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Abstract

We study the prevalence of stable periodic solutions of the Duffing equations for external force which 
guarantees the existence of periodic solutions. Both the dissipative case and the conservative case are con-
sidered. The nonlinearity may be periodic or satisfies the condition of Landesman–Lazer type.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Let X = C(R/TZ) be the space of continuous T -periodic functions. Then X is a separable 
Banach space with the norm ‖f ‖∞ = max

t∈R
|f (t)|. We consider the Duffing equation

ẍ + cẋ + g(x) = f (t), (1.1)
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where c > 0, g ∈ C(R, R) and f ∈ X. It is well-known that equation (1.1) may not admit 
T -periodic solutions if we just take f from the space X, even when some additional conditions 
are satisfied. For example, it was shown in [1,18,25] that the following equation

ẍ + cẋ + a sinx = h(t)

may not have T -periodic solutions in some cases, where c > 0 and h ∈ X0, where

X0 = {f ∈ X : f̄ = 1

T

T∫
0

f (t)dt = 0}.

Therefore, the possible space to guarantee the existence of T -periodic solutions of (1.1) may be 
smaller than X. If we have no damped term in (1.1), it becomes the conservative equation,

ẍ + g(x) = f (t). (1.2)

When g is a periodic function, we know that the periodic solutions of (1.2) can always be found 
as critical points of the corresponding action functional. See [17]. Compared with (1.2), the 
periodic solutions of equation (1.1) cannot be found as critical points because it is dissipative.

In this paper, we introduce the following two subspaces

X̃∗ = {f ∈ X : equation (∗) has at least one T -periodic solution},

and

S∗ = {f ∈ X : equation (∗) has at least one stable T -periodic solution},

in which (∗) denotes (1.1) or (1.2). Obviously, S∗ ⊂ X̃∗. Our aim is to prove that S∗ is prevalent 
in X̃∗. A prevalent set can be seen as the analogue of a set of full measure in infinite dimension. 
For more information on prevalence, we refer to the paper by Ott and York [26].

In the last three decades, the stability of periodic solutions of (1.1) has attracted many re-
searchers since Ortega initiated the study by using the relations between the stability and the 
Brouwer degree of Poincaré map. See, for example, [3–5,19,20]. For the conservative equation 
(1.2), looking for stable periodic solutions is a difficult topic because the study requires sophisti-
cated techniques which use the information on nonlinear approximation. An important progress 
along this topic is ‘third order approximation’. Based on Moser’s twist theorem, Ortega [21]
obtained the formula of the first twist coefficient of time periodic scalar Lagrangian equations. 
Later, such formula was rewritten by Zhang [31] and has been used to study the stable periodic 
solutions of different differential equations, such as swing, the pendulum and singular equations 
[6–9,15].

Very recently, in [22,23] Ortega proved the prevalent property of stable periodic solutions of 
the forced pendulum equations

ẍ + β sinx = f (t). (1.3)

In particular, he proved that if
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0 < β ≤
(π

T

)2
, (1.4)

equation (1.3) has at least one stable T -periodic solution for almost every forcing f ∈ X0. In 
other words, the set

{f ∈ X0 : (1.3) has a stable T -periodic solution}

is prevalent in X0. Two examples were constructed in [24] to explain that the upper bound 
(π/T )2 in (1.4) is optimal.

The motivation of our study is to obtain the prevalence of stable periodic solutions for (1.1)
and (1.2). We emphasize that the extension of (1.3) to equations (1.1) and (1.2) has essential diffi-
culties and necessities. First, we consider the dissipative case, which was not covered in [22–24]. 
Secondly, we can deal with a large class of functions g. For example, g may be periodic or satis-
fies the condition of Landesman–Lazer type. Thirdly, because we deal with general functions g
instead of sinx, we have to overcome some essential difficulties.

The rest part is organized as follows. In Section 2, we recall two prevalent results and the 
eigenvalue theory for Hill equations. In Section 3, we prove the prevalence of stable periodic 
solutions for equation (1.1) when g is periodic, or g satisfies the condition of Landesman–Lazer 
type. See [28] for recent surveys on results of the Landesman–Lazer type. Finally in Section 4, 
we prove the prevalence of stable periodic solutions for equation (1.2).

2. Preliminaries

2.1. Two prevalent results

Let E be a separable Banach space with the norm ‖ · ‖. We consider a map

H :Rd ×E → Rd, (ξ, e) 	→ H(ξ, e)

and define

Z = {(ξ, e) ∈Rd ×E : H(ξ, e) = 0}.

We say that 0 is a regular value of H(·, e) if det[∂1H(ξ, e)] 
= 0 for each ξ ∈ Rd such that 
H(ξ, e) = 0.

The following prevalent transversality theorem was proved in [22, Theorem 2]. See [11, 
Lemma 1] and [27, Lemma 3.2] for related results.

Lemma 2.1. (See [22].) Assume that the following conditions hold:

(C1) H ∈ C1(Rn ×E, Rn);
(C2) given b > 0, there exists B > 0 such that if (ξ, e) ∈ Z and ‖e‖ ≤ b, then |ξ | ≤ B;
(C3) there exists a compact set K ⊂ E such that the linear operator ∂2H(ξ, e) : E → Rd is onto 

if (ξ, e) ∈ Z and e /∈ K .

