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Abstract

We establish sharp long time asymptotic behaviour for a family of entropies to defective Fokker–Planck 
equations and show that, much like defective finite dimensional ODEs, their decay rate is an exponential 
multiplied by a polynomial in time. The novelty of our study lies in the amalgamation of spectral theory 
and a quantitative non-symmetric hypercontractivity result, as opposed to the usual approach of the entropy 
method.
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1. Introduction

1.1. Background

The study of Fokker–Planck equations (sometimes also called Kolmogorov forward equa-
tions) has a long history – going back to the early 20th century. Originally, Fokker and Planck 
used their equation to describe Brownian motion in a PDE form, rather than its usual SDE rep-
resentation.

In its most general form, the Fokker–Planck equation reads as

∂tf (t, x) =
d∑

i,j=1

∂xixj

(
Dij (x)f (t, x)

)−
d∑

i=1

∂xi (Ai(x)f (t, x)) , (1.1)

with t > 0, x ∈ R
d , and where Dij (x), Ai(x) are real valued functions, with D(x) =(

Dij (x)
)
i,j=1,...,d

being a positive semidefinite matrix.
The Fokker–Planck equation has many usages in modern mathematics and physics, with con-

nection to statistical physics, plasma physics, stochastic analysis and mathematical finances. For 
more information about the equation, we refer the reader to [19]. Here we will consider a very 
particular form of (1.1) that allows degeneracies and defectiveness to appear.

1.2. The Fokker–Planck equation in our setting

In this work we will focus our attention on Fokker–Planck equations of the form:

∂tf (t, x) = Lf (t, x) := div (D∇f (t, x) + Cxf (t, x)) , t > 0, x ∈R
d , (1.2)

with appropriate initial conditions, where the matrix D (the diffusion matrix) and C (the drift
matrix) are assumed to be constant and real valued.

In addition to the above, we will also assume the following:

(A) D is a positive semidefinite matrix with

1 ≤ r := rank (D) ≤ d.

(B) All the eigenvalues of C have positive real part (this is sometimes called positively stable).
(C) There exists no non-trivial CT -invariant subspace of Ker (D) (this is equivalent to hypoel-

lipticity of (1.2), cf. [12]).

Each of these conditions has a significant impact on the equation:

• Condition (A) allows the possibility that our Fokker–Planck equation is degenerate (r < d).
• Condition (B) implies that the drift term confines the system. Hence it is crucial for the 

existence of a non-trivial steady state to the equation, and
• Condition (C) tells us that when D is degenerate, C compensates for the lack of diffusion in 

the appropriate direction and “pushes” the solution back to where diffusion happens.
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Equations of the form (1.2), with emphasis on the degenerate structure (and hence d ≥ 2), have 
been extensively investigated recently (see [2], [17]) and were shown to retain much of the struc-
ture of their non-degenerate counterpart. When it comes to the question of long time behaviour, 
it has been shown in [2] that under Conditions (A)–(C) there exists a unique equilibrium state 
f∞ to (1.2) with a unit mass (it was actually shown that the kernel of L is one dimensional) and 
that the convergence rate to it can be explicitly estimated by the use of the so called (relative) 
entropy functionals. Based on [3,5], and denoting R+ := {x > 0 | x ∈R} and R+

0 := R
+ ∪ {0}, 

we introduce these entropy functionals:

Definition 1.1. We say that a function ψ is a generating function for an admissible relative 
entropy if ψ �≡ 0, ψ ∈ C

(
R

+
0

)∩ C4
(
R

+), ψ(1) = ψ ′(1) = 0, ψ ′′ > 0 on R+ and

(
ψ ′′′)2 ≤ 1

2
ψ ′′ψ ′′′′. (1.3)

For such a ψ , we define the admissible relative entropy eψ (·|f∞) to the Fokker–Planck equation 
(1.2) with a unit mass equilibrium state f∞, as the functional

eψ (f |f∞) :=
∫
Rd

ψ

(
f (x)

f∞(x)

)
f∞(x)dx, (1.4)

for any non-negative f with a unit mass.

Remark 1.2. It is worth to note a few things about Definition 1.1:

• As ψ is only defined on R+
0 the admissible relative entropy can only be used for non-

negative functions f . This, however, is not a problem for equation (1.2) as it propagates 
non-negativity.

• Assumption (1.3) is equivalent to the concavity of (ψ ′′)−1 on R+.
• Important examples of generating functions include ψ1(y) := y logy −y +1 (the Boltzmann 

entropy) and ψ2(y) := 1
2 (y − 1)2.

Note that for f ∈ L2
(
R

d, f −1∞
)

e2(f |f∞) = 1

2
‖f − f∞‖2

L2
(
Rd ,f −1∞

).
This means that up to some multiplicative constant, e2 is the square of the (weighted) L2

norm.

A detailed study of the rate of convergence to equilibrium of the relative entropies for (1.2)
when r < d was completed recently in [2]. Denoting by L1+

(
R

d
)

the space of non-negative L1

functions on Rd , the authors have shown the following:

Theorem 1.3. Consider the Fokker–Planck equation (1.2) with diffusion and drift matrices D
and C which satisfy Conditions (A)–(C). Let
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μ := min {Re (λ) |λ is an eigenvalue of C} . (1.5)

Then, for any admissible relative entropy eψ and a solution f (t) to (1.2) with initial datum 
f0 ∈ L1+

(
R

d
)
, of unit mass and such that eψ(f0|f∞) < ∞ we have that:

(i) If all the eigenvalues from the set

{λ | λ is an eigenvalue of C and Re(λ) = μ} (1.6)

are non-defective,1 then there exists a fixed geometric constant c ≥ 1, that doesn’t depend 
on f , such that

eψ(f (t)|f∞) ≤ ceψ(f0|f∞)e−2μt , t ≥ 0.

(ii) If one of the eigenvalues from the set (1.6) is defective, then for any ε > 0 there exists a fixed 
geometric constant cε ≥ 1, that doesn’t depend on f , such that

eψ(f (t)|f∞) ≤ cεeψ(f0|f∞)e−2(μ−ε)t , t ≥ 0. (1.7)

The loss of the exponential rate e−2μt in part (ii) of the above theorem is to be expected, 
however it seems that replacing it by e−2(μ−ε)t is too crude. Indeed, if one considers the much 
related, finite dimensional, ODE equivalent

ẋ = −Bx

where the matrix B ∈ R
d×d is positively stable and has, for example, a defect of order 1 in an 

eigenvalue with real part equal μ > 0 (defined as in (1.5)), then one notices immediately that

‖x(t)‖2 ≤ c‖x0‖2
(

1 + t2
)

e−2μt , t ≥ 0,

i.e. the rate of decay is worsened by a multiplication of a polynomial of the order twice the defect 
of the “minimal eigenvalue”.

The goal of this work is to show that the above is also the case for our Fokker–Planck equation.
We will mostly focus our attention on the natural family of relative entropies ep (·|f∞), with 

1 < p ≤ 2, which are generated by

ψp(y) := yp − p(y − 1) − 1

p(p − 1)
.

Notice that ψ1 can be understood to be the limit of the above family as p goes to 1.
An important observation about the above family, that we will use later, is the fact that the 

generating function for p = 2, associated to the entropy e2, is actually defined on R and not 
only R

+. This is not surprising as we saw the connection between e2 and the L2 norm. This 
means that we are allowed to use e2 even when we deal with functions without a definite sign.

1 An eigenvalue is defective if its geometric multiplicity is strictly less than its algebraic multiplicity. We will call the 
difference between these numbers the defect of the eigenvalue.
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Our main theorem for this paper is the following:

Theorem 1.4. Consider the Fokker–Planck equation (1.2) with diffusion and drift matrices D
and C which satisfy Conditions (A)–(C). Let μ be defined as in (1.5) and assume that one, or 
more, of the eigenvalues of C with real part μ are defective. Denote by n > 0 the maximal defect 
of these eigenvalues. Then, for any 1 < p ≤ 2, the solution f (t) to (1.2) with unit mass initial 
datum f0 ∈ L1+

(
R

d
)

and finite p-entropy, i.e. ep (f0|f∞) < ∞, satisfies

ep (f (t)|f∞) ≤
{

c2e2 (f0|f∞)
(
1 + t2n

)
e−2μt , p = 2,

cp

(
p(p − 1)ep(f0|f∞) + 1

) 2
p
(
1 + t2n

)
e−2μt , 1 < p < 2,

for t ≥ 0, where cp > 0 is a fixed geometric constant, that doesn’t depend on f0, and f∞ is the 
unique equilibrium with unit mass.

