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Abstract

We study the non-existence, existence and multiplicity of positive solutions to the following nonlinear 
Kirchhoff equation:⎧⎨⎩−M

(∫
RN |∇u|2 dx

)
�u + μV (x)u = Q(x) |u|p−2 u + λf (x)u in RN,

u ∈ H 1
(
RN

)
,

where N ≥ 3, 2 < p < 2∗ := 2N
N−2 , M (t) = at + b (a, b > 0), the potential V is a nonnegative func-

tion in RN and the weight function Q ∈ L∞ (
RN

)
with changes sign in � := {V = 0}. We mainly 

prove the existence of at least two positive solutions in the cases that (i) 2 < p < min
{
4,2∗} and 

0 < λ <
[
1 − 2 [(4 − p)/4]2/p

]
λ1 (f�); (ii) p ≥ 4, λ ≥ λ1 (f�) and near λ1 (f�) for μ > 0 sufficiently 

large, where λ1 (f�) is the first eigenvalue of −� in H 1
0 (�) with weight function f� := f |

�
, whose 

corresponding positive principal eigenfunction is denoted by φ1. Furthermore, we also investigated the 
non-existence and existence of positive solutions if a, λ belongs to different intervals.
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1. Introduction

In this paper we are concerned the following nonlinear Kirchhoff equation:{−M
(∫

RN |∇u|2 dx
)
�u + μV (x)u = g(x,u) in RN,

u ∈ H 1
(
RN

)
,

(1.1)

where N ≥ 3, g ∈ RN ×R → R being continuous, M(s) = as + b (a, b > 0) and the parameter 
μ > 0. We assume that the potential function V satisfies the following conditions:

(V1) V is a nonnegative continuous function on RN ;
(V2) there exists c > 0 such that the set {V < c} := {

x ∈ RN : V (x) < c
}

is nonempty and has 
finite Lebesgue measure;

(V3) � = int
{
x ∈RN : V (x) = 0

}
is nonempty bounded domain and has a smooth boundary 

with � = {
x ∈RN : V (x) = 0

}
.

The hypotheses (V1) − (V3) imply that μV represents a potential well whose depth is con-
trolled by μ. μV is called a steep potential well if μ is sufficiently large and one expects to find 
solutions which localize near its bottom �. This problem has found much interest after being 
first introduced by Bartsch and Wang [9] in the study of the existence of positive solutions for 
nonlinear Schrödinger equations and has been attracting much attention, see [3,7,8,33,38] and 
the references therein.

Kirchhoff type equations, of the form similar to Equation (1.1), originate from physics. In-
deed, if we set V (x) ≡ 0 and replace RN by a bounded domain � ⊂RN in Equation (1.1), then 
it becomes the following Dirichlet problem of Kirchhoff type:{− (a ∫

�
|∇u|2dx + b

)
�u = g(x,u) in �,

u = 0 on ∂�,
(1.2)

which is analogous to the stationary case of equations that arise in the study of string or mem-
brane vibrations, namely,

utt −
⎛⎝a

∫
�

|∇u|2dx + b

⎞⎠�u = g(x,u), (1.3)

where u denotes the displacement, g is the external force and b is the initial tension while a is 
related to the intrinsic properties of the string (such as Young’s modulus). Equation (1.3) was first 
proposed by Kirchhoff [23] in 1883 to describe the transversal oscillations of a stretched string, 
particularly, taking into account the subsequent change in string length caused by oscillations. It 
is notable that Equation (1.3) is often referred to as being nonlocal because of the presence of the 
integral over the domain �.
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After the pioneering work by Pohozaev [28] and Lions [24], the qualitative analysis of non-
trivial solutions for the nonlinear Kirchhoff type equations, similar to Equation (1.1), has begun 
to receive much attention in recent years. We refer the reader to [2,12,15,16,18–22,26,29–32,34,
37,39] and the references therein.

Let us briefly comment on some of the things that are relevant to our work. In [30], the authors 
introduced the steep potential well V to the Kirchhoff type equations. When the potential V
satisfies the hypotheses (V1) − (V3), the following results were obtained.
(i) N ≥ 3: if 0 < a < a∗ and μ > 0 sufficiently large, then Equation (1.1) has at least one positive 
solution, when g(x, u) is asymptotically linear at infinity on u and bλ

(1)
1 < 1;

(ii) N = 3: if 0 < a < λ
(3)
1 and μ > 0 sufficiently large, then Equation (1.1) has at least one 

positive solution, when g(x, u) is asymptotically 3-linear at infinity on u;
(iii) N = 3: for any a > 0 and μ > 0 sufficiently large, Equation (1.1) has at least one positive 
solution, when g(x, u) is asymptotically 4-linear at infinity on u,
where

λ
(k)
1 = inf

⎧⎨⎩(

∫
�

|∇u|2dx)
k+1

2 : u ∈ H 1
0 (�),

∫
�

q|u|k+1dx = 1

⎫⎬⎭
and q is a bounded function on �̄ with q+ 
≡ 0. After that, Xie and Ma [39] obtained the existence 
and concentration of positive solutions for Equation (1.1) with N = 3 when potential V satisfies 
conditions (V1) − (V3) and nonlinearity g satisfies the following conditions:

(G1) there exists ρ > 4 such that 0 < ρG(x, u) ≤ g(x, u)u for u > 0, where G(x, u) =∫ u

0 g(x, s)ds;

(G2)
G(x,u)

u3 is increasing for u > 0.

In our recent papers [29,32], we concluded that when N ≥ 3 and g(x, u) is superlinear and 
subcritical on u, the geometric structure of the functional J related to Equation (1.1) is known to 
have a global minimum and a mountain pass, owing to the fourth power of the nonlocal term. By 
using the standard variational methods, two different positive solutions can be found, since some 
embedding inequalities are proved with the help of the fact of 2∗ := 2N

N−2 ≤ 4.
In simple terms, when g(x, u) = Q(x)|u|p−2u and Q ∈ L∞ (

RN
)

is sign-changing, the cur-
rent progress through the above literature is as follows:

(I ) N = 3 and 4 < p < 6: for any a > 0 and μ > 0 sufficiently large, Equation (1.1) has at 
least one positive solution;

(II ) N = 3 and 2 < p ≤ 4: for a > 0 small enough and μ > 0 sufficiently large, Equation (1.1)
has at least one positive solution;

(III ) N ≥ 4 and 2 < p < 2∗: for a > 0 small enough and μ > 0 sufficiently large, Equation 
(1.1) has at least two positive solution.

Motivated by these findings, we now extend the analysis to the Kirchhoff type equation with 
combination of a superlinear term and a linear term, that is g(x, u) = Q(x)|u|p−2u + λf (x)u. 
Our intension here is to illustrate the difference in the solution behavior which arises from the 
consideration of the nonlocal and eigenvalue problem effects. The problem we consider is thus
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{−M
(∫

RN |∇u|2 dx
)
�u + μV (x)u = Q(x) |u|p−2 u + λf (x)u in RN,

u ∈ H 1
(
RN

)
,

(Eμ,λ)

where N ≥ 3, 2 < p < 2∗ := 2N
N−2 , M (t) = at + b (a, b > 0) and the parameters μ, λ > 0. We 

are interested in the case the weight functions f and Q satisfying {f > 0} ∩ � and {Q > 0} ∩ �

has the positive Lebesgue measures which is why we call indefinite nonlinear Kirchhoff equation 
in the title.

To go further, let us give some notations first. For the sake of simplicity, we always assume 
that b = 1 in Equation (Eμ,λ). Let D1,2

(
RN

)
be the completing of C∞

0

(
RN

)
with respect to the 

norm ‖u‖2
D1,2 = ∫

RN |∇u|2 dx. Denote by Sp, Sp(�) and S the best constants for the embeddings 
of H 1(RN) in Lp(RN), H 1

0 (�) in Lp(�) and D1,2(RN) in L2∗
(RN), respectively. We denote a 

strong convergence by “→” and a weak convergence by “⇀”.
Now, we give the variational setting for Equation 

(
Eμ,λ

)
. Let

X =

⎧⎪⎨⎪⎩u ∈ H 1
(
RN

)
:
∫
RN

V u2dx < ∞

⎫⎪⎬⎪⎭
be equipped with the inner product and norm

〈u,v〉 =
∫
RN

∇u∇v + V uvdx, ‖u‖ = 〈u,u〉1/2 .

For μ > 0, we also need the following inner product and norm

〈u,v〉μ =
∫
RN

∇u∇v + μV uvdx, ‖u‖μ = 〈u,u〉1/2
μ .

It is clear that ‖·‖ ≤ ‖·‖μ for μ ≥ 1 and set Xμ = (
X,‖·‖μ

)
.

Note that u ∈ Xμ is a solution of Equation (Eμ,λ) if for any v ∈ Xμ there holds

M

⎛⎜⎝ ∫
RN

|∇u|2 dx

⎞⎟⎠ ∫
RN

∇u∇v + μ

∫
RN

V (x)uv =
∫
RN

(
Q(x) |u|p−2 uv + λf (x)uv

)
dx.