Then the set
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Ẽ = {e ∈ E : 0 is a regular value of H(·, e)}

is open and prevalent. Moreover, if

H(T (ξ), e) = H(ξ, e) with T (ξ1, ξ2, . . . , ξn) = (ξ1 + T , ξ2, . . . , ξn),

then condition (C2) can be replaced by

(C2)per given b > 0, there exists B > 0 such that if (ξ, e) ∈ Z and ‖e‖ ≤ b, then |ξ̂ | ≤ B , where 
ξ̂ = (ξ2, . . . , ξn).

Lemma 2.2. (See [23].) Let G be an open and prevalent subset of E. Assume that there exist a 
family {Uα}α∈A of open subsets of E and functions dα ∈ C1(Uα, R) such that

G ⊂
⋃
α∈A

Uα,

d ′
α(e) 
= 0 for each e ∈ Uα,α ∈ A.

Let C be a Borel subset of R with zero measure. Then the set

G̃ =
⋃
α∈A

d−1
α (R\C)

is prevalent in E.

2.2. Some facts on Hill’s equation

Given a ∈ X, let us consider Hill’s equation

ẍ + a(t)x = 0. (2.1)

We refer the reader to the book [16] for details on Hill’s equations. Denote by �(t) = φ1(t) +
iφ2(t) the complex-valued solution of (2.1) with the initial data �(0) = 1 and �̇(0) = i. The 
Floquet multipliers of (2.1) are the eigenvalues ρi, i = 1, 2 of the monodromy matrix


T =
(

φ1(T ) φ2(T )

φ̇1(T ) φ̇2(T )

)
.

Since 
T is symplectic, we know that ρ1 · ρ2 = 1. We can classify (2.1) into three cases, accord-
ing to the Floquet multipliers, as either hyperbolic when |ρ1,2| 
= 1, or elliptic when |ρ1,2| = 1
but ρ1,2 
= ±1, or parabolic when ρ1,2 = ±1, respectively.

The discriminant of (2.1) is defined as

� := trace(
T ) = ρ1 + ρ2,

which can be thought as a functional



7804 J. Chu, F. Wang / J. Differential Equations 260 (2016) 7800–7820
� : X → R, a 	→ �[a]. (2.2)

It is well known that � is continuous. Moreover, it was shown in [23] that � is Gateaux differ-
entiable. In fact, for a given function δ ∈ X, we know from [23, Lemma 7] that

�′[a]δ =
T∫

0

χ(s, a)δ(s)ds,

where

χ(s, a) = −φ2(T )φ2
1(s) + (φ1(T ) − φ̇2(T ))φ1(s)φ2(s) + φ̇1(T )φ2

2(s). (2.3)

The function χ(·, a) is continuous and the derivative �′[a] can be interpreted as an element of 
the dual space of X.

Next we recall the theory of eigenvalues of (2.1). Consider the eigenvalue problems

ẍ + (λ + a(t))x = 0 (2.4)

subject to the periodic boundary condition

x(0) − x(T ) = ẋ(0) − ẋ(T ) = 0, (2.5)

or to the anti-periodic boundary condition

x(0) + x(T ) = ẋ(0) + ẋ(T ) = 0. (2.6)

Denote by

λD
1 (a) < λD

2 (a) < · · · < λD
n (a) < · · ·

all eigenvalues of (2.4) with the Dirichlet boundary condition

x(0) = x(T ) = 0. (2.7)

Theorem 2.3. (See [16].) There exist two real-valued sequences {λn(a) : n ∈ N} and {λn(a) :
n ∈ Z+} such that

(P1) −∞ < λ0(a) < λ1(a) ≤ λ1(a) < · · · < λn(a) ≤ λn(a) < · · · and λn(a) → +∞, λn(a) →
+∞ as n → ∞;

(P2) λ is an eigenvalue of (2.4)–(2.5) (or (2.4)–(2.6)) if and only if λ = λn(a) or λn(a) for some 
even (or odd) integer n;

(P3) for any n ∈ N, λn(a) = min{λD
n (at0) : t0 ∈ R}, λn(a) = max{λD

n (at0) : t0 ∈ R}, where 
at0(t) = a(t + t0);

(P4) if a1(t) ≥ a2(t) for all t , then for any n ∈N, λn(a1) ≤ λn(a2), λn(a1) ≤ λn(a2), λD
n (a1) ≤

λD
n (a2); moreover, if ā1 > ā2, then all inequalities above are strict;

(P5) the eigenfunction of λ0(a) do not vanish everywhere; for n ≥ 1, the eigenfunctions of λn(a)

or λn(a) have exactly n − 1 zeros in the intervals of the form (t0, t0 + T ).
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Lemma 2.4. Assume that λ1(a) > 0. Then the following conclusions are true.
(1) Equation (2.1) does not admit any negative Floquet multipliers.
(2) The possible T -periodic solution x of equation (2.1) is either trivial or different from zero 

for each t ∈R.