The main idea, and novelty, of this work is in combining elements from Spectral Theory and 
the study of our p-entropies. We will give a detailed study of the geometry of the operator L
in the L2

(
R

d , f −1∞
)

space and deduce, from its spectral properties, the result for e2. Since the 
other entropies, ep for 1 < p < 2, lack the underlying geometry of the L2 space that e2 enjoys, 
we will require additional tools: We will show a quantitative result of hypercontractivity for 
non-symmetric Fokker–Planck operators that will assure us that after a certain, explicit time, any 
solution to our equation with finite p-entropy will belong to L2

(
R

d, f −1∞
)
. This, together with 

the dominance of e2 over ep for functions in L2
(
R

d, f −1∞
)

will allow us to “push” the spectral 
geometry of L to solutions with initial datum that only has finite p-entropy.

We have recently become aware that the long time behaviour of Theorem 1.4 has been shown 
in a preprint by Monmarché, [15]. However, the method he uses to show this result is a gener-
alised entropy method (more on which can be found in §5), while we have taken a completely 
different approach to the matter.

The structure of the work is as follows: In §2 we will recall known facts about the Fokker–
Planck equation (degenerate or not). §3 will see the spectral investigation of L and the proof 
of Theorem 1.4 for p = 2. In §4 we will show our non-symmetric hypercontractivity result and 
conclude the proof of our Theorem 1.4. Lastly, in §5 we will recall another important tool in the 
study of Fokker–Planck equations – the Fisher information – and show that Theorem 1.4 can also 
be formulated for it, due to the hypoelliptic regularisation of the equation.

2. The Fokker–Planck equation

This section is mainly based on recent work of Arnold and Erb (see [2]). We will provide 
here, mostly without proof, known facts about degenerate (and non-degenerate) Fokker–Planck 
equations of the form (1.2).

Theorem 2.1. Consider the Fokker–Planck equation (1.2), with diffusion and drift matrices D
and C that satisfy Conditions (A)–(C), and an initial datum f0 ∈ L1+

(
R

d
)
. Then

(i) There exists a unique classical solution f ∈ C∞ (
R

+ ×R
d
)

to the equation. Moreover, if 
f0 �= 0 it is strictly positive for all t > 0.

(ii) For the above solution 
∫
Rd f (t, x)dx = ∫

Rd f0(x)dx.
(iii) If in addition f0 ∈ Lp

(
R

d
)

for some 1 < p ≤ ∞, then f ∈ C
([0,∞),Lp

(
R

d
))

.
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Theorem 2.2. Assume that the diffusion and drift matrices, D and C, satisfy Conditions (A)–(C). 
Then, there exists a unique stationary state f∞ ∈ L1

(
R

d
)

to (1.2) satisfying 
∫
Rd f∞(x)dx = 1. 

Moreover, f∞ is of the form:

f∞(x) = cKe− 1
2 xT K−1x, (2.1)

where the covariance matrix K ∈Rd×d is the unique, symmetric and positive definite solution to 
the continuous Lyapunov equation

2D = CK + KCT ,

and where cK > 0 is the appropriate normalisation constant. In addition, for any f0 ∈ L1+
(
R

d
)

with unit mass, the solution to the Fokker–Planck equation (1.2) with initial datum f0 converges 
to f∞ in relative entropy (as referred to in Theorem 1.3).

Remark 2.3. In the case where f0 ∈ L1+
(
R

d
)

is not of unit mass, it is immediate to de-
duce that the solution to the Fokker–Planck equation with initial datum f0 converges to (∫

Rd f0(x)dx
)
f∞(x).

Corollary 2.4. The Fokker–Planck operator L can be rewritten as

Lf = div

(
f∞(x)CK∇

(
f (t, x)

f∞(x)

))
(2.2)

(cf. Theorem 3.5 in [2]).

A surprising, and useful, property of (1.2) is that the diffusion and drift matrices associated to 
it can always be simplified by using a change of variables. The following can be found in [1]:

Theorem 2.5. Assume that the diffusion and drift matrices satisfy Conditions (A)–(C). Then, 
there exists a linear change of variable that transforms (1.2) to itself with new diffusion and drift 
matrices D and C such that

D = diag {d1, d2, . . . , dr ,0, . . . ,0} (2.3)

with dj > 0, j = 1, . . . , r and Cs := C+CT

2 = D. In these new variables the equilibrium f∞ is 
just the standard Gaussian with K = I.

The above matrix normalisation has additional impact on the calculation of the adjoint opera-
tor:

Corollary 2.6. Let Cs = D. Then:

(i)

(
LD,C

)∗ = LD,CT ,
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where L∗ denotes the (formal) adjoint of L, considered w.r.t. L2
(
R

d , f −1∞
)
. The domain of 

L will be discussed in §3.

(ii) The kernels of L and L∗ are both spanned by exp(−|x|2
2 ). This is not true in general, i.e. for 

a Fokker–Planck operator L without the matrix normalisation assumption.

Proof. (i) Under the normalising coordinate transformation of Theorem 2.5 we see from (2.2)
that

∫
Rd

f (x)LD,Cg(x)f −1∞ (x)dx = −
∫
Rd

f∞(x)∇
(

f (x)

f∞(x)

)T

C∇
(

g(x)

f∞(x)

)
dx

=
∫
Rd

div

(
f∞(x)CT ∇

(
f (x)

f∞(x)

))
g(x)f −1∞ (x)dx.

(2.4)

(ii) follows from (2.1) and K = I. �
From this point onwards we will always assume that Conditions (A)–(C) hold, and that we 

are in the coordinate system where D is of form (2.3) and equals Cs .

3. The spectral study of L

The main goal of this section is to explore the spectral properties of the Fokker–Planck oper-
ator L in L2

(
R

d, f −1∞
)
, and to see how one can use them to understand rates of convergence to 

equilibrium for e2. The crucial idea we will implement here is that, since L2
(
R

d, f −1∞
)

decom-
poses into orthogonal eigenspaces of L with eigenvalues that get increasingly farther to the left 
of the imaginary axis, one can deduce improved convergence rates on “higher eigenspaces”.

The first step in achieving the above is to recall the following result from [2], where we use 
the notation N0 := N ∪ {0}:

Theorem 3.1. Denote by

Vm := span

{
∂α1
x1

. . . ∂αd
xd

f∞(x)

∣∣∣ α1, . . . , αd ∈N0,

d∑
i=1

αi = m

}
.

Then, {Vm}m∈N0
are mutually orthogonal in L2

(
R

d, f −1∞
)
,

L2
(
R

d, f −1∞
)

=
⊕
m∈N0

Vm,

and Vm are invariant under L and its adjoint (and thus under the flow of (1.2)).
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Moreover, the spectrum of L satisfies

σ (L) =
⋃

m∈N0

σ
(
L|Vm

)
,

σ
(
L|Vm

)=
{

−
d∑

i=1

αiλi

∣∣∣ α1, . . . , αd ∈ N0,

d∑
i=1

αi = m

}
,

where 
{
λj

}
j=1,...,d

are the eigenvalues (with possible multiplicity) of the matrix C. The eigen-
functions of L (or eigenfunctions and generalised eigenfunctions in the case C is defective) form 
a basis to L2

(
Rd, f −1∞

)
.

Let us note that this orthogonal decomposition is non-trivial since L is in general non-
symmetric. The above theorem quantifies our previous statement about “higher eigenspaces”: the 
minimal distance between the eigenvalues of L restricted to the “higher” L-invariant eigenspace 
Vm and the imaginary axis is mμ. Thus, the decay we expect to find for initial datum from Vm

is of order e−2mμt (in the quadratic entropy, e.g.). However, as the function we will use in our 
entropies are not necessarily contained in only finitely many Vm, we might need to pay a price in 
the rate of convergence.

This intuition is indeed true. Denoting

Hk :=
⊕
m≥k

Vm (3.1)

for any k ≥ 0, we have the following:

Theorem 3.2. Let fk ∈ Hk for some k ≥ 1 and let f (t) be the solution to (1.2) with initial data 
f0 = f∞ + fk . Then for any 0 < ε < μ there exists a geometric constant ck,ε ≥ 1 that depends 
only on k and ε such that

e2 (f (t)|f∞) ≤ ck,εe2(f0|f∞)e−2(kμ−ε)t , t ≥ 0 . (3.2)

Remark 3.3. The loss of an ε in the decay rate of (3.2) – compared to the decay rate solely 
on Vk – can have two causes:

(1) For drift matrices C with a defective eigenvalue with real part μ, the larger decay rate 2kμ

would not hold in general. This is illustrated in (1.7), which provides the best possible purely 
exponential decay result, as proven in [2].

