parabolic theory, we can control the L!
norms of the derivatives of z as stated in Corollary 2.4. Since the map G : (p, q) —
(z,y) is uniformly Lipschitz continuous, to justify (7.19)—(7.21), one needs to repeat
the argument in the proof of Lemma 5.2 for the perturbation z, using (7.5) and (2.28)-
(2.30).

In the following lemma, we prove that (p, q) satisfy a 2n x 2n system of viscous
balance laws with source and we establish some bounds on the various terms that
appear in this system.

Lemma 7.4. For |u—u™| and |v| small, decomposition (7.12) holds. The unique solution

(p, q) of decomposition (7.12) satisfies a 2n x 2n viscous hyperbolic system of balance
laws with source of the form

() AGDEL -G R

=) )

> . (122)
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where A is the n x n diagonal matrix with entries {2,-} and the matrix (Blgj
(7.23)

diagonally dominant. More precisely,
|Hjjl, 1Kl = O(lu — u™], |v])

o
B} — Byl = Ou — |, [v]),
and when (u,v) = u*,0), B* = B” = B(u*) = Rw*)"'Dgu*)Rw*). Furthermore,

the source terms in (7.22) satisfy the bounds

bi i = O(1>-Z(|piv,-|+|qivj| +1pivjxl + 1givj | + | piwjl + lgiw;] + | picw,]
J#L
+1gixw;i| +1pixvil +1qixvj| + 1PixVjxl +19ixVj x| + |Pigjx| + |pipjxl
+1pixqjxl +1pixPjx +1qipjx| + qu-qj,xl) —> Transversal
+om -y (lpj,ij —PjwjxlFlgjxw; — qjwjxl +19ixPi = Pixdil
J
+1pjxvj — Pjvjxl +lgjxvj — qjvj,x|) —> Change in speed, Linear

2
L( q; _.)—~>Change in speed, Quadr.
j {‘Ték?’bl}

()

+OWM- Y (lvjl+1p)l) 1p;]
J
+01) - Z (Ipjx| + lgjxl +1pjvjl + lgjvjl) - lwj — 0jv;| — Cutoff

J
+0Q) - Z |pjd)j| + |qj¢j| —> Source of gradient component v

J
+0() -6y (|pjvk| + 1 pjwil + lgjvel + |q,-wk|). — & — Order Term
J.k
(7.24)

Proof. The proof is given in Appendix B.
In what follows we study the relation between p;, g; and p; ; as in Lemma 6.6. We

first substitute (7.12) in the identity y = z, — A(u)z, to get

> g —2pi) i =) pinki — Y AWpiFi + Y piviFiuF
i i ij

i

(7.25)

+ E PiVixtiv — E piei,xri,a-
i i
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By taking the inner product with 7;, then

6i = pix— (% = 75) pi + O, (7.26)
with
©; =03 Y (Ipjl + Ipjxl +las). (7.27)
J#i

by estimates (4.5), (4.8), (5.10) and (5.11). Having (7.26), we establish the following
relations:

Lemma 7.5. If |q;/pi| >301/5, then

lgil < 21picl +0M) 80 Y (Ipjl + 1pjxl + lg;1) - (7.28)
J#i
5
pil < E|p,-,x|+0<1>-502(|p,-|+|pj,x|+|q,-|). (7.29)
J#i

If |gi/pil <01, then

|pix| <2011pil + O(1) - 6o Z(ijl +1pjxl +1g;D- (7.30)
J#i

Proof. The proof is analogous to that of Lemma 6.6 in Section 6.3. Use (7.26) and
(7.27). O

We nag\lrally extend Definition 3.2 of controllable terms to this setting, i.e. a scalar
function &(z, x) is called controllable if for fixed T > 7,

n T . .
Z[ /efﬂf (13, 01 + 103, 0)1) dxdr < 0 (7.31)
i=1"1

implies

T -~
[ fewwé(t,x)uxdt =08, (7.32)
t

By employing the same tools with those implemented in Sections 6.1-6.3, we prove
that all perturbed source terms (7.24) are controllable. In particular, if (7.31) holds, all
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transversal terms in (7.24) satisfy

T
[ [ e (1ot + a0t 1ol + il + Ipiws] + laswg) + 1piso]
t

+1gixvj|l + | Pixvjxl +1qixvjx| + | pixw;il + |gixwjl + |1pigjx| + |pipj x|

1Pidjoxl + PisPi +14iPjx] + 16id52] ) dx df = O(1)0] (7.33)

for j # i. This is an immediate consequence of Section 6.1. Moreover, for each
i =1,...,n, we introduce the curves

y,‘”’f’)(r,x>=(/ vi(t, y) dy, / pi<r,y>dy) (7.3

—00 —0o0

and similarly yl@'q)(t,x), "/Ew’p)(t,x), yl(w’q)(t,x), "/Ep’q)(t,x) etc. We study the evolu-
tion of these planar curves as presented in Section 6.2 and introduce the corresponding
area and length functionals. For example,

1
AGED 0P = / / 0P ) AP (p) ] dx dy (1.35)
J 2 ), J»
£§v,17)(t) — ﬁ(ylgv,p)(;)) = /\/v?(t,x) + piz(t, x)dx (7.36)
for i, j = 1,...,n. We obtain bounds on the time derivatives of these functionals

similar to those in Lemmas 6.4 and 6.5. By integrating over [f, T,

T
f /esm(”?j,xvj = Pjvjxl +1qjxv; — qjvjxl + Ipjxw; — pjw;«l
t
H1g.c0) = 4050l + | pi — qipiel ) dx di = O(1) - &, (7.37)

and

t

dxdt = O(1) - 8. (7.38)

pi| —
pi/

et
<30

[

From (5.10) and (7.20), it follows

/T/
7 di
t i

dxdt = O() - 8. (7.39)

2
qi

pi\ —
Pi/

e (Jvil + I pil)
<30
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The terms in the last two categories in (7.24) are controllable. Indeed, by (7.10) and
(7.20), we have

T
[ [ e tnon+1a01) dxar = 00) -5, (7.40)
t
foralli =1,...,n, and by Lemmas 5.2 and 7.3, we also have
T
e[ fe“” (Ipjoel + pjwil + lgjvel) dxdi = O(1) - &5, (7.41)
t
for all j, k = 1,...,n. It remains to show that the cutoff terms are controllable. By

employing energy methods as in Section 6.3, we can prove the estimates

T T
f /ewﬁip,%x dxdt = O(1) - 82, / /eaﬂ’ﬁiqi%x dxdt =01)-8 (742
t t

Having the above bounds, it is easy to derive that the cutoff terms are bounded by
controllable functions. For explicit calculations, see pp. 287-289 in [6]. Here, we just
state the result.