Proof. (1) Suppose that there exists a nontrivial solution x of (2.1) with a negative Floquet mul-
tiplier, i.e. x(t + T ) = ρx(t), t ∈ R for some ρ < 0. Then there exists t0 ∈ [0, T ] such that 
x(t0) = x(t0 + T ) = 0, and therefore x is a nontrivial solution of (2.1) with the Dirichlet bound-
ary condition (2.7), which implies that x is an eigenfunction associated with zero eigenvalue 
λD

k (a) = 0 for some k ≥ 1. Therefore λ1(a) ≤ λD
1 (a) ≤ λD

k (a) = 0, which is a contradiction.
(2) Assume that (2.1) admits a nontrivial T -periodic solution x which vanishes at some t0. 

Then it must vanishes also at t0 + T . Now the proof is finished by the same reasoning as 
in (1). �

Let us consider the linear periodic equation

ẍ + cẋ + a(t)x = 0. (2.8)

Lemma 2.5. Assume that

λ1(a) + c2

4
> 0.

Then the following conclusions are true.
(1) Equation (2.8) does not admit any negative Floquet multipliers.
(2) The possible T -periodic solution x of equation (2.8) is either trivial or different from zero 

for each t ∈R.

Proof. Let x(t) = e− 1
2 ctu(t). Then (2.8) becomes

ü +
[
a(t) − c2

4

]
u = 0.

Obviously x and u have the same zeros. Notice the following fact, which can be found in the 
proof of [29, Lemma 2.1],

λ1(a − c2

4
) = λ1(a) + c2

4
.

Now the results follow from Lemma 2.4. �
2.3. Index

Given ξ = (ξ1, ξ2) ∈ R2. Let x(t; ξ) be the solution of (1.1) satisfying

x(0) = ξ1, ẋ(0) = ξ2.
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We assume that x(t; ξ) is unique for each ξ = (ξ1, ξ2) ∈ R2. The Poincaré map is defined as the 
mapping

P : DT ⊂R2 →R2, P (ξ) = (x(T ; ξ), ẋ(T ; ξ)),

where

DT = {ξ ∈ R2 : x(t; ξ) is defined in [0, T ]}.

It is well known that DT is open in R2 and P is a homeomorphism between DT and P(DT ). 
Moreover, the search of T -periodic solution of (1.1) is equivalent to looking for the fixed point 
of ξ = P(ξ).

Let x be a T -periodic solution of (1.1) with ξ0 = (x(0), ẋ(0)). The solution x is said to be 
isolated (periodic T ) if ξ0 is an isolated fixed point of P . In such case the index of x is defined 
by

indT (x) = i[P, ξ0],

where i is the notion of the local fixed point index in the plane. We refer to [12] for more 
information about the theory of the index.

3. Prevalence of stable periodic solutions of (1.1)

3.1. Connection between asymptotical stability and index

We say that T -periodic solution x of (1.1) is non-degenerate if y ≡ 0 is the unique T -periodic 
solution of

ÿ + cẏ + g′(x(t))y = 0. (3.1)

Lemma 3.1. (See [10, Theorem 2.1].) Assume that the characteristic exponents associated with 
(3.1) all have negative real parts. Then the corresponding T -periodic solution x of (1.1) is 
asymptotically stable.

Lemma 3.2. Assume that c > 0 and x is a non-degenerate T -periodic solution of (1.1) such that

λ1(g
′(x(t))) + c2

4
≥ 0. (3.2)

Then x is asymptotically stable (resp. unstable) if and only if indT (x) = 1 (resp. indT (x) = −1).

Proof. Denote by ρ1 and ρ2 (|ρ1| ≥ |ρ2|) the Floquet multipliers of (3.1). Since x is non-
degenerate, 1 cannot be a Floquet multiplier. Because x is non-degenerate, we can assume that 
the inequality (3.2) is strict. By Lemma 2.5 the multipliers are either conjugate complex numbers 
or positive real numbers.

If ρ1 and ρ2 are a pair of conjugate numbers, by applying the Jacobi–Liouville formula, since 
ρ1ρ2 = e−cT , we have that
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|ρ1| = |ρ2| = e− cT
2 < 1,

and

Re(μ1) = Re(μ2) = 1

2
Re(μ1 + μ2) = 1

2T
ln(ρ1ρ2) = − c

2
< 0.

Thus

indT (x) = sign{det(I2 − M(T ))} = sign{|1 − ρ1|2)} = 1

and x is asymptotically stable by Lemma 3.1.
If ρ1 and ρ2 are real and positive. Then indT (x) = 1 if and only if both ρ1 and ρ2 are smaller 

than one because we have the fact ρ1ρ2 < 1. Thus the characteristic exponents are both negative 
and the statement about the asymptotical stability is proved also in this case.

Finally, x is unstable if and only if ρ1 has absolute value greater than one, which can hold 
only if they are real. Thus we know that 0 < ρ2 < 1 < ρ1 and therefore indT (x) = sign{(1 −
ρ1)(1 − ρ2)} = −1. �
3.2. Periodic cases

Consider the differential equation (1.1) with c > 0 and f ∈ X. We assume that g : R → R is 
of class C1 and satisfies

(σ1) g(x + 2π) = g(x) for each x ∈ R,
(σ2) g is not locally trivial, which means that for a fixed constant ξ and every open and non-

empty interval I ⊂ R there exists some x ∈ I such that g(x) 
= ξ .