(2) For non-defective matrices C, the improved decay rate 2kμ actually holds, but our method 
of proof, that uses the Gearhart–Prüss Theorem, cannot yield this result. The decay estimate 
(3.2) will be improved in Theorem 3.11: There, the ε-reduction drops out in the non-defective 
case.

Remark 3.4. As we insinuated in the introduction to our work, an important observation to make 
here is that the initial data, f0, doesn’t have to be non-negative (and in many cases, is not). While 
this implies that f (t) might also be non-negative, this poses no problems as e2 is the squared 
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(weighted) L2 norm (up to a constant). Theorem 3.2 would not work in general for ep as the 
non-negativity of f (t) is crucial there (in other words, f0 would not be admissible).

The main tool to prove Theorem 3.2 is the Gearhart–Prüss Theorem (see for instance Th. 1.11 
Chap. V in [8]). In order to be able to do that, we will need more information about the dissipa-
tivity of L and its resolvents with respect to Hk .

Lemma 3.5. Let Vm be as defined in Theorem 3.1. Consider the operator L with the domain 
D(L) = span {Vm, m ∈N0}. Then L is dissipative, and as such closable. Moreover, its closure, 
L, generates a contraction semigroup on L2

(
R

d , f −1∞
)
.

Proof. Given f ∈ D(L), and denoting g := f
f∞ , we notice that (2.2) with K = I implies that

(Lf,f )
L2

(
Rd ,f −1∞

) =
∫
Rd

div (f∞(x)C∇g(x)) g(x)dx = −
∫
Rd

∇g(x)T C∇g(x)f∞(x)dx

= −
∫
Rd

∇g(x)T D∇g(x)f∞(x)dx ≤ 0,

where we have used the fact that Cs = D. Thus, L is dissipative.
To show the second statement we use the Lumer–Phillips Theorem (see for instance Th. 3.15 

Chap. II in [8]). Since L2
(
R

d, f −1∞
) = ⊕

m∈N0
Vm it will be enough to show that for λ > 0 we 

have that Vm ⊂ Range (λI − L) for any m. As Vm ⊂ D(L), is finite dimensional, and is invariant 
under L (Theorem 3.1 again) we can consider the linear bounded operator L|Vm : Vm → Vm. 
Since we have shown that L is dissipative, we can conclude that the eigenvalues of L|Vm have 
non-positive real parts, implying that (λI − L) |Vm is invertible. This in turn implies that

Vm = Range
(
(λI − L) |Vm

)⊂ Range (λI − L) ,

completing the proof. �
To study the resolvents of L we will need to use some information about its “dual”: the 

Ornstein–Uhlenbeck operator.
For a given symmetric positive semidefinite matrix Q = (qij ) and a real, negatively stable 

matrix B = (bij ) on Rd we consider the Ornstein–Uhlenbeck operator

PQ,B := 1

2

∑
i,j

qij ∂
2
xixj

+
∑
i,j

bij xj ∂xi
= 1

2
Tr
(

Q∇2
x

)
+ (Bx,∇x) , x ∈ R

d . (3.3)

Similarly to our conditions on the diffusion and drift matrices, we will only be interested in 
Ornstein–Uhlenbeck operators that are hypoelliptic. In the above setting, this corresponds to the 
condition

rank
[
Q

1
2 ,BQ

1
2 , . . . ,Bd−1Q

1
2

]
= d.
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The hypoellipticity condition guarantees the existence of an invariant measure, dμ, to the pro-
cess. This measure has a density w.r.t. the Lebesgue measure, which is given by

dμ

dx
(x) = cMe− 1

2 xT M−1x , with M :=
∞∫

0

eBsQeBT s ds

where cM > 0 is a normalisation constant. It is well known that the above definition of M is 
equivalent to finding the unique solution to the continuous Lyapunov equation

Q = −BM − MBT . (3.4)

(See for instance Theorem 2.2 in [20], §2.2 of [13].)
Hypoelliptic Ornstein–Uhlenbeck operators have been studied for many years, and more re-

cently in [18] the authors considered them under the additional possibility of degeneracy in their 
diffusion matrix Q. In [18], the authors described the domain of the closed operator PQ,B, and 
have found the following resolvent estimation:

Theorem 3.6. Consider the hypoelliptic Ornstein–Uhlenbeck operator PQ,B, as in (3.3), and its 
invariant measure dμ(x). Then there exist some positive constants c, C > 0 such that for any 
z ∈ �κ , with

�κ :=
{

z ∈C

∣∣∣∣∣ Re z ≤ 1
2 (1 − Tr(B)) ,

∣∣Re z − (
1 − 1

2 Tr(B)
)∣∣≤ c

∣∣z − (
1 − 1

2 Tr(B)
)∣∣ 1

2κ+1

}
(3.5)

and where κ is the smallest integer 0 ≤ κ ≤ d − 1 such that

rank
[
Q

1
2 ,BQ

1
2 , . . . ,BκQ

1
2

]
= d, (3.6)

one has that

‖(PQ,B − zI
)−1‖B

(
L2

(
Rd ,dμ

)) ≤ C

∣∣∣∣z −
(

1 − 1

2
Tr(B)

)∣∣∣∣− 1
2κ+1

.

We illustrate the spectrum of PQ,B and the domain �κ in Fig. 1.
In order to use the above theorem for our operator, L, we show the connection between it and 

P in the following lemma:

Lemma 3.7. Assume that the associated diffusion and drift matrices for L, defined on 
L2

(
R

d, f −1∞
)
, and PQ,B, defined on L2

(
R

d, dμ(x)
)
, satisfy

Q = 2D, B = −C.

Then dμ(x) = f∞(x)dx is the invariant measure for P = PQ,B and its adjoint, and (up to the 
natural transformation Lf

f∞ = P ∗( f
f∞ )) we have L = P ∗.
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Fig. 1. The black dots represent σ(PQ,B) with the eigenvalues of the 2 × 2 matrix B given as λ1,2 = −1 ± 7
2 i. The 

shaded area represents the set �κ of Theorem 3.6 with κ = 1.

Proof. We start by recalling that we assume that D = Cs . Since (3.4) can be rewritten as

2D = CM + MCT

for our choice of Q and B, we conclude that M = I for P2D,−C and that 
(
P2D,−C

)∗ = P2D,−CT

(the last equality can be shown in a similar way to (2.4)). Thus, the invariant measure corre-
sponding to both these operators is f∞(x)dx.

Let f ∈ D(L) ⊂ L2
(
R

d , f −1∞
)

and define gf := f
f∞ ∈ L2

(
R

d , f∞
)
. Then

LD,Cf (x)

f∞(x)
= div

(
f∞(x)C∇gf (x)

)
f∞(x)

= div
(
C∇gf (x)

)+ ∇f∞(x)T C∇gf (x)

f∞(x)

= div
(
D∇gf (x)

)− xT C∇gf (x) = P2D,−CT gf (x) = (
P2D,−C

)∗
gf (x) ,

(3.7)

where the adjoint is considered w.r.t. L2
(
R

d, f∞
)
. In particular, if f (t, ·) ∈ L2

(
R

d, f −1∞
)

solves 
(1.2) then gf (t, ·) satisfies the adjoint equation ∂tgf = (

P2D,−C
)∗

gf . �
With this at hand we can recast, and improve, Theorem 3.6 for the operator L and its closure.

Proposition 3.8. Let any k ∈ N0 be fixed. Consider the set �κ , defined by (3.5), associated to 
Q = 2D, B = −CT (Condition (C) guarantees the existence of such κ). Then we have that, for 
any z ∈ �κ , the operator (L − zI) |Hk

: Hk → Hk is well defined, closable, and its closure is 
invertible with
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∥∥∥((L − zI
) |Hk

)−1
∥∥∥

B(Hk)
≤ C

∣∣∣∣z −
(

1 + 1

2
Tr(C)

)∣∣∣∣− 1
2κ+1

, (3.8)

where C > 0 is the same constant as in Theorem 3.6.

Proof. We consider the case k = 0 first. Due to Theorem 3.6 we know that for any z ∈ �κ , 
P2D,−CT − zI is invertible on L2

(
R

d, f∞
)
. Hence, for any f ∈ L2

(
R

d, f −1∞
)

there exists a 
unique 
f ∈ L2

(
R

d, f∞
)

such that

(
P2D,−CT − zI

)

f (x) = f (x)

f∞(x)
,

which can also be written differently due to (3.7), as(
L − zI

) (
f∞(x)
f (x)

)= f (x).

