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Abstract

In this paper, we analyze the long-time behavior of the solution of the initial value problem (IVP) for the 
short pulse (SP) equation. As the SP equation is a completely integrable system, which posses a Wadati–
Konno–Ichikawa (WKI)-type Lax pair, we formulate a 2 × 2 matrix Riemann–Hilbert problem to this IVP 
by using the inverse scattering method. Since the spectral variable k is the same order in the WKI-type 
Lax pair, we construct the solution of this IVP parametrically in the new scale (y, t), whereas the original 
scale (x, t) is given in terms of functions in the new scale, in terms of the solution of this Riemann–Hilbert 
problem. However, by employing the nonlinear steepest descent method of Deift and Zhou for oscillatory 
Riemann–Hilbert problems, we can get the explicit leading order asymptotic of the solution of the short 
pulse equation in the original scale (x, t) as time t goes to infinity.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

The present work is devoted to the study of the long-time asymptotic behavior of the short 
pulse (SP) equation formulated on the whole line,

uxt = u + 1

6
(u3)xx, (1.1a)
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where u(x, t) is a real-valued function, which represents the magnitude of the electric field, while 
the subscripts t and x denote partial differentiations, with the initial value data

u(x, t = 0) = u0(x), x ∈R, (1.1b)

and assuming that u0(x) lies in Schwartz space.
The SP equation was proposed in [1] by Schäfer and Wayne to describe the propagation 

of ultra-short optical pulses in silica optical fibers. Usually, in nonlinear optics, the nonlinear 
Schrödinger (NLS) equation was always used to model the slowly varying wave trains. As 
the pulse duration shortens, however, the NLS equation becomes less accurate, the SP equa-
tion provides an increasingly better approximation to the corresponding solution of the Maxwell 
equations [2]. For the details of physical background, see [1] and references therein.

Actually, the SP equation appeared first as one of Rabelo’s equations which describe pseu-
dospherical surfaces, possessing a zero-curvature representation, in [3]. Recently, the Wadati–
Konno–Ichikawa (WKI) type Lax pair of the SP equation was rediscovered in [4] (see the 
following (2.1a)). The integrable properties of SP equation like bi-Hamiltonian structure and 
the conservation laws were studied in [5,6]. The loop-soliton solutions the short pulse equation 
was found in [7]. The connection between the short pulse equation and the sine-Gordon equation 
through the hodograph transformation was found by Matsuno, and thus, multi-soliton solutions 
including multi-loop and multi-breather ones were given in [8]. And a lot of generalizations of 
the SP equation, such as vector SP equation, discretizations of SP equation, complex SP equa-
tion,and so on, were studied in [9–11] and references therein.

The local well-posedness in H 2 (which denotes the usual Sobolev space) and non-existence of 
smooth traveling wave solutions were shown in [1], and global well-posedness of small solutions 
was proved in [12] for SP equation in H 2 by using conservation laws. In [13], Liu, Pelinovsky 
and Sakovich showed the blow-up result for the SP equation for large data.

The purpose of this paper is to analyze the long-time asymptotic behavior of the SP equation. 
Due to the SP equation admits a Lax pair, the inverse scattering transform method can be used to 
solve the initial value problem for the SP equation. Here, we relate the inverse scattering problem 
to a 2 × 2-matrix Riemann–Hilbert problem. The most important advantage of formulating the 
initial value problem (1.1a)–(1.1b) as a Riemann–Hilbert problem is that the long-time asymp-
totic behavior of the solution of the initial value problem can be analyzed by employing the 
nonlinear steepest descent method introduced by Deift and Zhou [14]. This method has previous 
applied to many integrable equations, such as the NLS equation [15], the Sine–Gordon equation 
[16], the KdV equation [17], the Fokas–Lenells equation [18], the Camassa–Holm equation [19]
and so on.

Recently, this approach has been applied to the so-called short-wave approximations of inte-
grable equations, which themselves are integrable, such as the modified Hunter–Saxton (mHS) 
equation [20] and the Ostrovsky–Vakhnenko (OV) equation [21], which can be viewed as the 
short-wave limit of the Camassa–Holm and Degasperis–Procesi equations, respectively. The SP 
equation considered in this paper can be viewed as the short-wave limit of the modified Camassa–
Holm equation [22] (see, also [23]). All of the short-wave limit equations named above have the 
common feature that their solutions can be extracted from the development of the solutions of 
the respective Riemann–Hilbert problems at k → 0. Although the long-time asymptotic analysis 
of (1.1a) is in many ways similar to those of integrable equations, it also presents some distinc-
tive features: (1) The spectral variable k is the same order in the Lax pair, it firstly has to 
be transformed by introduction of a matrix G(x, t) (see the following equation (2.12)) to arrive 
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at a Riemann–Hilbert problem with the appropriate boundary condition at infinity. This is made 
possible since the conservation law (2.15) holds. (2) The solution u(x, t) of the SP equation 
is constructed from a 2 × 2-matrix Riemann–Hilbert problem in terms of the order O(k)

as k → 0, which is different from the mHS equation in [20] and the OV equation in [21], where 
they construct the solution from a vector Riemann–Hilbert problem.

Remark 1.1. We thank the reviewers for pointing out the recent paper [23]. The authors of [23]
studied the SP equation using the Riemann–Hilbert approach, analyzing the long-time asymp-
totics, the soliton solutions and other results. The analysis of the SP equation by the authors of 
[23] and the present work were completed independently. In fact, we follow the original paper 
of Deift and Zhou [14] devoted to the long-time asymptotic behavior of the solution of the SP 
equation and we give a detailed description of the asymptotic procedure, but the authors of [23]
followed the more recent interpretation of this approach by Lenells, see [25], and include fewer 
explicit estimates than we do.

The main results of this paper are summarized by the following theorems:

Theorem 1.2. Let u0(x) satisfy the initial value (1.1b) and be such that no discrete spectrum is 
present. Let ε be any small positive number, then for ξ = x

t
> ε, the solution u(x, t) of the initial 

value problem (1.1a)–(1.1b) has rapid decay, as t → ∞.

Theorem 1.3. Let u0(x) satisfy the hypotheses of Theorem 1.2. For ξ = x
t

< −ε, ε be any small 
positive number, the solution u(x, t) of the initial value problem (1.1a)–(1.1b) equals

u(x, t) =
√

−4ν(κ0)

κ0t
sin { t

κ0
+ ν(κ0) ln (

4t

κ0
) + φ(κ0)} + O

(
ln (t)

t

)
, as t → ∞, (1.2)

where

κ0 = 1√−4ξ
(1.3)

and ν(κ0) is defined as (5.67) replaced k0 with κ0, φ(κ0) is defined as (5.124).

Remark 1.4. The sectors of different asymptotic behavior match, as ε → 0, through the fast 
decay. Indeed, as x

t
→ 0−, then κ0 → ∞ and ν(κ0) → 0 and thus the amplitude in (1.2) decays 

faster.

Organization of the paper: In section 2, since the associated Lax pair of SP equation (1.1a)
has singularities at k = 0 and k = ∞, we perform the spectral analysis to deal with the two sin-
gularities, respectively. In section 3, we formulate the associated Riemann–Hilbert problem in an 
alternative space variable y instead of the original space variable x. Hence, we can reconstruct 
the solution u(x, t) parameterized from the solution of the Riemann–Hilbert problem via the 
asymptotic behavior of the spectral variable at k = 0. In section 4 and 5, we can also obtain the 
asymptotic relation between y and x when analyzing the vector Riemann–Hilbert problem by 
using the nonlinear steepest descent method. Hence, we can calculate the leading order asymp-
totic behavior of the solution u(x, t) and prove the main results of this paper, i.e., Theorem 1.2
and 1.3, respectively.
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2. Spectral analysis

The beginning of the long-time asymptotic analysis is to formulate the initial value problem 
for the SP equation to a Riemann–Hilbert problem. It depends on short pulse equation admits a 
WKI type Lax pair,

�x = U(x, t, k)�, (2.1a)

�t = V (x, t, k)�, (2.1b)

where

U = ikU1. (2.2)

and

V = ik

2
u2U1 + 1

4ik
σ3 − iu

2
σ2, (2.3)

with

U1 =
(

1 ux

ux −1

)
, σ3 =

(
1 0
0 −1

)
, σ2 =

(
0 −i

i 0

)
. (2.4)

Usually, we only use the x-part of Lax pair to analyze the initial value problem for the integrable 
equations by inverse scattering transform method. The t -part of Lax pair is only used to deter-
mine the time evolution of the scattering data. However, from the Lax pair (2.1), we know that 
there are singularities at k = ∞ and k = 0. In order to construct the solution u(x, t) of the SP 
equation (1.1a), we need use the t -part or using the expansion of the eigenfunction as spectral 
parameter k → 0. Hence, in the following we use two different transformations to analyze these 
two singularities (k = ∞ and k = 0), respectively.

2.1. For k = 0

2.1.1. The closed one-form
Introducing the following transformation

�(x, t, k) = μ0(x, t, k)e(ikx+ t
4ik

)σ3, (2.5)

then we get the Lax pair of μ0

{
μ0

x − ik[σ3,μ
0] = V 0

1 μ0,

μ0
t − 1

4ik
[σ3,μ

0] = V 0
2 μ0,

(2.6)

where

V 0
1 =

(
0 ikux

ikux 0

)
, V 0

2 =
(

ik
2 u2 ik

2 u2ux − u
2

ik u2ux + u − ik u2

)
(2.7)
2 2 2
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Letting Â denotes the operator which acts on a 2 × 2 matrix X by ÂX = [A, X], then the Lax 
pair of μ0 (2.6) can be written as

d(e−(ikx+ t
4ik

)σ̂3μ0) = W 0(x, t, k), (2.8)

where W 0(x, t, k) is the closed one-form defined by

W 0(x, t, k) = e−(ikx+ t
4ik

)σ̂3(V 0
1 dx + V 0

2 dt)μ0. (2.9)

2.1.2. The Jost functions μ0
j

We define two eigenfunctions {μ0
j }2

j=1 of (2.6) by the Volterra integral equations,

μ0
1(x, t, k) = I+

x∫
−∞

eik(x−y)σ̂3V 0
1 (y, t, k)μ0

1(y, t, k)dy, (2.10a)

μ0
2(x, t, k) = I−

+∞∫
x

eik(x−y)σ̂3V 0
1 (y, t, k)μ0

2(y, t, k)dy. (2.10b)

Proposition 2.1 (Analytic property). From the above definition, we find that the functions {μ0
j }2

1
are bounded and analytic properties as following:

• [μ0
1]1(x, t, k) is bounded and analytic in D2, [μ0

1]2(x, t, k) is in D1;

• [μ0
2]1(x, t, k) is bounded and analytic in D1, [μ0

2]2(x, t, k) is in D2.

where [μj ]i denotes the i-th column of μj , D1 denotes the upper-half plane and D2 denotes the 
lower-half plane of the complex k-sphere.