T
/ /68’" (Ipix] + 1gix] + | pivil + lgivil) lwi — Opvi| dx dt = O(1) - 65 (7.43)
1

Thus we have shown that all perturbed source terms in the parabolic system (7.22) are
controllable.

Lemma 7.6. Let 7 be a solution of (1.4) such that for t € [, T], z satisfies
(1) | < doe™H. (7.44)

Suppose the source terms satisfy
T noo R
f /egl"z <|¢),~(t,x)| n |lp,.(t,x)|) dx dt < 5. (7.45)
! i=1

Then we have the estimate

T n R R
f /ew’ 3 (|¢i(z, Ol + 1 (¢, x)|) dx dt = O(1)&2. (7.46)
! i=1
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Proof. In view of the discussion before this lemma, estimates (7.33), (7.37), (7.39),
(7.40), (7.41), (7.43) yield the result. [J

Here, we conclude the proof of the uniform L' bound (7.5) of the infinitesimal
perturbation z:

Proof of Lemma 7.1. Having

Iz 1 < (7.47)

00
8 /nx’
where x is given by (2.3), the solution z(¢, x) to (7.4) exists on an initial time interval

[0, 7]. This is established in Proposition 2.3. Moreover, the perturbation z satisfies the
bound,

5
Izl < —> =1 1 [0, 7]. (7.48)

4/n
According to Proposition 2.2, this solution can be prolonged in time as long as the L!

bound remains small. To extend bound (7.48) to all times, we argue by contradiction.
Choose T to be the time

T = sup {r; Z/;/esm <|$i(t,x)| + |/(/;i(t,x)|> dx dtg%} . (7.49)

Suppose T < oo, then by Lemma 7.2, decomposition (7.12) holds for all ¢ € [, T]
and

n n R t .
2Ol < D Ipi@llp < e (e“”npi@ny +[ /egﬂsm(s,xndxds)
i=1 i=1 !

. . 0
< e Sz @ + €_WEO <dpe M. (7.50)

By (7.49) and (7.50), for sufficiently small ép, Lemma 7.6 implies
T R R 5 50
Z/ /efﬂ' <|d>,»(t,x)| 4 |lﬁi(t,x)|) dxdi = O3 < 3. (7.51)
P
1

which contradicts the choice of 7 in (7.49). This completes the proof. [

In the view of the above discussion, one has the stability estimate
lu(t) — v <Le M u0) —vO) |1, >0 (7.52)

for any two solutions to (7.1).
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8. Convergence of approximate solutions.

Up to this point, we proved that the solution u(t, x) to

ur + Auy +eg(u) = tyy

u(0, x) = u(x) = uo(ex),
is globally defined in time, its total variation remains small according to
TVu(t) =Ce M TViu =Ce M TVuy,
and it is uniformly stable, i.e.
llu(t) = vl 1 <Le™ Ml — 0]l 1.

An immediate implementation of the stability estimate is a uniform L' bound

_ _ s |
(e — u*ll 1 SL el — w1 = Le™™ ~Jlug — u*| 1.
&

517

(8.1)
(8.2)

(8.3)

(8.4)

(8.5)

We now focus on the continuous dependence of u in time. By Proposition 2.2,

Corollary 2.4 and (8.3),

2K
K Oe—a,ut
lux (@)l 1 <Cdpe M for all t > 0, luxx (N1 < 2‘K/§O
—e

Vi
Hence the identity u; = uyy — A(u)u, — eg(u) implies

lur Dl < Nuxx @Ol + 1A@uL 1 + ellg @) 11

1
i (ie )
2.4/t

forr <1,

—EH for t>1.

(8.6)

for an appropriate constant L’. For fixed times r > s>0, by integrating the above

estimate over [s, t], we get

t t 1
1) — < d <L’/ 14+ — ) d
lu@) — u(s)|p /S lu (D1 de i e ( +2ﬁ> T

< L'e™(Jt — s+ VT = 5s).

(8.7)
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Our results so far refer to the solution of the parabolic system (8.1)—(8.2). However, in
view of the discussion in Section 1, by rescaling the coordinates, our analysis can be
extended to the vanishing viscosity approximations u® = u®(t, x). Consider the viscous
hyperbolic system of balance laws (1.8)—(1.9) and recall that

Wt x) = u (5, f) , (8.8)
£

&

where u satisfies (8.1)—(8.2). Hence the parabolic system (1.8)—(1.9) has a unique
solution u® globally defined and for ug — u* € L' with TV{ug} < Jg, then

TV{ut (1)} = TV{u(t/e)} <C e M TV{ug). (8.9)

If v¢ is another solution of (1.8) with initial data vy € L!, then by (8.4), we obtain
the stability of solutions to (1.8):

luf (@) = v* Ol 1 = ellu(®) —v@) 1 <L e lug — voll1- (8.10)

Finally, the continuous dependence with respect to time for solutions of (1.8) is ex-
lu® (@) —u® ()l = ellut/e) —uls/e)llp

pressed by
< w(\i_i +‘\[_\[)
e € e e

—r <|t—s|+ﬁ|ﬂ—ﬁ|)e—ﬂs 8.11)

for t > s>0. By Helly’s Compactness Theorem, a convergent sequence {u®"},, may
be extracted with ¢, | 0 as m — oo, whose limit is denoted by u, i.e.

utm (1) — u(r) in L, (8.12)

for all + > 0. The limit u(z, -) is a BV function which satisfies
TVu(r) < lim inf TV{u® (1)} <C e MTV{ug}. (8.13)

Moreover, by construction, u is the admissible weak solution to

ur + fu)x +gu) =0, (8.14)
u(0, x) = up(x), (8.15)

when (1.8) is in conservative form, i.e. A(u) = Df(u). This completes the proof of
Theorem 1.1. [
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Appendix A. The evolution of the components (v, w) in the decomposition

This appendix presents the explicit calculations that derive the system of viscous
balance laws (6.1) of (v, w). It further studies the various terms that appear in the
component source (¢, ) of system (6.1) and by laborious work, demonstrates that ¢
and  are bounded by terms in the four categories given in (6.4).