This implies that L − zI is bijective on its appropriate space.
Next we notice that, with the notations from Lemma 3.7

sup
‖f ‖=1

‖(L − zI
)−1

f ‖
L2

(
Rd ,f −1∞

) = sup
‖f ‖=1

‖f∞
f ‖
L2

(
Rd ,f −1∞

)
= sup

‖f ‖=1
‖
f ‖L2

(
Rd ,f∞

) = sup
‖gf ‖=1

‖(P2D,−CT − zI
)−1

gf ‖L2
(
Rd ,f∞

) ,
from which we conclude that

‖(L − zI
)−1‖

B
(
L2

(
Rd ,f −1∞

)) = ‖(P2D,−CT − zI
)−1‖B

(
L2

(
Rd ,f∞

)) ,
completing the proof for this case.

We now turn our attention to the restrictions (L − zI) |Hk
with k ≥ 1 and domain

Dk := span {Vm,m ≥ k} = D(L) ∩ Hk.

Since L|Vm : Vm → Vm ∀m ∈ N0 we have that (L − zI) |Hk
: Dk → Hk . Moreover, the dissipa-

tivity of L on D(L) assures us that L is dissipative, and as such closable, on the Hilbert space Hk . 
Thus (L − zI)|Hk

is closable too and

(L − zI) |Hk
= (

L − zI
) |Hk

.

Additionally, since the only part of L2
(
Rd , f −1∞

)
that is not in Hk is a finite dimensional subspace 

of D(L), we can conclude that

D
((

L − zI
) |Hk

)
= D(L) ∩ Hk.

Given z in the resolvent set of L we know that (L − zI)|Vm : Vm → Vm is invertible for any m
and as such
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(L − zI)|Vm (Vm) = Vm.

Thus,

Vm ⊂ Range
(
(L − zI)|Hk

)
, ∀m ≥ k.

We conclude that (L − zI)|Hk
is injective with a dense range in Hk for any z ∈ �κ , and hence 

invertible on its range. The validity of (3.8) for k = 0 allows us to extend our inverse to Hk with 
the same uniform bound as is given in (3.8). The general case is now proved. �

From this point onward, we will assume that we are dealing with the closed operator L and 
with its appropriate domain (that includes 

⋃
m∈N0

Vm) when we consider our equation. We will 
also write L instead of L in what is to follow.

Lemma 3.5 and Proposition 3.8 are all the tools we need to estimate the uniform exponential 
stability of our evolution semigroup on each Hk , an estimation that is crucial to show Theo-
rem 3.2.

Proposition 3.9. Consider the Fokker–Planck operator L, defined on L2
(
R

d , f −1∞
)
, and the 

spaces {Hk}k≥1 defined in (3.1). Then, for any 0 < ε < μ, the semigroup generated by 
(L + (kμ − ε) I )|Hk

, with domain D(L) ∩Hk , is uniformly exponentially stable. I.e., there exists 
some geometric constant Ck,ε > 0 such that

‖eLt‖B(Hk) ≤ Ck,εe
−(kμ−ε)t , t ≥ 0 . (3.9)

Proof. We will show that

Mk,ε := sup
Re z>0

∥∥∥∥∥
(

(L + [kμ − ε]I ) − zI

)−1
∥∥∥∥∥

B(Hk)

< ∞ ,

and conclude the result from the fact that L generates a contraction semigroup according to 
Lemma 3.5 and the Gearhart–Prüss Theorem.

The study of upper bounds for the resolvents of L + [kμ − ε]I in the right-hand complex 
plane relies on subdividing this domain into several pieces. This is illustrated in Fig. 2, which we 
will refer to during the proof to help visualise this division.

Since L generates a contraction semigroup, for any ε > 0, L − εI generates a semigroup 
that is uniformly exponentially stable on L2(Rd , f −1∞ ). The Gearhart–Prüss Theorem applied to 
L − εI implies that

M̃k,ε := sup
Re z>0

∥∥∥(L − (ε + z)I )−1
∥∥∥

B(Hk)
≤ sup

Re z>0

∥∥∥(L − (ε + z)I )−1
∥∥∥

B(L2(Rd ,f −1∞ ))
< ∞,

where we removed the subscript Hk from the operator on the left-hand side to simplify notations.
Since

L − (ε + z) I = L + [kμ − ε]I − (z + kμ) I,

we see that
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Fig. 2. choosing k = 2, the solid dots represent σ((L + [2μ − ε]I )|H2 ) where the eigenvalues of the 2 × 2 matrix C are 
given by λ1,2 = 1 ± 7

2 i. The empty dots are the eigenvalues of the operator L + [2μ − ε]I that disappear due to the 
restriction to H2, and the shaded area represents the compact set {z ∈ C | 0 ≤ Re z ≤ 2μ} ∩ {z /∈ �κ + 2μ − ε} where 
κ = 1.

M̃k,ε = sup
Re z1>0

∥∥∥∥∥
(

(L + [kμ − ε]I ) − (z1 + kμ) I

)−1
∥∥∥∥∥

B(Hk)

= sup
Re z>kμ

∥∥∥∥∥
(

(L + [kμ − ε]I ) − zI

)−1
∥∥∥∥∥

B(Hk)

(this term corresponds to the right-hand side of the dashed line in Fig. 2).
From the above we conclude that

Mk,ε = max

(
M̃k,ε , sup

0<Re z≤kμ

∥∥∥(L − [z − kμ + ε]I )−1
∥∥∥

B(Hk)

)
,

which implies that we only need to show that the second term in the parenthesis is finite (this 
term corresponds to the area between the dashed line and the imaginary axis in Fig. 2).

Using Proposition 3.8 we conclude that

sup
z−kμ+ε∈�κ

∥∥∥(L − [z − kμ + ε] I )−1
∥∥∥< ∞

(represented in Fig. 2 by the domain between the two solid blue curves). We conclude that 
Mk,ε < ∞ if and only if
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sup
{0<Re z≤kμ}∩{z/∈�κ+kμ−ε}

∥∥∥(L − [z − kμ + ε]I )−1
∥∥∥

B(Hk)
< ∞.

Since Re z = −ε is the closest vertical line to Rez = 0 which intersects σ
(
(L + [kμ − ε]I ) |Hk

)
, 

we notice that {0 < Re z ≤ kμ} ∩ {z /∈ �κ + kμ − ε} (represented by the shaded area in Fig. 2) is 
a compact set in the resolvent set of (L + [kμ − ε]I ) |Hk

. As the resolvent map is analytic on the 
resolvent set, we conclude that Mk,ε < ∞, completing the proof. �
Remark 3.10. While the constant mentioned in (3.9) is a fixed geometric one, the original 
Gearhart–Prüss theorem doesn’t give an estimation for it. However, recent studies have improved 
the original theorem and have managed to find explicit expression for this constant by paying a 
small price in the exponential power. As we can afford to “lose” another small ε, we could use 
references such as [11,14] to have a more concrete expression for Ck,ε . We will avoid giving 
such an expression in this work to simplify its presentation.

We finally have all the tools to show Theorem 3.2:

Proof of Theorem 3.2. Using the invariance of V0 and Hk under L and Proposition 3.9 we find 
that for any fk ∈ Hk

e2

(
eLt (fk + f∞) |f∞

)
= e2

(
eLt (fk) + f∞|f∞

)
= 1

2

∥∥∥eLtfk

∥∥∥2

Hk

≤ 1

2
C2

k,εe
−2(kμ−ε)t ‖fk‖2

Hk
= C2

k,εe
−2(kμ−ε)t e2 (fk + f∞|f∞) ,

showing the desired result. �
Theorem 3.2 has given us the ability to control the rate of convergence to equilibrium of func-

tions with initial data that, up to f∞, live on a “higher eigenspace”. Can we use this information 
to understand what happens to the solution of an arbitrary initial datum f0 ∈ L2

(
R

d, f −1∞
)

with 
unit mass?