Proposition 2.2 (Asymptotic property). The functions μ0
j (x, t, k) have the expansions in powers 

of k, for k → 0,

μ0
j (x, t, k) = I+ iu(x, t)σ1k + [−u2

2
I+ i(u2ux − 2ut )σ2]k2 + O(k3). (2.11)

2.2. For k = ∞

2.2.1. The closed one-form
Define a 2 × 2 matrix-value function G(x, t) as

G(x, t) =
√√

m + 1

2
√

m

(
1 −

√
m−1
ux√

m−1
ux

1

)
, (2.12)

where m is a function of (x, t) defined by

m = 1 + u2
x. (2.13)
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Remark 2.3. Notice that when ux → 0, the nominator 
√

m − 1 is a high order infinitesimal than 
denominator ux . So, the matrix function G(x, t) is well-defined.

Define

p(x, t, k) = x −
∞∫

x

(
√

m(x′, t) − 1)dx′ − t

4k2 . (2.14)

As we can write the SPE (1.1a) into the conservation law form:

(
√

m)t = 1

2
(u2√m)x, m = 1 + u2

x, (2.15)

we get

px = √
m, pt = 1

2
u2√m − 1

4k2 . (2.16)

And introducing a transformation

�(x, t, k) = G(x, t)μ(x, t, k)eikp(x,t,k)σ3 (2.17)

then we find the Lax pair equations

{
μx − ikpx[σ3,μ] = V1μ,

μt − ikpt [σ3,μ] = V2μ,
(2.18)

where

V1 = iuxx

2m
σ2, (2.19a)

V2 = 1

4ik
(

1√
m

− 1)σ3 + iu2uxx

4m
σ2 − 1

4ik

ux√
m

σ1, (2.19b)

with σ1 =
(

0 1
1 0

)
.

Then the equations in (2.18) can be written in differential form as

d(e−ikp(x,t,k)σ̂3μ) = W(x, t, k), (2.20)

where W(x, t, k) is the closed one-form defined by

W = e−ikp(x,t,k)σ̂3(V1dx + V2dt)μ. (2.21)
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2.2.2. The Jost functions μj

We define two eigenfunctions {μj }2
1 of (2.18) by the Volterra integral equations

μ1(x, t, k) = I+
x∫

−∞
eik[p(x,t,k)−p(y,t,k)]σ̂3V1(y, t, k)μ1(y, t, k)dy, (2.22a)

μ2(x, t, k) = I−
+∞∫
x

eik[p(x,t,k)−p(y,t,k)]σ̂3V1(y, t, k)μ2(y, t, k)dy. (2.22b)

Proposition 2.4. (Analytic property) From the above definition, we find that the functions {μj }2
1

are bounded and analytic properties as following:

• [μ1]1(x, t, k) is bounded and analytic in D2, [μ1]2(x, t, k) is in D1;
• [μ2]1(x, t, k) is bounded and analytic in D1, [μ2]2(x, t, k) is in D2.

Proposition 2.5 (Large k property). The matrix functions μj(x, t, k) also satisfy the asymptotic 
condition

μj (x, t, k) = I+ D1(x, t)

k
+ O(

1

k2 ), k → ∞, (2.23)

where I is an 2 × 2 identity matrix, and the off-diagonal entries of the matrix D1(x, t) are

D12(x, t) = i

4

uxx

m
√

m
, D21(x, t) = i

4

uxx

m
√

m
. (2.24)

2.2.3. The scattering matrix S(k)

Because the eigenfunctions μ1(x, t, k) and μ2(x, t, k) are both the solutions of the Lax pair 
(2.18), they are related by a matrix S(k) which is independent of the variable (x, t).

μ1(x, t, k) = μ2(x, t, k)eikp(x,t,k)σ̂3S(k). (2.25)

By the definition of μj(x, t, k), j = 1, 2 (2.22), the matrix S(k) has the form

S(k) =
(

a(k̄) b(k)

−b(k̄) a(k)

)
. (2.26)

The function a(k) can be computed by

a(k) = det ([μ2]1, [μ1]2), (2.27)

where det (A) means the determinate of a matrix A. We can know that a(k) is analytic in D1.

Assumption 2.6. In this paper, we assume that the initial value u0(x) is chosen such that a(k)

has no zero (usually, we can assume u0(x) has small norm).
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2.3. The relation between μj(x, t, k) and μ0
j (x, t, k)

As usual, we use the eigenfunctions μj to define the matrix M(x, t, k) (see (3.1)) which is 
used to formulate a Riemann–Hilbert problem. However, in order to construct the solution u(x, t)
from the associated Riemann–Hilbert problem, we need the asymptotic behavior of μj as k → 0. 
So, we need relate the eigenfunctions μj(x, t, k) to μ0

j (x, t, k).

Note that the eigenfunctions μ(x, t, k) and μ0(x, t, k) being related to the same Lax pair (2.1), 
must be related to each other as

μj (x, t, k) = G−1(x, t)μ0
j (x, t, k)e(ikx+ t

4ik
)σ3Cj(k)e−ikp(x,t,k)σ3 (2.28)

with Cj(k) independent of x and t . Evaluating (2.28) as x → ±∞ gives

C1(k) = e−ikcσ3, C2(k) = I, (2.29)

where c = ∫ +∞
−∞ (

√
m(x, t) − 1)dx is a quantity conserved under the dynamics governed 

by (1.1a).

Proposition 2.7. The functions μj(x, t, k) and μ0
j (x, t, k) are related as follows:

μ1(x, t, k) = G−1(x, t)μ0
1(x, t, k)e−ik

∫ x
−∞(

√
m(x′,t)−1)dx′σ3, (2.30a)

μ2(x, t, k) = G−1(x, t)μ0
2(x, t, k)eik

∫ +∞
x (

√
m(x′,t)−1)dx′σ3 . (2.30b)

Proposition 2.8. The proposition (2.7) together with (2.27) allows expressing the expansions in 
powers of k of a(k) at k = 0,

a(k) = 1 + ikc − c2

2
k2 + O(k3). (2.31)

3. The Riemann–Hilbert problem for SP equation

Let us define

M(x, t, k) =
⎧⎨
⎩
(

[μ2]1
[μ1]2
a(k)

)
, k ∈ D1,( [μ1]1

a(k̄)
[μ2]2

)
, k ∈ D2.

(3.1)

From the definition (3.1) and (2.22), we can deduce M(x, t, k) satisfies the symmetry condition

M(x, t, k̄) = M(x, t,−k) = σ2M(x, t, k)σ2. (3.2)

And M(x, t, k) satisfies the following Riemann–Hilbert problem (P. 1–P. 2 in [24]):
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• Jump condition: The two limiting values

M±(x, t, k) = lim
ε→0

M±(x, t, k ± iε), k ∈ R, (3.3)

are related by

M+(x, t, k) = M−(x, t, k)J (x, t, k), k ∈ R, (3.4)

where

J (x, t, k) = eikp(x,t,k)σ̂3J0(k) (3.5)

here

J0(k) =
(

1 r(k)

r(k) 1 + |r(k)|2
)

(3.6)

with r(k) = b(k)
a(k)

.
• Normalize condition as k → ∞

M(x, t, k) = I+ O(
1

k
). (3.7)

In order to get the information of the solution u(x, t), we should consider the asymptotic behavior 
of M(x, t, k) as k → 0, that is,

M(x, t, k) = G−1(x, t)

[
I+ k(ic+σ3 + iuσ1) + k2[− c2+ + u2

2
I+ i(uc+ − 2ut + u2ux)σ2] + O(k3)

]
,

(3.8)

where

c+ =
+∞∫
x

(
√

m(x′, t) − 1)dx′. (3.9)

Equation (3.8) shows that the matrix-valued function M(x, t, k) contains all necessary infor-
mation for reconstructing the solution of the initial value problem of (1.1a)–(1.1b) in terms of 
the solution of a matrix-valued Riemann–Hilbert problem.

However, the jump relation (3.5) cannot be used immediately for recovering the solution of 
SP equation (1.1a)–(1.1b). Since, in the representation of the jump matrix eikp(x,t,k)σ̂3J0(k) the 
factor J0(k) is indeed given in terms of the known initial data u0(x) but p(x, t, k) is not, it 
involves m(x, t) which is unknown (and, in fact, is to be reconstructed).

To overcome this, we introduce the new (time-dependent) scale

y(x, t) = x −
+∞∫

(
√

m(x′, t) − 1)dx′ = x − c+(x, t), (3.10)
x
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in terms of which the jump matrix becomes explicit. The price to pay for this, however, is that 
the solution of the initial problem can be given only implicitly, or parametrically: it will be given 
in terms of functions in the new scale, whereas the original scale will also be given in terms of 
functions in the new scale.

By the definition of the new scale y(x, t), we define

M̃(y, t, k) = M(x(y, t), t, k), (3.11)

then we can obtain the Riemann–Hilbert problem for M̃(y, t, k) as follows:

• Analyticity: M̃(y, t, k) is analytic in the two open half-planes D1 and D2, and continuous 
up to the boundary k ∈ R.