And u is called a positive solution if u is a solution and u > 0 in RN .
It is well known that Equation 

(
Eμ,λ

)
is variational, and its solutions correspond to the critical 

point of the energy functional Jμ,λ : Xμ → R

Jμ,λ (u) = a

4
‖u‖4

D1,2 + 1

2
‖u‖2

μ − 1

p

∫
N

Q |u|p dx − λ

2

∫
N

f u2dx,
R R
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where ‖u‖μ = [∫
RN

(|∇u|2 + μV u2
)
dx
]1/2

is the standard norm in Xμ and Xμ is a subspace of 
H 1

(
RN

)
(see below). Thus, if u is a critical point of Jμ,λ on Xμ, then u is a solution of Equation (

Eμ,λ

)
.

Assume the following hypotheses (D):

(D1) f ∈ LN/2
(
RN

)
which f + := max {f,0} 
≡ 0 in �;

(D2) Q ∈ L∞ (
RN

)
which Q+ := max {Q,0} 
≡ 0 in �.

Remark 1.1. Since {f > 0} ∩ � has a positive Lebesgue measure, we can assume that λ1 (f�)

denote the positive principal eigenvalue of the problem

−�u(x) = λf�(x)u(x) for x ∈ �; u(x) = 0 for x ∈ ∂�, (1.4)

where f� is a restriction of f on �. Clearly, λ1 (f�) has a corresponding positive principal 
eigenfunction φ1 with 

∫
�

f�φ2
1dx = 1 and 

∫
�

|∇φ1|2 dx = λ1 (f�).

We now summarize our main results as follows.

Theorem 1.1. Suppose that N = 3, 4 < p < 6 and conditions (V1)− (V3) and (D1)− (D2) hold. 
Then for each a > 0 and 0 < λ < λ1 (f�), Equation 

(
Eμ,λ

)
has a positive solution u−

μ satisfying 
Jμ,λ

(
u−

μ

)
> 0 for μ > 0 sufficiently large.

Theorem 1.2. Suppose that N = 3, 4 < p < 6, conditions (V1)− (V3) and (D1)− (D2) hold and ∫
�

Qφ
p

1 dx < 0. Then for each a > 0 there exists δ0 such that for every λ1 (f�) ≤ λ < λ1 (f�) +
δ0, Equation 

(
Eμ,λ

)
has at least two positive solutions u−

μ and u+
μ satisfying Jμ,λ

(
u+

μ

)
< 0 <

Jμ,λ

(
u−

μ

)
for μ > 0 sufficiently large.

To consider the case N = 3 and p = 4, we need the following maximum problem


0 := sup
u∈X

∫
R3 Q|u|4dx

‖u‖4
D1,2

> 0.

Then we have the following results.

Theorem 1.3. Suppose that N = 3, p = 4 and conditions (V1) − (V3) and (D1) − (D2) hold. 
Then we have the following results.
(i) For each 0 < a < 
0 and 0 < λ < λ1 (f�), Equation 

(
Eμ,λ

)
has a positive solution u−

μ

satisfying Jμ,λ

(
u−

μ

)
> 0 for μ > 0 sufficiently large.

(ii) If 
0 < ∞, then for each a ≥ 
0 and 0 < λ < λ1 (f�), Equation 
(
Eμ,λ

)
does not admit 

nontrivial solution for μ > 0 sufficiently large.
(iii) If 
0 < ∞, then for each a > 
0 and λ ≥ λ1 (f�), Equation 

(
Eμ,λ

)
has a positive solution 

u+
μ satisfying Jμ,λ

(
u+

μ

)
< 0 for μ > 0 sufficiently large.

(iv) If 
0 < ∞ and 
0 is not attained, then for a = 
0 and λ ≥ λ1 (f�), Equation 
(
Eμ,λ

)
has a 

positive solution u+
μ satisfying Jμ,λ

(
u+

μ

)
< 0 for μ > 0 sufficiently large.
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Theorem 1.4. Suppose that N = 3, p = 4 and conditions (V1) − (V3) and (D1) − (D2) hold. 
Then for each λ−2

1 (f�)
∫
�

Qφ4
1dx < a < 
0 there exists δ0 such that for every λ1 (f�) ≤ λ <

λ1 (f�) + δ0, Equation 
(
Eμ,λ

)
has two positive solutions u−

μ and u+
μ satisfying Jμ,λ

(
u+

μ

)
< 0 <

Jμ,λ

(
u−

μ

)
for μ > 0 sufficiently large.

Remark 1.2. When 4 < p < 6, by the hypothesis of Theorem 1.2, in order to obtain the multi-
plicity of the positive solution for Equation 

(
Eμ,λ

)
, the weight function Q must be sign-changing 

in �, but when p = 4, the weight function Q can be positive in � from the hypothesis of Theo-
rem 1.4.

To consider the case 2 < p < min {4,2∗}, we first show that the non-existence of solutions.

Theorem 1.5. Suppose that N ≥ 4, 2 < p < 2∗ and conditions (V1) − (V3) and (D1) − (D2)

hold. Then for each 0 < λ < λ1 (f�) there exists

0 < Aλ <
1

2

(
(4 − p)λ1 (f�)

p (λ1 (f�) − λ)

)(4−p)/(p−2)
⎛⎝‖Q‖∞ |{V < c}| 2∗−p

2∗

Sp

⎞⎠2/(p−2)

such that for every a > Aλ, Equation 
(
Eμ,λ

)
does not admit nontrivial solution for μ > 0 suffi-

ciently large.

To prove the existence of positive solution, we need the following conditions:

(D3) There exist two numbers c∗, R∗ > 0 such that

|x|p−2 Q(x) ≤ c∗ [V (x)]4−p for all |x| > R∗.

(D4) |{V < c}|(6−p)/6 ≤ SpQ�,min

S
p
p (�)‖Q‖∞

, where Q�,min = infx∈� Q (x) > 0.

Then we have the following results.

Theorem 1.6. Suppose that N = 3, 2 < p < 4 and conditions (V1)− (V3) and (D1)− (D3) hold. 
Then we have the following results.
(i) There exists a0 > 0 such that for every 0 < a < a0 and 0 < λ < λ1 (f�), Equation 

(
Eμ,λ

)
has 

a positive solution u+
μ satisfying Jμ,λ

(
u+

μ

)
< 0 for μ > 0 sufficiently large.

(ii) For each λ ≥ λ1 (f�) and a > 0, Equation 
(
Eμ,λ

)
has a positive solution u+

μ satisfying 
Jμ,λ

(
u+

μ

)
< 0 for μ > 0 sufficiently large.

Theorem 1.7. Suppose that N ≥ 4, 2 < p < 2∗ and conditions (V1) − (V3) and (D1) − (D2)

hold. Then we have the following results.
(i) There exists a0 > 0 such that for every 0 < a < a0 and 0 < λ < λ1 (f�), Equation 

(
Eμ,λ

)
has 

a positive solution u+
μ satisfying Jμ,λ

(
u+

μ

)
< 0 for μ > 0 sufficiently large.

(ii) For each a > 0 and λ ≥ λ1 (f�), Equation 
(
Eμ,λ

)
has a positive solution u+

μ satisfying 
Jμ,λ

(
u+

μ

)
< 0 for μ > 0 sufficiently large.
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Fig. 1. Bifurcation diagram for Theorems 1.1 and 1.2.

Theorem 1.8. Suppose that N ≥ 3, 2 < p < min {4,2∗} and conditions (V1) − (V3) , (D1) −
(D2) and (D4) hold. Then there exists a0 > 0 such that for every 0 < a < a0 and 0 < λ <[

1 − 2
(

4−p
4

)2/p
]

λ1 (f�), Equation 
(
Eμ,λ

)
has a positive solution u−

μ satisfying Jμ,λ

(
u−

μ

)
> 0

for μ > 0 sufficiently large.

Combining the Theorems 1.6, 1.8 results, we have the following multiplicity result.

Corollary 1.9. Suppose that N = 3, 2 < p < 4 and conditions (V1)−(V3) and (D1)−(D4) hold. 

Then there exists a0 > 0 such that for every 0 < a < a0 and 0 < λ <
[

1 − 2
(

4−p
4

)2/p
]

λ1 (f�), 

Equation 
(
Eμ,λ

)
has two positive solutions u−

μ and u+
μ satisfying Jμ,λ

(
u+

μ

)
< 0 < Jμ,λ

(
u−

μ

)
for 

μ > 0 sufficiently large.

Combining the Theorems 1.7, 1.8 results, we have the following multiplicity result.

Corollary 1.10. Suppose that N ≥ 4, 2 < p < 2∗ and conditions (V1) − (V3) , (D1) − (D2)

and (D4) hold. Then there exists a0 > 0 such that for every 0 < a < a0 and 0 < λ <[
1 − 2

(
4−p

4

)2/p
]

λ1 (f�), Equation 
(
Eμ,λ

)
has two positive solutions u−

μ and u+
μ satisfying 

Jμ,λ

(
u+

μ

)
< 0 < Jμ,λ

(
u−

μ

)
for μ > 0 sufficiently large.

In order to make the above theoretical results more intuitive, the bifurcation diagrams of 
positive solutions concerning with the ranges of constant p, a, λ is shown.

