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Abstract

In [26] it was shown that the spatial gradient of the solution u to the parabolic obstacle problem with
superquadratic growth is local Holder continuous provided the obstacle is regular enough. In this paper, we
extend this regularity result to the subquadratic case. This means we establish the local Holder continuity
of the spatial gradient of the solution u to the parabolic obstacle problem with subquadratic growth. More
precisely, we prove that

0, %
Du € Gy, for some « € (0, 1),

provided the coefficients and the obstacle are regular enough. Moreover, we use the local Holder continuity
to prove the local Lipschitz continuity of the solution u, i.e.

!
0;1,5
loc

uecC
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1. Introduction

The aim of this paper is to establish the local Holder continuity of the spatial gradient of the
solution u to the parabolic obstacle problem in the subquadratic case, i.e. the growth exponent
satisfies nz% < p <2 withn > 2. Here, we will extend the result shown in [26] for the case p > 2
and thereby, we will complete the theory of the local Holder continuity of the spatial gradient of
the solution u to the parabolic obstacle problem. This result we will also use to prove that u is
local Lipschitz continuous.

In general, obstacle problems are interesting objects in the theory of partial differential
equations and the calculus of variations. The obstacle problem is a classic motivating exam-
ple in the mathematical study of variational inequalities and free boundary problems. The
theory of obstacle problems is also motivated by numerous applications, e.g. in mathemati-
cal physics, in mechanics, in control theory or in mathematical biology. We refer to [1,33]
for an overview of the classical theory and applications. Up to now, the theory for elliptic
problems is well understood, as well as the theory for elliptic obstacle problems. However,
the case of non-linear parabolic problems with general obstacle functions remained open for
a long time. First results were achieved by Bogelein, Duzaar and Mingione [5] and then, by
Scheven [41]. Here, we want to highlight that in [5] the authors established the first existence re-
sult to parabolic problems with irregular obstacles, which are not necessarily non-increasing
in time. They consider general obstacles with the only additional assumption that the time
derivative of the obstacle lies in L”". This is required since their method relies on a time mol-
lification argument, combined with a maximum construction in order to recover the obstacle
condition, where the pointwise maximum construction is not compatible with distributional
time derivatives. Moreover, they established the Calder6n—Zygmund theory for a large class
of parabolic obstacle problems, i.e. they proved that the (spatial) gradient of solutions is as
integrable as that of the assigned obstacles. Then, in [41] Scheven introduced a new concept
of solution to parabolic obstacle problems of p-Laplacian type with highly irregular obstacles,
the so-called localizable solutions, see Definition 1. The main feature of localizable solutions
is that they solve the obstacle problem locally, which is a priori not clear by the formulation
of the problem, cf. the remarks preceding Definition 1. This new concept allows to consider
more general settings, i.e. it is no more necessary to assume that the time derivative of the
obstacle function lies in L?". It suffices to consider obstacles with distributional time deriva-
tives. Moreover, we want to emphasize that the concept of localizable solutions allows to
prove more general regularity results. Scheven also proved Calder6n—Zygmund estimates for
parabolic obstacle problems. The main difference between the result of Scheven and the re-
sult of Bogelein, Duzaar and Mingione is that in [5] they need an additional assumption on the
boundary data, which seems to be unnatural for proving regularity in the interior. The reason
for the additional assumption on the boundary data arises from the fact that the formulation
of the obstacle problem is not of local nature. Bogelein, Duzaar and Mingione used a com-
plex approximation argument to approximate the solutions by more regular ones and since the
given solution was not known to be localizable, this approximation procedure had to be im-
plemented on the whole domain. This problem could be avoid by the concept of localizable
solutions.

These existence results enable also many regularity results for parabolic problems with irreg-
ular obstacle, see e.g. [2,8,6,26]. In the context of higher integrability of solutions, we have to
mention a further result, which is given by Bogelein and Scheven in [6]. They proved the self-
improving property of integrability for parabolic obstacle problems without any monotonicity
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assumption in time on the obstacle function. Thus, the higher integrability of the spatial gradient
of solutions is by now well known, see also [7-9]. Moreover, we want to highlight that the the-
ory of localizable solutions also permits to establish the existence theory to parabolic obstacle
problems with nonstandard p(x, t)-growth in [24]. Furthermore, the concept of localizable so-
lutions permits to prove the regularity of these solutions, i.e. the Calder6n—Zygmund theory and
the higher integrability of solutions, see [23,25,27].

The novelty of this paper will be the local Holder continuity of the spatial gradient of solu-
tions to the parabolic obstacle problem with subquadratic growth, provided the coefficients and
the obstacle are regular enough. For this aim, we will use the concept of localizable solutions to
derive (without any approximation arguments and additional assumptions) a as general as possi-
ble local Holder continuity result for the spatial gradient of the solution. In [26] we established
the local Holder continuity of the spatial gradient of solutions to the parabolic obstacle problem
with superquadratic growth. This paper closes the gap, such that the local Holder continuity is
valid for every 112% < p < oo. Here, we want to highlight that we use the same approach as in
[26] but the proof is often more difficult as in [26], since there arise factors which has to treat
very carefully to prevent that our needed Holder estimates blow up. Furthermore, we are able
to prove the local CO;I’%—regularity of the localizable solution to the parabolic obstacle prob-
lem.

The history of C!-%-regularity starts in the elliptic setting with the fundamental regularity re-
sult of De Giorgi [15] and Nash [39] for solutions of linear elliptic equations. Later on, the result
of De Giorgi and Nash was generalized amongst others by Ladyzhenskaya and Uraltseva [35].
Further elliptic problems mainly with subquadratic growth are discussed in [10]. Moreover, the
Holder regularity of solutions to elliptic obstacle problems has been proved by Choe [11], as well
as the Holder continuity of solutions to elliptic obstacle problems with p(x)-growth is given by
Eleuteri and Habermann [21,22], see also [40]. Furthermore, the everywhere C 1""—regularity
to parabolic problems goes back to fundamental achievement of DiBendetto and Friedman
in [17,18], see also [16]. Moreover, DiBenedetto, Gianazza and Vespri proved the Holder con-
tinuity of solutions to quasi-linear parabolic equations via Harnack’s inequality [19,20]. In the
context of Holder regularity for p-Laplacian systems we should also refer [32,37,38]. Finally,
we want to call attention to the results of Choe in [12] and Struwe and Vivaldi [43]. Choe proved
the Holder regularity of the spatial gradient of solutions to parabolic obstacle problems in the
case p =2, while Struwe and Vivaldi proved the Holder continuity of bounded weak solutions
of quasi-linear parabolic variational inequalities in the case p = 2. Note also that Kuusi, Min-
gione and Nystrém proved the C%%-regularity to parabolic obstacle problems in the case p > 2,
see [34].

In the following, €2 C R” denotes a bounded domain of dimension n > 2 and we write Q7 :=
Q x (0, T) for the space—time cylinder over 2 with height 7 > 0. Moreover, u, respectively d,u
denotes the partial derivate with respect to time and Du denotes the one with respect to the spatial
variable. The aim of this work is to show that the spatial gradient of solutions to the parabolic
obstacle problem are locally Holder continuous in the interior of Q7, i.e. there exists a Holder
exponent o € (0, 1), such that

DueCy % (Qr, RY).

This means that the spatial gradient of the solution admits a representative being «-Holder con-
tinuous with respect to the spatial variables and 5-Holder continuous with respect to the time.
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1.1. General assumptions

First of all, we introduce the data on which our parabolic obstacle problem depends. For the
boundary data we shall assume, that

geCO0,T1; LA(Q)NLPO,T; W'P(Q)) and 3,5 LV (O, T; W 1P(Q), (1)

where p’ = % is the Holder conjugate to p. Furthermore, we consider an obstacle function
Iﬁ Qr—R

¥ e CO[0, TT; LA(RQ) NLPO, T; WhP(R) and a9 € LY (0, T; W™IP(Q)). ()
Moreover, we assume that the boundary data satisfy the following condition

g>vaeondx(0,T) and ug> ¥ ae.onQ, 3)

where the initial values ug = u(-, 0) € L%(2) are given and the first inequality is to be understood

in the W!-P-sense, i.e. ( — g)y € LP(0, T; Wol’p(Q)). The inhomogeneities of the variational
inequality will be determined by functions

FelLP(Qr,R") and felL”(Qr). 4)

Next, we define the function space for the solution to the obstacle problem
Ky.o(Qr) = {u € CO([0, TT: L)) N [g + LP(0, T; WaP ()] :u >  ae. on QT} .