• Jump condition: The two limiting values

M̃+(y, t, k) = M̃−(y, t, k)J̃ (y, t, k), k ∈ R, (3.12a)

where the jump matrix is

J̃ (y, t, k) = ei(ky− t
4k

)σ̂3J0(k) (3.12b)

with J0(k) is defined as (3.6).
• Normalization:

M̃(y, t, k) → I, k → ∞. (3.13)

Theorem 3.1. Let M̃(y, t, k) satisfies the above conditions, then this Riemann–Hilbert problem 
has a unique solution. And the solution u(x, t) of the initial value problem (1.1a)–(1.1b) can be 
expressed, in parametric form, in terms of the solution of this Rieamnn–Hilbert problem:

u(x, t) = u(y(x, t), t), (3.14a)

where

x(y, t) = y + lim
k→0

(
(M̃(y, t,0))−1M̃(y, t, k)

)
11

− 1

ik
(3.14b)

u(y, t) = lim
k→0

(
(M̃(y, t,0))−1M̃(y, t, k)

)
21

ik
(3.14c)

Proof. Since the jump matrix J̃ (y, t, k) is a Hermitian matrix, then the Riemann–Hilbert prob-
lem of M̃(y, t, k) indeed has a solution. Furthermore, the Riemann–Hilbert problem has only one 
solution because of the normalize condition.

The statements of the solution u(x, t) is following from the asymptotic formula (3.8). �
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Fig. 1. The signs of Reiθ in the k-plane in the case ξ̃ > 0.

4. Long-time asymptotics: fast decaying region ξ = x
t > ε > 0, Proof of Theorem 1.2

In this section, we employ the nonlinear steepest descent method introduced by Deift and 
Zhou [14] to analyze the long-time asymptotic behavior of the solution u(x, t) of the initial 
value problem (1.1a)–(1.1b).

The key feature of the method is the deformation of the original Riemann–Hilbert problem 
according to the signature table for the phase function θ in jump matrix J̃ written in the form

J̃ (y, t, k) = eitθ(ξ̃ ,k)σ̂3J0(k), (4.1)

where

θ(ξ̃ , k) = ξ̃ k − 1

4k
, (4.2)

ξ̃ = y

t
. (4.3)

The signature table is the distribution of signs of Imθ(ξ̃ , k) in the k-plane,

Imθ(ξ̃ , k) = k2[ξ̃ + 1

4(k2
1 + k2

2)
], (4.4)

where k1 and k2 are the real and image part of k, respectively.
Under the condition ξ̃ > ε for any ε > 0, then we have Imθ(ξ̃ , k) > 0 and Imθ(ξ̃ , k) < 0, as 

k2 = Imk > 0 and k2 = Imk < 0, respectively, see Fig. 1.
This suggests the use of the following factorization of the jump matrix for all k ∈ R:

J̃ (y, t, k) =
(

1 0
r(k)e−2itθ 1

)(
1 r(k)e2itθ

0 1

)
(4.5)

Let r(k) as a Fourier transform with respect to θ ,

r(k)e−2itθ = e−2itθ√
2π(k−i)2

∫∞
−∞ eisθ(k)ĝ(s)ds

= e−2itθ√
2π(k−i)2

∫∞
t

eisθ(k)ĝ(s)ds + e−2itθ√
2π(k−i)2

∫ t

−∞ eisθ(k)ĝ(s)ds

= e−2itθ(k)hI (k) + e−2itθ(k)hII (k),

(4.6)

where
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Fig. 2. The contour �̃ in the k-plane as ξ̃ > 0.

ĝ(s) = 1√
2π

∫∞
−∞ e−isθ(k)g(θ)dθ,

g(θ) = r(k(θ))(k(θ) − i)2.

Here e−2itθ(k)hII (k) has an analytic continuation to the lower half-plane and decays ex-
ponentially in L1 ∩ L∞(� ∩ {k|Imk < 0}), as t → ∞, while e−2itθ(k)hI (k) decays rapidly in 
L1 ∩ L∞(R), as t → ∞.

Introducing the following the following transformation:

M̃(1)(y, t, k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M̃(y, t, k)

(
1 −hII (k̄)e2itθ

0 1

)
, k ∈ �1 ∪ �3,

M̃(y, t, k)

(
1 0

hII (k)e−2itθ 1

)
, k ∈ �4 ∪ �6,

M̃(y, t, k), k ∈ �2 ∪ �5,

(4.7)

where �j, j = 1, 2, . . . , 6 are shown in Fig. 2. We obtain the new Riemann–Hilbert problem for 
M̃(1)(y, t, k),

{
M̃

(1)
+ (y, t, k) = M̃

(1)
− (y, t, k)J̃ (1)(y, t, k), k ∈ �̃,

M̃(1)(y, t, k) → I, k → ∞.
(4.8)

where

J̃ (1)(y, t, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 hII (k̄)e2itθ

0 1

)
, k ∈ �̃ ∩ D1,

(
1 0

hII (k)e−2itθ 1

)
, k ∈ �̃ ∩ D2,

(
1 0

hI (k)e−2itθ 1

)(
1 hI (k̄)e2itθ

0 1

)
, k ∈R.

(4.9)

Theorem 4.1. As t → ∞, the solution u(x, t) of the initial value problem (1.1a)–(1.1b) decays 
rapidly in the range ξ > ε for any ε > 0.
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Fig. 3. The signs of Reiθ in the k-plane in the case ξ̃ < 0.

Proof. The above transformation reduces the Riemann–Hilbert problem for M̃(1)(y, t, k) to that 
with exponentially decaying in t to the identity matrix jump matrix. Since this Riemann–Hilbert 
problem is holomorphic, its solution decays fast to I and consequently ũ(y, t) decays fast to 0
while y approaches fast x and thus the domain ξ̃ > ε and ξ > ε coincide asymptotically. �
5. Long-time asymptotics: oscillation region ξ < −ε < 0, Proof of Theorem 1.3

If ξ̃ < −ε for any ε > 0, let k0 be defined by

k0 =
√

−1

4ξ̃
, (5.1)

then the signature table is shown as Fig. 3,
This suggests the use of the following factorizations of the jump matrix J̃ (y, t, k):

J̃ (y, t, k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 0

r(k)e−2itθ 1

)(
1 r(k)e2itθ

0 1

)
, |k| < k0,

(
1 r(k)

1+|r(k)|2 e2itθ

0 1

)(
1

1+|r(k)|2 0

0 1 + |r(k)|2
)(

1 0
r(k)

1+|r(k)|2 e−2itθ 1

)
, |k| > k0.

(5.2)

Then we need make some appropriate sequence of deformations of this Riemann–Hilbert prob-
lem.

5.1. The conjugate transformation

The aim of the first transformation involves the removal of the diagonal factor in (5.2) for 
|k| > k0.

Introducing a scalar function δ(k) which satisfies the following scalar Riemann–Hilbert prob-
lem ⎧⎨

⎩
δ+(k) = δ−(k)(1 + |r(k)|2), |k| > k0,

= δ−(k) = δ(k), |k| < k0,

δ(k) → 1, k → ∞.

(5.3)
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Then the function δ(k) is given by

δ(k) = e
1

2πi
(
∫ −k0−∞ + ∫ +∞

k0
)

ln (1+|r(s)|2)
s−k

ds
. (5.4)

The conjugate transformation

M̃(1)(y, t, k) = M̃(y, t, k)δ(k)σ3 , (5.5)

yields the Riemann–Hilbert problem for M̃(1)(y, t, k)

{
M̃

(1)
+ (y, t, k) = M̃

(1)
− (y, t, k)J̃ (1)(y, t, k), k ∈R,

M̃(1)(y, t, k) → I, k → ∞,
(5.6a)

where

J̃ (1)(y, t, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 0

r(k)δ2e−2itθ 1

)(
1 r(k)δ−2e2itθ

0 1

)
, |k| < k0,(

1 r(k)

1+|r(k)|2 δ−2− e2itθ

0 1

)(
1 0

r(k)

1+|r(k)|2 δ2+e−2itθ 1

)
, |k| > k0.

(5.6b)

Now, let us come back to the solution u(x, t). From (5.4) it follows that

δ(k) = δ0 + kδ1 + O(k2) = 1 − ik

π

∞∫
k0

ln (1 + |r(s)|2)
s2 ds + O(k2). (5.7)

If we write

M̃(y, t, k) = M̃0(y, t) + kM̃1(y, t) + O(k2), k → 0, (5.8)

and

M̃(1)(y, t, k) = M̃
(1)
0 (y, t) + kM̃

(1)
1 (y, t) + O(k2), k → 0, (5.9)

then from the transformation (5.5) we obtain

M̃0(y, t) = M̃
(1)
0 (y, t), M̃1(y, t) = M̃

(1)
1 (y, t) − M̃

(1)
0 (y, t)δ1σ3. (5.10)

Hence, we have

u(x, t) = −i
[
(M̃

(1)
0 )−1M̃

(1)
1

]
21

, (5.11a)

c+ = −i
([

(M̃
(1)
0 )−1M̃

(1)
1

]
11

− δ1

)
(5.11b)
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5.2. Analytic extension

For the convenience of the notation, we transverse the direction of the component |k| < k0 of 
the jump contour R for the Riemann–Hilbert problem for M̃(1)(y, t, k). Then, the jump matrix 
J̃ (1)(y, t, k) becomes

J̃ (1)(y, t, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 −r(k)δ−2e2itθ

0 1

)(
1 0

−r(k)δ2e−2itθ 1

)
, |k| < k0,(

1 r(k)

1+|r(k)|2 δ−2− e2itθ

0 1

)(
1 0

r(k)

1+|r(k)|2 δ2+e−2itθ 1

)
, |k| > k0.

(5.12)

Denoting some contours:

L0 = {k|k = k0λe−i π
4 ,0 ≤ k ≤ 1√

2
} ∪ {k|k = k0λei 3π

4 ,0 ≤ k ≤ 1√
2
}, (5.13a)

L1 = {k|k = k0 + k0λe−i 3π
4 ,−∞ < λ <

1√
2
}, L1ε = {k|k = k0 + k0λe−i 3π

4 , ε < λ <
1√
2
}

(5.13b)

L2 = {k|k = −k0 + k0λe−i π
4 ,−∞ < λ <

1√
2
}, L2ε = {k|k = −k0 + k0λe−i π

4 , ε < λ <
1√
2
}.