(I ) 4 < p < 6.
(II ) p = 4.
(III ) 2 < p < min{4, 2∗}.
We illustrate the finding of Theorems 1.1-1.8 graphically in Figs. 1-3 with different values 

of a, p and λ. These figures depict how the number of positive solutions of u changes with the 
parameter λ under certain conditions. Subgraphs show the bifurcation diagram of the positive 
solution of u when a is in different ranges, respectively.

Remark 1.3. In Fig. 3 (a), the part marked with a question mark is not covered in this article, it 
is indicated by a dotted line that the exact number of positive solutions is unknown.
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Fig. 2. Bifurcation diagrams for Theorems 1.3 and 1.4, where arel := max {0, λ−2
1 (f�)

∫
� Qφ4dx}.

Fig. 3. Bifurcation diagrams for Theorems 1.7 (i) and 1.8 (also for Theorems 1.6 and 1.8) on (a) and for Theorems 1.5

and 1.7 (ii) on (b), where λrel :=
[

1 − 2
(

4−p
4

)2/p
]

λ1 (f�).

To study the main Theorems, we shall establish their result by considering minimization on 
two distinct components of the Nehari manifold corresponding to Equation 

(
Eμ,λ

)
. We are like-

wise interested in the conditions of M and g that subsequently gives rise to the non-existence 
and existence of positive solutions. Our focus here, however, is on a given set of M and g so 
that it is possible to examine in detail the number of solutions admitted subject to the varia-
tions of parameters imbedded in these functions. A similar analysis has been carried out on other 
elliptic equations with interesting results. Amann and Lopez-Gomez [1], Binding et al. [4,5], 
and Brown and Zhang [10], for example, studied the following semilinear boundary value prob-
lem: {

−�u = λf� (x)u + b(x) |u|p−2 u in �,

u = 0 on ∂�,
(1.5)

where � is a bounded domain with smooth boundary in RN, λ > 0 is a real parameter, 
2 < p < 2∗ and f�, b : � → R are smooth functions which change sign in �. In [4,5] by 
using variational methods, in Brown and Zhang [10] by using Nehari manifold and fibrering 
maps, and in Amann and Lopez-Gomez [1] by using global bifurcation theory. The existence 
and multiplicity results can be summarized as follows. It is known that

(A) there exists a positive solution to Equation (1.5) whenever 0 < λ < λ1 (f�);
(B) if 

∫
�

bφ
p

1 dx < 0, there exists δ0 > 0 such that Equation (1.5) has at least two positive solu-
tions whenever λ1 (f�) < λ < λ1 (f�) + δ0.
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Results (A) and (B) can be understood in term of global bifurcation theory as the sign of ∫
�

bφ
p
1 dx determines the direction of bifurcation from the branch of zero solutions at the bi-

furcation point at λ = λ1 (f�) so that bifurcation is to the left when 
∫
�

bφ
p

1 dx > 0 and to the 
right when 

∫
�

bφ
p
1 dx < 0; the corresponding bifurcation diagrams are shown in Fig. 1 of [10]. 

Furthermore, some who’s been done for this type of problem in RN . We are only aware of the 
works Chabrowski and Costa [11] and Costa and Tehrani [13] which also studied the existence 
and multiplicity of positive solutions for Schrödinger type equations in RN

−�pu = λf̂ (x)u + Q̃(x) |u|p−2 u in RN, (1.6)

where λ is a real parameter and p < q < Np/(N − p) and 1 < p < N . The functions f̃ and 
Q̃ denote sign-changing potentials such that f̃ ∈ LN/p(RN) ∩ L∞(RN) and Q̃ ∈ L∞(RN). Let 
λ1
(
f̃
)

denote the lowest positive eigenvalue of −�p and let ϕ1 > 0 be the associated eigen-
function. When p = 2, under a slightly more general assumption on the nonlinearity appearing 
on the right-hand side of (1.6), some results are obtained in [13] by using the Mountain-Pass 
Theorem and variational methods. However, in order to apply their result to Equation (1.6) they 
needed a “thickness” condition on the set �o = {

x : Q̃ (x) = 0
}
. [11] by using Nehari manifold 

and fibrering maps which under a limits condition lim|x|→∞ Q̃ (x) = Q̃∞ < 0. Their main re-
sult is almost the same as in results (A) and (B) above. However, the principal eigenvalue and 
eigenfunction are replaced by the problem −�u(x) = λf̃ (x)u(x) for x ∈ RN .

The approach to Equation 
(
Eμ,λ

)
has been inspired by the papers of [10,11] without any 

condition on �o or lim|x|→∞ Q (x) = Q∞ < 0. Moreover, since Equation 
(
Eμ,λ

)
is on RN , its 

variational setting is characterized by a lack of compactness. To overcome this difficulty we apply 
a simplified version of the steep well method of [9] and concentration compactness principle of 
[25]. Furthermore, the first eigenvalue of problem −�u +μV (x)u = λf (x)u in RN is less than 
λ1 (f�), which indicates that the original method at [10,11] cannot be directly applied, thus we 
provide an approximation estimate of eigenvalue to prove our main results.

The plan of the paper is as follows. In Section 2, we discuss the Nehari manifold and examine 
carefully the connection between the Nehari manifold and the fibrering maps. In Section 3, we 
establish the non-emptiness of submanifolds and the proofs of the main theorems are given in the 
remaining sections. In section 4, we discuss the Nehari manifold when 4 < p < 6. In particular, 
we prove that Theorems 1.1, 1.2. In Section 5, we discuss the case when p = 4 and prove that 
Theorems 1.3, 1.4. In section 6, we discuss the case when p < 4 and prove that Theorems 1.6, 
1.7 and 1.8.

2. Preliminaries

It follows from conditions (V1) and (V2) and similar to the argument in [30], one has

∫
RN

(|∇u|2 + u2)dx ≤
(

1 + S−2 |{V < c}| 2
N

)
‖u‖2

μ

for all μ ≥ μ0 := S2

c
|{V < c}|− 2

N , which implies that the imbedding Xμ ↪→ H 1(RN) is contin-
uous. Moreover, for any r ∈ [2, 2∗], there holds
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∫
RN

|u|r dx ≤ S−r |{V < c}| 2∗−r
2∗ ‖u‖r

μ for μ ≥ μ0. (2.1)

Because the energy functional Jμ,λ is not bounded below on Xμ, it is useful to consider the 
functional on the Nehari manifold (see [27])

Nμ,λ =
{
u ∈ Xμ \ {0} :

〈
J ′

μ,λ (u) ,u
〉
= 0

}
.

Thus, u ∈ Nμ,λ if and only if

a ‖u‖4
D1,2 + ‖u‖2

μ =
∫
RN

Q |u|p dx + λ

∫
RN

f u2dx.

Note that Nμ,λ contains every nonzero solution of Equation 
(
Eμ,λ

)
. It is useful to understand 

Nμ,λ in terms of the stationary points of mappings of the form hu(t) = Jμ,λ(tu)(t > 0). Such a 
map is known as the fibrering map. It was introduced by Drábek and Pohozaev [14], and further 
discussed by Brown and Zhang [10]. It is clear that, if u is a local minimizer of Jμ,λ, then hu has 
a local minimum at t = 1. Thus, tu ∈ Nμ,λ if and only if h′

u(t) = 0 for u ∈ X \ {0}. Thus points 
in Nμ,λ correspond to stationary points of the maps hu and so it is natural to divide Nμ,λ into 
three subsets N+

μ,λ, N−
μ,λ and N0

μ,λ corresponding to local minima, local maxima and points of 
inflexion of fibrering maps. We have

h′
u(t) = at3 ‖u‖4

D1,2 + t

⎛⎜⎝‖u‖2
μ − λ

∫
RN

f u2dx

⎞⎟⎠− tp−1
∫
RN

Q |u|p dx

and

h′′
u(t) = 3at2 ‖u‖4

D1,2 +
⎛⎜⎝‖u‖2

μ − λ

∫
RN

f u2dx

⎞⎟⎠− (p − 1) tp−2
∫
RN

Q |u|p dx.

Hence if we define

N+
μ,λ = {

u ∈ Nμ,λ : h′′
u(1) > 0

} ;
N0

μ,λ = {
u ∈ Nμ,λ : h′′

u(1) = 0
} ;

N−
μ,λ = {

u ∈ Nμ,λ : h′′
u(1) < 0

}
,

which indicates that for u ∈ Nμ,λ, we have h′
u(1) = 0 and u ∈ N+

μ,λ, N
0
μ,λ, N

−
μ,λ if h′′

u(1) >
0, h′′

u(1) = 0, h′′
u(1) < 0, respectively. Note that for all u ∈ Nμ,λ,
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h′′
u(1) = − (p − 2)

⎛⎜⎝‖u‖2
μ − λ

∫
RN

f u2dx

⎞⎟⎠− a (p − 4)‖u‖4
D1,2

= 2a ‖u‖4
D1,2 − (p − 2)

∫
RN

Q |u|p dx

= −2

⎛⎜⎝‖u‖2
μ − λ

∫
RN

f u2dx

⎞⎟⎠− (p − 4)

∫
RN

Q |u|p dx. (2.2)

Now, we define


+
μ =

⎧⎪⎨⎪⎩u ∈ X : ‖u‖μ = 1,‖u‖2
μ − λ

∫
RN

f u2dx > 0

⎫⎪⎬⎪⎭
and 
−

μ and 
0
μ similarly by replacing > by < and = respectively. We also define

�+
μ (p) = {

u ∈ X : ‖u‖μ = 1,�p (u) > 0
}

and �−
μ (p) and �0

μ (p) analogously, where

�p (u) =
{ ∫

RN Q|u|pdx for 2 < p < 2∗ and p 
= 4,∫
RN Q|u|pdx − a ‖u‖4

D1,2 for p = 4.