Notice that ICy , (27) is non-empty due to the compatibility condition g > v a.e. on the lateral
boundary 02 x (0, T') from (3). Moreover, we introduce a function a : Q7 — R satisfying

v=<a(z) <L and l|a(z1) —a(z2)| < w(dp(z1,22)) )

for every z, 71, z2 € Qr and for some structure constants 0 < v < 1 < L. The parabolic distance
between two points z; = (x1, t1) and z3 = (x2, £2) in R+ g given by dp(z1, z2) := max{|x; —
x2|, +/|t1 — t2|}. Finally, we assume that the modulus of continuity w is a Holder-modulus, i.e.
w : [0,00) — [0, 1] is a concave, non-decreasing function with lim, o w(p) = 0 = w(0) and
satisfies

w(p) < Lp°, forsome o € (0, 1] and any p € (0, 1]. (6)

1.1.1. The parabolic obstacle problem
Now, we are in the situation to specify our parabolic obstacle problem, i.e. we consider the
weak formulation of the variational inequality
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T
1
[ =wg e+ [ a@IDuDu- Dw = bzt 50 0) = ol
° o ™

z/|F|f’_2F'D(w—u)+f(w—u) dz.
Qr

Here, u € Ky ¢ (227) denotes a solution, which solves the variational inequality (7) for all testing
functions

we K (Qr) = {w € Kyo(Q7): dwe L7 (0, T; W_l"’/(Q))}

and (-, -)o denotes the pairing between W‘l*f",(Q) and Wol'p(Q).

1.1.2. The concept of localizable solutions

The concept of localizable solutions goes back to Scheven [41] and the idea is the following:
In general, we consider solutions that might not necessarily satisfy o,u € LY, T; W=7 (Q).
In this case, the weak formulation (7) does not seem to be the most suitable notion of solution
since it is not of local nature. More precisely, for a given parabolic cylinder Oy = O x (¢, 1),
it is not a priori clear that the restriction u ’O, of a solution u to (7) again satisfies a variational
inequality on O;. Even more, it is not clear that if the space IC://’M (Oy) of admissible comparison
maps is not empty. In fact, it is not evident from the formulation (7) that there exists any map that
agrees with u on the lateral boundary of O; and at the same time possesses a time derivative in
the distributional space L (11,1 w—Lp (0)), which would be necessary for the construction of
suitable comparison maps. These considerations motivate the following new concept of a weak
solution to a parabolic obstacle problem.

Definition 1. We say that u € ICy, ,(Q27) is a localizable solution of the weak formulation (7)

of the obstacle problem if for every parabolic cylinder Oy = O x I C Qr, where O = onQ
with a Lipschitz regular domain O C R” and time interval I = (t1,t) C (0, T'), the following
two conditions hold.

1) The map u satisfies the extension property, i.e. there holds IC:[/‘M(OI) #0
ii) for all comparison maps w € K/ u (Oy), there holds

5}

1
/(a,w, w—u)o dr + /a<z>|Du|f’—zDu D(w = w) dz+ Sllw(, 1) = uoliz2 o,
n O[

z/|F|P*2F-D(w—u)+f(w—u) dz.
O

Note that the existence of localizable solutions to the variational inequality (7) was proved
in [41].
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1.1.3. Parabolic Holder space

Here, we introduce the parabolic Holder spaces. Therefore, we define for two points z; =
(x1,11) and zo = (x2,12) in R**! the following o(z1,z2) := |x1 — x2| + /[fi — f2]. Note
that dp(z1,z2) < 0(z1,z2). Moreover, we define the oth-parabolic Holder seminorm of
f:Qr —> Rby

B |f @) = f(2)]
= su R E—

21,22€92T,21#22 Q(le ZZ)U

[f]

"3 (@r)

where o € (0,1) denotes the Holder exponent. Then, f € CO?”’%(QT) if the norm
L . . ko, 2

”f”CO;O’%(QT) = flleo,y + [f]co“”%(QT) is finite. By C*%2(Q7), we denote the space

of all function, which satisfy

— B B
1l ke, = ﬂZk 1D f||co(97.)+|§kw Flpoag g, <
< =

1.1.4. Parabolic Morrey space
Finally, we define the parabolic Morrey space.

Definition 2. Withg > 1,0 € [0,n + 2] and Q C RrH being a bounded open set, a measurable
map v: Q — R¥, k > 1 belongs to the parabolic Morrey space L% (Q, R) if and only if

0—(n+2)

q — q
||U||L‘1'6(Q,Rk) T sup Y |U| dZ < 00,

€0,0 diam(Q)
20 <p<diam 00 (20)

where Q,(z0) denotes the symmetric parabolic cylinder B, (xo) x (to — 02, 10+ p2).
1.2. Statement of the result
The main result reads as follows.

Theorem 1. Let % <p<2,n>2and Q CR" be a bounded domain and o € (0, 1). Suppose
that the assumptions (1)—(6) are valid and that u € Ky ¢(Q21) is a localizable solution — see
Definition I — of the variational inequality (7). Moreover, let Qz(30) € Q27 for some R > 0 and
assume that

FeC % (0nG0)), ¥ € Ch 5 (QnGo)) and dyy, f € L7177 (0mGo)).  (8)

Then, there exists a Holder exponent « =« (n, p,v, L, o) € (0, o), such that
Du e C%*3(Qn(30). R").

Remark 1. The reason for considering localizable solution is on the one hand based on the fact
that there is a more general existence result available as mentioned in the introduction and in [41].
On the other hand we have to establish local estimates and to this aim we have to compare the
solution of (7) with weak solution of a certain boundary value problem. Therefore we have to
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ensure that there is a admissible comparison function available. If we consider a solution of (7) as
in [5], which was not known to be localizable, we have to use the approximation procedure from
[5] on the whole domain 27, which requires to impose unnatural conditions on the regularity of
the boundary data for proving regularity in the interior, please cf. again [41]. Hence, we use the
concept of localizable solutions to prove our main result.

Moreover, we should to mention how the Holder exponents arise in this context. The main
aim of the proof of Theorem | (similar to the degenerate case as in [26]) is to state also in the
singular case a (scaling invariant) Campanato type estimate of the form

][ D — (Du) g, ey | dz < cp
Qp(ZO)

on a standard symmetric parabolic cylinders Q,(zo) := B, (xo) X (o — pz, to + ,02) with center
in zo = (xp, fp) € Q7. Now, the result of Da Prato in [14] is available and from this parabolic
version of Campanato’s integral characterization of continuous functions, we can conclude that
Du is Holder continuous with respect to the standard parabolic metric locally on Q7, i.e. the
spatial gradient of the solution admits a representative being «-Holder continuous with respect
to the spatial variables and 5-Holder continuous with respect to time, please see the end of the
proof of Theorem 1 and also e.g. [4,13,44].

Furthermore, the question on global Holder regularity in this context is to the knowledge of
the author still an open problem, but a very interesting project for the future. O

Moreover, from Theorem 1 it follows that u € CO;I’%(Qm(g,O), R).

Theorem 2. Under the assumption of Theorem 1 the localizable solution u of the variational
inequality (7) is locally Lipschitz continuous, i.e.

e C¥l3(0mGo). R).

Plan of the paper. Now, we briefly describe the strategy of the proof to our main result and the
technical novelties of the paper. We start with certain comparison arguments, such that we deduce
a comparison estimate between the localizable solution u# of the variational inequality and the
solution vy of some associated Cauchy—Dirichlet problem. Then, for such parabolic p-Laplacian
equations the regularity results of DiBenedetto and Friedman [16—18] are available, yielding that
the spatial gradient of the comparison function vg is Holder continuous. Moreover, we will use
the fact that the solution u# can be compared to the solution of a Cauchy-Dirichlet problem and
the a priori estimates of DiBenedetto for vy should in principle be transferable to the solution u
itself. Therefore, we will utilize Lemma 7, from which we gain a Lipschitz bound and an excess
decay estimate for the comparison function vg. Further, we will derive from the comparison
estimate between u and vy, a Lipschitz bound and an excess decay estimate of v, both from
Lemma 7 and an excess decay estimate for the solution # on the intrinsic cylinder QE)A)(ZO).
Finally, we will derive a Campanato type estimate for the spatial gradient Du, leading to the
desired C!'"*-regularity. Moreover, we will establish a Poincaré type estimate for localizable
solutions to proof the Lipschitz regularity of the localizable solution u.