To begin with, upon differentiating (1.13) with respect to x and ¢ respectively, one
obtains the evolution equations of u, and u;

Uy + (Auy)x +e(gW))y — (Uy)xx =0,

A.l
ir + (AU + 68 — (e = (e 0 AU — (@ 0 Ay, D
System (6.1) arises by rewriting (A.1) via decomposition (5.1)
n
e =Y vifiu, v, 01),
i=1 (A.2)

n
e+ eg(u) =Y (wi — AFvi)Fi (u, vi. 0;).
i=1

Differentiating (5.1) with respect to x and using the identity (4.3) yields
Ucx — Auy = Z Vi xFi + Z Vifix — ZA(M)vifi
i i i

=Y i + Y vilviFiufi — AwFi]
i i
+Zvi I:vi,xfi,v_9; <_> rl()':| Zvlv]rlurja
i vi i#j

= Zlerl + Zv, [ Aiti + ( /N"Ll' —i—)»;k — 91) U,'f,',v]
. ViWi x — Vi xW

+Zv,~ |:v,-,xr,-,v—0;< Ly Y l)r,o—:|+Zv,vjr,ur]
i#]

ZZ(Ui,x_ii i)|:rz+vzrzv+e/< )rzai|

i
-> (wi,x — i wi) 0/Fio+ Y v}CF — 0)Fiy
i i

+ > VT, (A3)
i#i
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and
x — AQw)u;

= (Z (wl- - )u;-"vl-) fi) — A(u) Z(wi — ;L;kvi);i
—eDgwuy +eA(u)g(u)

=Z(wzx_/L sz Ti +Z _l Uz rzuux +Fi,vvi,x_fi,09i,x_A(u)i:i]

—eDgu)ux+eA(u)g(u)

= (i =2 vi)Fi + (wi— 2 v) i uFi — AW)F) ]

i

WiV — U W

ES ~ ~ * ~ / L,xXx Y1 1,X 1 ~

+ E (w; — A7 v)v;7 T j + E (w; — A7 v;) |:Ui,xri,v -0 ri,zrj|
i

i#] Vi

—eDg(u)uy + eA(u)g(u)

:Z(wlx —JFvi) r,+Z —Jv;) (—Iim (—Zi+z;‘—0i) v,-f,-,v)

Wi Vi — Vi +W;
>k ~ Wi, x Vi i, xWi .
+ E — 50 vjFiufj + E i) |:v,-,xri,u - Oi—zri,g]

i#] Vi

—eDg(u)uy + eA(u)g(u)

2

bt Wi . ~

=Z<wi,x _/liwz>|: 6/ lrz 0':| + Z(Ui,x_)vivi> |:wlrlv+6 2 —Fi, ﬂ:|
i i i
+Zwlv, V r,v+szvﬂ’zur/

i#]

—lZl;k (Ui,x_jvi i) |:rz+vzrzv+0 lrlG] + (wi,x_ziwl) (_ ;fi,a)

+ viz(};k — 07y + Z ViviFi i ¢ —eDgwuy +eA(u)g (). (A4)
i#j
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In addition, by differentiating (5.1) with respect to #, one gets

WiV — Vi Wi
~ ~ ~ ~ y WitV 1,t Wy
Uy = E Vil + E v; <ri,uuz + FiwVip — Figl ————— )

i i Vi
= Zv,t[rl+v,r,v+0 —F, g:|+Zv,( ;Ljvj);i,ufj
+ ) widl=0iFicl —& Y vifiugw), (A.5)
i i
and

utt—z wzr—/hvzt”z+2 —)Lv, Vzr—ng(u)Mt

v;

Wi (Vi — Vi Wi
E § ~ ~ ; Wit Vi it Wi
= Wit — /L Ult i+ - ;L v; |:ri,uut + riyVi — 0[ B ri,o’j|

—eDg(u)u;

2
- ;[ Wi ~ ~ , Wi -
= E Vit |:wiri,v + 0 (— Fio |+ E wi |7 —0;—7i o
- v - Vi
1 1

i

— Z 25 L vig |:r,+vlr, U+0 r, g:| — 0w Fi g+ Z v; (wj—)ujv]) Fiufj
i J
+Zw, (w] — U]> Fiulj —EZ i — v r,ug(u) —eDg(u)u;. (A.6)

Once more, taking the derivative of uyy — A(u)u, and u;, — A(u)u;, which are given
in (A.3) and (A.4), with respect to x, it follows that

(tx)xx — (AQW)uy)x

b wi .
= E (Ui,xx_</bivi>x> |:rl+vlrlv+0 rza:|
i

+Z (wl xx — ( lwl) ) [—9%,0] + Z (Ui,x - jbivi) Zvjfi,ufj +zvi,x;i,v
i

J

, Wi ~ -~ ~
it (0~ ) ) Fio+ D 0w + ViviaFi
t/x

J
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wj wj

/ l ~ 7 Y~

+ <_Ui0i,x + 0,’ v' ) Five + E U] Vz oul'j — Oi,x()i?ri,aa
4 L

7 /o~ /o~ ~ / ~ / ~
+ E (w,-,x — /L'wi) _ei,xri»o - E Givijri,aurj - ini,xri,av + Giei,xri,ao
i J

+ 0 (= 0:) | D viFiwaF v v—bixFive |+ (viz(if - Hi))x Fiy
i j i

+ Z ViV Z Uk (Fiouu (Fj ® i) + FiuFjufc) + VixFiunj + VjxFiuljo
i) k

=0 xTiuolj — 0 xFiufj o | + Z (vivj), FiuFj (A7)
i#]

and

(tr)xx — (A(u)ug)x
2

=Z<vi,xx_<zivi) ) wtrzv+9 rta
i * l
5 ~ w;
+ Z (wi,xx - <Mwi)x) |:”i - Q;v__lri,aj|
1

1

+ E (vi,x - )vivi> Wi x T + E WiV Fj oul
i J
Wi

2
- , -
+wW; Vi xFivv + <_ wiei,x + 0,’ <_> vi,x>ri,va

Vi
2 2 2
/ w; ~ ~ / Wi ~ / wj ~
+ E O\ — | vifioulj —0; \ — ) OixFigo+|0; | — Tio
; Vi v; v; A,

~ w‘
= dow; FiuFj + vinFio — (0 0i—) )i
+IZ(wl’x JW;) ;v]r,,ur] + Vi xliv < ix + ( Ty )x> T

Wi .