Thus, if u ∈ 
+
μ ∩�+

μ (p) and p ≥ 4, hu(t) > 0 for t small and positive but hu(t) → −∞ as t →
∞; also hu(t) has a unique (maximum) stationary point tmax(u) and tmax(u)u ∈ N−

μ,λ. Similarly, 
if u ∈ 
−

μ ∩ �−
μ (p) and 2 < p < 2∗, hu(t) < 0 for t small and positive, hu(t) → ∞ as t → ∞

and hu(t) has a unique minimum tmin(u) so that tmin(u)u ∈ N+
μ,λ. Finally, if u ∈ 
+

μ ∩ �−
μ (p), 

hu is strictly increasing for all t > 0. Thus, we have the following results.

Lemma 2.1. Suppose that N = 3 and 4 < p < 6. If 
−
μ ∩ �+

μ (p) = ∅ and u ∈ Xμ\{0}, then
(i) a multiple of u lies in N−

μ,λ if and only if u
‖u‖μ

lies in 
+
μ ∩ �+

μ (p);

(ii) a multiple of u lies in N+
μ,λ if and only if u

‖u‖μ
lies in 
−

μ ∩ �−
μ (p);

(iii) when u ∈ 
+
μ ∩ �−

μ (p), no multiple of u lies in Nμ,λ.

Lemma 2.2. Suppose that N = 3 and p = 4. If u ∈ Xμ\{0}, then
(i) a multiple of u lies in N−

μ,λ if and only if u
‖u‖μ

lies in 
+
μ ∩ �+

μ (p);

(ii) a multiple of u lies in N+
μ,λ if and only if u

‖u‖μ
lies in 
−

μ ∩ �−
μ (p);

(iii) when u ∈ 
+
μ ∩ �−

μ (p) or 
−
μ ∩ �+

μ (p), no multiple of u lies in Nμ,λ.

Lemma 2.3. Suppose that N ≥ 3 and 2 < p < min {4,2∗}. If u ∈ Xμ\{0}, then

(i) if u lies in 
−
μ ∩ �+

μ (p) or 
−
μ ∩ �−

μ (p), then a multiple of u lies in N+ ;
‖u‖μ μ,λ



JID:YJDEQ AID:10261 /FLA [m1+; v1.325; Prn:17/02/2020; 11:15] P.12 (1-43)

12 H.-S. Zhang et al. / J. Differential Equations ••• (••••) •••–•••
(ii) when u ∈ 
+
μ ∩ �−

μ (p), no multiple of u lies in Nμ,λ.

The following Lemma shows that minimizers on Nμ,λ are critical points for Jμ,λ in Xμ.

Lemma 2.4. Suppose that u0 is a local minimizer for Jμ,λ on Nμ,λ and that u0 /∈ N0
μ,λ. Then 

J ′
μ,λ(u0) = 0 in X−1

μ .

Proof. The proof of Lemma 2.4 is essentially same as that in Brown and Zhang [10, Theorem 
2.3] (or see Binding et al. [4]), so we omit it here. �

Finally, we investigate the compactness condition for the functional Jμ,λ. Here we call that 
a C1-functional Jμ,λ satisfies Palais-Smale condition at level β ((PS)β -condition for short) in 
Nμ,λ, if any sequence {un} ⊂ Nμ,λ is uniformly bounded which satisfy Jμ,λ (un) = β +o (1) and 
J ′

μ,λ (un) = o (1) has a convergent subsequence.

Proposition 2.5. Suppose that conditions (V1) − (V2) and (D1) − (D2) hold. Then there exists 
D̂0 ∈ R independent of μ such that Jμ,λ satisfies (PS)β–condition in Nμ,λ with β < D̂0 for μ > 0
sufficiently large.

Proof. Let {un} ⊂ Nμ,λ be a (PS)β–sequence for Jμ,λ with β < D̂0. Since {un} ⊂ Xμ is uni-
formly bounded, i.e., there exists d0 > 0 such that

‖un‖μ < d0. (2.3)

Then there exist a subsequence {un} and u0 in Xμ such that

un ⇀ u0 weakly in Xμ;
un → u0 strongly in Lr

loc(R
N) for 2 ≤ r < 2∗.

Then by condition (D1),

lim
n→∞

∫
RN

f u2
ndx =

∫
RN

f u2
0dx. (2.4)

Now, we prove that un → u0 strongly in Xμ. Let vn = un − u0. By (2.3) one has

‖u0‖μ ≤ lim inf
n→∞ ‖un‖μ ≤ d0,

leading to

‖vn‖μ = ‖un − u0‖μ ≤ 2d0. (2.5)

It follows from the condition (V1) that∫
N

v2
ndx =

∫
v2
ndx +

∫
v2
ndx ≤ 1

μc
‖vn‖2

μ + o (1) ,
R {V ≥c} {V <c}
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which implies that

∫
RN

|vn|p dx ≤
(

1

μc
‖vn‖2

μ

) 2∗−p

2∗−2 (
S−2∗ ‖vn‖2∗

D1,2

) p−2
2∗−2 + o(1)

≤
(

1

μc

)(
2∗−p

)
(N−2)

4

S− N(p−2)
2 ‖vn‖p

μ + o(1), (2.6)

where we have used the Hölder and Sobolev inequalities. Moreover, by Brezis-Lieb Lemma [6]
and condition (D2), we have

∫
RN

Q |vn|p dx =
∫
RN

Q |un|p dx −
∫
RN

Q |u0|p dx + o(1). (2.7)

Since the sequence {un} is bounded in Xμ, there exists a constant A > 0 such that

∫
RN

|∇un|2 dx → A as n → ∞.

It indicates that for any ϕ ∈ C∞
0 (RN),

o(1) =
〈
J ′

μ,λ (un) ,ϕ
〉

→
∫
RN

∇u0∇ϕdx +
∫
RN

μV u0ϕdx + aA

∫
RN

∇u0∇ϕdx

−
∫
RN

f u0ϕdx −
∫
RN

Q |u0|p−2 u0ϕdx as n → ∞,

which shows that

‖u0‖2
μ + aA‖u0‖2

D1,2 −
∫
RN

f u2
0dx −

∫
RN

Q |u0|p dx = 0. (2.8)

Note that

‖un‖2
μ + a ‖un‖4

D1,2 −
∫
RN

f u2
ndx −

∫
RN

Q |un|p dx = 0. (2.9)

Then by (2.4) and (2.6)–(2.9) one has



JID:YJDEQ AID:10261 /FLA [m1+; v1.325; Prn:17/02/2020; 11:15] P.14 (1-43)

14 H.-S. Zhang et al. / J. Differential Equations ••• (••••) •••–•••
o (1) = ‖vn‖2
μ + a ‖un‖4

D1,2 − aA‖u0‖2
D1,2 −

∫
RN

Q |vn|p dx

= ‖vn‖2
μ + a ‖un‖2

D1,2

(
‖un‖2

D1,2 − ‖u0‖2
D1,2

)
−
∫
RN

Q |vn|p dx

= ‖vn‖2
μ + a ‖un‖2

D1,2 ‖vn‖2
D1,2 −

∫
RN

Q |vn|p dx. (2.10)

It follows from (2.1), (2.5), (2.6), (2.10) and condition (D2) that

o (1) = ‖vn‖2
μ + a ‖un‖2

D1,2 ‖vn‖2
D1,2 −

∫
RN

Q |vn|p dx

≥ ‖vn‖2
μ − ‖Q‖∞

⎛⎜⎝ ∫
RN

|vn|pdx

⎞⎟⎠
p−2
p
⎛⎜⎝ ∫
RN

|vn|pdx

⎞⎟⎠
2
p

≥
⎡⎢⎣1 − ‖Q‖∞

⎡⎣ (2d0)
p
2 |{V < c}| 2∗−p

2∗

Sp

⎤⎦
p−2
p (

1

μc

)(
2∗−p

)
(N−2)

2p

S
− N(p−2)

p

⎤⎥⎦‖vn‖2
μ + o (1) ,

which implies that vn → 0 strongly in Xμ for μ > 0 sufficiently large. Consequently, this com-
pletes the proof. �
3. Non-emptiness of submanifolds

First, we need the following result.

Theorem 3.1. Let μn → ∞ as n → ∞ and {vn} ⊂ X with ‖vn‖μn ≤ c0 for some c0 > 0. Then 
for every μ > 0 there exist subsequence {vn} and v0 ∈ H 1

0 (�) such that vn ⇀ v0 in Xμ and 
vn → v0 in Lr

(
RN

)
for all 2 ≤ r < 2∗.