Theorem 3.3. Assume that (σ1) and (σ2) hold. Then the set

Rper = {f ∈ X̃(1.1) : every T -periodic solution of (1.1) is non-degenerate}

is open and prevalent in X̃(1.1).

Proof. Given ξ = (ξ1, ξ2)
∗ ∈R2 and f ∈ X̃(1.1), the solution of the initial value problem

ẍ + cẋ + g(x) = f (t), x(0) = ξ1, ẋ(0) = ξ2 (3.3)

will be denoted by x(t; ξ, f ). Since g is bounded, this solution is globally defined. Let φ1(t) and 
φ2(t) be real-valued solutions of (3.1) satisfying

φ1(0) = 1, φ̇1(0) = 0, φ2(0) = 0, φ̇2(0) = 1.

Let


(t; ξ, f ) =: 
(t) =
(

φ1(t) φ2(t)

φ̇ (t) φ̇ (t)

)

1 2
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be the fundamental matrix solution of

Ẏ = A(t)Y, Y (0) = I2, (3.4)

with

A(t) =
(

0 1
−g′(x(t; ξ, f )) −c

)
.

The theorem on continuous dependence can be applied to the Cauchy problems (3.3) and (3.4). 
It implies that the map

(t; ξ, f ) ∈ R×R2 × X → 
(t; ξ, f ) ∈R2×2

is continuous. In particular it is uniformly continuous on compact sets. This implies that if ξn → ξ

and ‖fn − f ‖∞ → 0, then


(t; ξn, fn) → 
(t; ξ, f )

uniformly in t ∈ [0, T ]. It is easy to verify that W(t) = det
(t) satisfies the following equation

W ′(t) = −cW(t),

which implies that

W(t) = W(0) exp
(

−
t∫

0

cds
)

= exp(−ct). (3.5)

The Poincaré matrix of (3.1) is


(T ) =
(

φ1(T ) φ2(T )

φ̇1(T ) φ̇2(T )

)
.

Using (3.5), we have

W(T ) = det
(T ) = exp(−cT ).

Let us consider the map

H :R2 × X →R2, H(ξ, f ) = (x(T ; ξ, f ) − ξ1, ẋ(T ; ξ, f ) − ξ2)
∗.

Obviously, the zeros of H(·, f ) are the initial conditions producing T -periodic solutions. This 
map is continuous and the theorem on differentiability with respect to initial conditions and 
parameters implies that it is Gâteaux differentiable with partial derivatives ∂1H(ξ, f ) ∈ R2×2

and ∂2H(ξ, f ) ∈ L(X, R2) given by

∂1H(ξ,f ) = 
(T ; ξ, f ) − I2, ∂2H(ξ,f )p = (y(T ), ẏ(T ))∗,
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where p is an arbitrary function in X and y(t) is the solution of

ÿ + cẏ + g′(x(t; ξ, f ))y = p(t), y(0) = ẏ(0) = 0.

Using the formula of variation of constants, one may easily see that

y(t) =
T∫

0

G(t, s; ξ, f )
p(s)

W(s)
ds, (3.6)

where

G(t, s; ξ, f ) = φ2(t)φ1(s) − φ2(s)φ1(t).

Similarly,

ẏ(t) =
T∫

0

∂G

∂t
(t, s; ξ, f )

p(s)

W(s)
ds. (3.7)

The continuity of 
 and the formulas (3.6) and (3.7) can be employed to prove the continuity of 
the partial derivatives of H . In particular the continuity of

(ξ, f ) ∈R2 × X → ∂2H(ξ,f ) ∈ L(X,R2)

is a consequence of the estimate

‖∂2H(ξ,f ) − ∂2H(ξ̂ , f̂ )‖ ≤
1

W(T )

T∫
0

{|G(T , s; ξ, f ) − G(T , s; ξ̂ , f̂ )| + |∂G

∂t
(T , s; ξ, f ) − ∂G

∂t
(T , s; ξ̂ , f̂ )|}ds.

The previous discussions show that H is Fréchet differentiable and (C1) of Lemma 2.1 holds. 
The condition (σ1) implies that

x(t;T (ξ), f ) = x(t; ξ, f ) + 2π.

We can deduce that H satisfies the periodicity condition H(T (ξ), f ) = H(ξ, f ), where T (ξ) =
T (ξ1, ξ2) = (ξ1 + 2π, ξ2). Let x be a T -periodic solution of (1.1). Multiplying (1.1) by ẍ and 
integrating from 0 to T , we have that

T∫
0

ẍ2dt + c

T∫
0

ẋẍdt +
T∫

0

g(x(t; ξ, f ))ẍdt =
T∫

0

f (t)ẍdt,

from which we can deduce that there exists a constant C (dependent only on T , f and g) such 
that ‖ẍ‖2 ≤ C. By the Sobolev inequality,
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‖ẋ‖∞ ≤
√

T

12
C.

Then

|ξ2| = |ẋ(0; ξ, f )| ≤ ‖ẋ‖∞ ≤
√

T

12
C. (3.8)

Thus the condition (C2)per holds with B =
√

T
12C.