Please cite this article in press as: A.H. Erhardt, Regularity results for nonlinear parabolic obstacle problems with
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2. Preliminaries and notations
2.1. Intrinsic geometry

First, we introduce symmetric parabolic cylinders with center in zg = (xo, fo) € Q7 of the
form

0,(20) := B, (x0) X (to — p*, 10 + p?),

where (fo — p2, to+ p%) C (0, T) and B, (xp) C 2 denotes a ball with radius p > 0 and center xy.
To obtain the relevant (scaling invariant) local estimates we will use, in order to re-balance the
non-homogeneity of parabolic problems, certain scaled cylinders, the so-called intrinsic cylin-
ders of the form

0 (20) 1= By (o) x AL (1), where AP (t0) := (10 = 3277 p%, 10 +2277p?)

where A > 0. The reason for such scaled cylinder is based on the fact (explained by the easiest
problem), that a multiple ¢ - u of a solution to d,u — div(|Du|?~2Du) = 0 is no longer a solu-
tion, except ¢ € {0, 1}, p =2 or u = 0. Such kind of intrinsic cylinders were introduced in the
pioneering work of DiBenedetto and Friedman [18]. The delicate aspect in this technique relies
in the fact that the cylinders will be constructed in such a way, that the scaling parameter A > 0

and the average of | Dul|? over QE)A) (zo) are coupled in the following way:

][ |Dul? dz ~ AP,

09 (z0)

On such intrinsic cylinders, i.e. when |Du| is comparable to A in the above sense, the
parabolic p-Laplacian equation 8;u — div(|Du|?~>Du) = 0 behaves in a certain sense like
d;u — AP~2 Au = 0. Therefore, using intrinsic cylinders of the type QE,)‘) (zo) we can re-balance
the occurring multiplicative factor A”~2, which has the same effect as re-scaling u in time by a
factor A>7.

2.2. Technical tools

Before we are able to prove the comparison estimates, we have to mention some useful aux-
iliary material. The following classical lemma will be a useful tool to treat the time-part of our
variational inequality. This lemma is stated e.g. in [42, Chapter III, Proposition 1.2].

2n

Lemma 3. Let p > R Then,

Wy, T)i= v e LP@O. 7 Wy (@) v e L7 0.7 w7 (@)

is contained in CO([0, T1; L*(2)). Moreover, ifueWy(,T) then t — |u(, t)”iZ(sz) is abso-

lutely continuous on [0, T,

Please cite this article in press as: A.H. Erhardt, Regularity results for nonlinear parabolic obstacle problems with
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—/|u( t)| dx =2 (u(-,t),u(-,t))q, forae tel0,T],
and there is a constant ¢ for which |lullcoqo 11.12(q)) < cllullw,o.7) holds for every u €
W, (0, T).

Here, we cite a useful tool when dealing with p-growth problems. The first lemma we will
need, is stated by Hamburger [30, Lemma 2.1] in the following version.

Lemma 4. There exists a positive constant, depending on p > —1, such that for all A, B € R¥
with A # B, we have

1 il
S0+ AP 1B A — Bl <147 + |AP) A — (47 +|BP) 2 B|
<cu?+1AP+ B A - B
with > 0.
This lemma was established for the case p > 0in [29, Lemma 2.2] and in the case 0 > p > —1
in [30, Lemma 2.1]. Since p > 2+2, we are able to choose p = p —2 > —1. Moreover, we choose
uw =0 and k = n > 2. This allows us to infer from Lemma 4 (cf. [28, Lemma 2.2] in the case

p >2and [31, Lemma 2] in the case 1 < p < 2) the next lemma.

Lemma 5. There exists a constant ¢ .= c(n, p), such that for any A, B € R", there holds
(AR + BT |A— B <c (|A|P ZA— |B|P’2B) -(A—B), where A+ B.

Furthermore, we conclude from Lemma 4 that the assumption (8) implies that | F|? —2F and
|D1//|p_2D1ﬁ are Holder continuous on Qs (30) with Holder exponent o (p — 1). Indeed, we
have

| IF(z)IP2F(z1) — |F(zz)|"*2F<zz) |
< c(F@)P+ F@)?) T |F@1) - F()|
<c(IFEDI+ F@)DP2(F @)l + |F(z))* PIF(z1) — F(z2)[P7!

<cPIFI g IINCICE
3o

for all z1, z2 € On (3o) With z1 # z2. Thus, we have

IFIP=2F, | Dy 1P 2Dy € €% F (O (o)) 9)

o1:=0(p—1) with and

Please cite this article in press as: A.H. Erhardt, Regularity results for nonlinear parabolic obstacle problems with
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—1
%17 Qg3 (30))
-1

oy 2L

%13 (0 (30))

IF@IP2F @) — [F)P 2 F ()| < cPIFI 0(z1.22)",

IDY DI 2DY ) = DY )P DY )| < eI DY I 0(z1,22)""

(10)

for all z1, z2 € Om(3o) With z1 # 2.
Comparison principle. Moreover, we will need the following comparison lemma, which can
be found in [5].

Lemma 6. Suppose that ¥, w € C°([0, T1; L*(R2)) N LP(0, T; WP () satisfy (in the weak
sense)

o — div(a(z)IDlﬁlp_zDIﬂ) < dw —div(a(z)|Dw|?2Dw) in Qr,
v <w on opQ2r,

where (5) is valid. Then, there holds v < w a.e. on Qr.
2.3. A priori estimate

A final tool we need, is an a priori estimate for solutions to the parabolic standard p-Laplacian
equation. This result will be useful, since in the next section we will compare several times, such
that we derive a comparison estimate between the solutions of our obstacle problem and the
solution to the parabolic standard p-Laplacian equation. Then, we can apply the following a
priori estimate, which is a consequence of the C!%-regularity of DiBenedetto and Friedman
[17,18] and was stated in this form by Bogelein and Duzaar in [4, Lemma 2], and exploit the
conclusion of the next lemma to the solution of the variational inequality (7). The a priori estimate
reads as follows.

2n

Lemma 7. Suppose that s <p< 2,ae[v,L], cs > 1, t] <tp and O C R". Let vy €

CO[t1, 1), L>(0)) N LP(t1, tr; WP (O)) be a weak solution of
3, v0 — div <a|Dvo|P—2Dv0) —0 in Oxl[t,0)
and assume that

][ |Dvg|? < AP (1T)

0% (z0)

for some intrinsic cylinder Q(,?)(Zo) C Oy, where I = (t1,1r) with center zo € Oy, radius
R > 0 and scaling factor . > 0. Then, there exists ay = ao(n, p, v, L) € (0, 1) and a constant
wo = pmo(n, p,v, L,cy) >1and Rs € [0, Ry], where Ry := %/L(()p_z)/zR, such that the following
assertions hold: If Ry > 0, then for any 0 < r < Ry there exists a scaling factor u, such that

there holds: 0" (z0) € Q(l?) (zo) and
7
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max {r, Ry} \*° max {r, Ry} \*°
wo|————) =wu=2pm|——5— (12)
Ry Ro
and
sup | Dvol < . (13)
0" (z0)
Moreover, we have
200
|Dvo — (Dvo) o, |7 dz < cuu? 217 ( — (14)
0 @) =Ko Ro)
0" (z0)

where ¢ = c(n, p, v, L). In the case Ry = 0 the inequality (12) holds with Ry = 0. Moreover, we
have (13) and (14). We note that Ry cannot be explicitly computed and might depend on zg and
the solution vy itself.

2.4. Comparison estimates

2—
Let p e (0.1, A > 1 and Q%) (z0) C Q2s(20) € Om(Go) C Qr With s := 272 p. In
this section, we will compare the localizable solution u € Ky ¢(227) — see Definition 1

— of the variational inequality (7) and the weak solution v € CO(A;);))(to); LZ(sz(xo))) N

LP(AS) (10): WP (Boy (x0))) with 9,0 € L' (AS) (t0); WP (Ba,(x0))) of the following
boundary value problem

8w — div(a(z)| Dv|P~2Dv) = 8y — div(a(@)| DY |P~2Dy)  in 0 (z0).

V=u on dp Qg;)) (z0).