Proof. Since ‖vn‖μ ≤ ‖vn‖μn
≤ c0 for n sufficiently large. We may assume that there exists 

v0 ∈ X such that

vn ⇀ v0 in Xμ,

vn → v0 a.e. in RN,

vn → v0 in Lr
loc

(
RN

)
for 2 ≤ r < 2∗.

By Fatou’s Lemma, we have∫
N

V v2
0dx ≤ lim inf

n→∞

∫
N

V v2
ndx ≤ lim inf

n→∞
‖vn‖2

μn

μn

= 0,
R R
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this implies that 
∫
RN V v2

0dx = 0 or v0 = 0 a.e. in RN \� and v0 ∈ H 1
0 (�) by condition (V3). We 

now show that vn → v0 in Lp
(
RN

)
. Suppose on the contrary. Then by Lions vanishing lemma 

(see [25, Lemma I.1] or [36, Lemma 1.21]), there exist d0 > 0, R0 > 0 and xn ∈ RN such that∫
B(xn,R0)

(vn − v0)
2 dx ≥ d0.

Moreover, xn → ∞, and hence, 
∣∣B (xn,R0) ∩ {x ∈ RN : V < c

}∣∣→ 0. By the Hölder inequality, 
we have ∫

B(xn,R0)∩{V <c}
(vn − v0)

2 dx → 0.

Consequently,

c0 ≥ ‖vn‖2
μn

≥ μnc

∫
B(xn,R0)∩{V ≥c}

v2
ndx = μnc

∫
B(xn,R0)∩{V ≥c}

(vn − v0)
2 dx

= μnc

⎛⎜⎝ ∫
B(xn,R0)

(vn − v0)
2 dx −

∫
B(xn,R0)∩{V <c}

(vn − v0)
2 dx

⎞⎟⎠
→ ∞,

which a contradiction. Thus, vn → v0 in Lr
(
RN

)
for all 2 ≤ r < 2∗. This completes the 

proof. �
Next, we consider the following eigenvalue problem

−�u(x) + μV (x)u (x) = λf (x)u(x) for x ∈ RN. (3.1)

We can approach this problem by a direct method and attempt to obtain nontrivial solutions of 
problem (3.1) as relative minima of the functional

Iμ (u) = 1

2

∫
RN

|∇u|2 + μV u2dx,

on the unit sphere in B = {
u ∈ X : ∫RN f u2dx = 1

}
. Equivalently, we may seek to minimize a 

quotient as follows

λ̃1,μ (f ) = inf
u∈X\{0}

∫
RN |∇u|2 + μV u2dx∫

RN f u2dx
. (3.2)

Then, by (2.1),
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∫
RN |∇u|2 + μV u2dx∫

RN f u2dx
≥ S2

‖f ‖∞ |{V < c}| 2
3

for all μ ≥ μ0,

this implies that ̃λ1,μ (f ) ≥ S2

‖f ‖∞|{V <c}| 2
3

> 0. Moreover, by condition (V3),

inf
u∈X\{0}

∫
RN |∇u|2 + μV u2dx∫

RN f u2dx
≤ inf

u∈H 1
0 (�)\{0}

∫
RN |∇u|2 + μV u2dx∫

RN f u2dx
= inf

u∈H 1
0 (�)\{0}

∫
�

|∇u|2∫
�

f�u2dx
,

which indicates that ̃λ1,μ (f ) ≤ λ1 (f ) for all μ ≥ μ0. Then we have the following results.

Lemma 3.2. For each μ ≥ μ0 there exists a positive function ϕμ ∈ X with 
∫
RN f ϕ2

μdx = 1 such 
that

λ̃1,μ (f ) =
∫
RN

∣∣∇ϕμ

∣∣2 + μV ϕ2
μdx < λ1 (f�) .

Furthermore, λ̃1,μ (f ) → λ−
1 (f�) and ϕμ → φ1 as μ → ∞, where φ1 is positive principal 

eigenfunction of problem (1.4).

Proof. Let {un} ⊂ X with 
∫
RN f u2

ndx = 1 be a minimizing sequence of (3.2), that is

∫
RN

|∇un|2 + μV u2
ndx → λ̃1,μ (f ) as n → ∞.

Since ̃λ1,μ (f ) ≤ λ1 (f�) for all μ ≥ μ0, there exists C0 > 0 independent of μ such that ‖un‖μ ≤
C0. Thus, there exist a subsequence {un} and ϕμ ∈ X such that

un ⇀ ϕμ in Xμ,

un → ϕμ a.e. in RN,

un → ϕμ in Lr
loc

(
RN

)
for 2 ≤ r < 2∗.

Moreover, by condition (D1), ∫
RN

f u2
ndx →

∫
RN

f ϕ2
μdx = 1.

Now we show that un → ϕμ in Xμ. Suppose on the contrary. Then∫
N

∣∣∇ϕμ

∣∣2 + μV ϕ2
μdx < lim inf

n→∞

∫
N

|∇un|2 + μV u2
ndx = λ̃1,μ (f ) ,
R R



JID:YJDEQ AID:10261 /FLA [m1+; v1.325; Prn:17/02/2020; 11:15] P.17 (1-43)

H.-S. Zhang et al. / J. Differential Equations ••• (••••) •••–••• 17
which is impossible. Thus, un → ϕμ in Xμ, which implies that 
∫
RN f ϕ2

μdx = 1 and∫
RN

∣∣∇ϕμ

∣∣2 + μV ϕ2
μdx = λ̃1,μ (f ). Since 

∣∣ϕμ

∣∣ ∈ X and

λ̃1,μ (f ) =
∫
RN

∣∣∇ϕμ

∣∣2 + μV ϕ2
μdx =

∫
RN

∣∣∇ ∣∣ϕμ

∣∣∣∣2 + μV
∣∣ϕμ

∣∣2 dx,

by the maximum principle, we may assume that ϕμ is positive eigenfunction of problem (3.1). 
Moreover, by the Harnack inequality due to Trudinger [35], we must have ̃λ1,μ (f ) < λ1 (f�). 
Now, by the definition of ̃λ1,μ (f ), there holds ̃λ1,μ1 (f ) ≤ λ̃1,μ2 (f ) for μ1 < μ2. Hence, for 
any sequence μn → ∞, let ϕn := ϕμn be the minimizer of ̃λ1,μn (f ). Then 

∫
RN f ϕ2

ndx = 1 and

λ̃1,μn (f ) =
∫
RN

|∇ϕn|2 + μnV ϕ2
ndx < λ1 (f�) ,

that

λ̃1,μn (f ) → d0 ≤ λ1 (f�) for some d0 > 0

and

‖ϕn‖ ≤ ‖ϕn‖μn
≤√

λ1 (f�), for n sufficiently large.

Thus, by Theorem 3.1, we may assume that for every μ > 0 there exists ϕ0 ∈ H 1
0 (�) such that 

ϕn ⇀ ϕ0 in Xμ and ϕn → ϕ0 in Lr
(
RN

)
for all 2 ≤ r < 2∗. Then∫

�

|∇ϕ0|2 dx ≤ lim inf
n→∞

∫
RN

|∇ϕn|2 + μnV ϕ2
ndx = d0

and

lim
n→∞

∫
RN

f ϕ2
ndx =

∫
�

f�ϕ2
0dx = 1.

Since d0 ≤ λ1 (f�) and λ1 (f�) is positive principal eigenvalue of problem (1.4). Thus, we must 
have

∫
�

|∇ϕ0|2 dx = λ1 (f�) and ϕ0 = φ1 a positive principal eigenfunction of problem (1.4), 
which completes the proof. �

By Lemma 3.2, for each 0 < λ < λ1 (f�) there exists μ0 (λ) ≥ μ0 with μ0 (λ) → ∞ as λ →
λ−

1 (f�) such that for every μ > μ0 (λ), there holds λ < λ̃1,μ (f ) < λ1 (f�), which indicates that

‖u‖2
μ − λ

∫
RN

f u2dx ≥ λ̃1,μ (f ) − λ

λ̃1,μ (f )
‖u‖2

μ for all u ∈ Xμ. (3.3)

Moreover, it is easy to show that
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h′′
u(1) = − (p − 2)

⎛⎜⎝‖u‖2
μ − λ

∫
RN

f u2dx

⎞⎟⎠− (p − 4)‖u‖4
D1,2 < 0

for all 4 ≤ p < 6 and u ∈ Nμ,λ. Furthermore, we have the following results.

Lemma 3.3. Suppose that N = 3, 4 ≤ p < 6 and 
0 = ∞ (if p = 4). Then for each a > 0 and 0 <
λ < λ1 (f�), there holds Nμ,λ = N−

μ,λ and N−
μ,λ = {tmax(u)u : u ∈ �+

μ (p)} for μ > 0 sufficiently 
large.