The answer to this question is Yes.
Since for any k ≥ 1

L2
(
R

d, f −1∞
)

= V0 ⊕
(

k⊕
m=1

Vm

)
⊕ Hk+1

and the Fokker–Planck semigroup is invariant under all the above spaces, we are motivated to 
split the solution of our equation into a part in V0 ⊕ Hk+1 and a part in 

⊕k
m=1 Vm – which is a 

finite dimensional subset of D(L). As we now know that decay in 
⊕k

m=1 Vm is slower than that 
for Hk+1 we will obtain a sharp rate of convergence to equilibrium. We summarise the above 
intuition in the following theorem:

Theorem 3.11. Consider the Fokker–Planck equation (1.2) with diffusion and drift matrices sat-
isfying Conditions (A)–(C). Let f0 ∈ L1+

(
R

d
)∩L2

(
R

d, f −1∞
)

be a given function with unit mass 
such that
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f0 = f∞ + fk0 + f̃k0,

where fk0 ∈ Vk0 is non-zero and f̃k0 ∈ Hk0+1. Denote by [L]k0 the matrix representation of L
with respect to an orthonormal basis of Vk0 and let

nk0 := max
{
defect of λ | λ is an eigenvalue of [L]k0 and Reλ = −k0μ

}
,

where μ is defined in (1.5). Then, there exists a geometric constant ck0 , which is independent 
of f0, such that

e2 (f (t)|f∞) ≤ ck0e2 (f0|f∞)
(

1 + t2nk0

)
e−2k0μt . (3.10)

Remark 3.12. As can be seen in the proof of the theorem, the sign of f0 plays no role. As such, 
the theorem could have been stated for f0 ∈ L1

(
R

d
)∩ L2

(
R

d, f −1∞
)
. We decided to state it as is 

since it is the form we will use later on, and we wished to avoid possible confusion.

Proof of Theorem 3.11. Due to the invariance of all Vm under L we see that

f (t) = f∞ + eLtfk0 + eLt f̃k0,

with eLtfk0 ∈ Vk0 and eLt f̃k0 ∈ Hk0+1. From Theorem 3.2 we conclude that

e2

(
f∞ + eLt

(
f̃k0

)
|f∞

)
≤ ck0,εe2

(
f∞ + f̃k0 |f∞

)
e−2((k0+1)μ−ε)t ,

for any 0 < ε < μ.
Next, we denote by dk := dim(Vk) and let {ξi}i=1,...,dk0

be an orthonormal basis for Vk0 . The 
invariance of Vm under L implies that we can write

eLtfk0 =
dk0∑
i=1

ai(t)ξi

with a(t) :=
(
a1(t), . . . , adk0

(t)
)

satisfying the simple ODE

ȧ(t) = [L]Tk0
a(t).

This, together with the definition of nk0 and the fact that a matrix and its transpose share eigen-
values and defect numbers, implies that we can find a geometric constant that depends only on 
k0 such that

dk0∑
i=1

a2
i (t) ≤ ck0

(
1 + t2nk0

)
e−2k0μt

dk0∑
i=1

a2
i (0). (3.11)

Since
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e2 (f (t)|f∞) = e2

(
f∞ + eLt (f̃k0) + eLt (fk0)|f∞

)
= 1

2

∥∥∥eLt (f̃k0) + eLt (fk0)

∥∥∥2

L2
(
Rd ,f −1∞

)

= 1

2

∥∥∥eLt (f̃k0)

∥∥∥2

L2
(
Rd ,f −1∞

) + 1

2

∥∥∥∥∥∥
dk0∑
i=1

ai(t)ξi

∥∥∥∥∥∥
2

L2
(
Rd ,f −1∞

)

= e2

(
f∞ + eLt (f̃k0)|f∞

)
+ 1

2

dk0∑
i=1

ai(t)
2,

we see, by combining Theorem 3.2 and (3.11) that

e2 (f (t)|f∞) ≤ ck0,εe2

(
f∞ + f̃k0 |f∞

)
e−2((k0+1)μ−ε)t

+ ck0

2

dk0∑
i=1

a2
i (0)

(
1 + t2nk0

)
e−2k0μt .

Hence

e2 (f (t)|f∞) ≤ max
(
ck0,ε, ck0

)(
e2

(
f∞ + f̃k0 |f∞

)
+ 1

2

∥∥fk0

∥∥2
L2

(
Rd ,f −1∞

))(1 + t2nk0

)
e−2k0μt .

This completes the proof, as we have seen that

e2(f0|f∞) = e2

(
f∞ + f̃k0 |f∞

)
+ 1

2

∥∥fk0

∥∥2
L2

(
Rd ,f −1∞

) . �
Remark 3.13. The idea to split a solution into a few parts is viable only for the 2-entropy. The 
reason behind it is that such splitting, regardless of whether or not it can be done to functions 
outside of L2

(
R

d, f −1∞
)
, will most likely create functions without a definite sign. These functions 

can not be explored using the p-entropy with 1 < p < 2.

Theorem 3.11 gives an optimal rate of decay for the 2-entropy. However, one can underes-
timate the rate of decay by using Theorem 3.2 and remove the condition fk0 �= 0 to obtain the 
following:

Corollary 3.14. The statement of Theorem 3.11 remains valid when replacing k0 by any 
1 ≤ k1 ≤ k0. However, the decay estimate (3.10) will not be sharp when k1 < k0.

Proof of Theorem 1.4 for p = 2. The proof follows immediately from Corollary 3.14 for 
k1 = 1. �

Now that we have learned everything we can on the convergence to equilibrium for e2, we can 
proceed to understand the convergence to equilibrium of ep.
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4. Non-symmetric hypercontractivity and rates of convergence for the p-entropy

In this section we will show how to deduce the rate of convergence to equilibrium for the 
family of p-entropies, with 1 < p < 2, from e2. The main thing that will make the above possible 
is a non-symmetric hypercontractivity property of our Fokker–Planck equation – namely, that any 
solution to the equation with (initially only) a finite p-entropy will eventually be “pushed” into 
L2

(
R

d, f −1∞
)
, at which point we can use the information we gained on e2.

Before we show this result, and see how it implies our main theorem, we explain why and 
how this non-symmetric hypercontractivity helps.

Lemma 4.1. Let f ∈ L1+
(
Rd

)
with unit mass. Then

(i)

ep(f |f∞) = 1

p(p − 1)

(
‖f ‖p

Lp
(
Rd ,f

1−p∞
) − 1

)
.

(ii) for any 1 < p1 < p2 ≤ 2 there exists a constant Cp1,p2 > 0 such that

ep1(f |f∞) ≤ Cp1,p2ep2(f |f∞).

In particular, for any 1 < p < 2

ep(f |f∞) ≤ Cpe2(f |f∞),

for a fixed geometric constant.

Proof. (i) is trivial. To prove (ii) we consider the function

g(y) :=
{

p2(p2−1)
p1(p1−1)

yp1−p1(y−1)−1
yp2−p2(y−1)−1 , y ≥ 0, y �= 1,

1, y = 1.

Clearly g ≥ 0 on R+, and it is easy to check that it is continuous. Since we have limy→∞ g(y)=0, 
we can conclude the result using (1.4). �

It is worth to note that the second point of part (ii) of Lemma 4.1 can be extended to general 
generating function for an admissible relative entropy. The following is taken from [3]:

Lemma 4.2. Let ψ be a generating function for an admissible relative entropy. Then one has 
that

ψ(y) ≤ 2ψ ′′(1)ψ2(y), y ≥ 0.

In particular ep ≤ 2e2 for any 1 < p < 2 whenever e2 is finite.
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Lemma 4.1 assures us that, if we start with initial data in L2
(
R

d, f −1∞
)
, then ep will be 

finite. Moreover, due to Theorem 1.4 for p = 2, and the fact that the solution to (1.2) remains in 
L2

(
R

d, f −1∞
)
, we have that

ep(f (t)|f∞) ≤ 2e2(f (t)|f∞) ≤ Ce2(f0|f∞)
(

1 + t2n
)

e−2μt .

However, one can easily find initial data f0 /∈ L2
(
R

d, f −1∞
)

with finite p-entropies. If one 
can show that the flow of the Fokker–Planck equation eventually forces the solution to enter 
L2

(
R

d, f −1∞
)
, we would be able to utilise the idea we just presented, at least from that time on.

This explicit non-symmetric hypercontractivity result we desire, is the main new theorem we 
present in this section.

Theorem 4.3. Consider the Fokker–Planck equation (1.2) with diffusion and drift matrices D
and C satisfying Conditions (A)–(C). Let f0 ∈ L1+

(
R

d
)

be a function with unit mass and assume 
there exists ε > 0 such that ∫

Rd

eε|x|2f0(x)dx < ∞. (4.1)

(i) Then, for any q > 1, there exists an explicit t0 > 0 that depends only on geometric constants 
of the problem such that the solution to (1.2) satisfies

∫
Rd

f (t, x)qf −1∞ (x)dx ≤
(

q

π(q + 1)

) qd
2
(

8π2

q − 1

) d
2

⎛⎜⎝∫
Rd

eε|x|2f0(x)dx

⎞⎟⎠
q

(4.2)

for all t ≥ t0.
(ii) In particular, if f0 satisfies ep(f0|f∞) < ∞ for some 1 < p < 2 we have that

e2(f (t)|f∞) ≤ 1

2

⎛⎝( 8
√

2

3 · 2
1
p

)d (
p(p − 1)ep(f0|f∞) + 1

) 2
p − 1

⎞⎠ , (4.3)

for t ≥ t̃0(p) > 0, which can be given explicitly.