5)

Here, we have to mention that by the definition of a localizable solution u € Ky ¢(27), we

23 (z0)) # @ (cf. Definition 1), i.e. a function

in /Cl/,,u(Q%)(zo)) with boundary datum u, which possess a time derivate in Ll’/(Agp) (t0);

W_l"”,(sz (x0))). Therefore, we are allowed to use u as a boundary datum. Then, the ex-
istence of such a solution v follows from classical functional analytic methods results, see
e.g. [36,42]. Next, we will compare v to the weak solution vg € CO(AE)A) (t0); L2(Bp (x0)) N

LP (MY (10); WP (B, (x0))) with d,v9 € LP (A (10); WP (B, (x0))) of

know that there exists a function with IC://,M(Q

drv0 — div(a(zo)|Dvol?~2Dvg) = 0 in 0% (z0),

o) (16)

vo=v ondpQ, (20).
Notice that we consider a function a(z), which satisfies (5). Finally, we will derive a comparison
estimate between the solution # and the weak solution vg. We start with comparison estimate
between u and v.
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Lemma 8. Let A > 1, p € (;25.2), n 22, 0 € (0,1) and 03 (z0) C Q25(z0) C O (50) with

2—
5= ATpp and p € (0, 1]. Assume that the assumptions (1)—(6) are in force. Moreover, assume
that the inhomogeneities F, f and the obstacle function  satisfy the additional Holder regular-
ity assumptions (8). Furthermore, suppose that the map

ve COAS) (t0): LA(Bay(x0))) N LP (AS) (19): WP (B (x0))

with ;v € LP/(AEAP) (t0); W’l'p/(sz (x0))) solves the Cauchy-Dirichlet problem (15) and u €

ICv,’v(Qg;)) (z0)) is a localizable solution of the variational inequality

/ (atw,w—Lt)sz(xO) dt

s
AS) (10)

1
p—2 A _ _ _ . 2
+ / a@IDul?Du- D —u) d+ 51w 0G0 ) 19,

05, (z0)
> / |FIP2F -D(w—u)+ f - (w—u) dz

05, (z0)

1)

2 (z0)), where t1 ;= ty — )Lz_”(Zp)z. Then, there exists

. . y
for all comparison functions w € IC (Y
a constant ¢ = c(n, p,v, L, V) with

DVl L0 (0 (3o))

V= F a +
C 2 (09 (30)) (18)

- + 1DV .,
%12 (0 (30)) Vlloon
+ ||f||Lp’,(1—a)p’(Qm(3o)) + ||3zlﬂIILp',a—o)p’(Qm(;,o))»

where o1 = o (p — 1), such that the energy estimate

2—
][ |Dv|P dz <c ][ |Du|? dz—i—)LTp"p” (19)
0% zo0) 05 (z0)
holds and furthermore, the comparison estimate
2-p
p LLn or(p-1) P TPy o
|Dv— Dul|? dz <c(A72 "p?) |[DulP dz+A172 "p (20)

0% (20) 05, 20)

is valid.
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Proof. The proof is divided in several steps. We start with
Step 1: Preliminary studies. First, we consider the weak formulation of (15) and choose the
admissible test function ¢p = v —u € L"’(A%)) (t0); Wol‘p(sz (x0))), since LP — w—LP is the

dual of L? — W(;’p . Hence, we have

/ (00, v — )y (xy) dE + / a(z)|Dv|P2Dv - D(v —u) dz

AP (1) 0% (z0)
P P (21)
= / Wy (v—u)dz + / a()|DY|P2Dy - D (v —u) dz.
0% (z0) 05 (z0)

Note that by the comparison principle of Lemma 6, the solution v satisfies the obstacle con-

straint v > ¥ a.e. on Q%))(z()). Thus, w :=v € K/ v(Qg;)(zO)) is admissible as compari-

son function in the variational inequality (17). Moreover, we note that v(-, #;) = u(-, #;) with
11 =1ty — A2"P(2p)2, so we have

/(8,v,v—u)32p(x0) dr + / a(z)|Du|?>Du - D(v —u) dz

A3, (t0) 0% (z0)

> / |FIP2F -D(w—u) + f - (v —u) dz.

05 20)
By subtracting this inequality from (21), we can conclude
/ az) (le|P_2Dv - |Du|P—2Du) D —u) dz
0% (z0)

<- / <|F|P_2F— (|F|p_2F)Q§A>(ZO)> -Dv—u)+ f-(v—u)dz

05, 20)

+ [ (10@ = aGoNDy DY) - D -+ 8 (0 -1 dz

05 (z0)

+ /‘aawDwaﬂDw—quwﬂowng-Dw—unm

05 (z0)

since v —u = 0 on dp Qg;)) (zo)- Using several times Holder’s inequality and (5); to the right-hand
side of the previous estimate, we get
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][ a(z) <|Dv|p_2Dv - |Du|p_2Du) -D(v—u)dz

0% z0)
2 2 ’ /
S ‘|F|I’—F—<|F|f’— Flgwey| &+ f la@-aGol’1Dv1" &
2p 20)
0% 20) 0% (z0)
p/
+L ][ IDYIP2DY — (IDYIP2DY) jon )| dz
2p 20)
@ (22)
sz(z())
1 1
»
+c(n, p)p”’ ][ IFIP + 10,017 de ][ D@ —u)|? dz
0% (z0) 0% (z0)

P
1
= (lo2) + U2y + M (22) + 1V (22)) ¥’ ][ |ID( —u)|? dz
0% (z0)

with the obvious labeling and where we also utilized the Poincaré inequality slicewise to derive
the last term on the right-hand side.

Step 2: Estimates for /(;5) — IV (22). The terms I(22) and Ill(77) can be bounded by (10).
Moreover, we will apply

! op 2— 2
o(z1, Z2)G(p_l)p =< (4/0 +2pV )\.z_p) <47([1+ kTp]p)UP < C(p))\Tpappo

with 0(21.22) = [x1 — x2| + v/[t1 — 2] for all 21, 25 € QY (z0). This yields

’ 2—p
Too) + 1) < co(z21,22) 7 <A 7977, (23)

with a constant ¢ = c(p, L, || F|| 0oy, % > 1Dy o;a,,‘%‘)’ where o1 = o (p — 1). Next, we esti-

mate I1(22) from above by (5), (18) and the fact that the modulus of continuity is concave and
non-decreasing, which yields

2— 2—
la(z1) — a(z2)| < 0(dp(z1,22)) < w(@dp +/4327Pp?) <4 (W2 p) <) 2 p°

A)

forall z1,z2 € Qép (zo) with ¢ = ¢(L). Moreover, we have

/ 2—p / 2-p 2-p
o) <67 0 (.77 p)P ][ DY dz < (P p)IDYI | o <ed’T p”
L(0Q;, (z0))
0% zo)

(24)
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with a constant ¢ = c(p, L, || Dy | ). Finally, we have to bound IV 27). This yields

c(n, p)p”’ ' / c(n, p)p”’ / /
Vo) < ————— [ |fI” + ¥ dz = —— |17 +10,|P dz
105 (z0)] 105 (z0)]
P 025 P 025N0x%(30)
c(n, p)p?’ 2—p \ @+2)=(1-0)p / /
— oW (2)‘ ’ p) [” ||IL7P’*“*")P/(Q9{(3 ))+”atllj||i1’"<1*””’/(Qm(3o))]
105, (20)] o 5
— o 2 (i=(1=0)p") op'=(1=0)p' _ 1 = (n=(1=0)p) yor' _ ¢ Z‘T"npo’ (25)

with a constant ¢ = c(n, p, || 1l p".a—o)p'> 10: ¥ | 1 .(1-0)p ), Where

0% (20) C Q2(20) = 02:(20) N O (Go). 5=1 7 p

and Q%) (z0)| = c(m) p" 12227
Step 3: Energy estimate. We start with the proof of the energy estimate of Dv. Therefore,
we make the following calculation

][ a(2) (|DU|HDU - |Du|P*2Du) D@ —u)dz
0% zo)
= ][ a(z)|Dvl” +a(z)|Dul? dz
0% z0)
- ][ a2) (|Du|P*2Dv-Du+|Du|P*2Du-Du) dz.

0% z0)

Using this, the fact that a(z)|Du|? > 0, (5) and Holder’s inequality, we gain from (22) the fol-
lowing

v ]Z |Dv|P dz <L ][ (|Dv|p_1|Du|+|Du|”_1|Dv|> dz

05, 20) 05, 20)

+ (To2) + o) + M0y + IV (22)) ? ][ |D(v —u)|? dz

0% (z0)

P P

<L ][ |Dv|? dz ][ |Du|? dz

05, (z0) 0% (z0)
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1 1
I P
+L ][ |Du|? dz ][ |Dv|? dz
0% z0) 0% (z0)

L
7

+ (I22) + U2y + Ml 20y + IV (22)) P ][ |ID( —w)|? dz

0% (z0)

The next step is to estimate the previous inequality by Young’s inequality, (23), (24) and (25)
from above. This yields for any ¢ > 0

—1 1
v ][ |Dv|pdz§<p—+—)8 ][ |Dv|? dz
p P

E) 0% (z0)
—1 | 1—
+|——LPeTp—LPeg' 7P |Dul|? dz
p p
05, (z0)
4e L 2,
+ — |Dv— Du|P dz+¢eTrcA 2 "p
p
0% 20)
4.2071 TPy o
< +1)e |Dv|P dz + c; |[DulP dz +1772 "p
p
05 zo) 0% (z0)
with a constant ¢, = c.(n, p, L, ¥, ¢), where we also used that p <1, A > 1,n > 2 and 112% <
p < 2. Then, choosing ¢ > 0, such that ¢ < mpiifﬂj), we gain the following
2,
][ |Dv|?” <c ][ |Dul? dz +cA 2" p°
0% (z0) 0% (z0)

with a constant ¢ = c(n, p, v, L, V). Thus, we have shown the energy estimate (19).