To check [(C3), Lemma 2.1] we define

K = {k ∈R : min
x∈R g(x) ≤ k ≤ max

x∈R
g(x)}

and prove that ∂2H(ξ, f ) : X → R2 is onto if (ξ, f ) ∈ Z and f /∈ K . After some computations 
with the formulas (3.6) and (3.7) we obtain

∂2H(ξ,f )p = 
(T ; ξ, f )J

T∫
0

p(t)
(φ1(t)

W(t)
,
φ2(t)

W(t)

)∗
dt

with

J =
(

0 −1
1 0

)
.

Since 
 and J are inverse, it is enough to prove that

L : p ∈ X →
T∫

0

p(t)
(φ1(t)

W(t)
,
φ2(t)

W(t)

)∗
dt ∈R2

is onto. In view of [22, Lemma 6], we need to prove that

(φ1(t)

W(t)

)′
,

(φ2(t)

W(t)

)′

are linearly independent. Actually we will prove that the Wronskian of these functions

D(t; ξ, f ) =

∣∣∣∣∣∣∣
(

φ1(t)
W(t)

)′ (
φ2(t)
W(t)

)′

(
φ1(t)
W(t)

)′′ (
φ2(t)
W(t)

)′′

∣∣∣∣∣∣∣
is not identically zero. From (3.1) and (3.5), we have

D(t; ξ, f ) = g′(x(t; ξ, f ))

2
.

W (t)
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Assume by contradiction that D(t; ξ, f ) ≡ 0. Then g′(x(t; ξ, f )) vanishes identically and so 
g(x(t; ξ, f )) is a constant k. From the equation (1.1),

f (t) = ẍ + cẋ + k.

The solution x(t; ξ, f ) is T -periodic and hence k = 1
T

∫ T

0 f (t)dt = f . In consequence, we obtain 
that

g(x(t; ξ, f )) ≡ f ,

and the assumption (σ2) implies that x(t; ξ, f ) must be constant. Then

f (t) = k = f ,

which has been excluded since f /∈ K . The proof is completed using Lemma 2.1. �
Lemma 3.4. Assume that f ∈ Rper. Then there exists only a finite number of T -periodic solutions 
of (1.1) satisfying x(0) ∈ [0, 2π ].

Proof. Given a T -periodic solution x. If f ∈ Rper , we know that det(I − P ′(x)) 
= 0. The im-
plicit function theorem can be applied to deduce that all T -periodic solutions of (1.1) are isolated. 
If we combine this fact with the bound in (3.8) we can conclude that the set of fixed points

{(ξ1, ξ2) ∈R2 : P(ξ) = ξ, ξ1 ∈ [0,2π ]}

is finite. �
Let f ∈ Rper and a number σ ∈ R such that x(0) 
= σ for any T -periodic solution. Let 

x1, . . . , xn be the family of T -periodic solutions satisfying

σ < xi(0) < σ + 2π, i = 1, . . . , n.

Each of these solutions has an associated index that can be computed by the formula

indT (xi) = sgn{(1 − ρ1)(1 − ρ2)},

where ρ1 and ρ2 are the Floquet multipliers associated to the variational equation (3.1) with 
x = xi .

Lemma 3.5. (See [20].) Let x1, . . . , xn be the family of T -periodic solutions of (1.1). Then

n∑
i=1

indT (xi) = 0.
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Theorem 3.6. Assume that (σ1), (σ2) are satisfied and

g′(x) < (
π

T
)2 + c2

4
, for all x ∈R. (3.9)

Then for each f ∈ Rper, equation (1.1) has at least one asymptotically stable T -periodic solution 
and one unstable T -periodic solution.

Proof. We remark that condition (3.9) means that

λ1(g
′(x(t))) + c2

4
> 0

holds for every T -periodic solution x of (1.1). See [29] for the related discussions. For each 
f ∈ Rper , (1.1) has T -periodic solutions. Let x1, . . . , xn be T -periodic solutions of (1.1). From 
Lemma 3.5, each index indT (xi) can only take the values 1 or −1 and so at least one of the 
solutions, say x1, must satisfy indT (x1) = 1. x1 is asymptotically stable by Lemma 3.2. Similarly, 
there exists at least one T -periodic solution x2 satisfying indT (x2) = −1, which is unstable. �

The following result follows directly from Theorem 3.6 and it is very related to [19, Theo-
rem 3.1], where category was employed instead of prevalence.

Theorem 3.7. Under the conditions of Theorem 3.6, the set S(1.1) is prevalent in X̃(1.1).

3.3. Cases of Landesman–Lazer type

In this subsection, we always assume that c > 0 and g ∈ C1(R, R). Moreover, we assume that

(σ3) g is bounded and

lim
x→−∞g(x) = g(−∞) < f < g(+∞) = lim

x→+∞g(x).

The condition (σ3) is known as Landesman–Lazer type, which was introduced in [13]. The clas-
sical results by Lazer in [14] and Ward in [30] for equations (1.1) and (1.2) imply that the 
Landesman–Lazer condition (σ3) is sufficient for the existence of a T -periodic solution, and 
therefore in this case

X̃ = {f ∈ X : g(−∞) < f < g(+∞)}.