(5.13c)

Proposition 5.1. Let

ρ(k) =
{−r(k), |k| < k0,

r(k)

1+|r(k)|2 , |k| > k0.
(5.14)

Then ρ(k) has a decomposition

ρ(k) = hI (k) + (hII (k) + R(k)), (5.15)

where hI (k) is small and hII (k) has an analytic continuation to L and L0. For example, if 
k > k0, hII (k) of the function ρ(k) has an analytic continuation to the L1 ∩ Imk > 0. And R(k)

is piecewise rational (R(k) = 0, if k ∈ L0) function.
And let M be a positive constant, as k0 < M , R(k), hI (k), hII (k) satisfy

|e−2itθ(k)hI (k)| ≤ c

(1 + |k|2)t l , k ∈ R, (5.16a)

|e−2itθ(k) hI (k)

kj
| ≤ c

(1 + |k|2)t l , 0 < |k| < |k0|
2

, j = 1,2, (5.16b)

|e−2itθ(k)hII (k)| ≤ c

(1 + |k|2)t l , k ∈ L = Ł1 ∪ L2, (5.16c)

|e−2itθ(k)hII (k)| ≤ ce
−t 1

8k0 , k ∈ L0, (5.16d)
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|e−2itθ(k) hII (k)

kj
| ≤ ce

−t 1
8k0 , k ∈ L0, j = 1,2, (5.16e)

and

|e−2itθ(k)R(k)| ≤ ce
− ε2

2k0
t
, k ∈ Lε = L1ε ∪ L2ε. (5.16f)

for arbitrary natural number l, for sufficiently large constants c, for some fixed positive con-
stant M .

Proof. When k0
2 < |k| < k0 and |k| > k0 for k ∈ R, the proof is similar to P. 310–318 in [14]. 

Here, we prove the case 0 < |k| < |k0|
2 , which has some differences, we just consider 0 < k <

k0
2 , 

the case for − k0
2 < k < 0 is similar.

Define {
ρ(θ) = ρ(k(θ)), θ < θ(

k0
2 ),

= 0, θ ≥ θ(
k0
2 ).

(5.17)

We claim that ρ(θ) ∈ Hj(−∞ < θ < ∞) for any nonnegative integer j .
By Fourier inversion,

ρ(θ(k)) =
∞∫

−∞
eisθ(k)ρ̂(s)d̄s, 0 < k <

k0

2
, (5.18)

where

ρ̂(s) =
θ(

k0
2 )∫

−∞
e−isθ(k)ρ(θ(k))d̄θ(k). (5.19)

Then,

∫ θ(
k0
2 )

−∞
∣∣∣( d

dθ

)j
ρ(θ(k))

∣∣∣2 |d̄θ(k)|

= ∫ k0
2

0

∣∣∣∣∣
(

4k2k2
0

k2
0−k2

d
dk

)j

ρ(k)

∣∣∣∣∣
2

| k2
0−k2

4k2k2
0
|d̄k ≤ C < ∞,

(5.20)

for any nonnegative integer j , 0 < k0 < M , since r(k) → 0 rapidly, as k → 0.
Hence

∞∫
−∞

(1 + s2)j |ρ̂(s)|2d̄s ≤ C, (5.21)

for any nonnegative integer j .



3510 J. Xu / J. Differential Equations 265 (2018) 3494–3532
Split

ρ(k) = ∫∞
t

eisθ(k)ρ̂(s)d̄s + ∫ t

−∞ eisθ(k)ρ̂(s)d̄s

= hI (k) + hII (k).
(5.22)

Then, for 0 < k <
k0
2 and any positive integer j , we obtain,

|e−2itθ(k)hI (k)| ≤ ∫∞
t

|ρ̂|d̄s

≤ (
∫∞
t

(1 + s2)−j d̄s)
1
2 (
∫∞
t

(1 + s2)j |ρ̂(s)|2d̄s)
1
2

≤ c

t
j− 1

2
.

(5.23)

Consider the contour l2 : k(u) = uk0e
−i π

4 , 0 < u < 1√
2

. Since Reiθ(k) is positive on this contour, 
hII has an analytic continuation to contour l2.

On the contour l2,

|e−2itθ(k)hII (k)| ≤ e−tReiθ(k)
∫ t

−∞ e(s−t)Reiθ(k)|ρ̂(k)|d̄s

≤ e−tReiθ(k)(
∫ t

−∞(1 + s2)−1d̄s)
1
2 (
∫ t

−∞(1 + s2)|ρ̂(k)|2d̄s)
1
2 ,

(5.24)

where

Reiθ(k) =
√

2

8k0
(

1

u
− u) ≥ 1

8k0
, (5.25)

for 0 < u ≤ 1√
2

.
Thus, we obtain,

|e−2itθ(k)hII (k)| ≤ ce
− t

8k0 . � (5.26)

5.3. Second Transformation

The main purpose of this subsection is to reformulate the Riemann–Hilbert problem for 
M̃(1)(y, t, k) (5.6) as an equivalent Riemann–Hilbert problem on the augmented contour � =
L ∪ L̄ ∪ L0 ∪ L̄0 ∪R (see Fig. 4).

According to the above analytic extension of ρ(k), we can write the jump matrix J̃ (1)(y, t, k)

as

J̃ (1)(y, t, k) = b−1− (y, t, k)b+(y, t, k), (5.27a)

where

b−(y, t, k) =
(

1 −hI (k̄)δ−2− e2itθ

0 1

)(
1 −hII + R(k̄)δ−2− e2itθ

0 1

)
= bR−(y, t, k)bI−(y, t, k),

(5.27b)

and
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Fig. 4. The jump contour � for M̃(2)(y, t, k).

b−(y, t, k) =
(

1 0
hI (k)δ2+e−2itθ 1

)(
1 0

(hII + R)(k)δ2+e−2itθ 1

)
= bR+(y, t, k)bI+(y, t, k).

(5.27c)

We make a transformation as

M̃(2)(y, t, k) = M̃(1)(y, t, k)T (y, t, k), (5.28)

where

T (y, t, k) =

⎧⎪⎨
⎪⎩

(bI+(y, t, k))−1, k ∈ �1 ∪ �3 ∪ �9 ∪ �10,

(bI−(y, t, k))−1, k ∈ �4 ∪ �6 ∪ �7 ∪ �8,

I, k ∈ �2 ∪ �5.

(5.29)

with the regions {�j }10
j=1 defined as Fig. 4.

Then, M̃(2)(y, t, k) satisfies the following Riemann–Hilbert problem,

{
M̃

(2)
+ (y, t, k) = M̃

(2)
− (y, t, k)J̃ (2)(y, t, k),

M̃(2)(y, t, k) → I, k → ∞,
(5.30a)

where

J̃ (2)(y, t, k) = (b
(2)
− (y, t, k))−1b

(2)
+ (y, t, k) =

⎧⎪⎨
⎪⎩

(bR−(y, t, k))−1bR+(y, t, k), k ∈R,

bI+(y, t, k), k ∈ � ∩ Imk > 0,

(bI−(y, t, k))−1, k ∈ � ∩ Imk < 0.

(5.30b)

Proposition 5.2. The reflection coefficient r(k) = O(k3) as k → 0.

Proof. A direct calculation following from (2.31) and from the identity |r(k)|2 = 1
|a(k)|2 −1. �

Now, let us come back to the considered problem in this paper again. The solution u(y, t) is 
related to the solution of the Riemann–Hilbert problem evaluated at k = 0, it may be affected by 
this transformation. However, due to the above fact, the second transformation turns out not to 
affect the terms in the expansion of the solution of the Riemann–Hilbert problem at k = 0 at least 
up to the terms of order O(k2) and thus it does not really affect u(y, t).
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So, if we write

M̃(2)(y, t, k) = M̃
(2)
0 (y, t) + kM̃

(2)
1 (y, t) + O(k2), k → 0, (5.31)

then we have

u(x, t) = −i
[
(M̃

(2)
0 )−1M̃

(2)
1

]
21

, (5.32a)

c+ = −i
([

(M̃
(2)
0 )−1M̃

(2)
1

]
11

− δ1

)
(5.32b)

Set

ω
(2)
± (y, t, k) = ±(b

(2)
± (y, t, k) − I), ω = ω

(2)
+ + ω

(2)
− , (5.33)

and let μ(2)(y, t, k) be the solution of the singular integral equation μ(2) = I + Cωμ(2), here Cω

is defined as Cωf = C+(f ω−) + C−(f ω+), with C± denote the Cauchy operator, then

M̃(2)(y, t, k) = I+ 1

2πi

∫
�

μ(2)(y, t, η)ω(y, t, η)

η − k
dη, k ∈ C\� (5.34)

is the solution of Riemann–Hilbert problem (5.30), see the P. 323 in [14].
Expanding the integral (5.34) around k = 0, we have

M̃
(2)
0 (y, t) = I+ 1

2πi

∫
�

μ(2)(y, t, η)ω(y, t, η)

η
dη, (5.35a)

M̃
(2)
1 (y, t) = 1

2πi

∫
�

μ(2)(y, t, η)ω(y, t, η)

η2 dη (5.35b)

Remark 5.3. Since, ω(y, t, k) decays rapidly at k = 0, the integral (5.35) are nonsingular.

5.4. Reduction to the cross

Let ωe be a sum of four terms

ωe = ωa + ωb + ωc + ωd. (5.36)

We then have the following:

ωa = ω is supported on the R and consists of terms of type hI (k) and hI (k).

ωb = ω is supported on the L ∪ L̄ and consists of terms of type hII (k) and hII (k̄).
(5.37)

ωc = ω is supported on the Lε ∪ L̄ε and consists of terms of type R(k) and R(k̄).

ωd = ω is supported on the L0 ∪ L̄0.
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Fig. 5. The jump contour �(3) for M̃(3)(y, t, k).

Set ω′ = ω − ωe. Then, ω′ = 0 on �(2)\�(3). Thus, ω′ is supported on �(3) (Fig. 5) with contri-
bution to ω from rational terms R and R̄.