Step 4: Comparison estimate. Next, we will conclude the desired comparison estimate (20).
Therefore, we apply Lemma 5 to the left-hand side of (22) and (23)—(25) to the right-hand side
to infer that

L
7

) 2—
E ][ (|Du|2+|Du|2)”T|Dv—Du|2dz5(cx7””pf’)” ][ D —uw)|? dz

05 z0) 05 z0)

Moreover, using Holder’s inequality with exponents % and %, we have
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r(p=2) r2—p)

][ |Dv — Du|P dz = ][ (|Dv|? +|Du|®) "5 |Dv— DulP(|Dv|* + |Dul?) " dz

05 (z0) 05 (z0)

2—p
2

S

< ][ (DvP +Du) %" | Do — Dul? dz ][ (IDvP +Du’)? dz
05, (z0) 05, (z0)
Then, we bound the second term on the right-hand side by the energy estimate (19) and the utilize
the next to last estimate. This yields
|Dv — Du|? dz
0% z0)

P
2 2—p
2

<=

][ 1D —u)|? dz ][ \Dul? dz + 2.7 p°

0% (z0) 0% z0)

with a constant ¢ = c(n, p, v, L, ¥). Moreover, we can infer that

]l |Dv — Du|? dz
05 (20)

1 2—p

2 2

][ |ID(v —u)|? dz ][ |Du|”dz—i—)\27Tp”,oCr

0% z0) 0% @)

p—1

with a constant ¢ = c(n, p, v, L, V). Finally using Cauchy—Schwarz inequality. This yields the
desired comparison estimate (20). Thus the lemma is proved. O

Now, we derive the comparison estimate between v and vg. This reads as follows.

Lemma 9.Let & > 1, p € (;Z5.2), n 22 0 € (0, 1) and 05 (z0) C 02(z0) C O(o)

2—
with s 1= ATpp and p € (0, 1]. Assume that the assumptions (1)—(5) and (6) are in force.
Moreover, assume that the obstacle function  satisfies the assumption (8). Furthermore, sup-
pose that the maps v € CO(AS) (10): L*(Ba, (x0))) N LP(AS) (10): WP (By (x0))) with 3 €

LY (AS)(t0); WP (Byp(x0)))  and  vo € CO(AS (10): L2(B,(x0))) N LP(AS (10);

WP (B, (x0))) with divo € LP (AL (10): W17 (B, (x0))) are weak solutions of the bound-
ary value problems (15) and (16). Then, there exists a constant ¢ depending on n, p, v, L,
||D¢||Co;gl,%1, DY iLse, 101l pr.(1-0)p and number o1 = o (p — 1), such that the energy esti-
mate
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2—
][ |Dvol? dz < ¢ ][ |Dv|? dz + 272" p° (26)
0 (z0) 0% (z0)

holds and furthermore, the comparison estimate

2— 2—
][ |Dvg — Dv|P dz < A2 p° ][ |Dv|P dz | + a2 p0 Q27)
0% (20) 0 (20)

is valid.

Proof. The proof is divided in several steps. The approach is similar to the proof of Lemma 8.
Step 1: Preliminary studies. We start by considering the weak formulation of (15) with
the admissible choice of the test function ¢ = vy — v € LP(A(pM (t0); Wé P (By(x0))), since

LY — W~1P s the dual of L? — Wol‘p. Thus, we get the following weak formulation of (16):

/ (0;v0, Vo — U>Bp(x0) dr + / a(Zo)|DU0|p72DU0 -D(vg —v)dz =0.

A (19) 0% (z0)

(28)

Then, we subtract the weak formulation of (15) from (28). This yields

/ (B, (v — 1), V0 — V) 5,

AP (19)

+ / (@(20)| Dvo|P "Dy — a(z)|Dv|P "> Dv) - D(vg — v) dz

0 (20)
=— / QY- (vo—v)dz — / a(2)|DY|P2Dy - D (vg — v) dz.
0% z0) 0 (20)

Observing the first term on the right-hand side of the previous equation, we can infer by Lemma 3
that

/ (B (90 — 1), Vo — V), gy

AP (1)

1 d
=5 / o / l(vo — v) (-, 1)|* dx dt

AP ) Bolx0)

2
B (x0) By (x0)

1 2 1 2
== / [(vo — V) (-, 22)] dx_i / [(vo —v)(-, 11)]” dx
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1 2
=3 / (w0 — 0)(, )P dx >0

B, (x0)

with 1y =19 — A2 Pp2 and tp = tg + A2 P p2, since vo(-, 1) = v(-, ;). Therefore, we have

/ a(z0) (|Dvo|[’_2Dv0 — |Dv|f’—20u) . D(vo —v) dz

0% (z0)

< / a(z0)

0% (z0)

IDy1P=2Dy — (IDv 172 DY) Qw(zo)‘ D(vo - v)] dz

[ 101w =01+ 1a@) = aol (1ol + DI 1D - )] .
0, o)

Using (5) and the properties of w(-) € [0, 1], i.e. the concavity and that w(-) is non-decreasing, we

have |a(z1) — a(z2)] < 2w ()\%Tp p) forall z1,22 € Qg") (zo)- Then, applying Holder’s inequality
and the Poincaré inequality slicewise to the last estimate, we gain

v / (le0|”_2Dv0—|Dv|”_2Dv)~D(vo—v)dz

0 (z0)

/ ’ 2—
<|c@®, p)p” / By |” dz + 20072 p) / (IDvIP + Dy |P) dz

0% z0) 0 z0)

/

p
w [ |owrzoy - (0wr2oe) ezl | [ G- ora:

0% z0) 0% (z0)

Next, we conclude by the additional Holder assumption in (8), i.e. ¥ € C Lo.3 (7), which im-

plies | Dy |P~2 D is Holder continuous with Holder exponent o1 = o (p — 1) [cf. (9), (10) and
Step 2 of the preceding proof], that

v ][ (|Dvo|p_2Dv0 — |Dv|p_2Dv> -D(vg —v) dz

0% z0)
y o9
2— 2—
<c| A7 + 0T p) ][ |Dv|” dz ][ |D(vo — v)|? dz

0% (z0) 0% (z0)
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with a constant ¢ = c(n, p, L, ||D1/f||co;(,1,<’71, 1DV llLee, I8¢ 1l pr.i-0)pr)» since p € (0, 1], 0 €

(0,1), x> 1, p, p’ > 1 and where we finally divided the resulting estimate by |Qg‘) (zo)|. Notice

that (29) is the starting point from which we first infer the energy estimate of Dvg and then, we
consider again (29) to deduce the comparison estimate between Dvgy and Dv.

Step 2: Energy estimate. We start by the same calculation as in the previous proof, i.e. we
get from (29) the following inequality

v ][ |Dug|? dz
0P (z0)
<L ][ |\ DuolP~" | Do| + | Dv|P~" | Dug| dz

0% (z0)

N

2— 2—p
+e| AT (2 p) ][ |Dv|? dz ][ ID(vo — v)|P dz
01 zo) 0% z0)
with a constant ¢ = c(n, p, L, ||D1ﬂ||c0:01’%1, DY llLee, 10l pr.1-0)p ), Where we used that

a(z)|Dv|? = 0 to estimate the left-hand side from above. Then, we use Young’s inequality several
times to conclude for any ¢ > 0

—1 1 1
v ][ |Dv0|pdz§<p—+—>8 ][ |Dvg|? dz + —¢ ][ |D(vg — v)|P dz
p p p

0% (20) 0 (20) 0% (20)

1 - 22p L 1 2

+C<81_1’ +e P +w(l2 p)sl—ﬂ) |Dv|? dz +ceTP 172 "p?
0 (z0)

2r—1 2p

<1+ 3 ][ |Dvg|?P dz + ¢, ][ |Dv|P dz +c.A 72 "p%,
P
0% (z0) 0% (z0)

with two constants ¢ = c(n, p, L, “DWHCO;%%" DY\ oo, 10 | p.(1-0)p) and

ce =ce(e. 1, P, L AIDY| o0, 1DVl 10l 1=

where we also used that w € [0, 1]. Choosing & > 0, such that (l + 2P’1/p) e<3,ege< 2],%
Then, re-absorbing the first term on the right-hand side to the left-hand side and multiplying the
resulting estimate by %, we get (26).