Proof. By (3.3), 
+
μ 
= ∅ and 
−

μ ∪ 
0
μ = ∅, this implies that the submanifolds N+

μ,λ and N0
μ,λ

are empty and

Nμ,λ = N−
μ,λ = {tmax(u)u : u ∈ �+

μ (p)}

for μ > 0 sufficiently large. This completes the proof. �
Lemma 3.4. Suppose that N = 3, p = 4 and 
0 < +∞ (if p = 4). Then we have the following 
results.
(i) For each 0 < a < 
0 and 0 < λ < λ1 (f�), there holds Nμ,λ = N−

μ,λ and N−
μ,λ = {tmax(u)u :

u ∈ �+
μ (p)} for μ > 0 sufficiently large.

(ii) For each a ≥ 
0 and 0 < λ < λ1 (f�), there holds Nμ,λ = ∅ for μ > 0 sufficiently large.
(iii) For each a > 
0 and λ ≥ λ1 (f�), there holds Nμ,λ = N+

μ,λ and N+
μ,λ = {tmin(u)u : u ∈

�−
μ (p)} for μ > 0 sufficiently large.

(iv) If 
0 is not attained and a = 
0, then for each λ ≥ λ1 (f�), there holds Nμ,λ = N+
μ,λ and 

N+
μ,λ = {tmin(u)u : u ∈ �−

μ (p)} for μ > 0 sufficiently large.

Proof. (i) The proof is almost the same as Lemma 3.3, and we omit it here.
(ii) Since ∫

R3

Q|u|4dx ≤ 
0 ‖u‖4
D1,2 for all u ∈ X,

we can obtain

�p (u) =
∫
R3

Q|u|4dx − a ‖u‖4
D1,2 ≤ 0 (3.4)

for all a ≥ 
0 and u ∈ X, this implies that �+
μ (p) = ∅. Moreover, 
−

μ ∪ 
0
μ = ∅ for μ > 0

sufficiently large, by Lemma 2.2, Nμ,λ = ∅ for μ > 0 sufficiently large.
(iii) By Lemma 3.2, there exists a positive function ϕμ ∈ X such that 

∫
R3 f ϕ2

μdx = 1 and

λ̃1,μ (f ) =
∫

3

∣∣∇ϕμ

∣∣2 + μV ϕ2
μdx < λ1 (f�) for μ > 0 sufficiently large.
R
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If λ ≥ λ1 (f�), then∫
R3

∣∣∇ϕμ

∣∣2 + μV ϕ2
μdx − λ

∫
R3

f ϕ2
μdx = λ̃1,μ (f ) − λ < 0, (3.5)

and so ϕμ ∈ 
−
μ for μ > 0 sufficiently large. Moreover, �p (u) < 0 for all a > 
0 and u ∈ X\{0}, 

this implies that 
−
μ ∩ �−

μ (p) 
= ∅ and �+
μ (p) ∪ �0

μ (p) = ∅. Then by Lemma 2.2,

Nμ,λ = N+
μ,λ = {tmin(u)u : u ∈ �−

μ (p)}

for μ > 0 sufficiently large.
(iv) The proof is essentially same as that in part (iii), so we omit it here. �

If λ ≥ λ1 (f�), then by (3.5), ϕμ ∈ 
−
μ for μ > 0 sufficiently large. Moreover, if �p (φ1) < 0, 

then by Lemma 3.2, �p

(
ϕμ

)
< 0 for μ > 0 sufficiently large, this implies that ϕμ ∈ 
−

μ ∩�−
μ (p)

and so N+
μ,λ 
= ∅ for μ > 0 sufficiently large. Thus, as well shall see, Nμ,λ may consist of two 

distinct components in this case which makes it possible to prove the existence of at least two 
positive solutions by showing that Jμ,λ has an appropriate minimizer on each component.

Moreover, if λ ≥ λ1 (f�), then roughly speaking ‖u‖2
μ ≤ λ 

∫
R3 f u2dx if and only if u is 

almost a multiple of φ1 for μ sufficiently large. Thus, if φ1 ∈ �−
μ (p), it should follow that 


−
μ ∩ �+

μ (p) = ∅ for μ > 0 sufficiently large. This is made precise in the following lemma 

and we show subsequently that 
−
μ ∩ �+

μ (p) = ∅ is an important condition for establishing the 
existence of minimizers.

Theorem 3.5. Suppose that N = 3, 4 ≤ p < 6 and �p (φ1) < 0. Then for each a > 0 there exists 

δ0 > 0 such that for every λ1 (f�) ≤ λ < λ1 (f�) + δ0, there holds 
−
μ ∩ �+

μ (p) = ∅ for μ > 0
sufficiently large.

Proof. Suppose that the result is false. Then there exist sequences {μn}, {λn} and {un} ⊂ X with 
λn → λ+

1 (f�) and μn → ∞ such that ‖un‖μn = 1 and

‖un‖2
μn

− λn

∫
R3

f u2
ndx ≤ 0, �p (un) ≥ 0. (3.6)

By Theorem 3.1, we may assume that for every μ > 0 there exists u0 ∈ H 1
0 (�) such that un ⇀ u0

in Xμ and un → u0 in Lr
(
R3
)

for all 2 ≤ r < 6. This implies that

lim
n→∞λn

∫
R3

f u2
ndx = λ1 (f�)

∫
R3

f u2
0dx ≥ 1 (3.7)

Now, we show that limn→∞
∫
R3 |∇un|2dx = ∫

�
|∇u0|2dx. Suppose on the contrary. Then by 

(3.6) and (3.7),
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∫
�

(
|∇u0|2 − λ1 (f�)f�u2

0

)
dx =

∫
R3

(
|∇u0|2 − λ1 (f�)f u2

0

)
dx

< lim inf
n→∞

⎛⎜⎝‖un‖2
μn

− λn

∫
R3

f u2
ndx

⎞⎟⎠≤ 0,

which is impossible. Hence limn→∞
∫
R3 |∇un|2dx = ∫

�
|∇u0|2dx. And we get

lim
n→∞�p (un) = �p (u0) .

It follows that

(i)

∫
�

(|∇u0|2 − λ1 (f�)f�u2
0)dx ≤ 0, (ii)�p (u0) ≥ 0.

But (i) implies that u0 = kφ1 for some k and then (ii) implies that k = 0 which is impossible as 
λ1 (f�)

∫
R3 f u2

0dx ≥ 1. Thus, there exists δ0 > 0 and μ̂0 ≥ μ0 such that 
−
μ ∩ �+

μ (p) = ∅ for 
all λ1 (f�) ≤ λ < λ1 (f�) + δ0 and μ > μ̂0. Moreover, if N0

μ,λ 
= ∅, then there exists u0 ∈ N0
μ,λ

such that u0‖u0‖μ
∈ 
0

μ ∩ �0
μ (p) ⊂ 
−

μ ∩ �+
μ (p) = ∅ which is impossible. Therefore, N0

μ,λ = ∅
for all λ1 (f�) ≤ λ < λ1 (f�)+ δ0 and for μ > 0 sufficiently large. This completes the proof. �
Lemma 3.6. Suppose that N = 3, 4 < p < 6 and 

∫
�

Qφ
p

1 dx < 0. Let δ0 > 0 be as in Theo-
rem 3.5. Then for each a > 0 and λ1 (f�) ≤ λ < λ1 (f�) + δ0, there holds Nμ,λ = N−

μ,λ ∪ N+
μ,λ

for μ > 0 sufficiently large. Furthermore, N±
μ,λ are nonempty sets for μ > 0 sufficiently large.

Proof. Since 
∫
�

Qφ
p
1 dx < 0, by Lemma 3.2, there exists a positive function ϕμ ∈ X such that

λ̃1,μ (f ) =
∫
R3

∣∣∇ϕμ

∣∣2 + μV ϕ2
μdx < λ1 (f�)

and

ϕμ → φ1 as μ → ∞.

Hence, for μ > 0 large enough, ∫
R3

Q|ϕμ|pdx < 0,

this implies that ϕμ ∈ �−
μ (p) for μ > 0 sufficiently large. Moreover, 

∥∥ϕμ

∥∥2
μ

< λ 
∫
R3 f ϕ2

μdx for 
all λ ≥ λ1 (f�), we have ϕμ ∈ 
−

μ ∩ �−
μ (p) for μ > 0 sufficiently large. Next, by conditions 

(D1) and (D2), we have 
+
μ ∩ �+

μ (p) 
= ∅. Thus, by Lemma 2.1 (i) , (ii), N± 
= ∅. Moreover, 
μ,λ
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by Theorem 3.5, 
−
μ ∩ �+

μ (p) = ∅ for μ > 0 sufficiently large. Then by Lemma 2.1 (iii) this 
implies that N0

μ,λ = ∅ or Nμ,λ = N−
μ,λ ∪ N+

μ,λ for μ > 0 sufficiently large. This completes the 
proof. �
Lemma 3.7. Suppose that N = 3, p = 4 and �p (φ1) < 0. Then there exists δ0 > 0 such that for 
every λ1 (f�) ≤ λ < λ1 (f�) + δ0, there holds Nμ,λ = N−

μ,λ ∪ N+
μ,λ for μ > 0 sufficiently large. 

Furthermore, N±
μ,λ are nonempty sets for μ > 0 sufficiently large.