y Wi - /
_E U/ i Vt(mr] lee vrta'v"'etxg —Vi,o0
Vi

Vi
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A% ~ ~ ~ ~
+ E viw; (45— 0;) E Vi pulj + VixTiww — UixFive
i

J
+ Z (viw;i (A4F = 0:)), Fiw + Z(wivj)xfi,ufj
i i#j
+ Z Wi v; [Z Ok (Fiouu (Fj ® i) + FiouFjouft) + VixFiuol
i£) %

FVjaliuljo = OixFiuclj — 9./,xri,u”./,a:|
~ w'
k ~ ~ / 1 ~
_ E )hi (U,',x — A Ul'> |:rl- +viriy + HiTri’ai|
. 1
l

—i—(w,-,x —:liw,->( 01’, ,;)+v ()* 0) Fi,v+ZUin’7i,u’:j
i#j .
—e(Dg(u)uy)y +e(uy @ A(u))g(u) +eAw)Dgm)uy. (A.8)

Finally, combining the above and by account of (A.1), we end up with two vector
equations that describe the evolution of v and w:

Z (v,;, + <;livi)x - Ui,xx) [r, + viFiy + 9 r, ffi|
+Z (U)i,t + <:1iwi>x - wi,x}f) [_ gfiv"]
i

+e Y v [Dg)Fi — gw) o 7] =Y i, (A.9)

i

2
. w;i\” .
Z (vi,t + <;Livi) - vi,xx) |:wzrz v+ ()/ ( l) ri,o’j|
; X v;
~ o w' -
+ Z (wi,t + (iiwz)x - wi,xx) I:"i - 9§U—;ri,a}
1
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_ (wi,t + (Z,-wl->x — wi,xx) [ ;fiﬂ] }
+e Z(wl }*vl Dg(u)?,- — Fi,ug(u))

+e ) vi(DgAW) — AW Dg(w) = g() o AW + uiFi » Dgw) )Fy

=Y B — A, (A.10)

Zai = Zfi,ufi [vi (Ui,x — /L‘U,‘) —V; (u)l- — )»;kvl'):l
i
+Z;i,u;j I:UJ‘ (v,-,x - 111)1) — v (w/' - i}fvj) + (vivj)x]

i#]

+ Zfi,v [Zvi,x (vi,x — i vi) + (0,2 (AF - Oi))x]
+ZF’7" |:(v,~’x — ;liv,-) (—Gi,x + (0/ >> — Hix (w,-,x — Ziwi>i|
- v;

X

+Zr’ Wr, [ l* — 0 ) (U,',x — Eivi)]
+ Zfi,vu;j I:U,'Uj (vi,x — z,'v,') + vizvj ()L;k — 0,)]

i#]j

+ Zfi,uv [Ui Vi x (Ui,x - j~ivi) + v 07 (4F - 91‘)]
;

+Zfi vo (vix - jti”i) —v;0; x + 94&%‘ x| — Oiviy <wix - }viwi)
- ] ’ ’ 1 v ) 1 il il
1

- Ul‘zgi,x(/l?< - 01)]

~ ~ 3 / / 5
+ Zri,o'uri [(Ui,x - Aivi) O;w; — O;v; (wi,x - )»iwi)]

L

~ ~ wj ~ ~
+Zr,”(m}’j |:v]9;v—ll <v,-,x — livi> — ngj (w,;x — /liw,'>i|

i#j
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~ 9 » Wi /
+Zri,aa — |\ Vi,x — AV 9 0 “1‘9 i,x wzx_)bw
i

+ZU1UJ |:ka rluu(rj ®rk)+rzurjurk)+vjxrlur]v_Hjxrturja
i#] k

+ Vi xTiwlj — Qi,xfi,uaf/] , (A.11)

and

Z ﬁi — }foci
= Zfi,ufi [(wi,x - }Liwi) vi — w; (w; — )V?Ui)]

i

+Zfi>“i;j [(w,',x — ;u,'w,‘) Vi — w; (wj — ﬂjlﬁ) + (wivj)x]

i#]

+ Zfi,u I:(vi,x_}ti Ui) Wi, x+Vi x (wi,x_ziwi> + (viwi (47 — Hi))x]
i

+Xi:fi,a |:<Ui,x - Zivi) <9; (%)2))6 - (wi,x - Ziwi) <9i,x + <9/ " 2)}
—I—Zr, ouli [w, Vi (v, —p v,) + w;v (),* 0)]
+ZF"’U“FJ' [(v,-,x — Ziv,-) WiV + wiv;v; (/1;k — 9,-)]
i#]
+ Zfi,uv [wivi,x (Ui,x - j-ivi) + wivivix (4 — Hi)]

+ Z Fivo |:<Ui,x — i Ui) <_wi0i,x +0; (f—;)z Ui,x)

_(wi,x_ziwi)v,xew — wiv (A — e»ei,x}

l

+ Zfi,(mfi |:<v,~,x - Zivi) 0. < v,-l )2 v — <wi,x - ziwi> ngi]

i
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2
~ ~ i / wj 5 / wj
+Zri,gu}’j |:<U,',X — /L,'v,') 01’ (v— Vj — | Wix — }L,'w,' 0,-?1)]
i i

i#]
w; \? w;
~ 5 4 5 14
+ Z”i,(m [— (vi.x_)ti Ui) 0; <U_z) 0 x+ (wi,x_}vi wi) 0i 2 0; U_z:|
i

+ Z Wi v; |:Z Vk (Fiuu (Fj @ F) + Fiul julk) + VixFiunFj + VjxFiufjo
i£) X

—0ixFiuglj — Qj,xri,urj,a:|

+ ) (wi = Zv)v; [(Fj @ Aw)F; — (7 @ A@)Fj]
i#]

\ 3 ~ ~ wi . = -
— Z/Ll* (U,',x — iivi) |:ri +viriy + Q;U_'lri’o_:l + (wi’x — Ziw,’) [_ngi’o']x
i ! X

2 - -~ -~
+ | v; (/1:( — Hi)r,-,v + Zvivjri‘urj — Z V; (wj — )L;fvj> Tiul'j
J#L x J

—& Y vi(Fi  Dgu)v;Fj. (A.12)
J#i

System (A.9)-(A.10) can be interpreted as a 2n x 2n system in vector form

with

v+ </11v1> — UVl xx
X

va ;4 | A2v2) — V2 v
X
v2

2.