Step 3: Comparison estimate. Now, we come back to (29) and infer the comparison estimate.
By Lemma 5, we can estimate the left-hand side of the (29) from below, such that
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-2
][ (|Dvo|? + |Dv[®) ™= | Dvg — Dv|? dz

0 (z0)
y FRED)
2-p 2-p
<clw@ 2 p) ][ |Dv|P dz +2172"p° ][ ID(vo —v)|Pdz |
0% (z0) 0% (z0)
where we used the properties of w(-) and (6). Next, we need the following estimate
]l |Dvg — Dv|? dz
0% (20)
2 2 r(p=2) p 2 2 pR2—p)
= (IDvol” + |Dv|") ~# |Dvo — Dv|”(|Dvo|” + |Dv[") % dz
0 (z0)
P 2=p
2 2
-2
< ][ (IDvol? + [Dv?) T [Duy — Dvl* dz ][ (Dol +DvH%dz | .
01 (z0) 04 (0)

where we used Holder’s inequality with exponents % and %. Then, we utilize the energy es-

timate (26), (30), (8) [ef. (23)-25)], p =2 € (315,01 p~ 1€ (33, 1), A = 1,0, p € (0. 1)
and the properties of the modulus of continuity w(-), mainly (6) to bound the last estimate from

above. This yields

][ |Dvy — Dv|? dz

0% (z0)
V4 2—-p
2 2
2 2\ 22 _ 2 ) p
< (|IDvol” + [Dv|*) 2" | Dvg — Dv| |Dvo|” + | Dv|” dz
0 (z0) 0% (z0)
195
P P
2p 2p
<c| o2 p) ][ |Dv|P dz+2172 "p° ][ |D(vo —v)|? dz
0% (z0) 0% (z0)

2-p

2
2—p
x ][ |Dv|? dz 4+ 172" p°

(20
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p=1 2po %
P P
p—1 2-p 2-p 2-p
<c|p® 7 |22 ][ |Dv|P dz+2172 " ][ |Dv|P dz +A72 "
01 @) 0 (z0)

D=

X ][ |D(vg — v)|? dz

0% (z0)
1 1

2 2
1

bl 2—p 2—
<c(pm0)7 2 ][ |Dv|P dz + 22" ][ ID(vo— )P dz |

0% (z0) 0% (z0)

2—
where we used that 72" > 1. Finally, utilizing Cauchy—Schwarz inequality and summarizing
the terms as in the previous proof, we derive at (27) for any nz% < p < 2. This completes the
proof. O

Corollary 10. Under the assumptions of Lemma 8 and Lemma 9, there exists a constant ¢ =
c(n, p,v, L, V) with ¥V introduced in (18), such that the energy estimate

2—p
][ |Dvol” dz < ¢ ][ |Dul? dz+272""p7 | €Y

0 (z0) 0% z0)

holds and furthermore, the comparison estimate

27
][ |Du—Dvo|pdz§ckTpp" ][ |Du|? dz

05 20) 05, (z0)

. (32)

2 (-1 .
+C<ATP",0”) ][ DulP dz | +ea 204D po
0% (z0)

is valid.

Proof. First of all, we consider the following

2— 2—p
][ |[Dvg|P dz < ¢ ][ |Dv|pdz+kTP"pU <c ][ |Dv|”dz+)\Tl”p(I

05" (z0) 05" z0) 0% (z0)
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= 2"*2_ Then, we infer the energy estimate

where we used (26) and —5 =
10,71

ay p"2p?A2=P

(31) from the previous estimate by using the energy estimate (19). Next, we consider

][ |Du — Dug|P dz <201FP+D ][ |Du — Dv|? dz 4 2P~} ][ |Dv — Duo|? dz

)
2p

0% (z0) 0

=1+1

with the obvious choice of I and II. By

(z0) 0% (z0)

the comparison estimate (27) and the energy estimate

(19) we can estimate the term I from above, as follows

@n 22r 4 Ed S
II <cAZp |Dv|P dz | +cA72 "p
0§ (z0)
(19) 2—p 2—
< AT o ][ |Du|? dz +ckTp("+1)p"
05, z0)

with a constant ¢ = c(n, p, v, L, ¥), since w(-) € (0, 1) and A > 1. The term / we can bound by

the comparison estimate (20). This yields

_, (p—1
I§c<)»27[",o”> b

<

e (1527) "

2-p
2-p
][ |Du|P dz 42172 "p
0% (z0)
2—-p
2,
][ |Du|? dz —i—ckTp",oU
05 (z0)

with a constant ¢ = c¢(n, p, v, L, V). Combining the last estimates, we get the desired comparison

estimate (32). This completes the proof.

3. Proof of the main result

O

Proof of Theorem 1. First of all, let R € (0, R,] with R, € (0, 1] to be chosen later. Then, we
consider a parabolic cylinder Q r(zo) € Og, (z0) C O (30) C Q7. Next, we define

M =
Or

|Du|? dz + 1
(z0)

> 1.

(33)

subquadratic growth, J. Differential Equations (20
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Furthermore, we set R; := 0’ R and A; := &' for i € Ny, where 6 € (0, %] and § > 4. Later on, we
shall fix the parameter 6 and &, such that the constraint

1
0 < 52 (34)
holds. This implies 6 < %8”7*2, since 6 < 5% < %8‘1 < %8”_2 < %81%2. Moreover, we define a

sequence of nested cylinders
Ai 2— 2—
03" (z0) = Br, (x0) x (to— 4] "RY, 10+ 2] "R,
such that

Ai i— i— A
0 @) € 011 @) € 05 o) € - € 0 (20) € Qr(e0), (35)
where R, =0'R=0R;_; < %Ri—l < R;j_1 and
2-p p2 2-pp2 p2 2 2-p p2
WTPR=22TP6% R <A ( Ri—)* <A TR,

since 6 € (0, 4] and 0 < 18 . The rest of the proof is divided in several steps. We start with
Step 1. An almost L‘X’-estlmate In the first part of the proof of Theorem 1, we want to infer
that

][ |Du|”dz§M)LlP for all i € Ny. (36)

0% 20)

This will be achieved by induction. In the case i = 0 the estimate (36) is trivially satisfied
by (33), since Ry = R, Ao = 1 and therefore Q%i)(zo) = Qr(zo0). Now, we assume that (36)
is in force for some i > 0 and infer from this assumption that (36) is valid for i 4+ 1. Thus,
we construct comparison functions v; and vg;, such that v; € CO(A%")(to); LZ(BRl. (x0))) N

LP (A%i) (to); Wh-P(B ®; (x0))) denotes the unique solution of the Cauchy—Dirichlet problem

dvi — div(a(z0)| Dvi|P"2Dv;) = 8y —div(a()|Dy|P2Dy)  in Q% (z0).
Vi = u on 87>Q(M(zo)-

and the map vo; € CO(A“ i)  (10); L2(31 g (¥0)) N LP(A“ i)  (t0); WP (By  (x0)) denotes the

unique solution of the Cauchy—Dlnchlet problem
d;v0,i — div(a(z0)| Dvo,i|P2Dvo,) = 0 in Q) (z0),
2

(Ai) G37)
voi = vi ondpQiy (z0)-
2 1

Next, we can infer from (31) the following energy estimate, where we use ();, R;) instead of
(X, p). This yields
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][ |[Dvg;|P dz <¢ ][ |Dul|? dz +ck{’R§’,

(i) ()
0" (z0) 0r!' (z0)
2 Ri !
2-p 2_2_}12 2n+4z2n 5
i — 2, — + _ 2n . T .
since =5-n < —5H=n=—"F—n= s <P and A; > 1. Utilizing (36);, then we get

][ |Dvo,i|” dz <cMAY + Al R < cMA!