Remark 4.4. As we consider ep in our hypercontractivity, which is, up to a constant, the Lp norm 
of g := f

f∞ with the measure f∞(x)dx, one can view our result as a hypercontractivity property 
of the Ornstein–Uhlenbeck operator, P (for an appropriate choice of the diffusion matrix Q and 
drift matrix B), discussed in §3. With this notation, (4.3) is equivalent to

‖g(t)‖L2(f∞) ≤ Cp,d‖g0‖Lp(f∞), t ≥ t̃0(p) (4.4)

for 1 < p < 2, where Cp,d :=
(

8
√

2

3·2 1
p

) d
2

. Since e2 decreases along the flow of our equation, (4.4)

is valid for p = 2 with C2,d = 1. Thus, by using the Riesz–Thorin theorem one can improve 
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inequality (4.4) to the same inequality with the constant C
2
p

−1

p,d . We would like to point out at 
this point that a simple limit process shows that (4.4) is also valid for p = 1, but there is no 
connection between the L1 norm of g and the Boltzmann entropy, e1, of f0.

Remark 4.5. Since its original definition for the Ornstein–Uhlenbeck semigroup in the work of 
Nelson, [16], the notion of hypercontractivity has been studied extensively for Markov diffusive 
operators (implying selfadjointness). A contemporary review of this topic can be found in [4]. 
For such selfadjoint generators, hypercontractivity is equivalent to the validity of a logarithmic 
Sobolev inequality, as proved by Gross [10]. For non-symmetric generators, however, this equiv-
alence does not hold: While a log Sobolev inequality still implies hypercontractivity of related 
semigroups (cf. the proof of Theorem 5.2.3 in [4]), the reverse implication is not true in general 
(cf. Remark 5.1.1 in [22]). In particular, hypocoercive degenerate parabolic equations cannot give 
rise to a log Sobolev inequality, but they may exhibit hypercontractivity (as just stated above).

The last 20 years have seen the emergence of the, more delicate, study of hypercontractivity 
for non-symmetric and even degenerate semigroups. Notable works in the field are the paper of 
Fuhrman, [9], and more recently the work of Wang et al., [6,7,21]. Most of these works consider 
an abstract Hilbert space as an underlying domain for the semigroup, and to our knowledge none 
of them give an explicit time after which one can observe the hypercontractivity phenomena 
(Fuhrman gives a condition on the time in [9]).

Our hypercontractivity theorem, which we will prove shortly, gives not only an explicit and 
quantitative inequality, but also provides an estimation on the time one needs to wait before the 
hypercontractivity occurs. To keep the formulation of Theorem 4.3 simple we did not include 
this “waiting time” there, but we emphasised it in its proof. Moreover, the hypercontractivity 
estimate from Theorem 4.3(i) only requires (4.1), a weighted L1 norm of f0. This is weaker than 
in usual hypercontractivity estimates, which use Lp norms as on the r.h.s. of (4.4).

It is worth to note that we prove our theorem under the setting of the ep entropies, which can 
be thought of as Lp spaces with a weight function that depends on p.

In order to be able to prove Theorem 4.3 we will need a few technical lemmas.

Lemma 4.6. Given f0 ∈ L1+
(
R

d
)

with unit mass, the solution to the Fokker–Planck equation 
(1.2) with diffusion and drift matrices D and C that satisfy Conditions (A)–(C) is given by

f (t, x) = 1

(2π)
d
2
√

det W(t)

∫
Rd

e− 1
2

(
x−e−Ct y

)T
W(t)−1

(
x−eCt y

)
f0(y)dy, (4.5)

where

W(t) := 2

t∫
0

e−CsDe−CT sds.

This is a well known result, see for instance §1 in [12] or §6.5 in [19].

Lemma 4.7. Assume that the diffusion and drift matrices, D and C, satisfy Conditions (A)–(C), 
and let K be the unique positive definite matrix that satisfies
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2D = CK + KCT .

Then (in any matrix norm)

‖W(t) − K‖ ≤ c(1 + t2n)e−2μt , t ≥ 0,

where c > 0 is a geometric constant depending on n and μ, with n being the maximal defect of 
the eigenvalues of C with real part μ, defined in (1.5).

Proof. We start the proof by noticing that K is given by

K = 2

∞∫
0

e−CsDe−CT sds

(see for instance [18]). As such

‖W(t) − K‖ ≤ 2

∞∫
t

‖e−CsDe−CT s‖ds ≤ 2‖D‖
∞∫
t

‖e−Cs‖‖e−CT s‖ds.

Using the fact that

Ae−CtA−1 = e−ACA−1t

for any regular matrix A, we conclude that, if J is the Jordan form of C, then

‖e−Ct‖ ≤ ‖AJ‖‖A−1
J ‖‖e−Jt‖, (4.6)

where AJ is the similarity matrix between C and its Jordan form.
For a single Jordan block of size n + 1 (corresponding to a defect of n in the eigenvalue λ), ̃J, 

we find that

ẽJt =

⎛⎜⎜⎜⎜⎝
eλt teλt . . . tn

n! e
λt

eλt . . . tn−1

(n−1)!e
λt

. . .
...

0 eλt

⎞⎟⎟⎟⎟⎠ where J̃ =

⎛⎜⎜⎜⎝
λ 1 0

. . .
. . .

1
0 λ

⎞⎟⎟⎟⎠ .

Thus, we conclude that

‖ẽJt x‖1 ≤
n+1∑
i=1

n+1∑
j=i

t j−i

(j − i)!e
Re(λ)t

∣∣xj

∣∣≤(
n+1∑
i=1

(
1 + tn

)
eRe(λ)t

)
‖x‖1

= (n + 1)
(
1 + tn

)
eRe(λ)t‖x‖1, t ≥ 0.
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Due to the equivalence of norms on finite dimensional spaces, there exists a geometric constant 
c1 > 0, that depends on n, such that

‖ẽJt‖ ≤ c1
(
1 + tn

)
eRe(λ)t . (4.7)

Coming back to C, we see that the above inequality together with (4.6) imply that ‖e−Ct‖ is 
controlled by the norm of C’s largest (measured by the defect number) Jordan block of the 
eigenvalue with smallest real part. From this, and (4.7), we conclude that

‖e−Ct‖ ≤ c2(1 + tn)e−μt , t ≥ 0. (4.8)

The same estimation for ‖e−CT t‖ implies that

‖W(t) − K‖ ≤ c3

∞∫
t

(
1 + s2n

)
e−2μsds,

for some geometric constant c3 > 0 that depends on n. Since

∞∫
t

s2ne−2μsds =
[

1

2μ
t2n + 2n

(2μ)2 t2n−1 + 2n(2n − 1)

(2μ)3 t2n−2 + ... + (2n)!
(2μ)2n+1

]
e−2μt

we conclude the desired result. �
While we can continue with a general matrix K, it will simplify our computations greatly if K

would have been I. Since we are working under the assumption that D = Cs , the normalisation 
from Theorem 2.5 implies exactly that. Thus, from this point onwards we will assume that K
is I.

Lemma 4.8. For any ε > 0 there exists an explicit t1 > 0 such that for all t ≥ t1

‖W−1(t) − I‖ ≤ ε,

where W(t) is as in Lemma 4.6. An explicit, but not optimal choice for t1 is given by

t1(ε) := 1

2(μ − α)
log

⎛⎝c(1 + ε)
(

1 + (
n
αe

)2n
)

ε

⎞⎠ , (4.9)

where 0 < α < μ is arbitrary and c > 0 is given by Lemma 4.7.

Proof. We have that for any invertible matrix A

‖A−1 − I‖ = ‖ (A − I)A−1‖ ≤ ‖A − I‖‖A−1‖.
In addition, if ‖A − I‖ < 1, then
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‖A−1‖ = ‖(I − (I − A))−1‖ ≤ 1

1 − ‖A − I‖ .

Thus, for any t > 0 such that ‖W(t) − I‖ < 1 we have that

‖W−1(t) − I‖ ≤ ‖W(t) − I‖
1 − ‖W(t) − I‖ . (4.10)

Defining t̃1(ε) as

t̃1(ε) := min

{
s ≥ 0

∣∣∣∣ (1 + t2n
)

e−2μt ≤ ε

c(1 + ε)
, ∀t ≥ s

}
, (4.11)

with the constant c given by Lemma 4.7, we see from the same lemma that for any t ≥ t̃1(ε)

‖W(t) − I‖ ≤ ε

1 + ε
.