Theorem 3.8. Assume that (σ2) and (σ3) hold. Then the set

RLL = {f ∈ X̃ : every T -periodic solution of (1.1) is non-degenerate}

is open and prevalent in X̃.
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Proof. We will show that the assumptions of Lemma 2.1 are satisfied. Following along the same 
lines of Theorem 3.3, we can obtain that assumptions (C1) and (C3) hold. Therefore, we only 
need to prove that (C2) holds.

Let x be a T -periodic solution of (1.1). Multiplying (1.1) by ẋ and integrating, we get

c

T∫
0

ẋ2(t)dt =
T∫

0

ẋ(t)f (t)dt.

Using the Hölder inequality, we obtain that ‖ẋ‖2 ≤ 1
c
‖f ‖2. On the other hand, integrating (1.1)

shows that there is a t0 ∈ [0, T ] such that g(x(t0)) = f . Since (σ2), x(t0) is bounded. Thus we 
have for all t ∈ R,

|x(t)| = |x(t0) +
t∫

t0

ẋ(s)ds| ≤ |x(t0)| + 1

c
‖f ‖2.

The condition (C2) holds with B = |x(t0)| + 1
c
‖f ‖2. �

Lemma 3.9. Assume that conditions (σ2), (σ3) and (3.9) hold. Then for each f ∈ RLL, equation 

(1.1) has only finite T -periodic solutions x1, . . . , xn, which satisfy 
n∑

i=1
indT (xi) = 1.

Proof. The proof of the first part is the same as that of Lemma 3.4. Consider the following 
homotopy equation

ẍ + cẋ + g(x) = τf (t), τ ∈ [0,1]. (3.10)

Using the same way in the proof of Theorem 3.8, we can show that there exists a constant l > 0, 
independently of τ , such that all possible T -periodic solutions xτ of (3.10) satisfies

‖xτ‖ ≤ l.

Let Pτ denote the Poincaré associated to (3.10). Since (3.10) is an autonomous equation, by [2, 
Theorem 1] we know that the degree deg(I − P0, Bl, 0) can be reduced to the Brouwer degree 
deg(g, Bl ∩R, 0). Under the condition (σ3), we know that

deg(g,Bl ∩R,0) = 1.

By applying homotopy invariance property, we have that

deg(I − P1,Bl,0) = deg(I − P0,Bl,0) = 1.

Now the result follows from the additive property of degree theory. �
Theorem 3.10. Assume that (σ2), (σ3) and (3.9) hold. Then for each f ∈ RLL, equation (1.1)
has at least one asymptotically stable solution.
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Proof. Let x1, . . . , xn be the family of T -periodic solutions of (1.1). From Lemma 3.9, each 
index indT (xi) can only take the values 1 or −1 and so at least one of the solutions, say x1, must 
satisfy indT (x1) = 1 and be asymptotically stable by Lemma 3.2. �
Theorem 3.11. Under the conditions of Theorem 3.10, the set S(1.1) ∪ (X \ X̃) is prevalent in X.

4. Prevalence of stable periodic solutions of (1.2)

In this section, we will study the prevalence of stable periodic solutions for the conservative 
equation (1.2). We assume that f ∈ X0, g is bounded and satisfies (σ2), (σ3). We also assume 
that the following condition holds

(σ4) g ∈ C2(R, R) and g2(x) + (g′(x))2 > 0 for any x ∈ R. The zeros of g′′(x) are isolated and 
g′′(x) = 0 if g(x) = 0.

For example, it is easy to verify that g(x) = arctanx satisfies (σ2), (σ3) and (σ4). Under the above 
conditions, we will prove that the set S(1.2) is prevalent in the space X0.

4.1. Discriminant of the variational equation

We say that a T -periodic solution x of (1.2) is non-degenerate if y ≡ 0 is the unique 
T -periodic solution of the variational equation

ÿ + g′(x(t))y = 0. (4.1)

Given f ∈ X0 and a T -periodic solution x of equation (1.2), we define D = D[x] as the 
discrimination of the variational equation (4.1). To be precise on the domain of the functional, 
we introduce the set

M = {x ∈ C2(R/TZ) :
T∫

0

g(x(t))dt = 0}.

The tangent space at x ∈ M is

Tx(M) = {y ∈ C2(R/TZ) :
T∫

0

g′(x(t))y(t)dt = 0}.

The rigorous definition of the functional is

D : M →R, D[x] = �[g′(x)].
From the chain rule we deduce that D is C1 and for each y ∈ Tx(M),

D′[x]y = �′[g′(x)](g′′(x))y =
T∫

χx(t)(g
′′(x))y(t)dt.
0
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Under the condition (σ4), we know that the zeros of g are also isolated. Then let us take

M∗ = M\{xn : n ∈ Z},

where xn satisfies g(xn) = 0. Of course we also have that g′′(xn) = 0. The restriction of the 
functional will be denoted by D∗ : M∗ →R.

Lemma 4.1. Assume that g satisfies (σ4). Then all real numbers different from ±2 are regular 
values of D∗.