Proof. The proof is almost the same as Lemma 3.6, and we omit it here. �
Next, we consider the following nonlinear Schrödinger equation{−�u = λf�u + Q�|u|p−2u in �,

u ∈ H 1
0 (�),

(
Eλ,�

)
where N ≥ 3, 2 < p < min {4,2∗} , 0 ≤ λ < λ1 (f�) and Q� is a restriction of Q on �.

It is well-known that for each 0 ≤ λ < λ1 (f�), Equation 
(
Eλ,�

)
has positive ground state 

solution wλ,� such that

inf
u∈N∞

λ,�

J∞
λ,� (u) = J∞

λ,�

(
wλ,�

)= α∞
λ,Q(�), (3.8)

and ∫
�

∣∣∇wλ,�

∣∣2 dx − λ

∫
�

f�w2
λ,�dx =

∫
�

Q�w
p
λ,�dx = 2p

p − 2
α∞

λ,Q(�) > 0 (3.9)

where J∞
λ,� is the energy functional of Equation (Eλ,�) in H 1

0 (�) in the form

J∞
λ,� (u) = 1

2

⎛⎝∫
�

|∇u|2 dx − λ

∫
�

f�u2dx

⎞⎠− 1

p

∫
�

Q� |u|p dx,

and

N∞
λ,� = {u ∈ H 1

0 (�)\ {0} |
〈(

J∞
λ,�

)′
(u) ,u

〉
= 0}.

Clearly α∞
λ,Q(�) ≤ α∞

0,Q(�) ≤ p−2
2p

(
S

p
p (�)

Q�,min

)2/(p−2)

for all 0 < λ < λ1 (f�). Then we have the 

following nonemptiness and properties of submanifolds N+
μ,λ and N−

μ,λ.

Theorem 3.8. Suppose that N ≥ 3 and 2 < p < min {4,2∗}. Then we have the following results.
(i) Let 0 < λ < λ1 (f�) and let wλ,� be the ground state positive solution of Equation 

(
Eλ,�

)
. If 

conditions (V1) , (V3) , (D1) , (D2) and (D4) hold, then there exists a0 > 0 independent of λ, μ
such that for every 0 < a < a0, there exist two positive constants t−a and t+a satisfying
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1 < t−a <

(
2

4 − p

)1/(p−2)

< t+a

and

t−a → 1; t+a → ∞ as a → 0+

such that t±a wλ,� ∈ N±
μ,λ. Furthermore, if 0 < λ <

[
1 − 2

(
4−p

4

)2/p
]

λ1 (f�), then

Jμ,λ

(
t−a w�

)
<

p − 2

4p

(
λ̃1,μ (f ) − λ

λ̃1,μ (f )

)p/(p−2)
(

2S
p
p (�)

Q�,min (4 − p)

)2/(p−2)

for μ > 0 sufficiently large.
(ii) Let λ ≥ λ1 (f�) and let φ1 be positive principal eigenfunction of −� in H 1

0 (�) with weight 
function f� := f |�. Then for each a > 0 there exists t+a > 0 such that t+a φ1 ∈ N+

μ,λ and

Jμ,λ

(
t+a φ1

)= inf
t≥0

Jμ,λ (tφ1) < 0.

In particular, N+
μ,λ is nonempty and infu∈N+

μ,λ
Jμ,λ (u) < Jμ,λ

(
t+a φ1

)
.

Proof. (i) Define

m(t) = t−2

⎛⎝∥∥wλ,�

∥∥2
μ

− λ

∫
�

f�w2
λ,�dx

⎞⎠− tp−4
∫
�

Q�

∣∣wλ,�

∣∣p dx for t > 0.

Clearly, twλ,� ∈ Nμ,λ if and only if m (t) + a
(∫

�

∣∣∇wλ,�

∣∣2 dx
)2 = 0. Since 

∥∥wλ,�

∥∥2
μ

−
λ 
∫
�

f�w2
λ,�dx > 0, similar to the arguments of [32, Lemmas 2.4 and 2.5], there exist two posi-

tive constants t−a and t+a satisfying

1 < t−a <

(
2

4 − p

)1/(p−2)

< t+a

and

t−a → 1; t+a → ∞ as a → 0+

such that t±a w� ∈ N±
μ,λ,

Jμ,λ

(
t−a wλ,�

)= sup
0≤t≤t+a

Jμ,λ

(
twλ,�

)
and
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Jμ,λ

(
t+a wλ,�

)= inf
t≥t−a

Jμ,λ

(
twλ,�

)= inf
t≥0

Jμ,λ

(
twλ,�

)
< 0. (3.10)

Furthermore, we get

Jμ,λ

(
t−a wλ,�

) =
(
t−a
)2

4

⎛⎜⎝∥∥wλ,�

∥∥2
μ

− λ

∫
RN

f w2
λ,�dx

⎞⎟⎠− (4 − p)
(
t−a
)p

4p

∫
RN

Q
∣∣wλ,�

∣∣p dx

= p

2 (p − 2)

[(
t−a
)2 − (4 − p)

(
t−a
)p

p

]
α∞

λ,Q(�)

<
1

4

[(
t−a
)2 − (4 − p)

(
t−a
)p

p

](
S

p
p (�)

Q�,min

)2/(p−2)

→ p − 2

2p

(
S

p
p (�)

Q�,min

)2/(p−2)

as a → 0+. (3.11)

Since 0 < λ <
[

1 − 2
(

4−p
4

)2/p
]

λ1 (f�), by Lemma 3.2 and (3.11), we can conclude that there 

exists a0 > 0 independent of λ, μ such that for every 0 < a < a0,

Jμ,λ

(
t−a wλ

)
<

p − 2

4p

(
λ̃1,μ (f ) − λ

λ̃1,μ (f )

)p/(p−2)
(

2S
p
p (�)

Q�,min (4 − p)

)2/(p−2)

for μ > 0 sufficiently large.

(ii) Since λ ≥ λ1 (f�), we have ‖φ1‖2
μ − λ 

∫
�

f�φ2
1dx ≤ 0, this implies that φ1‖φ1‖μ

∈ 
−
μ . Then 

by Lemma 2.3 (i), for each a > 0 there exists t+a > 0 such that t+a φ1 ∈ N+
μ,λ. Moreover, h′

φ1
(t) <

0 for all t ∈ (0, t+a
)

and h′
φ1

(t) > 0 for all t > t+a , which leads to

Jμ,λ

(
t+a φ1

)= inf
t≥0

Jμ,λ (tφ1) < 0.

This completes the proof. �
4. The case when N = 3 and 4 < p < 6

4.1. The subcase: λ < λ1 (f�)

We need the following results.

Lemma 4.1. Suppose that 4 < p < 6. Then for each 0 < λ < λ1 (f�) there exists μ0 (λ) ≥ μ0
with μ0 (λ) → ∞ as λ → λ−

1 (f�) such that for every μ > μ0 (λ), the energy functional Jμ,λ is 
coercive and bounded below on N− . Furthermore,
μ,λ
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inf
u∈N−

μ,λ

Jμ,λ(u) ≥ 1

4

(
λ̃1,μ (f ) − λ

λ̃1,μ (f )

)p/(p−2)
(

Sp

‖Q‖∞ |{V < c}| 6−p
6

)2/(p−2)

> 0 (4.1)

for all u ∈ N−
μ,λ.

Proof. By (2.1) and (3.3), for each μ > μ0 (λ) and u ∈ N−
μ,λ, we obtain

λ̃1,μ (f ) − λ

λ̃1,μ (f )
‖u‖2

μ ≤ ‖u‖2
μ − λ

∫
R3

f u2dx + a ‖u‖4
D1,2

=
∫
R3

Q |u|p dx ≤ ‖Q‖∞ |{V < c}| 6−p
6 S−p ‖u‖p

μ ,

which indicates that

‖u‖μ ≥
(

Sp
(̃
λ1,μ (f ) − λ

)
λ̃1,μ (f )‖Q‖∞ |{V < c}| 6−p

6

)1/(p−2)

.

Thus,

Jμ,λ(u) ≥ 1

4

⎛⎜⎝‖u‖2
μ − λ

∫
R3

f u2dx

⎞⎟⎠≥ λ̃1,μ (f ) − λ

4̃λ1,μ (f )
‖u‖2

μ

≥ 1

4

(
λ̃1,μ (f ) − λ

λ̃1,μ (f )

)p/(p−2)
(

Sp

‖Q‖∞ |{V < c}| 6−p
6

)2/(p−2)

> 0,

this implies that the energy functional Jμ,λ is coercive and bounded below on N−
μ,λ. This com-

pletes the proof. �
We now show that there exists a minimizer on N−

μ,λ which is a critical point of Jμ,λ(u) and so 
a nontrivial solution of Equation 

(
Eμ,λ

)
. First, we define

θa,λ(�) = inf
u∈Mλ(�)

Jμ,λ|H 1
0 (�))(u),

where

Mλ(�) = {u ∈ H 1
0 (�) ∩ H 1(R3) :

〈
J ′

μ,λ|H 1
0 (�) (u) ,u

〉
= 0}.