%G 1 | : -
n /nUn — Un,xx = ! , )

o, w)) ’ +( w), = v [+eD | 2 b (A.13)

Wi,z + (/11w1>x — W1,xx : ;

. v,
Wn,t + (j””w") — Wp,xx
(g A] g@ Al 0 . 0

D = ( Dy e Doy [g(u), 71] ... [g(u),fn]> (A.14)
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[gw),7;] = Dg(w)i; —7j,gu) (A.15)
Dyj = [Dg(u)A(u) — g(u) ® A(u) +v;(7j @ Dg(u)) — A(u)Dg ()| 7;
—75 [Dg@)Fj — Fjugw)]. (A.16)
j=1,...,n, while the map G is defined in (5.5). In Lemma 5.1, it is shown that
g
= Mo+ M| - Moy, as (v, w) — (0, 0).
(v, w)

It is easily verified that

G\ Ru*) "' Dg(u*)R(u*) 0
<a<v,w>> Dﬁ( 0 R(u*rng(u*)R(u*))

as (u, v, w) — (u*,0,0), where R(u) is the matrix of right eigenvectors of A(u). Since
—1
( G ) is uniformly bounded, system (A.13) takes form

(v, w)
V; 4 (AV)y — Ugx B H u) (@
(wf+(Aw)x_1Uxx>+8<K Bb><w>_<‘P>’ (A17)

where A = diag{zi} and @ =0O(1) ) ;% and ¥ = O(1) ), f;. In addition, the matrix
(zla(— gb) that induces the coupling in (A.17) is strictly diagonally dominant. More

precisely, we have
B} — B}, = O(|lu — u*|, v], |wl), Hj, Kj = O(u —u*|, |v], [w]),  (A.18)
and if we regard these matrices as functions of (u, v, w), then
B*(u*,0,0) = B"(u*,0,0) = Bu*) = R(u*) "' Dg(u*)R(u*).

It remains to investigate the various component source terms that appear in the force
of (A.17), given explicitly in (A.11) and (A.12). We observe that all terms in @ and
W that involve a product of distinct components belong to the category of transversal
terms. To treat the remaining component source terms, we should first note the following
facts: We infer from (6.58) that

(|v,~| + |wi| + |vix| + |wl~,x|) lvi x — (ii — )j) v; — w;| = transversal terms.
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In addition, if |w;| > d1|v;|, then by (6.54) one gets

vi = O()vix + O30 Y (1vj] + [wj| + [v).11). (A.19)

J#i

Moreover, from (4.5) and (4.6), it follows
Fi,a, Fi,aa, Fi,zm = O0)v;. (A.20)

Now we list all terms that appear in o; and f; and show, one by one, that are
controllable by account of the above facts.
Coefficients of 7i ,ti:

7 * 3 9%
(] Vi (Ui,x — Aiv,~> — Vi (wi — )vl» Ui) =V I:v,',x - (Ai - /“i) v — w,-] ,

o (wi,x — i wi) —w; (wi — Afvi) = [viwix — vicw;]

=+ w; I:v,',x — (j., — /L;k) v — u),-] .

Coefficients of 7iy:
o 2u;, (Ui,x — ;Li v,') + (vl2 (/L;k — 9,’))x = 2v;x I:v,"x - (:L - )T) v — wi]
+2v; [w; — O;vi] + 0} [vi xwi — viw; «],
o Wiy (Ui,x —Ji Ui) + Vix (wi,x - j»iwi) + (wivi (4 = 0:)),
= 2w; y[w; — O;v;] + 2w; [Ui,x - (zi - if) v — wi]
* 3 , Wi
+ <)hi -0, — 4 + le—> [vixw; — w; xv;i].
1

Coefficients of 7io/vi :

o (vi’x - Z,-v,-) (—Hi,x + (9:%2> — Vi (wi,x - Ziwi) 6:',x

v [ Wi
= —(viwjx — viyw;)0; (-)
X

Vi
= —0;/ |:Ui (—i)jr s
Vi Jx
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o (v,;x - ziv,) 0. (f—;)z ) —v; (U)i,x - z[’Wi) <0i,x + (0;1:}_:))
= (=) () () o =2 () ()

Vi

—; (w,-,x — j,,'w,-) 0; <£;>x —v; (w,;x — 1,-w,-> 0! (%’) <&>x

Coefficients of Fi yuTi:
2 R T 3~*_0,_2 . _'j._;{* . 2 B
e Vi \Vix — AV )+ ; (/L,' i) = Ui | Vix Li i Jvi —wi | +; [w; ivil,

o V; Wi (U,',x — zivi> + vizw,-()v;" — 9,‘) = Viw; I:Ui’x - (;I, - ;j) v — w,-]
+viwi[w; — v;i0;].

Coefficients of T yy:

7 2 /9% 7 %
® Vil (Ui,x - iivi) + iV (A7 — 0;) = vivi [vi,x - (Ai - Al-) v — wi]
+vivi o [wi — O;v;],
3 % 5 .
® WV (Ui,x — A Ui) + v vjw; (4] — 0;) = wiv; » [Ui,x - (/h - Ai) v — wi]

+w;vix[w; — O;v;].

Coefficients of Fi yg:

3 Wi 1
° (vi,x — 2 vi) (—viGi,x + Oivi x v—l> - (wi,x - }viwi) 0vix — 02 (2 — 01)0;

1

Vi x Wi — Vi W; ~
/ L,x % [ el PP a %k
= vjx0; <v—) — 0i xvi (Ui,x - (/11‘ - A,-) Vi — 0ivi)
L
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=20, <vi,x% - wi,x) ([vi‘x - (1,- - A;") v; — wi] + [w; — Hivi])

+ (1,' -+ 01) 0; [vi xwi — viw; 1],

l

2
=z w; b w;
3 / i / :
o (vi,x - /u,'U,') —w,ﬂi,x + 0[ (v_) Vix | — (w,-,x - iiw,‘) Hiv,',x—