Proof. Assume that x ∈ M∗ is a critical point of D∗. Then D′[x] = 0 and

T∫
0

χx(t)(g
′′(x))y(t)dt = 0

for each y ∈ Tx(M). By the general theory of Hilbert spaces we know that

Tx(M)⊥ = V ⊥,

where V is the closure of Tx(M) in L2(R/TZ). The space V can also be described as the 
hyperplane orthogonal to the line spanned by g′(x(t)),

V = L⊥, L = {λg′(x) : λ ∈R}.

Hence the function x is a critical point of D if and only if

χxg
′′(x) ∈ V ⊥ = (L⊥)⊥ = L.

This means that

χx(t)g
′′(x(t)) = λg′(x(t)), (4.2)

for some λ ∈R. Since x ∈ M , there exists an instant τ such that g(x(τ)) = 0. By condition (σ4), 
we know that g′′(x(τ )) = 0 and therefore

λg′(x(τ )) = 0.

Using condition (σ4) again, g′(x(τ )) 
= 0 and we obtain λ = 0. Hence

χx(t)g
′′(x(t)) = 0, for every t.

Since the zeros of g′′ are isolated, there exists an interval I such that

g′′(x(t)) 
= 0, for every t ∈ I.

Thus χx(t) = 0 for each t ∈ I . It follows from (2.3) that
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φ̇1(T ) = φ2(T ) = φ1(T ) − φ̇2(T ) = 0,

which means that the monodromy matrix 
T = ±Id and therefore D[x] = ±2. �
Consider the operator

F : M → X0, F [x] = ẍ + g(x),

then equation (1.2) with f ∈ X0 is equivalent to the operator equation

F [x] = f.

The map F is smooth with derivative

F ′[x] : Tx(M) → X0, F ′[x]y = ÿ + g′(x)y.

Lemma 4.2. Given x ∈ M , the derivation F ′[x] is an isomorphism if and only if x is a non-
degenerate T -periodic solution of (1.2).

Proof. Suppose that F ′[x] is an isomorphism and let y be a T -periodic solution of the linearized 
equation (4.1). Integrating over a period, we obtain 

∫ T

0 g′(x(t))y(t)dt = 0 and so y ∈ Tx(M). 
From the linearized equation, F ′[x]y = 0 and this implies y = 0 because Ker F ′[x] = {0}.

Conversely, assume that x is non-degenerate, then the kernel of F ′[x] is trivial. To prove 
that F ′[x] is onto, let p be a given function in X0. By Fredholm’s alternative we know that the 
non-homogeneous equation

ÿ + g′(x(t))y = p(t)

has a unique T -periodic solution. By integrating the above equality over one period, we have

T∫
0

g′(x(t))y(t)dt = 0.

Then y ∈ Tx(M) and F ′[x]y = p. Thus F ′[x] is onto. �
Lemma 4.3. (See [23].) Let C = ϕ(L ∪ Q), where ϕ(x) = 2 cos(2πx) and L denotes the set of 
Liouville numbers. Assume that g is real analytic, x is a T -periodic solution of (1.2) and the 
discriminant of the linearized equation (4.1) satisfies |�| < 2 and � /∈ C. Then x is stable.

4.2. Connection between ellipticity and index

Lemma 4.4. Assume that x is a non-degenerate T -periodic solution of (1.2) such that

λ1(g
′(x(t))) > 0. (4.3)

Then x is elliptic (resp. hyperbolic) if and only if indT (x) = 1 (resp. indT (x) = −1).
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Proof. Denote by ρ1 and ρ2(|ρ1| ≥ |ρ2|) the Floquet multipliers of (4.1). Since x is non-
degenerate 1 cannot be a Floquet multiplier. By Lemma 2.4 the multipliers are either conjugate 
complex numbers or positive real numbers.

If ρ1 and ρ2 are a pair of conjugate numbers, then x is elliptic if and only if indT (x) =
sign{|1 − ρ1|2)} = 1. If ρ1 and ρ2 are positive real numbers, then 0 < ρ2 < 1 < ρ1, and therefore 
x is hyperbolic if and only if indT (x) = sign{(1 − ρ1)(1 − ρ2)} = −1. �
Theorem 4.5. Assume that (σ2), (σ3) and (σ4) hold. Suppose further that g is real analytic and 
g′(x) < (π

T
)2 for all x ∈ R. Then there exists an open and prevalent set G̃ ⊂ X0 such that for 

each f ∈ G̃, equation (1.2) has at least one stable solution.

Proof. The proof is divided into four steps.
Step 1. Non-degeneracy. First we note that if g′(x) <(π

T
)2 for every x ∈R, then λ1(g

′(x(t)))>0. 
Let the set

U = {f ∈ X0 : every T -periodic solution of (1.2) is non-degenerate}.

Now we prove that U is open and prevalent in X0.
Given ξ = (ξ1, ξ2)

∗ ∈ R2 and f ∈ X0, x(t; ξ, f ) is a solution of the initial value problem

ẍ + g(x) = f (t), x(0) = ξ1, ẋ(0) = ξ2.

Let


(t; ξ, f ) =: 
(t) =
(

φ1(t) φ2(t)

φ̇1(t) φ̇2(t)

)
be the fundamental matrix solution of

Ẏ =
(

0 1
−g′(x(t; ξ, f )) 0

)
Y, Y (0) = I2,

where φ1(t) and φ2(t) be real-valued solutions of (4.1) satisfying

φ1(0) = 1, φ̇1(0) = 0, φ2(0) = 0, φ̇2(0) = 1.