Combining the above with (4.10), shows the first result for t1 = t̃1(ε).
To prove the second claim we will show that

t1(ε) ≥ t̃1(ε).

For this elementary proof we use the fact that

max
t≥0

e−at tb =
(

b

ae

)b

for any a, b > 0. Thus, choosing a = 2α, where 0 < α < μ is arbitrary, and b = 2n we have that

(
1 + t2n

)
e−2μt ≤

(
1 +

( n

αe

)2n
)

e−2(μ−α)t , t ≥ 0.

As a consequence, if (
1 +

( n

αe

)2n
)

e−2(μ−α)t ≤ ε

c(1 + ε)
, ∀t ≥ s, (4.12)

then s ≥ t̃1(ε) due to (4.11). The smallest possible s in (4.12) is obtained by solving the corre-
sponding equality for t , and yields (4.9), concluding the proof. �

We now have all the tools to prove Theorem 4.3

Proof of Theorem 4.3. To show (i) we recall Minkowski’s integral inequality, which will play 
an important role in estimating the Lp norms of f (t).

Minkowski’s Integral Inequality: For any non-negative measurable function F on (X1 ×
X2, μ1 × μ2), and any q ≥ 1 one has that
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⎛⎜⎝∫
X2

∣∣∣∣∣∣∣
∫
X1

F(x1, x2)dμ1(x1)

∣∣∣∣∣∣∣
q

dμ2(x2)

⎞⎟⎠
1
q

≤
∫
X1

⎛⎜⎝∫
X2

|F(x1, x2)|q dμ2(x2)

⎞⎟⎠
1
q

dμ1(x1).

(4.13)

Next, we fix an ε1 = ε1(ε, q) ∈ (0, 1), to be chosen later. From Lemma 4.7 and 4.8 we see that, 
for t ≥ t1(ε1) with

t1(ε1) := 1

2(μ − α)
log

⎛⎝c(1 + ε1)
(

1 + (
n
αe

)2n
)

ε1

⎞⎠
for some fixed 0 < α < μ, we have that

‖W(t) − I‖ ≤ ε1

1 + ε1
< ε1, ‖W−1(t) − I‖ ≤ ε1,

and hence

W(t) > (1 − ε1)I, W(t)−1 ≥ (1 − ε1)I.

As such, for t ≥ t1(ε1)∣∣∣∣e− 1
2

(
x−e−Ct y

)T
W(t)−1

(
x−eCt y

)
f0(y)

∣∣∣∣q ≤ e− q
2 (1−ε1)

∣∣x−e−Ct y
∣∣2 |f0(y)|q (4.14)

and

det W(t) ≥ (1 − ε1)
d . (4.15)

We conclude, using (4.13), the exact solution formula (4.5), (4.14) and (4.15) that for t ≥ t1(ε1)

it holds:∫
Rd

|f (t, x)|q f −1∞ (x)dx

≤ (2π)
d
2

(2π(1 − ε1))
qd
2

⎛⎜⎜⎝∫
Rd

⎛⎜⎝∫
Rd

e− q
2 (1−ε1)

∣∣x−e−Ct y
∣∣2 |f0(y)|q e

|x|2
2 dx

⎞⎟⎠
1
q

dy

⎞⎟⎟⎠
q

= (2π)
d
2

(2π(1 − ε1))
qd
2

⎛⎜⎜⎝∫
Rd

⎛⎜⎝∫
Rd

e− q
2 (1−ε1)

∣∣x−e−Ct y
∣∣2
e

|x|2
2 dx

⎞⎟⎠
1
q

|f0(y)|dy

⎞⎟⎟⎠
q

.

(4.16)
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We proceed by choosing ε1 > 0 such that q(1 − ε1) > 1 (or equivalently ε1 <
q−1
q

) and denoting

η := q(1 − ε1) − 1 > 0.

Shifting the x variable by 1
2e−Ct y and completing the square, we find that

∫
Rd

e− q
2 (1−ε1)

∣∣x−e−Ct y
∣∣2
e

|x|2
2 dx =

∫
Rd

e
− η+1

2

∣∣∣x− 1
2 e−Ct y

∣∣∣2
e

∣∣∣x+ 1
2 e−Ct y

∣∣∣2
2 dx

=
∫
Rd

exe−Ct ye
− η

2

∣∣∣x− 1
2 e−Ct y

∣∣∣2
dx =

∫
Rd

e
− η

2

∣∣∣x− 1
2

(
1+ 2

η

)
e−Ct y

∣∣∣2
e

(
1
2 + 1

2η

)∣∣e−Ct y
∣∣2
dx

=
(

2π

η

) d
2

e

(
1
2 + 1

2η

)∣∣e−Ct y
∣∣2
.

(4.17)

Using (4.8) we can find a uniform geometric constant c2 > 0 such that

‖e−Ct‖2 ≤ c2
2

(
1 + tn

)2
e−2μt ≤ 2c2

2

(
1 + t2n

)
e−2μt .

Following the proof of Lemma 4.8 we recall that if

t ≥ 1

2(μ − α)
log

(
c̃(1 + ε2)

(
1 + n

αe

)2n

ε2

)
,

where 0 < α < μ is arbitrary and for any c̃, ε2 > 0, then(
1 + t2n

)
e−2μt ≤ ε2

c̃(1 + ε2)
.

Thus, choosing

c̃ = c2
2(1 + η)

qη
= c2

2(1 − ε1)

q(1 − ε1) − 1
and ε2 = ε1

1 − ε1

we get that if

t ≥ t2(ε1) := 1

2(μ − α)
log

(
c2

2(1 − ε1)
(
1 + n

αe

)2n

(q(1 − ε1) − 1) ε1

)
,

where 0 < α < μ is arbitrary and for any c̃, ε2 > 0, then

(
1 + 1

)
‖e−Ct‖2 ≤ c2

2(1 + η)
q
(

1 + t2n
)

e−2μt ≤ qε1.

2 2η qη
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Combining this with our previous computations ((4.16) and (4.17)), we find that for any t ≥
t0(ε1) := max (t1(ε1), t2(ε1))

∫
Rd

|f (t, x)|q f −1∞ (x)dx ≤ (2π)d(1− q
2 )

(1 − ε1)
qd
2 η

d
2

⎛⎜⎝∫
Rd

eε1|y|2f0(y)dy

⎞⎟⎠
q

.

If ε1 is chosen more restrictively than before, namely ε1 ≤ q−1
2q

, then we have

q − 1

2
≤ η < q − 1 and 1 − ε1 ≥ q + 1

2q
,

which implies the first statement of the theorem by choosing ε1 := min
(
ε,

q−1
2q

)
.

For the proof of (ii) we note that (4.3) is equivalent to

‖f (t)‖2
L2

(
Rd ,f −1∞

) ≤
(

8
√

2

3 · 2
1
p

)d

‖f0‖2
Lp

(
Rd ,f

1−p∞
). (4.18)

With the Hölder inequality we obtain

∫
Rd

e
p−1
4p

|x|2
f0(x)dx ≤

⎛⎜⎝∫
Rd

e− |x|2
4 dx

⎞⎟⎠
p−1
p
⎛⎜⎝∫
Rd

e
p−1

2 |x|2f p

0 (x)dx

⎞⎟⎠
1
p

= 2
d
2

p−1
p ‖f0‖

Lp
(
Rd ,f

1−p∞
).

Hence, ep(f0|f∞) < ∞ implies (4.1) with ε = p−1
4p

, and (4.18) follows from (4.2) with q = 2

and t̃0(p) = t0

(
p−1
4p

)
. �

Remark 4.9. If the condition (4.1) holds for ε = 1
2 we can give an explicit upper bound for the 

“waiting time” in the hypercontractivity estimate (4.2). For such ε we have ε1 := min
(
ε,

q−1
2q

)
=

q−1
2q

, and by choosing α = μ
2 we can see that t0(ε1) from the proof of Theorem 4.3 is

t0(q) := 1

μ
log

⎛⎜⎜⎝max
(
c(3q − 1),2c2

2
q+1
q−1

)(
1 +

(
2n
μe

)2n
)

q − 1

⎞⎟⎟⎠ ,

where c, c2 are geometric constants found in the proof of Lemma 4.7.

With the non-symmetric hypercontractivity result at hand, we can finally complete the proof 
of our main theorem for 1 < p < 2.
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Proof of Theorem 1.4 for 1 < p < 2. Using Theorem 4.3 (ii) we find an explicit T0(p) such 
that for any t ≥ T0(p) the solution to the Fokker–Planck equation, f (t), is in L2

(
R

d, f −1∞
)
. 