—vjw; (4] — 0)0; x

w; w; ~ w; w; Vi xW;
/ 1 1 2 1 / ,X 1,X 13
=0; <— Vi~ iiwi—vix) — O;w;v; « -

Vi Vi vi vi v?
~ w; wi; ~
1 / ] / 1
+4i0;w; (wi,x - Ui,x?) - 9,-? (Ui,xwi,x — Jiw; vz‘,x)
1 l

wi
—T(i}k — 0)0:(w; xvi — vi xw;)
l

w; w;j w; w; ~

/ 1 1 / l l

=20;— [ —viy —wix ) viy —0;— | —vix —wix ) Aivi
Vi Vi Vi Vi

i i
wj wi

/ £ /
+ 9,-7 <Ui,xv_ - wi,x) A7 vi 4+ 0;0;(w; xv;i — v xw;)

wi
i i i

Vj

w; w; B
= Zoéﬁ (vi,xv_‘l - wi,x) ([Ui,x — (4 = A —w;i] + [w; — Oivi])

1

_ wi
- (ii -+ 9;‘) 0:[w; xvi — w; Ui,x]__l-

Vi
Coefficients of Ti guli/Vi:
° <Ui,x — i Ui) w;v; b — (wi,x - j»iwi) V20, = 0bv;[vi xwi — wi ;]
[ ] <v,-,x — :L'vj> w?@: — (w,-,x — Ziw,‘> wiv,ﬂg = ng,-[vi,xwi — wi,xvi].

Coefficients of Ti g¢/Vi:

o — (vi,x - ;livi) w;0:0; « + (wi,x - ;Liwi> i0;01.x = 9;2 [v,- <ﬂ>x:|2’

Vi

2
~ wj = wj wj
o — (Ui,x — /1,'1),‘) w,-;@ﬁ@,;x + (w,;x — Aiwi) wiegei,x = 9;2— |:v,- <—> ] .
i X

Vi Vi
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To sum up, observe that all component source terms are expressed in terms of
transversal, change in speed linear and quadratic and cutoff terms as stated in (6.4).
It is easy to see that the coefficients of the controllable terms are bounded using the
results of Sections 4 and 5. This completes the proof of Lemma 6.1.

Appendix B. The evolution of perturbed components

In this appendix, we study the evolution of the perturbed components p and g of the
decomposition (7.12) and prove Lemma 7.4. The procedure retraces the steps presented
in Appendix ??, however more terms appear in the perturbed source q.’) and w than
before. Also, exp11c1t straightforward calculations establish the form of the perturbed
source (7.24).

The evolution equations of the infinitesimal perturbation z and the flux y = z, —A(u)z
are:

2+ (AW)2)x +eDg)z — zxx = (ux  A(u))z — (z © A(u))uy,
yi + (A)y)x +eDg)y — yxx
=[ux 0 A()z —z 0 A(Wux]y — A(u)[(uy @ A(u))z — (z @ Au))ux]
+(ux o Au))y — (ur @ A(u))z

—&(uy  Dg(u))z + e[A(u)Dg(u)z — Dg(u)A(u)lz. (B.1)

The goal is to rewrite the above system in terms of (p,q) by employing the decom-

position (7.12);
qi
= S o o(2))
n .
y = Z(qi — 2 pi)Fi (u vi, AT — 0 <ﬂ>> .

i=1 pi

(B.2)

Here, we only show the calculations of two of the terms, z; and y;, and the rest can
be obtained in a similar fashion.

z= Y piaki+ Y pilFiutts + vigFin — 001t
i i
A’ qgitPi — Pitqi ~
= szzrz +ZP: Uzlrlv - i—27i,a
pi

+ Z pi (wj - ﬂjvj) Fiufj — € Z pitiug(u)
i,J

i
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N di A A A N
= pit|Fi+0; PR D 0igiifio + ) piviafio
i i i
+Zpl( J Av)rlurj 8217171148(”) (B.3)

o =Y (e =25 pid) Fi+ Y _(qi — 25 p)lFiatts + Fiovis — Figlis]

i i

) A A N 4itPi — Pitqi o
=Y (qie =2 pid) Fi + Y _(ai = 75 pi) |:Ui,tri,v - §, == lpz H lri,a:|
i i i

+Z /L Pi (w] A U])rz ur] SZ(% _/11 Pi)Fiug(u)

i

2
(g \ 2
= E Pi,t |:91 <p_l> ri,0j|+§ qi,t |:ri_ i rla:|+ } vazrrzu
- i -
i i

+th(wj -7 Uj)rl urj _Sz%rz w8 (W)

i,J

_Z;L? Plt|:rz+0 rlai|_0¢btrzo+vztpzrzv
i

+ ) pilwy — )i — epifiug) | - (B.4)
J
In turn system (B.1) becomes a system of two vector equations of the perturbed com-
ponents p and g:

A N A i A AT
E (Pi,t + (iipi)x - Pi,xx) |:ri + Qijri,a] + (Cli,z + ()»iqz')x - Qi,xx) [_Hiri,a:I
1

i

+e Y pilDg); — Fiug)l =Y &, (B.5)

> (Pi,t + (:lipi)x - Pi,xx) |:(A); (%)zﬁ',a}

i

i

. N NE/TEN o ar
- Z /“;k{ (pi,t+ (Mpi))c_p[,xx) |:rl+0 %rl o’i| (Qi,t+ (&qi)x_%,xx) [_eiri,o‘]}
i

5 ~ ~ i A
+ (qi,t + (higi)x — qz',xx) I:"i - Gip_l”i,oi|
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+e Y (g — A p)IDg)Fi — Fiug)] — & pilg(u) o Aw))f;

1

—& Z pil(A)Dg(u)—Dg(u) A(u))r; —v; (F; ® Dg(u))#;]

1
-~ e
i

%= Y Rk [(Pi,x - :hpi> vi = pi (wi — /li'kvi)]

i i

+Zfi,u7j[(1?i,x - :liPi)Uj + (pivj)x — pi(wj — Ajv))]
i#]

533

(B.6)

+ Zfi,u [(Pi,x — j»ipi) Vi x + (Pi (Ui,x - (jti - /17 + éi) Ui)) - Pivi,z]
[' X

N ~ ~ ~/ i ~ Al
+ Zri,a |:(pi,x — i pi) <—9i,x + (@%) ) — (qix — 4i9)0; (
i X

1

+ Zfi,uufi[pivi(vi,x — (i — A+ 0i)vi)]

7 ol Pivie (Wix — (i — A+ 0)vi)]

+ Zfi,uufj[pivj(vi,x — (i — A+ 0)v)]
i#j

N ~ ~/ q ~ ~/
+ Zri,va |:(pi,x — i pi)0; Ui,xp_l. —(qix — 4iqi)0;vi x
. 1
1
—pi(viy — (i — AT+ ai)vi)ai,x]

~ - o A (i 3 A
+7i oufi |:(Pi,x — Aipi)b; vij —(qix — )~i9i)6ivi:|

1

A~ 2 AN i A N
+ E Fioul'j [(Pi,x - ﬂiPi)eivjj —(gix — Mé]i)eivj]
i#] !