Proposition 5.4. For 0 < k0 < M , we have

||ωa||L1∩L2∩L∞(R) ≤ c

t l
, (5.38a)

||ω
a

kj
||L1∩L2∩L∞(|k|<k0)

≤ c

t l
, j = 1,2 (5.38b)

||ωb||L1(L∪L̄)∩L2(L∪L̄)∩L∞(L∪L̄) ≤ c

t l
, (5.38c)

||ωc||L1(Lε∪L̄ε)∩L2(Lε∪L̄ε)∩L∞(Lε∪L̄ε)
≤ ce

− ε2
2k0

t
, (5.38d)

||ωd ||L1(L0∪L̄0)∩L2(L0∪L̄0)∩L∞(L0∪L̄0)
≤ ce

− t
8k0 , (5.38e)

||ω
d

kj
||L1(L0∪L̄0)∩L2(L0∪L̄0)∩L∞(L0∪L̄0)

≤ ce
− t

8k0 , j = 1,2 (5.38f)

Moreover,

||ω′||L2(�(3)) ≤ c

t
1
4

, ||ω′||L1(�(3)) ≤ c

t
1
2

(5.39)

Proof. Consequence of Proposition 5.1, and analogous calculations as in lemma 2.13 of [14]. �
Proposition 5.5. As t → ∞ and 0 < k0 < M , ||(1 − Cω′)−1||L2(�(2)) exists and is uniformly 
bounded, and ||(1 − Cω)−1||L2(�(2)) ≤ C is equivalent to ||(1 − Cω′)−1||L2(�(2)) ≤ C.

Proof. The existence of the operator (1 − Cω′)−1 is followed similar to [14], P. 324. And the 
equivalence is the consequence of the following inequality, ||Cω −Cω′ ||L2(�(2)) ≤ c||ωe||L2(�(2)), 
the fact that ||ωe||L2(�(2)) ≤ c

t l
, and the second resolvent identity. �

Proposition 5.6. If ||(1 − Cω′)−1||L2(�(2)) ≤ C, then for arbitrary positive integer l, as t → ∞
such that 0 < k0 < M ,

∫
�

((I− Cω)−1
I)(η)ω(x, t, η)

ηj
dη =

∫
�

((I− Cω′)−1
I)(η)ω′(x, t, η)

ηj
dη + O(

c

tl
), j = 1,2.

(5.40)
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Proof. From the second resolvent identity, one can derive the following expression (see equation 
(2.27) in [14]),

∫
�

((1−Cω)−1
I)ω

ηj dη = ∫
�

((1−Cω′ )−1
I)ω′

ηj dη + ∫
�

ωe

ηj dη

+ ∫
�

((1−Cω′ )−1(Cωe I))ω

ηj dη

+ ∫
�

((1−Cω′ )−1(Cω′ I))ωe

ηj dη

+ ∫
�

((1−Cω′ )−1Cωe (1−Cω)−1)(CωI)ω

ηj dη

= ∫
�

((1−Cω′ )−1
I)ω′

ηj dη + I + II + III + IV .

(5.41)

For 0 < k0 < M , from Proposition (5.4) it follows that,

|I | ≤ ||ωa

kj ||L1(R) + ||ωb

kj ||L1(L∪L̄) + ||ωc

kj ||L1(Lε∪L̄ε)
+ ||ωd

kj ||L1(L0∪L̄0)≤ ct−l ,
(5.42)

|II | ≤ ||(1 − Cω′)−1||L2(�)||(CωeI)||L2(�)|| ω
kj ||L2(�)

≤ c||ωe||L2(�(2))(||ωe||L2(�) + ||ω′||L2(�))

≤ ct−l(ct−l + c) ≤ ct−l ,

(5.43)

|III | ≤ ||(1 − Cω′)−1||L2(�)||(Cω′I)||L2(�)||ωe

kj ||L2(�)

≤ ct−l ,
(5.44)

|IV | ≤ ||(1 − Cω′)−1Cωe(1 − Cω)−1)(CωI)||L2(�)|| ω
kj ||L2(�)

≤ ||(1 − Cω′)−1||L2(�)||Cωe ||L2(�)||(1 − Cω)−1||L2(�)||(CωI)||L2(�)|| ω
kj ||L2(�)

≤ c||Cωe ||L2(�(2))||(CωI)||L2(�)|| ω
kj ||L2(�(2))

≤ c||ωe||L2(�)|| ω
kj ||2

L2(�)

≤ ct−l .

(5.45)

Hence,

|I + II + III + IV | ≤ ct−l . (5.46)

Applying these estimates to equation (5.41), we can obtain equation (5.40). �
Following the method in [14] (P. 328–P. 330), we apply the lemma 2.56 in [14] to the case 

u = ω′, �12 = � and �1 = �(3). From identity (2.58) in [14], we get the following proposition, 
which shows that the integral region can be changed from � to �(3) without alternating the 
Riemann–Hilbert problem.
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Proposition 5.7.

∫
�

((I− Cω′)−1
I)(η)ω′(x, t, η)

ηj
dη =

∫
�(3)

((I− Cω′)−1
I)(η)ω′(x, t, η)

ηj
dη. (5.47)

Set

L′ = L\Lε.

Then, �(3) = L′ ∪ L̄′. On �(3), set μ′ = (1�(3) − C�(3)

ω′ )−1
I. Then,

M(3)(x, t, k) = I+
∫

�(3)

μ′(ξ)ω′(ξ)

ξ − k

dξ

2πi
(5.48)

solves the Riemann–Hilbert problem

{
M

(3)
+ (x, t, k) = M

(3)
− (x, t, k)J (3)(x, t, k), k ∈ �(3),

M(3) → I, k → ∞,
(5.49)

where

ω′ = ω′+ + ω′−, (5.50)

b′± = I± ω′±, (5.51)

J (3)(x, t, k) = (b′−)−1b′+ (5.52)

Hence, we have the representation of the solution is as follows,

Theorem 5.8. As t → ∞,

iu(y, t) =
(
I+ 1

2πi

∫
�(3)

(I−Cω′ )−1
I(η)ω′(η)

η
dη + O(t−l )

)
11

·
(

1
2πi

∫
�(3)

(I−Cω′ )−1
I(η)ω′(η)

η2 dη + O(t−l )
)

21

−
(

1
2πi

∫
�(3)

(I−Cω′ )−1
I(η)ω′(η)

η
dη + O(t−l )

)
21

·
(

1
2πi

∫
�(3)

(I−Cω′ )−1
I(η)ω′(η)

η2 dη + O(t−l )
)

11
,

(5.53a)

and

ic+(y, t) =
(
I+ 1

2πi

∫
�(3)

(I−Cω′ )−1
I(η)ω′(η)

η
dη + O(t−l )

)
22

·
(

1
2πi

∫
�(3)

(I−Cω′ )−1
I(η)ω′(η)

η2 dη + O(t−l)
)

11

−
(

1
2πi

∫
�(3)

(I−Cω′ )−1
I(η)ω′(η)

η
dη + O(t−l )

)
12

·
(

1
2πi

∫
�(3)

(I−Cω′ )−1
I(η)ω′(η)

2 dη + O(t−l)
)

− δ1.

(5.53b)
η 21
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5.5. Separate out the contributions of the two crosses

Using the estimates of the Proposition 5.4 and the similar method in [14], P. 330–331, we can 
separate out the contributions of the two crosses in �(3) to the solution u(y, t) in formula (5.53a). 
Let the contour �(3) = �A′ ∪ �B ′

and write

ω′ = ωA′ + ωB ′
, (5.54)

where

ωA′
(k) = 0, for k ∈ �B ′ ,

ωB ′
(k) = 0, for k ∈ �A′ .

(5.55)

Proposition 5.9.

||C�(3)

ωB′ C�(3)

ωA′ ||L2(�(3)) = ||C�(3)

ωA′ C�(3)

ωB′ ||L2(�(3)) ≤ C(k0)√
t

,

||C�(3)

ωB′ C�(3)

ωA′ ||L∞→L2(�(3)), ||C�(3)

ωA′ C�(3)

ωB′ ||L∞→L2(�(3)) ≤ C(k0)

t3/4 .
(5.56)

Proof. Since

ωB ′
+ (η)ωA′

+ (ξ) = 0, ωB ′
− (η)ωA′

− (ξ) = 0, for η, ξ ∈ �(3), (5.57a)

and

C�(3)

ωA′ C�(3)

ωB′ φ = C+
(
(C−φωB ′

+ )ωA′
−
)

+ C−
(
(C+φωB ′

− )ωA′
+
)

(5.57b)

Here we estimate the first term and the second term is similar.
Since C− is bounded in L2(�(3)), and the Proposition 5.4, we have

||C+
(
(C−φωB ′

+ )ωA′
−
)

(k)||L2(�(3))

= || ∫
�A′
(∫

�B′ φ(ξ)ωB ′
+ (ξ)

dξ
(ξ−η)−

)
ωA′

− (η)
dη

(η−k)+ ||L2(�(3))

≤ c||ωA′
− ||

L2(�A′
)
sup

η∈�A′ | ∫
�B′ φ(ξ)ωB ′

+ (ξ)
dξ

ξ−η
|

≤ c
k0

||ωA′
− ||

L2(�A′
)
||ωB ′

+ ||
L2(�B′

)
||φ||L2(�(3))

≤ C(k0)t
−1/2||φ||L2(�(3)),

(5.58)

where

dist(�A′
,�B ′

) > k0. (5.59)

Thus, we have

||C�(3)

ωA′ C�(3)

ωB′ ||L2(�(3)) ≤ C(k0)√ . (5.60)

t
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On the other hand.

||C+
(
(C−φωB ′

+ )ωA′
−
)

(k)||L2(�(3))

= || ∫
�A′
(∫

�B′ φ(ξ)ωB ′
+ (ξ)

dξ
(ξ−η)−

)
ωA′

− (η)
dη

(η−k)+ ||L2(�(3))

≤ c||ωA′
− ||

L2(�A′
)
sup

η∈�A′ | ∫
�B′ φ(ξ)ωB ′

+ (ξ)
dξ

ξ−η
|

≤ c
k0

||ωA′
− ||

L2(�A′
)
||ωB ′

− ||
L1(�B′

)
||φ||L∞(�(3))

≤ C(k0)t
−1/2t−1/4||φ||L∞(�(3)).