Then 
 is continuous by the theorem on continuous dependence.
Consider

H : R2 × X → R2, H(ξ, f ) = (x(T ; ξ, f ) − ξ1, ẋ(T ; ξ, f ) − ξ2)
∗,

which is Gâteaux differentiable with partial derivatives ∂1H(ξ, f ) ∈ R2×2 and ∂2H(ξ, f ) ∈
L(X, R2) defined by

∂1H(ξ,f ) = 
(T ; ξ, f ) − I2, ∂2H(ξ,f )p = (y(T ), ẏ(T ))∗,

where p is an arbitrary function in X0 and y is the solution of
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ÿ + g′(x(t; ξ, f ))y = p(t), y(0) = ẏ(0) = 0.

The formula of variation of constants implies that

y(t) =
T∫

0

G(t, s; ξ, f )p(s)ds, (4.4)

where

G(t, s; ξ, f ) = φ2(t)φ1(s) − φ2(s)φ1(t).

Similarly,

ẏ(t) =
T∫

0

∂G

∂t
(t, s; ξ, f )p(s)ds. (4.5)

Hence, by the continuity of 
 and the formulas (4.4) and (4.5) we get the estimate

‖∂2H(ξ,f ) − ∂2H(ξ̂ , f̂ )‖ ≤
T∫

0

{|G(T , s; ξ, f ) − G(T , s; ξ̂ , f̂ )| + |∂G

∂t
(T , s; ξ, f ) − ∂G

∂t
(T , s; ξ̂ , f̂ )|}ds.

Now we prove the continuity of the partial derivatives of H and H is Fréchet differentiable and 
(C1) of Lemma 2.1 holds.

Given (ξ, f ) ∈ Z we know that x(t; ξ, f ) is a T -periodic solution of (1.2). The mean value 
theorem and the equation lead to the estimate

|ẋ(t)| = |
t∫

τ

ẍ(s)ds| ≤ |ẍ(η)||t − τ | ≤ 3

2
T (‖g‖∞ + ‖f ‖∞), η ∈ [τ, t]. (4.6)

Integrating (1.2) from 0 to T , we have that 
∫ T

0 g(x(t))dt = ∫ T

0 f (t)dt = 0. Since (σ2), there 
exists t2 ∈ [0, T ] such that x(t2) is bounded and g(x(t2)) = 0. Thus for all t ∈R

|x(t)| = |x(t2) +
t∫

t2

ẋ(s)ds| ≤ |x(t2)| + T ‖ẋ‖∞.

This implies that |ξ | is bounded by (4.6). Hence [(C2), Lemma 2.1] holds.
Following the same lines as in the proof of Theorem 3.3, we can show that the condition (C3)

of Lemma 2.1 is satisfied if we use [23, Lemma 6] with K = {0}. The proof of non-degeneracy 
is completed by Lemma 2.1.
Step 2. Ellipticity. By the same method in Lemma 3.4, we can verify that there is only a fi-
nite number of T -periodic solution of (1.2) if f ∈ U and denote x1, . . . , xn are the family of 
T -periodic solutions of (1.2). An important global property of these index is that
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n∑
i=1

indT (xi) = 1.

The proof is the same as that of Lemma 3.9. Thus each index indT (xi) can only take the values 
1 or −1 and so at least one of the solutions, say x1, must satisfy indT (x1) = 1 and be elliptic by 
Lemma 4.4.
Step 3. Prevalence. Let V = U\{0}. Given f ∈ V , we can select x ∈ M such that F [x] = f and 
the linearized equation at x(t) is elliptic. Then x ∈ M∗ = M\{xn : n ∈ Z} since f 
= F [xn].

From Lemma 4.2, we know F ′[x] is an isomorphism because the solution x is non-degenerate. 
Applying the inverse function theorem, we can find open sets Mf ⊂ M∗, Vf ⊂ V with x ∈ Vf ,

f ∈ Mf , and such that the restriction F : Mf → Vf is a diffeomorphism. After restricting the 
size of Vf we can assume that the functional

df : Vf → R, df (f̃ ) = D[F−1(f̃ )]

is smooth and take values in the interval (−2, 2). From Lemma 4.1 we deduce that d ′
f (f̃ ) 
= 0

for each f̃ ∈ Vf .
Define E = X0, G = V . Hence Lemma 2.2 shows that

G̃ =
⋃
f ∈V

d−1
f (R\C)

is prevalent in X0.
Step 4. Stability. For each f̃ ∈ G̃, we claim that the equation

ẍ + g(x) = f̃ (t)

has a stable T -periodic solution. By the definition of G̃ there exists a T -periodic solution x
such that the discriminant of the linearized equation is given by � = df (f̃ ), for some f ∈ V

with f̃ ∈ Vf . Moreover, |�| < 2 and � /∈ C. By using now Lemma 4.3, x is stable. So we have 
completed the proof of Theorem 4.5. �

The following result follows directly from Theorem 4.5.

Corollary 4.6. Under the conditions of Theorem 4.5, the set S(1.2) is prevalent in X0.
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