. s s g N7
+ Zri,aa [_(pi,x - Aipi)eiei,xp—l_ + (qix — iiqz')@,-@i,x]
i

1

+ Z (pivifiu(Fi — 7)),
i

o).
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+Zpivj |:Z Uk (;i,u’jj,ufk + fi,uu(Fj & ;k)) + Uj,x;i,u;j,v + Ui,xfi,uvfj
iZ) 3

- ej,xfi,ufj,a—éi,xfi,uﬂfj} + Y pivi [(Fj @ AW)F—(Fi « Aw))F;], (B.7)
iJ

and

= Zfi,ufi [(q:',x — jviC]i) v —qi (u)i — i’*U’)jI
i
2 [ (a1 = B ) vy = i (s = 01) + (arvy),

i#]j

+ E Fiy |:<Qi,x_j~i%') Vi xt (f]i (Ui,x— (jti_;“;(‘l'bi) w)) —qz'vi,z]
. X
1

. 2 A A Al l'
—l—Zfi,a |:(pi,x —ipi) <9i (%) ) — (qix — %iqi) (9” + (01‘ Z_) >:|

+ Y FiFil ix — G — 2+ 0i)vi)givi]
+ Y Pl i = Gi = 27+ 0)v)givix]

1
+ > Rl ie — (i — AF + 0)vi)giv;]
i#]

2
A 3 N qi 3 N i
+ E Tivo |:(Pi,x — 2ipi)0;vi x (p—l> —(qix — ﬂiQi)Ui,xgij
. 1
1

1

—qi (Vi x — (i — 2+ @i)vi)@i,x]

2
N - A Al q A A q
+ E Fi.ouli |:(pi,x — 4ipi)0; <p—l> vi — (qix — )»iqz')gip—l_vi:|
. 1 1
1

2
A~ A (i A A 4i
s X i s
+Zr1 oulj | (Pix Aipi)0; | — Uj_(Qix_iiQi)ei_vj
iz pi Di
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N2, e v
+ Zfi,aa |:_(pi,x - /L'Pi)eg <%> Oix + (qix — iiQi)Qi,x9;i:|

1 L

Y @it — ) + Y [0ip (G 0 A — () o AWl

i,j

+ Z qivj |:Z Ok (Fi o Tk AT (Fj @ Fi)) Vi xFi w4V xFiul j o
iZ) 3

- ai,xfi,uo‘fj - 9j,xfi,u7j,aj| + Z(Uin —w;p;)(F; ® A(u))r;
i,j
+ ZA(u)vin[(fj e A(w))r; — (r; @ A(u))r]
i,j

+> 0 = 25)vip(Fi @ AW)E — & Y pivj(Fj e Dgu))F;
i#] i#]

X

* 3 A i A S YN
= (pix — Aipi) |:Vi + Qi;ri,o‘i| — (qix — 4iqi) [eiri,a]x
. 1
L
+ [pi(vi,x — (i =X+ Qi)vi)fi,u]x + [pivifiu (7 = )],
+ D (pivifiuF)x — viapifio — Y pi(wj — Zvp)fiufj ¢, (B.8)
i#] J

where &; =3 — Y (piv; (Fj @ A)ii — (7 @ A(w)F)).

J
System (B.5)—(B.6) can be written in the form

2%

aé\ Dt + ([\p)x — Pxx ~ < P) i
O E— ~ + D == -~ -~ ) B.9
(5(PaQ)> (qr+(Aw)x_Qxx> ¢ q Zﬁ,_ll*él ( )

where D is given in (A.14), if one replaces 7 by 7 as well as A= diag{ii}. The map
G(p, q) is defined at (7.16), while

oG

= Mo+ M; — My as v — 0. (B.10)
ap,q)




536

C.C. Christoforou / J. Differential Equations 221 (2006) 470-541
Again, this implies

oG\ 5, (R(u*)‘Dg(u*)R(u*) 0
ap,q)

0 R(u*)ngw*)R(u*))

p.d) is uniformly bounded, the system

for (u,v) tending to (u*,0). Because (
(B.9) takes the following form:

(pt‘}'(/\p)x_pxx)_i_g(zii ﬁ)<p)=<§>
qr + (AQ)x — Gxx K §b q v/’

. t 5
where the matrix (B H

o §,> is strictly diagonally dominant and

6:(’)(1)Zo¢i+((A—f\)p)x, \?:O(I)Zﬁi‘i‘((A_/A\)LI)

(B.11)
X
In particular, we have
~ o~ ~ —1
B*HY . ( G )
K B") " \a(p,q) ’
PUNS o
B — B}, = O(ju — u*|, Jv]), Hyj, Kij = O(ju —u*|, o)), (B.12)

and when (u, v) = (u*, 0), we have B' =B’ = Bu®).
In what follows, we investigate the various perturbed source terms that appear in the
source ®, ¥ given in (B.11), i.e.

%, Bi — 27 0i, (Gi — :L')Pi)x, (Gi — jvi)%’)x’ (B.13)
and show that these terms are monitored by the controllable functions given in (7.24).

First, we list some additional functions that are controllable. By means of (6.58)—
(6.59), we get

(|Pi| + lgil + |pix| + |Qi,x|>|vi,x — (i = 2Hv —w;

= (1l + i1 + pic| + lgial) - 164

= Transversal terms.
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Moreover, we have
pilwi xvi — wiv; ] = [piw;x — w; pi x1vi + [pixvi — pivix]w;,
qilw; xvi — wivi x] = [giw;ix — gixwilv; +[qi xvi — qivi x]w;.