(i)
R;

Q" (20

1
2

with a constant ¢ = c(n, p, v, L, V), since R; € (0, R] and M, A; > 1. Therefore, we can obtain
that

][ |Dvo,i|” dz < cA? (38)

)
1
2R

Q4" (z0)

with a constant ¢ = c(n, p,v, L, ¥, M). Since vp; is a solution of the parabolic p-Laplacian
equation, we can apply the sup-estimates from [16, Chapter VIII, Theorem 5.2] for the case
% < p < 2 (in the subquadratic case we have to take into account also [16, Chapter VIII,

Remark 5.4]). Together with (38) the sup-estimates leads us to

__2
p(n+2)—2n
- soib
sup |Dvg;| <chr, PO ][ | Dvo;|” dz +chi <ch (39)
(Ai)
0" (z0) »
§ki 0" o)
2 Ri

with a constant ¢ = ¢(n, p, v, L, ¥, M). In the following, we will use the comparison estimate
(32) to infer

2-p
][ |Du—Du0,,-|sz5c<xl.2R;'> ][ |Dul? dz

) ()
0 1lR (z0) QRi‘ (z0)
2%

2-p 1 2-p (p—1)
T )Rf’+c<ki2 nR;’) ]l \Dul” dz
;)

0% z0)
(40)

with a constant ¢ = c(n, p, v, L, ¥). Next, we utilize (39) and (40) to deduce
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][ |DulP dz < 277! ][ |Dvg ;¥ dz + 277! ][ |Du — Dvyg;|P dz

0 0t @) 0t @)

< or-1 sup |Duvg,|? + ][ |Du — Duvg ;[P dz

(i)
0 (Zo)
1 QRZ+1)( 0)

(39) 2071 i\
< ckf)-i— (il) ][ |Du — Dy ;|” dz

(20 )n+2 A

o)
Q1

(40) op—1 e p—2 2-p
P i+1
< o) +c(29)n+2 ( . ) (Aiz R;’) ]l |Dul|? dz

05" o)

(z)

2—-p
2-p (=1 2p (141
+ (xiz "R;’) ][ |DulP dz |+ SO o
05" o)
with a constant ¢ = c¢(n, p, v, L, V), where we used
(Ai) A\ 2— \2
0@l a (%) 22777 (%) < & )n+2< N )2—p
; ) B - = R; ; :
|QO”“)(Z0)| an(Riv )" 225 FP(Rip1)? \20% Ais1

Rit1

Thus, we deduce that

op—1 s P21 24p B _
P i+1 p(p—D+p2—p) 2
][ |Du|? dz <ch! gy (T) [xi Pt + 4 ]R;’M,

0 @)

where we used the induction assumption (36) for i, 2_7”(;1 + 1) <2 and R; € (0, 1]. Further, we
conclude that

Dul? dz < AP + 2 = PTE2eMRO =c (577 2 Y RY
|Du| 1=c (29)n+2 i+1 ¢ ¢ + (29)n+2 )¥i+1 z+1
0 )
< 8 P 2 B 9—(71-‘1-2)8— GlO'RO' )\‘p
¢ T o on+2 i+l
2
since 222 <2, p(p— 1)+ p2 — p) = p<2andkf+1A2_kf+l<
i, 1.€. )»,- =6§' and (34) we get

) By the definition of
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][ |Dul? dz < [2—1’ + 2P—"—59—("+2>R“] W< [2‘*” + 2—5] a0

Gig1)
QRi+l (z0)

In the last step, we used that § and R, can be chosen to satisfy
§>2c and 2P7"R% <@ +? (41)

with a constant ¢ = c(n, p, v, L, ¥, M). This yields

IDul? dz < [277 4275 a0 = Mal.

GitD)
QRi+l (z0)

This proves that (36) is also valid for i + 1 and therefore (36) holds for any i € Np.

Step 2. A Campanato type estimate. Here, we want to derive a Campanato type estimate
by means of the Lemma 7. In order to apply Lemma 7, we have to ensure that the require-
ments are valid. First of all, we should notice that the bound (11) from Lemma 7 is similar to
the bound (38) from the preceding step of this proof. Thus, we have to align (11) with (38).
Therefore, let M be the constant defined in (33). This guarantees us the validity of the energy
bound (38). Then, we denote by ¢, = c«(n, p, v, L, M) the constant appearing to (38). Next, by
o = po(n, p,v,L,cy) >1and ag = ag(n, p, v, L) € (0, 1) we denote the constants introduced
in Lemma 7. Finally, we have to choose the radius R from Lemma 7 equal to %R,-, where R; is the
radius from the beginning of this proof. Now, the estimate (11) with these choices is equivalent
to the energy bound (38). Then, we define

n+2+ 2

=— 42
§ n+2+4200+0 “2)
and consider radii p satisfying
2
1 2 3
0<p=< (1“02 R) . “3)
1
_ =AY
With r; := (ZMOZ R,-) we choose i € NU {0}, such that
1-£), 2z 1—£), 2=»
(orir1r ™) 2 ki < o < (o) T (44)

These particular choices are possible, we have

e

1— 2-p l p—2
(ororg” ™) 2 VOZV§=<ZM02 R) >p

—£) 2=p . . . .
and (AirflO(l S))Tri tends to zero as i — co. Now, we are in the situation to apply Lemma 7.
Thus, we consider again (as in Step 1) on a fixed intrinsic cylinder Q?‘g_ (zo) the comparison

function vg ; defined in (37). Then, the energy estimate (38) for vo ; reads as follows
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][ |Dvg;|P dz < C*)\lp.

i)

Ql (0)

Therefore, the assumption (11) of Lemma 7 is valid for vp; on the intrinsic cylinders Q()‘i ) (z0).

This allows us to conclude the existence of Rs; € [0, 7 /1,02 R;], such that there holds: If

R;; >0, then forany 0 <r < 4u02 R;, there exists a scaling factor u, such that Q; (int) (zo) €
A

QjR? (z0) and
2 1

ap @0
max{r, Ru} max{r, R”}
Mo = <un=2uo = (45)
KITM() : R; 41_1““0 : R;
and
sup |DUO,i| < Aip (46)
ki)
Qr
hold. Moreover, we have from (14) the following estimate
200
2. p=2,P r
][ |Dvo,i = (Dvo.i) jeim 1P dz < cugu? A = 47)
08" (z9) ko™ Ri

-2
forany 0 <r < 4,u02 R; and a constant ¢ = c(n, p, v, L). In the case R;; =0, we have that

(45) holds with R, ; = 0. Furthermore, (46) and (47) hold also in this case. As mentioned
in Lemma 7, the radii R;; might depends on z¢ and the solution v; 9. Now, we want to de-
rive an excess decay estimate for the solution u similar to the one for vp; from (46). We start
with

][ |Du — (Dz,t)QQ,-m(ZO)I"7 dz <2377 ][ |[Du — Dy ;|? dz
05" @) 01" zg)

+3p71 ][ |Dvo,i = (Dvo,i) oim 1P dz

Q(A,u)

(z0)

<3P +1)
with the obvious labeling for / and /I, where we used Holder’s inequality for the second to last
estimate. Here, we want to utilize the comparison estimate (40) to estimate / from above. This

rP_<
is possible, since r; = ( 4[,L02 R; )5 < R Finally, the have to divide the resulting comparison
estimate by |Q(A )(ZO)I. Now, we apply (40) to I as follows
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o2 R; n+2 )
I<u T |Du — Dvg;|¥ dz
1

04)
01" (z0)
2 Ri

R: n+2 R: n+2
<cpP™? (—') )»%MRZT’ =cul? (—l) Al-zRf

ri ri

with a constant ¢ = c¢(n, p, v, L, ¥, M), where we used (36). To estimate /I we use the excess
decay estimate for vp ; from (47) to obtain

20
ri
p=2

1
iHo” Ri

I < cpduP =22

with a constant ¢ = c¢(n, p, v, L), where we replaced » by r; in (47). Therefore, we have the
following excess decay estimate for the solution u of the variational inequality (7):

20
_ R Vl+2 3 ”
|Du — (DM) (ki) |P dZ < C/Lp 2= )\.llea + CM(z)/J,p 2)\.lp )%2
0" " (z0) ri 1 [TR
Qg,-k’m (z0) ko !
200
p—2,2 R " o 2 Ti
=cu A | | R +up | —=— ;
ri 1
Mo Ri

where ¢ = c(n, p,v, L, ¥, M). Finally, we want to conclude an excess decay estimate for the
solution u on a standard cylinder Q,(zo) with radius p > 0. Therefore, we have to use the re-

striction Q,(z0) € Qg”’” ) (z0)- This allows us to enlarge the domain of integration in the excess

functional from Q,(z¢) to Qﬁik" " )(Zo) and subsequently, we apply the quasi-minimality of the
mean value for the integrability exponent p. This yields

][ |Du — (Du)Qp(ZO)|p dz
0y (20)

(Aip)
H (2 [
< 07|er (z0)l |Du — (Du) oy, |7 dz
10, (z0)l 0" (o)

017" (z0)
2a0 (48)

ri\"? R \"? T
SC()\iM)z_p<_l> W (7) RY + 15 | —52—

P : o’ R

RA\H2 b\ 2 - 20
<of| () wea(y) |
ity Ri
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with a constant ¢ = c(n, p, v, L, ¥, M). Here, we utilize the bound of ,o_l from (44), i.e.

b

1 -1

; [(Mokzﬂr?ﬂ g)) 7 rz+1] I:(H/O)"l+lrl+1
w1652 53 17!

< | (nodrir; )2 0| .