(5.61)

Thus, we have

||C�(3)

ωA′ C�(3)

ωB′ ||L∞→L2(�(3)) ≤ C(k0)

t3/4 . � (5.62)

Using the identity

(
I− C�(3)

ωA′ − C�(3)

ωB′
)(

I+ C�(3)

ωA′ (I− C�(3)

ωA′ )−1 + C�(3)

ωB′ (I− C�(3)

ωB′ )−1
)

= I− C�(3)

ωB′ C�(3)

ωA′ (I− C�(3)

ωA′ )−1 − C�(3)

ωA′ C�(3)

ωB′ (I− C�(3)

ωB′ )−1
(5.63)

and Proposition 5.4, we show that as t → ∞,

1
2πi

∫
�(3)

(I−Cω′ )−1
I(η)ω′(η)

ηj dη

= 1
2πi

∫
�A′

(I−C
ωA′ )−1

I(η)ωA′
(η)

ηj dη

+ 1
2πi

∫
�B′

(I−C
ωB′ )−1

I(η)ωB′
(η)

ηj dη + O(
C(k0)

t
), j = 1,2,

(5.64)

where C(k0) is a constant dependent on k0.
Then, using the lemma 2.56 in [14], we obtain

Proposition 5.10. As t → ∞,

iu(y, t) =
(
I+ 1

2πi

∫
�A′

(I−C
ωA′ )−1

I(η)ωA′
(η)

η
dη + 1

2πi

∫
�B′

(I−C
ωB′ )−1

I(η)ωB′
(η)

η
dη + O(t−l )

)
11

·
(

1
2πi

∫
�A′

(I−C
ωA′ )−1

I(η)ωA′
(η)

η2 dη + 1
2πi

∫
�B′

(I−C
ωB′ )−1

I(η)ωB′
(η)

η2 dη + O(t−l )

)
21

−
(

1
2πi

∫
�A′

(I−C
ωA′ )−1

I(η)ωA′
(η)

η
dη + 1

2πi

∫
�B′

(I−C
ωB′ )−1

I(η)ωB′
(η)

η
dη + O(t−l )

)
21

·
(

1
2πi

∫
�A′

(I−C
ωA′ )−1

I(η)ωA′
(η)

η2 dη + 1
2πi

∫
�B′

(I−C
ωB′ )−1

I(η)ωB′
(η)

η2 dη + O(t−l )

)
11

,

(5.65a)

and
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ic+(y, t) =
(
I+ 1

2πi

∫
�A′

(I−C
ωA′ )−1

I(η)ωA′
(η)

η
dη + 1

2πi

∫
�B′

(I−C
ωB′ )−1

I(η)ωB′
(η)

η
dη + O(t−l )

)
22

·
(

1
2πi

∫
�A′

(I−C
ωA′ )−1

I(η)ωA′
(η)

η2 dη + 1
2πi

∫
�B′

(I−C
ωB′ )−1

I(η)ωB′
(η)

η2 dη + O(t−l )

)
11

−
(

1
2πi

∫
�A′

(I−C
ωA′ )−1

I(η)ωA′
(η)

η
dη + 1

2πi

∫
�B′

(I−C
ωB′ )−1

I(η)ωB′
(η)

η
dη + O(t−l )

)
12

·
(

1
2πi

∫
�A′

(I−C
ωA′ )−1

I(η)ωA′
(η)

η2 dη + 1
2πi

∫
�B′

(I−C
ωB′ )−1

I(η)ωB′
(η)

η2 dη + O(t−l )

)
21

− δ1.

(5.65b)

5.6. The scaling transformation

In order to reduce the Riemann–Hilbert problem for M̃(3)(y, t, k), as t → ∞, to a model 
Riemann–Hilbert problem whose solution can be given explicitly in terms of parabolic cylinder 
functions, see [14], the leading term of the factor δ(k)e−itθ(k) as k → ±k0 is to be evaluated.

First, we extend the crosses �A′
and �B ′

to contours �̂A′
and �̂B ′

by zero extension. Thus, 
the corresponding functions ω̂A′

and ω̂B ′
are well-defined by zero extension of the functions 

ωA′
and ωB ′

, too. Then, we denote �A and �B as the contours {k = k0λe± πi
4 , −∞ < λ < ∞}

oriented as �̂A′
and �̂B ′

, respectively.
For k near k0,

δ(k) =
(

k − k0

k + k0

)−iν(k0)

eχ(k), (5.66)

where

ν(k0) = ν = − 1

2π
ln (1 + |r(k0)|2), (5.67)

χ(k) = − 1

2πi
(

−k0∫
−∞

+
+∞∫
k0

) ln |k − s|d ln (1 + |r(s)|2). (5.68)

And

θ(k) = − 1

2k0
− 1

4k3
0

(k − k0)
2 + 1

4η4 (k − k0)
3, η lies between k0 and k. (5.69)

Then, introducing the scaling operator by

(NAf )(k) = f (k0 + k√
k−3

0 t

), (5.70)

the factor δ(k)e−itθ(k) can be scaled as

(NAδe−itθ )(k) = δ0 δ1 , (5.71)
A A
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where

δ0
A = (

4t

k0
)

iν(k0)

2 eχ(k0)e
it

2k0 , (5.72a)

δ1
A = k−iν(k0)e

ik2
4

⎛
⎜⎝ 2k0

2k0 + k√
k3

0 t

⎞
⎟⎠

−iν(k0)

e
χ(k0+ k√

k
−3
0 t

)−χ(k0)

e
− ik3

4η4k
−9/2
0 t1/2

. (5.72b)

Here k−iν(k0) is cut along (0, ∞).
Form the definition of χ(k), we know that χ(k0) is purely imaginary, thus |δ0

A| = 1. Define

�0
A = (δ0

A)−σ3, �̃0
Aφ = φ�0

A (5.73)

We have

C
ω̂A′ = N−1

A (�0
A)−1A�̃0

ANA, (5.74)

where the operator A : L2(�A) → L2(�A) is given by

Aφ = C
(�0

A)−1(NAω̂A′
)�0

A
φ = C+(φ(�0

A)−1(NAω̂A′
− )�0

A) + C−(φ(�0
A)−1(NAω̂A′

+ )�0
A) (5.75)

On the part {k = k0λe
iπ
4 , −ε < λ < ε} of �A,

(�0
A)−1(NAω̂A′

+ )�0
A =

(
0 0

R(k0 + k√
k−3

0 t
)(δ1

A)2 1

)
, (5.76)

otherwise, (�0
A)−1(NAω̂A′

+ )�0
A = 0.

Similarly, on the part {k = k0λe− iπ
4 , −ε < λ < ε} of �A,

(�0
A)−1(NAω̂A′

− )�0
A =

(
0 −R(k0 + k√

k−3
0 t

)(δ1
A)−2

0 1

)
, (5.77)

otherwise, (�0
A)−1(NAω̂A′

− )�0
A = 0.

By the definition of R(k), we have

R(k0+) = lim
Rek>k0

R(k) = r(k0)

1 + |r(k0)|2 , (5.78)

and

R(k0−) = lim
Rek<k0

R(k) = −r(k0). (5.79)
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Proposition 5.11. As t → ∞, let β be a fixed small number, 0 < 2β < 1, then for k ∈ {k =
k0λe

iπ
4 , −ε < λ < ε},

||R(k0 + k√
k−3

0 t

)(δ1
A)2 − R(k0±)k−2iν(k0)e

ik2
2 ||L1∩L∞ ≤ C(k0)|e iβ2k2

2 |
(

ln (t)√
t

)
. (5.80)

Proof. See the appendix A. �
Now, we have,

1
2πi

∫
�A′

((IA′−C�A′
ωA′ )−1

I)(η)ωA′
(η)

η
dη

= 1
2πi

∫
�̂A′

((I
Â′−C�̂A′

ω̂A′ )−1
I)(η)ω̂A′

(η)

η
dη

= 1
2πi

∫
�̂A′ (N−1

A (�̃0
A)−1(IA−A)−1�̃0

ANAI)(η)ω̂A′
(η)

η
dη

= 1
2πi

∫
�̂A′

(IA−A)−1�0
A((η−k0)

√
k−3

0 t)(�0
A)−1(NAω̂A′

)((η−k0)

√
k−3

0 t)

η
dη

= 1
2πi

1√
k−3

0 t

∫
�A

(IA−A)−1�0
A(η)(�0

A)−1(NAω̂A′
)(η)

η√
k
−3
0 t

+k0
dη

= 1
2πi

1√
k−3

0 t
�0

A

(∫
�A

(IA−A)−1
I(η)ωA(η)

η√
k
−3
0 t

+k0
dη

)
(�0

A)−1

(5.81a)

and

1
2πi

∫
�A′

((IA′−C�A′
ωA′ )−1

I)(η)ωA′
(η)

η2 dη

= 1
2πi

∫
�̂A′

((I
Â′−C�̂A′

ω̂A′ )−1
I)(η)ω̂A′

(η)

η2 dη

= 1
2πi

∫
�̂A′ (N−1

A (�̃0
A)−1(IA−A)−1�̃0

ANAI)(η)ω̂A′
(η)

η2 dη

= 1
2πi

∫
�̂A′

(IA−A)−1�0
A((η−k0)

√
k−3

0 t)(�0
A)−1(NAω̂A′

)((η−k0)

√
k−3

0 t)

η2 dη

= 1
2πi

1√
k−3

0 t

∫
�A

(IA−A)−1�0
A(η)(�0

A)−1(NAω̂A′
)(η)(

η√
k
−3
0 t

+k0

)2 dη

= 1
2πi

1√
k−3

0 t
�0

A

⎛
⎜⎜⎝∫�A

(IA−A)−1
I(η)ωA(η)(

η√
k
−3
0 t

+k0

)2 dη

⎞
⎟⎟⎠ (�0

A)−1

(5.81b)

By the Proposition 5.11, we have

∫
A

(IA − A)−1
I(η)ωA(η)

η√
k−3t

+ k0
dη =

∫
A

(IA − A)−1
I(η)ωA0

(η)
η√
k−3t

+ k0
dη + O

(
C(k0)

ln (t)√
t

)
, (5.82a)
� 0 � 0
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Fig. 6. The �A .