Hence, p;[w;v; — w;v;,] and g;[w;xv; — w;v; x] are controllable. In addition, the
following bound holds

i — %l = O()|F — 7] = O |0; — 0;] = O1)do|0; — ;1. (B.14)

Since |0/ <1,

N : w;
10 — 01 < |42 - 2
Pi Vi

, (B.15)

and by (6.54) and (7.28) yields
pivill0i — 0] < Igivi — w; pil

= | pix = (3 = %) i+ O30 Y (1pj1 + 1,1+ Ipjcl) | vi
J#

— [ v = (= 27) v+ 060 Y (11 + wjl + 1vjial) | p
J#i

= |(pixvi — vixpi) — (i — 2)vi pi

+OMS0 Y (lvipjl + lgjvil + [pjcvil + lw;pil + |vj cpil)
J#

< 1pixvi — Vi pil + O1)010; — 0;11v; pi|

+O(1)5OZ(|Uipj|+|QjUi|+|Pj,xvi|+|wjpi|+|vj,xpi|)- (B.16)
J#
For small 69 > 0, O(1)dg < %, hence
1pivi(0; — 0] < |givi — w; pil <21 pixvi — vixpil
+O()30 Y (lvipjl + Igjvil + 1pjxvil + lw; pil + v pil),
J#
whence both p;v;(0; — 0;) and g;v; — w; p; are controllable.
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We consider two regions in which 0; —0; can be nonzero i.e. |L| <661 or |L| >66,
Di Di

and ’f—l’ <30;. Let y be the characteristic function, then
lgivi (0 — 0:))] < %‘ | pivi (0; — 0i)|}{{ 4 <651} + Igivi|201 ~X{ %[>60, %‘@51}

< 6811pivi (0 — 07)] + 281 - 2lgivi — w; pil,

piil =01 < |2 ipi B, = O0VE sz g | + 10200 2 5, o] <2,
< 601 | pivi(0; — 91')' + 491lqivi — wi pil.

Now, by virtue of (7.26) and (6.58),

Pixvi (0 — 00) = qivi(0; — 0) + G — 25 pivi(0; — 07)
+OM)30 Y (Ipjvil + lgjvil + |pjcvil). (B.17)

J#
pivi,x(éi —0;) = piwi (0 — 0;) + (Ji — /lf)Pivi(éi —0,)

+OM)30 Y (lvjpil + lw; pil + [vj xpil)-
J#

So pi yvi ((9,- —0;) and pivi,x(@,- — 0;) are controllable.
qi
pi
general, these regions overlap. By (6.54), we deduce

< 38, on which 0; — 0; #0. In

Here, consider the two regions ‘%‘ < 30 and
1

A wl
lgiw; (0; — 0;))] < ‘v_

\g; vi (0; _01')|X{ +|ini(éi_6i)|'1{

wi S qi
wi|_ 4
y |30 } Pi

<351}

l

N

301 lgivi (0; — 0i)|X{‘%|<351} + | piwi (0; — 0i)|X{‘%|<351}
= 3811g;vil 107 — 03] + | pi (vix — (i — D)) 10; — 03]
+OM)30 Y (1pivjl + 1 piw;l + 1 pivj«1)201,
J#
Gi.cvi (0 — 0:) = (O — 0)[qixvi — vixqi] + qivi, (0; — 07)
= (0 — 0)[gixvi — vixqi] + qiwi O — 07) + q; i — 2 (0; — 0)

+OM30 Y (1vjqil + 1wjgil + v i) (B.18)
J#
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Next, we are going to show that the following terms:
pi(Fi = Fi)x, qi (Fi = Fi)x, Pi(i — 2i)x, i Gi — 2i)x (B.19)
are controllable.

~ A

(rtu rlu)~' Fiv—Tiw

+ vix
v,(@ 0 ) Ut(e )

~ [ qi N wi ~
+0; (—l> Fiopi = 0; <—l> Pifi,
pi/« Vi /)y

pivi(l; = 0;) > gy T =Fid o Tiw =P

pi(Fi = Fi)x = pivi(0 — 0) Z v

vl —0) " vl — 0)
A~/ r
+01 ql} ;6 Vi xpi — pixvil + 9 [v,q, x — qiVix]
l 1
+0;#%[vi,xpl DixVi] + 0 [wl Pix — PiWix], (B.20)
1 1

- A Fiu—Fiu) - Fiv—Ti
qi(Fi — F)x = qivi(0; — 0;) Zj —_ ’")r‘—i-vixM

vi (0; — 0;) T (0 — 0)

~ [ qi R wi ~
+0; (—l> Fiopi = 0; <—l) Pifi,
Pi/x Vi J

(rzu Vtu)~ Tiv —Fiw
pivi(0; — 0;) jA— Vi
Z 0; — 0;) v; (0; — 0;)

2 A
~ ([ 4i ri, ! qi
+0i (_l) ;_'a[vi,xpl Pi, x Vil + 9 p_ll_a[vl% x —dqi Ui,x]
i

i Vi
wzrza

f
+0; — =2 [V xqi — qixvi]l + 0, =" [wiqi x — qiwi x]- (B.21)
v U Vi

Thus the first two terms in (B.19) are controllable. We can show that p; (:11- — :li)x and

pi(Ai — A;)x are controllable if we repeat the above calculations where 7 and 7 are

replaced by 1, 7. From (B.17) and (B.18), it follows that the terms ((;1,- — ii) p,-) and
X

((;li — zi)qi) are controllable.
X

In the following calculations, we complete the investigation of the terms o; and ’ﬁi.
First, observe that all terms in (B.5)—(B.6) that involve product of two components of
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different families belong to the category of transversal terms. We show that all other

terms in @; and f3; are controllable by treating one by one. Here we select to present
only two of these terms, the coefficients of 7;

0(mx—wPOwJ+(m(wJ—<M—X?+%>w» — DiVit
X

=2 [pi,x (Ui,x - (jbi - ),*> v — wi)] + 2 [pix (wi — Oiv)]

~ N A1 qi N
+bmJ—MMﬂ(ﬁ—&—M—@j>+@hu%—%wﬂ
1

-2 [pi,xvi (j»i +0; — % — 9i>] + [Pi ((Zi - :li) Ui>x]

—pid; +e¢ Z (Biukpivk + Hikpiwy),
k

. (qz',x — ii‘]i) vix + <qz' <vi,x — (jvi - A+ 91‘) Ui))x — qiviy
=2 [%‘,x (Ui,x - (zi - /1,*) v — wi)] +2[gi x(w;i — 0;v;)]

. A A Al q
+ [qivix — gixvi] (Af —0; — 4 + 9,#)
1

2
~ ( qi
+0; <—l> [pi,xVi — Vixpil

1
-2 [qz‘,xvi (},,- +0; — % — 9i>] + [qz' (di - ;Li)vi)le

—qid; +¢ Z (Bijqu'vk + Hikgiw).
k

[1\1 view of the above analysis, we conclude that all terms in the perturbed source 6
Y are controllable. This completes the proof of Lemma 7.4.
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