Proceeding similarly to the previous remark (but now with q = 2 and ε = p−1
4p

) we have 

ε1 := min
(

p−1
4p

, 1
4

)
= p−1

4p
. This yields the following upper bound for the “waiting time” in 

the hypercontractivity estimate (4.3):

T0(p) := 1

μ
log

⎛⎜⎜⎝max
(
c(5p − 1),2c2

2
3p2+p
p+1

)(
1 +

(
2n
μe

)2n
)

p − 1

⎞⎟⎟⎠ .

Using Lemma 4.2, Theorem 1.4 for p = 2 (which was already proven in §3), and inequality (4.3)
we conclude that for any t ≥ T0(p)

ep(f (t)|f∞) ≤ 2e2(f (t)|f∞) ≤ 2c̃2e2 (f (T0(p))|f∞)
(

1 + (t − T0(p))2n
)

e−2μ(t−T0(p))

≤ 2c̃pe2μT0(p)
(
p(p − 1)ep(f0|f∞) + 1

) 2
p

(
1 + t2n

)
e−2μt .

(4.19)

To complete the proof we recall that any admissible relative entropy decreases along the flow of 
the Fokker–Planck equation (see [2] for instance). Thus, for any t ≤ T0(p) we have that

ep(f (t)|f∞) ≤ ep(f0|f∞) ≤ ep(f0|f∞)e2μT0(p)
(

1 + t2n
)

e−2μt . (4.20)

The theorem now follows from (4.19) and (4.20), together with the fact that for a 1 < p < 2

ep(f0|f∞) ≤ Cp

(
p(p − 1)ep(f0|f∞) + 1

) 2
p ,

where Cp := supx≥0
x

(p(p−1)x+1)
2
p

< ∞. �
We end this section with a slight generalisation of our main theorem:

Theorem 4.10. Let ψ be a generating function for an admissible relative entropy. Assume in 
addition that there exists Cψ > 0 such that

ψp(y) ≤ Cψψ(y) (4.21)

for some 1 < p < 2 and all y ∈ R
+. Then, under the same setting of Theorem 1.4 (but now with 

the assumption eψ(f0|f∞) < ∞) we have that

eψ(f (t)|f∞) ≤ cp,ψ

(
eψ(f0|f∞) + 1

) 2
p

(
1 + t2n

)
e−2μt , t ≥ 0

where cp,ψ > 0 is a fixed geometric constant.
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Proof. The proof is almost identical to the proof of Theorem 1.4. Due to (4.21) we know that 
ep(f0|f∞) < ∞. As such, according to Theorem 4.3 (ii) there exists an explicit T0(p) such that 
for all t ≥ T0(p) we have that f (t) ∈ L2

(
R

d, f −1∞
)

and

e2(f (t)|f∞) ≤ 1

2

⎛⎝( 8
√

2

3 · 2
1
p

)d (
Cψp(p − 1)eψ(f0|f∞) + 1)

) 2
p − 1

⎞⎠ .

The above, together with Lemma 4.2 gives the appropriate decay estimate on eψ for t ≥ T0(p). 
Since eψ decreases along the flow of our equation, we can deal with the interval t ≤ T0(p) like 
in the previous proof, yielding the desired result. �

In the next, and last, section of this work we will mention another natural quantity in the 
theory of the Fokker–Planck equations – the Fisher information. We will briefly explain how the 
method we presented here is different to the usual technique one considers when dealing with 
the entropy. Moreover we describe how to infer from our main theorem an improved rate of 
convergence to equilibrium – in relative Fisher information.

5. Decay of the Fisher information

The study of convergence to equilibrium for the Fokker–Planck equations via relative en-
tropies has a long history. Unlike the study we presented here, which relies on detailed spectral 
investigation of the Fokker–Planck operator together with a non-symmetric hypercontractivity 
result, the common method to approach this problem – even in the degenerate case – is the so 
called entropy method.

The idea behind the entropy method is fairly simple: once an entropy has been chosen and 
shown to be a Lyapunov functional to the equation, one attempts to find a linear relation between 
it and the absolute value of its dissipation. In the setting of the our equation, the latter quantity is 
referred to as the Fisher information.

More precisely, it has been shown in [2] that:

Lemma 5.1. Let ψ be a generating function for an admissible relative entropy and let f (t, x) be 
a solution to the Fokker–Planck equation (1.2) with initial datum f0 ∈ L1+

(
R

d
)
. Then, for any 

t > 0 we have that

d

dt
eψ (f (t)|f∞) = −

∫
Rd

ψ ′′
(

f (t, x)

f∞(x)

)
∇
(

f (t, x)

f∞(x)

)T

Cs∇
(

f (t, x)

f∞(x)

)
f∞(x)dx ≤ 0.

Definition 5.2. For a given positive semidefinite matrix P the expression

IP
ψ(f |f∞) :=

∫
Rd

ψ ′′
(

f (x)

f∞(x)

)
∇
(

f (x)

f∞(x)

)T

P∇
(

f (x)

f∞(x)

)
f∞(x)dx ≥ 0

is called the relative Fisher Information generated by ψ .
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The entropy method boils down to proving that there exists a constant λ > 0 such that

IP
ψ(f |f∞) ≥ λeψ(f |f∞). (5.1)

When D is positive definite, the above (with the choice P := D) is a Sobolev inequality (and a 
log-Sobolev inequality for ψ = ψ1), and a standard way to prove it is by using the Bakry–Émery 
technique (see [3,5] for instance). This technique involves differentiating the Fisher information 
along the flow of the Fokker–Planck equation and finding a closed functional inequality for it. 
By an appropriate integration in time, one can then obtain (5.1).

Problems start arising with the above method when D is not invertible. As can be seen from 
the expression of ID

ψ – there are some functions that are not identically f∞ yet yield a zero 
Fisher information. In recent work of Arnold and Erb ([2]), the authors managed to circumvent 
this difficulty by defining a new positive definite matrix P0 that is strongly connected to the drift 
matrix C, and for which (5.1) is valid as a functional inequality. They proceeded to successfully 
use the Bakry–Émery method on IP0

ψ and conclude from it, and the log-Sobolev inequality, rates 

of decay for ID
ψ (which is controlled by IP0

ψ ) and eψ . This is essentially what is behind the 
exponential decay in Theorem 1.3. Moreover, in the defective case (ii), it led to an ε-reduced 
exponential decay rate.

As we have managed to obtain better convergence rates to equilibrium (in relative entropy) 
for the case of defective drift matrices C, one might ask whether or not the same rates will be 
valid for the associated Fisher information ID

p := ID
ψp

. The answer to that question is Yes, and we 
summarise this in the next theorem:

Theorem 5.3. Consider the Fokker–Planck equation (1.2) with diffusion and drift matrices D and 
C which satisfy Conditions (A)–(C). Let μ be defined as in (1.5) and assume that one, or more, of 
the eigenvalues of C with real part μ are defective. Denote by n > 0 the maximal defect of these 
eigenvalues. Then, for any 1 < p ≤ 2, the solution f (t) to (1.2) with initial datum f0 ∈ L1+

(
R

d
)

that has a unit mass and IP0
p (f0|f∞) < ∞ satisfies:

ID
p (f (t)|f∞) ≤ cIP0

p (f (t)|f∞) ≤ cp(f0)
(

1 + t2n
)

e−2μt , t ≥ 0,

where c > 0 depends on D and P0 and cp(f0) > 0 depends on IP0
p (f0|f∞).

Proof. We first note that Proposition 4.4 from [2] implies the estimate ep (f0|f∞)≤cI
P0
p (f0|f∞)

< ∞, and hence Theorem 1.4 applies. This decay of ep carries over to IP0
p due to the following 

two ingredients: For small t we can use the purely exponential decay of IP0
p as established in 

Proposition 4.5 of [2] (with the rate 2(μ − ε)). And for large time we use the (degenerate) 
parabolic regularisation of the Fokker–Planck equation (1.2): As proven in Theorem 4.8 of [2]
we have for all τ ∈ (0, 1] that

I
P0
ψ (f (τ)|f∞) ≤ ck0

τ 2κ+1 eψ (f0|f∞) ,

where ψ is the generating function for an admissible relative entropy. And κ > 0 is the minimal 
number such that there exists λ̃ > 0 with
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κ∑
j=0

Cj D
(

CT
)j ≥ λ̃I.

The existence of such κ and λ̃ is guaranteed by Condition (C) and equivalent to the rank condition 
(3.6) – cf. Lemma 2.3 in [1]. �
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