Furthermore, we use the definitions of r; and R; to conclude that

|Du — (Du)Qp(zo)|p dz

Qp(ZO)
n+2 200

<Ck“7*<"*§>(2*‘” Ri RY +r Dto(l £)(n+2) 252 ri

- 1+ag(1-8) 552 1, 5

T iy~ Ri
o[ -5 @D U+ 52 )+60 | —an(1-§)(n+2) 252 +20 (1-6)
< CA; [ +r
<o ap(1-§)[2—(n+2) 352 ]

with a constant c = c(n, p, v, L, ¥, M, 8, 1o, 6), where we again used (42). Notice that
2—p
ap(l —§) 2—(n+2)T >0,

since p > =5 Finally, we get (similar to the case p > 2, cf. [26]) the following estimate

1 _EV[2— 2—p 1-¢ 25,7
][ |Du — (Du) g, o) |? dz < 2™ 270D ][52(9%“05[2("“) 7 '}

Qp(ZO)

i
<Cp§ao(1—s)[2—(n+2)2 Py [8292“0 - n+2) 52 ]}

. 1 .
with a constant ¢ = c(n, p,v, L, ¥, M, §, o, ), where we used r; < cp? for the last estimate,
which follows again from (44), since

2 2p 1 _5>e 1-£)22 41
P> (Mo)»z+1”fl+0(1 YT i = (onid) 7 aEIITE T +1]”i[a0( L
29é[ao(l_g)%pﬁ]ri[aou—s)Z*T”+1] orl@a- 5% S 2
with a constant ¢ = c(n, p, g, &), since 2—" < p <2 uo,Ai,é6 =1, rp € (0,1) and
[oo(1 — 5)2_7” + 1] < 2. Finally, we derive at
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2—
=

|Du— (Du) g,z |? dz < cpio0(1=O12=01+2)
Qp(ZO)

(49)

with a constant c =c(n, p, v, L, ”F”CO’“'% , ||D1p||coy[,,a7 , M, $, o, 0), provided we assume

2—

7 <572, (50)

pre0 E2-(nt)

Step 3: Adjusting the parameter. At this stage, we have to fix the constants. First of all,
we have to choose § according to (41). Therefore, we have § = §(n, p,v, L, ¥, M). Next,
we fix 6 in such a way that (34) and (50) are valid. By this choice, we determinate the
dependencies of 0, i.e. 6 depends on «g, &, §. Therefore 6 = 0(n, p,v, L, ¥, M, o), since
oo, &, 8§ depend on n, p, v, L, ¥, M, o. Thus, we have proved the existence of an exponent
oy =ai(n, p,v,L,0):= %ao(l —&H2-n+ 2)2_Tp], such that

|Du — (Du) g, o) |” dz < cp™',
Q/)(ZO)

holds with a constant ¢ = c¢(n, p,v, L, W, M, o), whenever On(3,) € Q7 and p satisfies (41)
and (43). Then, Holder’s inequality implies that

o)
][ |Du — (Du)g,zp)l dz <cp 7.
0,(20)

From the parabolic version of Campanato’s integral characterization of continuous functions
proved by Da Prato in [14], we can conclude that Du is Holder continuous with respect to the
parabolic metric with Holder exponent o = % locally on Q7, i.e. Du € C%% 3 (O, (o), R™) for
a Holder exponent « = «(n, p, v, L,0) € (0, ). Thus, the proof is finished. O

4. Poincaré type estimate for localizable solutions of parabolic obstacle problems

Since a localizable solution u of the weak formulation of the variational inequality (7) does
not admit the necessary regularity properties for an immediate application of a Poincaré in-
equality for maps defined on R"*!, our last aim is to prove a Poincaré type estimate for
localizable solutions of our parabolic obstacle problem (7). Then, we are able to prove that
ueC® I3 (0% (30), R) under the assumption of Theorem 1. The Poincaré type estimate we will
prove by a comparison argument. Therefore, we start with a Poincaré type estimate for the weak
solution of (15). For this goal we refer to [3, Lemma 5.1]. Here, the authors proved a Poincaré
type estimate on intrinsic cylinders Qg‘) (zo) for the weak solution of the following parabolic
problem with nonstandard growth

3 v — div(a(z)|Dv|PP 2 Dv) = div(|FIPP2F) in Q7.

The proof would be the same in our case — up to some modifications. The obvious differ-
ence is that we consider standard p-growth instead of p(z)-growth and we have to replace
div(|F|PD~2F) by 8, — div(a(z)|Dy¥|P~2Dv). Thus, we get in (51) instead of |F|?") the
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terms |Dy|P and |81/f|”,. Moreover, we need this estimate on symmetric cylinders Q,(zo).
Therefore, the term A2~ P does not occur. Thus, the statement reads as follows

Lemma 11. Let Q,(z0) C Q7 be a symmetric parabolic cylinder with radius 0 < p < 1. Suppose
that the map v € CO([to — p?, to + p21; L*(B, (x0))) N LP (to — p?, to + p*; WP (B, (x0))) with
oV € L (tg — pz, to + pz; W_l"",(Bp (x0))) is a weak solution of the following inhomogeneous
parabolic equation

dv — div(a(z)|Dv|P 2 Dv) =3¢ — div(a(@)|[ DY [P > DY) in Q,(z0),

under the assumptions (1)—(5). Then, there holds for all ¥ € [1, p]
»
v = ()0, ()

v
][ dz <c ][ |Dv|” dz + ¢ ][ |Dv|P~ + 1Dy P+ 18,9 | dz
0
Qp(ZO) Q,o(ZO) Qp(ZO)

(51)
with a constant ¢ = c¢(n, p, L, 9).

Now, we are in the situation to prove the Poincaré type estimate for localizable solutions
of (7).

Lemma 12. Suppose that u € Ky, () is a localizable solution — cf. Definition 1 — of the
variational inequality (7) under the assumptions (1)—(5), (6) and (8). Furthermore, let Q,(z0) C
09 (o) C Q7 be a parabolic cylinder with radius 0 < p < 1. Then, there holds for all ¥ € [1, p]
»
u— (”)sz (z0)

4
][ dz <c ][ Dul” dz +c ][ Dul? +1dz (52)
0
0,(20) 0,(20) 0, (z0)

with a constant ¢ = c¢(n, p,v, L, ¥, ¥).
Proof. First of all, we define the map
ve [ty — p*. 10+ p*1: L*(B,(x0))) N LP (1o — p*, 10 + p*s WP (B, (x0)))

with 9;v € Lp/(to — P2, 10 + p%; W’]’pl(Bp(xo))) to be the weak solution of the following
parabolic equation

dv — div(a(z)|Dv|P~2Dv) = 3¢ — div(a(2)| DY |P2Dy) in Q,(z0),
vV=u on dp 0, (z0)

under the assumptions (1)—(5). We start with the following
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D
][ u— )9, ) dz
0
0, (z0)
9
u—vl|® ) 5022y ~ 2y )
<c(®) — | dz4c(®) dz
p p
0, (z20) 0, (20)
v—(v) v
+e(@®) R 7IC0N R P
Qp(ZO)

with the obvious labeling. Here, we estimate / by the Poincaré inequality slicewise. This yields

I <c(n, o) ][ |Du — Dv|” dz < ¢(n, ®) ][ |Du|” + |Dv|” dz.
0y (z0) 0, (z0)
Then, we use Holder’s inequality (if ¥ < p) and the energy estimate (19) on the symmetric

cylinder Q,(zo). Thus, we

A
P

I <c(n,®) ][ |Du|? dz + c(n, ) ][ |Dv|? dz
0,(20) 0, (z0)

<c ][ |Dul” dz + ¢ ][ |Du|? dz + p°
0, (z0) 0,(20)

with a constant ¢ = c¢(n, p, v, L, V¥, ). Moreover, the term /I is bounded by /. The last term,
we estimate from above by (51) and finally by the energy estimate (19) again on the symmetric
cylinder Q2,(zo). This yields

4

1l <c ][ |Dul? +1dz
0,(z0)

Combining the last estimates and using p < 1, we arrive at (52). This completes the proof. O
5. Proof of Theorem 2

Finally, we are able to prove Theorem 2.
Proof of Theorem 2. In the proof of Theorem 1, we have shown that Du € C 0.5 (On (o), R™)

for a Holder exponent o = «(n, p,v, L,0) € (0,0). Notice that in particular this implies that
Du is locally bounded, i.e. Du € L° (27, R™"). Next, we apply this result to conclude that u is

loc
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locally C 1.3 continuous. Therefore, we have to use that Q,(z9) C Q9:(z0) and by the Poincaré
type estimate (52), we get

0, (20)

u— ()0, (zp)
P

dz<c

with a constant ¢ = c(n, p, v, L, ¥, || Du||p~). Finally, from the parabolic version of Campana-
to’s integral characterization of continuous functions proved by Da Prato in [14], we can conclude

that u is locally C 015 continuous in Qi (3o). O
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