∫
�A

(IA − A)−1
I(η)ωA(η)(

η√
k−3

0 t
+ k0

)2 dη =
∫

�A

(IA − A)−1
I(η)ωA0

(η)(
η√
k−3

0 t
+ k0

)2 dη + O

(
C(k0)

ln (t)√
t

)
. (5.82b)

Here (see Fig. 6)

ωA0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωA0

+ =
⎛
⎝ 0 0

r(k0)

1+|r(k0)|2 k−2iν(k0)e
ik2
2 0

⎞
⎠ , k ∈ �1

A,

ωA0

+ =
(

0 0

−r(k0)k
−2iν(k0)e

ik2
2 0

)
, k ∈ �3

A,

ωA0

− =
(

0 −r(k0)k
2iν(k0)e− ik2

2

0 0

)
, k ∈ �2

A,

ωA0

+ =
(

0 r(k0)

1+|r(k0)|2 k2iν(k0)e− ik2
2

0 0

)
, k ∈ �4

A.

(5.83)

Define

M̃A0(k) = I+ 1

2πi

∫
�A

((IA − A0)−1
I)(η)ωA0

(η)

η − k
dη, (5.84)

then M̃A0(k) satisfies the Riemann–Hilbert problem

{
M̃A0

+ (k) = M̃A0

− (k)J̃ A0(k), k ∈ �A,

M̃A0
(k) → I, k → ∞,

(5.85)

where

J̃ A0(k) = (bA0

− )−1(k)bA0

+ (k) = (I− ωA0

− )−1(I+ ωA0

+ ). (5.86)
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If

M̃A0
(k) = I− M̃A0

1

k
+ O(k−2), k → ∞, (5.87)

then

1
2πi

1√
k−3

0 t

∫
�A

(IA−A)−1
I(η)ωA(η)

η√
k
−3
0 t

+k0
dη

= 1
2πi

∫
�A

(IA−A)−1
I(η)ωA(η)

η+k0

√
k−3

0 t
dη

= M̃A0
(−k0

√
k−3

0 t) − I

= 1

k0

√
k−3

0 t
M̃A0

1 + O(t−1 ln t), t → ∞

(5.88a)

and

1
2πi

1√
k−3

0 t

∫
�A

(IA−A)−1
I(η)ωA(η)(

η√
k
−3
0 t

+k0

)2 dη

=
√

k−3
0 t

2πi

∫
�A

(IA−A)−1
I(η)ωA(η)(

η+k0

√
k−3

0 t

)2 dη

= dM̃A0

dk

∣∣∣∣
k=−k0

√
k−3

0 t

= 1

k2
0

√
k−3

0 t
M̃A0

1 + O(t−1 ln t), t → ∞.

(5.88b)

Remark 5.12. Similarly for k near −k0. The scaling operator is

(NBf )(k) = f (−k0 + k√
k−3

0 t

) (5.89)

and

(NBδe−itθ )(k) = δ0
Bδ1

B,→ δ̃k̃−iν(k0)e
ik̃2
4 , as t → ∞, (5.90)

where

δ0
B = (

4t

k0
)−

iν(−k0)

2 eχ(−k0)e
− it

2k0 , (5.91a)

δ1
B = (−k)iν(k0)e− ik2

4

⎛
⎜⎝ −2k0

−2k0 + k√
k3t

⎞
⎟⎠

iν(k0)

e
χ(−k0+ k√

k
−3
0 t

)−χ(−k0)

e
− ik3

4η4k
−9/2
0 t1/2

. (5.91b)
0
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If

M̃B0
(k) = I− M̃B0

1

k
+ O(k−2), k → ∞, (5.92)

then

1
2πi

1√
k−3

0 t

∫
�B

(IB−B)−1
I(η)ωB(η)

η√
k
−3
0 t

−k0
dη

= 1
2πi

∫
�B

(IB−B)−1
I(η)ωA(η)

η−k0

√
k−3

0 t
dη

= M̃B0
(k0

√
k−3

0 t) − I

= − 1

k0

√
k−3

0 t
M̃B0

1 + O(t−1 ln t), t → ∞

(5.93a)

and

1
2πi

1√
k−3

0 t

∫
�B

(IB−B)−1
I(η)ωB(η)(

η√
k
−3
0 t

−k0

)2 dη

=
√

k−3
0 t

2πi

∫
�B

(IB−B)−1
I(η)ωB(η)(

η−k0

√
k−3

0 t

)2 dη

= dM̃B0

dk

∣∣∣∣
k=k0

√
k−3

0 t

= 1

k2
0

√
k−3

0 t
M̃B0

1 + O(t−1 ln t), t → ∞.

(5.93b)

5.7. Model Riemann–Hilbert problem

Consider the Riemann–Hilbert problem (5.85) for M̃A0
, we introduce a transformation 

(Fig. 7)

�̃A0
(k) = M̃A0

(k)�T (k), (5.94)

where

�T (k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kiν(k0)σ3e− ik2
4 σ̂3

(
1 0

r(k0)

1+|r(k0)|2 1

)
, k ∈ �e

1,

kiν(k0)σ3e− ik2
4 σ̂3

(
1 r(k0)

0 1

)
, k ∈ �e

3,

kiν(k0)σ3e− ik2
4 σ̂3

(
1 0

−r(k0) 1

)
, k ∈ �e

4,

kiν(k0)σ3e− ik2
4 σ̂3

(
1 − r(k0)

1+|r(k0)|2
0 1

)
, k ∈ �e

6,

kiν(k0)σ3, k ∈ �e ∪ �e.

(5.95)
2 5
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Fig. 7. The regions �e
j

, j = 1,2, . . . ,6.

Then, �̃A0
(k) satisfies the Riemann–Hilbert problem

⎧⎨
⎩ �̃A0

+ (k) = �̃A0

− (k)e− ik2
4 σ̂3 J̃ A0

� (k), k ∈ R,

�̃A0
(k) → kiν(k0)σ3, k → ∞,

(5.96)

where

J̃ A0

� (k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 r(k0)

r(k0) 1 + |r(k0)|2
)

, k > 0,

(
1 + |r(k0)|2 −r(k0)

−r(k0) 1

)
, k < 0,

(5.97)

the contour R oriented from the original to ∞ and −∞.
Hence, if we reorient the contour R from −∞ to ∞, we get the jump matrix

J̃ A0

� (k) =
(

1 r(k0)

r(k0) 1 + |r(k0)|2
)

, k ∈R. (5.98)

Let

M̃model(k) = �̃A0
(k)e− ik2

4 σ3, (5.99)

then we have the model Riemann–Hilbert problem

M̃model+ (k) = M̃model− (k)J̃ (k0), k ∈R, (5.100)

where

J̃ (k0) = J̃ A0

� (k) =
(

1 r(k0)

r(k0) 1 + |r(k0)|2
)

. (5.101)

So, we have

(
∂M̃model

+ ik
σ3M̃

model)(M̃model)−1 = − i [σ3, M̃
A0 ] + O(k−1), (5.102)
∂k 2 2
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since ( ∂M̃model

∂k
+ ik

2 σ3M̃
model)(M̃model)−1 is entire,

∂M̃model

∂k
+ ik

2
σ3M̃

model = βM̃model, (5.103)

here

β = − i

2
[σ3, M̃

A0 ] =
(

0 β12
β21 0

)
. (5.104)

Thus, we have

(M̃A0
)12 = iβ12, (M̃A0

)21 = −iβ21. (5.105)

Let us consider Imk > 0, denote M̃model(k) by M̃+(k), we have

∂M̃+
11

∂k
+ ik

2
M̃+

11 = β12M̃
+
21 (5.106a)

and

∂M̃+
21

∂k
− ik

2
M̃+

21 = β21M̃
+
11, (5.106b)

so

∂2M̃+
11

∂k2 = (−k2

4
− i

2
+ β12β21)M̃

+
11 (5.107)

Setting

M̃+
11 = g(e− 3iπ

4 k), (5.108)

we have the parabolic cylinder equation

∂2g

∂ξ2 + (
1

2
− ξ2

4
+ a)g = 0, (5.109)

where a = iβ12β21.
Then,

M̃+
11(k) = c1Da(e

− 3iπ
4 k) + c2Da(−e− 3iπ

4 k), (5.110)

where Da(z) denotes the parabolic cylinder function.
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As z → ∞, we have the asymptotic formula [26], P. 327,

Da(z) = zae− z2
4
(
1 + O(z−2)

)
, |argz| < 3π

4 ,

= zae− z2
4
(
1 + O(z−2)

)− √
2π

�(−a)
eaπiz−a−1e

z2
4
(
1 + O(z−2)

)
, π

4 < argz < 5π
4 ,

= zae− z2
4
(
1 + O(z−2)

)− √
2π

�(−a)
e−aπiz−a−1e

z2
4
(
1 + O(z−2)

)
, − 5π

4 < argz < −π
4

(5.111)

We have

a = iν(k0), (5.112)

so

ν(k0) = β12β21. (5.113)

Thus, for Imk > 0,

M̃+
11(k) = e− 3πν(k0)

4 Da(e
− 3πi

4 k),

M̃+
21(k) = 1

β12
e− 3πν(k0)

4 (∂kDa(e
− 3πi

4 k)) + ik
2 Da(e

− 3πi
4 k).

(5.114)

Similarly, for Imk < 0, we have

M̃−
11(k) = e

πν(k0)

4 Da(e
πi
4 k),

M̃−
21(k) = 1

β12
e

πν(k0)

4 (∂kDa(e
πi
4 k)) + ik

2 Da(e
πi
4 k).

(5.115)

Since

(M̃model− )−1M̃model+ =
(

1 r(k0)

r(k0) 1 + |r(k0)|2
)

, (5.116)

we have

r(k0) = M̃−
11M̃

+
21 − M̃−

21M̃
+
11

= 1
β12

e− πν(k0)

2 Wr(Da(e
iπ
4 k),Da(e

− 3πi
4 k))

=
√

2πe
iπ
4 e

− πν(k0)

2

β12�(−a)
,

(5.117)

where Wr(f, g) denotes the Wronskian of f, g and �(·) is the Euler Gamma function.
Hence, we have

β12 =
√

2πe
iπ
4 e− πν(k0)

2

r(k0)�(−iν(k0))
, (5.118)

and
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β21 = ν(k0)

β12
= −

√
2πe− iπ

4 e− πν(k0)

2

r(k0)�(iν(k0))
, (5.119)

since |�(iν(k0))|2 = π

ν(k0)sinh(πν(k0))
.

5.8. The asymptotic behavior of the solution u(x, t)

Remind as t → ∞, the representation (5.53) of the solution u(y, t) and the computation re-
sults (5.81) and (5.93), we have

iu(y, t) =
(
I+ 1

k0

√
k−3

0 t
M̃A0

1 − 1

k0

√
k−3

0 t
M̃B0

1 + O
(
C(k0)

ln t
t

))
11

·
(

(δ0
A)2 1

k2
0

√
k−3

0 t
M̃A0

1 + (δ0
B)2 1

k2
0

√
k−3

0 t
M̃B0

1 + O
(
C(k0)

ln t
t

))
21

−
(

(δ0
A)2 1

k0

√
k−3

0 t
M̃A0

1 − (δ0
B)2 1

k0

√
k−3

0 t
M̃B0

1 + O
(
C(k0)

ln t
t

))
21

·
(

1

k2
0

√
k−3

0 t
M̃A0

1 + 1

k2
0

√
k−3

0 t
M̃B0

1 + O
(
C(k0)

ln t
t

))
11

,

(5.120a)

and

ic+(y, t) =
(
I+ 1

k0

√
k−3

0 t
M̃A0

1 − 1

k0

√
k−3

0 t
M̃B0

1 + O
(
C(k0)

ln t
t

))
22

·
(

1

k2
0

√
k−3

0 t
M̃A0

1 + 1

k2
0

√
k−3

0 t
M̃B0

1 + O
(
C(k0)

ln t
t

))
11

−
(

(δ0
A)−2 1

k0

√
k−3

0 t
M̃A0

1 − (δ0
B)−2 1

k0

√
k−3

0 t
M̃B0

1 + O
(
C(k0)

ln t
t

))
12

·
(

(δ0
A)2 1

k2
0

√
k−3

0 t
M̃A0

1 + (δ0
B)2 1

k2
0

√
k−3

0 t
M̃B0

1 + O
(
C(k0)

ln t
t

))
21

,

− δ1.

(5.120b)

Notice that we have

δ0
B = δ0

A, (5.121)

as χ(−k0) = −χ(k0) = χ(k0).
And from the symmetry conditions (3.2), we get

M̃A0 = −M̃B0
. (5.122)
1 1
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Hence, a direct computation shows that,

u(x, t) =
√

−4ν(κ0)

κ0t
sin { t

κ0
+ ν(κ0) ln (

4t

κ0
) + φ(κ0)} + O

(
ln (t)

t

)
, as t → ∞, (5.123)

where

φ(κ0) = π

4
− arg r(κ0) − arg�(iν(κ0)) + 1

π
(

κ0∫
−∞

+
∞∫

κ0

) ln |κ0 − s|d ln(1 + |r(s)|2) + 2κ0�,

(5.124)

here

� = 1

π

∞∫
κ0

ln (1 + |r(s)|2)
s2 ds, (5.125)

and κ0 is defined as (1.3).
This finishes the proof of Theorem 1.3.
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Appendix A. Proof of the Proposition 5.11

Proof. Write

R

(
k√
k−3

0 t
+ k0

)
(δ1

A(k))2 − R(k0±)k−2iνei k2
2

= ei
β
2 k2

ei
β
2 k2

R

(
k√
k−3

0 t
+ k0

)
k−2iνe

i(1−2β) k2
2 (1− k

(1−2β)η4
√

k
−9
0 t

)

×
⎛
⎝ 2k0

2k0+ k√
k
−3
0 t

⎞
⎠

−2iν

e
2

(
χ( k√

k
−3
0 t

+k0)−χ(k0)

)
− ei

β
2 k2

ei
β
2 k2

R(k0±)k−2iνei(1−2β) k2
2

(A.1)

and divide it into six terms
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R

⎛
⎜⎝ k√

k−3
0 t

+ k0

⎞
⎟⎠ (δ1

A(k))2 − R(k0±)k−2iνei k2
2 = eiβ k2

2 (I + II + III + IV ) (A.2)

where

I = ei(1−β) k2
2 k−2iν[R( k√

k−3
0 t

+ k0) − R(k0±)]

II = eiβ k2
2 k−2iνR( k√

k−3
0 t

+ k0)

⎛
⎝e

i(1−2β) k2
2 (1− k

(1−2β)η4
√

k
−9
0 t

)

− ei(1−2β) k2
2

⎞
⎠

III = eiβ k2
2 k−2iνR( k√

k−3
0 t

+ k0)e
i(1−2β) k2

2 (1− k

(1−2β)η4
√

k
−9
0 t

)

⎛
⎜⎝
⎛
⎝ 2k0

2k0+ k√
k
−3
0 t

⎞
⎠

−2iν

− 1

⎞
⎟⎠

IV = eiβ k2
2 k−2iνR( k√

k−3
0 t

+ k0)e
i(1−2β) k2

2 (1− k

(1−2β)η4
√

k
−9
0 t

)

⎛
⎝ 2k0

2k0+ k√
k
−3
0 t

⎞
⎠

−2iν

⎛
⎜⎝e

2

(
χ( k√

k
−3
0 t

+k0)−χ(k0)

)
− 1

⎞
⎟⎠

Note that |eiβ k2
2 | = e− βλ2k2

0
2 and |k−2iν | = e2ν arg k ≤ C, where C is a constant which is inde-

pendent of k, for k = k0λe
iπ
4 , −ε < λ < ε. The terms I, II, III and IV can be estimated as 

follows,

|I | ≤ |k−2iν | · |eiβ k2
2 | · | k√

k−3
0 t

| · ||∂kR(k)||L∞

≤ C√
t
,

|II | ≤ |k−2iν | · |eiβ k2
2 | · ||R||L∞ ·

∣∣∣∣∣∣ d
ds

e
i(1−2β) k2

2 (1−s k

(1−2β)η4
√

k
−9
0 t

)

∣∣∣∣∣∣ , 0 < s < 1

≤ C√
t

To estimate III , we write

|III | ≤ |k−2iν | · |eiβ k2
2 | · ||R||L∞ · |e

i(1−2β) k2
2 (1− k

(1−2β)η4
√

k
−9
0 t

)

| · | ∫ 1+
√

k0
4t

k

1 2iνξ2iν−1dξ |
≤ C√

t
,

as |ξ2iν−1| ≤ c for ξ = 1 + s

√
k0 k, 0 ≤ s ≤ 1.
4t
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The estimate for IV is as follows,

|IV | ≤ C sup0≤s≤1 |e
2

(
χ( k√

k
−3
0 t

+k0)−χ(k0)

)
| ·
∣∣∣∣∣2eiβ k2

2 (χ( k√
k−3

0 t
+ k0) − χ(k0))

∣∣∣∣∣
now let us show how to control 

∣∣∣∣∣eiβ k2
2 (χ( k√

k−3
0 t

+ k0) − χ(k0))

∣∣∣∣∣.
∣∣∣∣∣eiβ k2

2 (χ( k√
k−3

0 t
+ k0) − χ(k0))

∣∣∣∣∣
=
∣∣∣∣∣∣ e

iβ k2
2

2π

∫ −k0
−∞ ln

k0−s+ k√
k
−3
0 t

k0−s
d ln (1 + |r(s)|2) + ∫∞

k0
ln

s−k0− k√
k
−3
0 t

s−k0
d ln (1 + |r(s)|2)

∣∣∣∣∣∣
=
∣∣∣∣∣ eiβ k2

2

2π

∫ −1
−∞ ln (1 +

√
k0
t

k

1−s
)d ln (1 + |r(sk0)|2) + ∫∞

1 ln (1 −
√

k0
t

k

s−1 )d ln (1 + |r(sk0)|2)
∣∣∣∣∣

= |IV1 + IV2|

where

IV1 = eiβ k2
2

2π

−1∫
−∞

(g(s) − g(1)) ln (1 +
√

k0
t
k

1 − s
)ds +

∞∫
1

(g(s) − g(1)) ln (1 −
√

k0
t
k

s − 1
)ds

IV2 = eiβ k2
2

2π

−1∫
−∞

g(1) ln (1 +
√

k0
t
k

1 − s
)ds +

∞∫
1

g(1) ln (1 −
√

k0
t
k

s − 1
)ds

here g(s) = ∂s ln (1 + |r(sk0)|2).
Then, using the Lipschitz condition | ln (1 + a)| ≤ |a|, we have

|IV1| ≤
∣∣∣∣∣ eiβ k2

2

2π

∣∣∣∣∣ · ∫ −1
−∞
√

k0
t
|k| · | g(s)−g(1)

s−1 |ds +
∣∣∣∣∣ eiβ k2

2

2π

∣∣∣∣∣ · ∫∞
1

√
k0
t
|k| · | g(s)−g(1)

s−1 |ds

≤ Ct−1/2.

Notice that g(s) is rapidly decay as s → ∞, so the above integral is well-defined. And notice 

|keiβ k2
2 | and ∂sg are bounded.

|IV2| ≤
∣∣∣∣∣ eiβ k2

2

2π

∣∣∣∣∣ ·
∣∣∣∫∞

2 ln (1 − k0k
2

s2t
)ds

∣∣∣
=
∣∣∣∣∣ eiβ k2

2

2π

∣∣∣∣∣ ·
∣∣∣(∫ L

2 + ∫∞
L

)ln (1 − k0k
2

s2t
)ds

∣∣∣ ,
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where L is a big-enough positive constant. Since the above infinity integral is well-defined, the 
second integral is very small. And integral by parts shows that the first integral becomes

L∫
2

ln (1 − k0k
2

s2t
)ds =

(
(s −

√
k0

t
k) ln (s −

√
k0

t
k) + (s +

√
k0

t
k) ln (s +

√
k0

t
k) − 2s ln s

)∣∣∣∣∣
L

2

so we have

|IV2| ≤ C
log t√

t
.

Then, we can get the estimate of (5.80). This finishes the proof of the Proposition 5.11. �
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