Note that

Jμ,λ|H 1
0 (�)(u) = a

4

⎛⎝∫ |∇u|2 dx

⎞⎠2

+ 1

2

∫
|∇u|2 dx − 1

p

∫
Q |u|p dx − λ

2

∫
f�u2dx,
� � � �
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a restriction of Jμ,λ on H 1
0 (�), and θa,λ(�) independent of μ. Since max {Q,0} 
≡ 0 in �, 

Mλ(�) 
= ∅. Thus, similar to the argument of (4.1), we can conclude that Jμ,λ|H 1
0 (�) is bounded 

below on Mλ(�). Moreover, H 1
0 (�) ⊂ Xμ for all μ > 0, one can see that

0 < η ≤ inf
u∈N−

μ,λ

Jμ,λ(u) ≤ θa,λ(�) for all μ ≥ μ0 (λ) . (4.2)

Taking Da,λ > θa,λ(�). Then we have

inf
u∈N−

μ,λ

Jμ,λ(u) ≤ θa,λ(�) < Da,λ for all μ ≥ μ0 (λ) . (4.3)

We are now ready to prove Theorem 1.1: When 0 < λ < λ1 (f�). By Lemma 4.1, (4.3) and 
the Ekeland variational principle [17], for each μ > μ0 (λ) there exists a minimizing sequence 
{un} ⊂ N−

μ,λ such that

Da,λ > lim
n→∞Jμ,λ(un) = inf

u∈N−
μ,λ

Jμ,λ(u) > 0 and J ′
μ,λ(un) = o (1) .

Since infu∈N−
μ,λ

Jμ,λ(u) < Da,λ, again using Lemma 4.1, there exists ca,λ > 0 such that ‖un‖μ ≤
ca,λ. By Proposition 2.5, there exist a subsequence {un} and u0 ∈ X such that J ′

μ,λ(u0) = 0 and 
un → u0 strongly in Xμ for μ > 0 sufficiently large, which implies that Jμ,λ has minimizer u0
in Nμ,λ = N−

μ,λ for μ sufficiently large. Since Jμ,λ(u0) = Jμ,λ(|u0|), by Lemma 2.4, we may as-

sume that u0 is a positive solution of Equation 
(
Eμ,λ

)
such that Jμ,λ(u0) = infu∈N−

μ,λ
Jμ,λ(u) > 0.

4.2. The subcase: λ ≥ λ1 (f�)

By Theorem 3.5, for each a > 0 there exists δ0 > 0 such that for every λ1 (f�) ≤ λ <
λ1 (f�) + δ0, there holds 
−

μ ∩ �+
μ (p) = ∅ for μ > 0 sufficiently large, it is possible to ob-

tain more information about the nature of the Nehari manifold as follows.

Lemma 4.2. Suppose that 4 < p < 6 and 
∫
�

Qφ
p
1 dx < 0. Let δ0 > 0 be as in Theorem 3.5. Then 

for every λ1 (f�) ≤ λ < λ1 (f�) + δ0, we have the following results.
(i) There exists c0 > 0 such that ‖u‖μ ≥ c0 for all u ∈ N−

μ,λ and μ > 0 sufficiently large.

(ii) N−
μ,λ and N+

μ,λ are separated for μ > 0 sufficiently large, i.e., N−
μ,λ ∩ N+

μ,λ = ∅ for μ > 0
sufficiently large.
(iii) N+

μ,λ is uniform bounded for μ > 0 sufficiently large.

Proof. (i) Suppose on the contrary. Then there exist {μn} ⊂R+ and un ∈ N−
μn,λ such that μn →

∞ and ‖un‖μn
→ 0. Hence, by (2.1),

0 < ‖un‖2
μn

− λ

∫
R3

f u2
ndx

< ‖un‖2
μn

− λ

∫
3

f u2
ndx + a ‖un‖4

D1,2 =
∫

3

Q|un|pdx → 0 as n → ∞. (4.4)
R R
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Let vn = un‖un‖μn
. Then, by Theorem 3.1, for every μ > 0 there exist subsequence {vn} and v0 ∈

H 1
0 (�) such that

vn ⇀ v0 in Xμ; vn → v0 in Lr
(
R3
)

for all 2 ≤ r < 6. (4.5)

Thus, by (4.4) and (4.5),

lim
n→∞

∫
R3

f v2
ndx =

∫
R3

f v2
0dx (4.6)

and

‖vn‖2
μn

− λ

∫
R3

f v2
ndx → 0 as n → ∞. (4.7)

Moreover, by (4.6), (4.7), v0 ∈ H 1
0 (�) and Fatou’s Lemma, we can obtain that

0 = lim
n→∞

⎛⎜⎝‖vn‖2
μn

− λ

∫
R3

f v2
ndx

⎞⎟⎠= 1 − λ

∫
R3

f v2
0dx,

and for every μ > 0

‖v0‖2
μ − λ

∫
R3

f v2
0dx ≤ lim inf

n→∞

⎛⎜⎝‖vn‖2
μn

− λ

∫
R3

f v2
ndx

⎞⎟⎠= 0,

this implies that v0 
= 0 and v0‖v0‖μ
∈ 
−

μ for all μ > 0. Since 
∫
R3 Q|vn|pdx > 0 and vn → v0 in 

Lp
(
R3
)
, it follows that 

∫
R3 Q|v0|pdx ≥ 0 and so v0‖v0‖μ

∈ �+
μ (p) for all μ > 0. Hence, v0‖v0‖μ

∈

−

μ ∩ �+
μ (p) for all μ > 0, which a contradiction. Thus, 0 /∈ N−

μ,λ for μ > 0 sufficiently large. 

Moreover, by Lemma 3.6, N−
μ,λ ⊂ N−

μ,λ ∪ {0}. Since 0 /∈ N−
μ,λ, it follows that N−

μ,λ = N−
μ,λ, i.e., 

N−
μ,λ is closed.

(ii) By Theorem 3.5 and part (i),

N−
μ,λ ∩ N+

μ,λ ⊆ N−
μ,λ ∩ (N+

μ,λ ∪ N0
μ,λ) = N−

μ,λ ∩ (N+
μ,λ ∪ ∅)

= (N−
μ,λ ∩ N+

μ,λ) ∪ (N−
μ,λ ∩ ∅) = ∅,

and so N−
μ,λ and N+

μ,λ are separated for μ > 0 sufficiently large.

(iii) Suppose on the contrary. Then there exist sequences {μn} ⊂ R+ and un ∈ N+
μn,λ such that 

μn → ∞ and ‖un‖μn → ∞ as n → ∞. Clearly,
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‖un‖2
μn

− λ

∫
R3

f u2
ndx + a ‖un‖4

D1,2 =
∫
R3

Q|un|pdx < 0. (4.8)

Let vn = un‖un‖μn
. Then by Theorem 3.1, we may assume that for every μ > 0 there exists v0 ∈

H 1
0 (�) such that

vn ⇀ v0 in Xμ;vn → v0 in Lr
(
R3
)

for all 2 ≤ r < 6.

Thus,

lim
n→∞

∫
R3

f v2
ndx =

∫
R3

f v2
0dx (4.9)

and

lim
n→∞

∫
R3

Q |vn|p dx =
∫
R3

Q |v0|p dx. (4.10)

Moreover, by Fatou’s Lemma,∫
R3

|∇v0|2dx ≤ lim inf
n→∞

∫
R3

|∇vn|2dx. (4.11)

Dividing (4.8) by ‖un‖2
μn

gives

‖vn‖2
μn

− λ

∫
R3

f v2
ndx + a‖un‖2

μn
‖vn‖4

D1,2 = ‖un‖p−2
μn

∫
R3

Q|vn|pdx < 0. (4.12)

Since

lim
n→∞

⎛⎜⎝‖vn‖2
μn

− λ

∫
R3

f v2
ndx

⎞⎟⎠= 1 − λ lim
n→∞

∫
R3

f v2
ndx = 1 − λ

∫
R3

f v2
0dx

and ‖un‖μn → ∞, it obtains that
∫
R3 Q|v0|pdx = 0 and 

∫
R3 f v2

0dx > 0 from the conclusions 
(4.10) and (4.12). Moreover, by v0 ∈ H 1

0 (�), (4.9) and (4.11), for every μ > 0,

‖v0‖2
μ − λ

∫
R3

f v2
0dx ≤ lim inf

n→∞

⎛⎜⎝‖vn‖2
μn

− λ

∫
R3

f v2
ndx

⎞⎟⎠≤ 0.

We now show that vn → v0 in Xμ. Suppose on the contrary. Then
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‖v0‖2
μ − λ

∫
R3

f v2
0dx =

∫
R3

|∇v0|2dx − λ

∫
R3

f v2
0dx

< lim inf
n→∞

⎛⎜⎝‖vn‖2
μn

− λ

∫
R3

f v2
ndx

⎞⎟⎠≤ 0,

since 
∫
R3 V v2

0dx = 0. Hence v0‖v0‖μ
∈ 
−

μ ∩ �+
μ (p) which is impossible. Since vn → v0 in Xμ, 

then ‖v0‖μ = 1. Hence v0 ∈ �0
μ (p) and so v0 ∈ �+

μ (p). Moreover,

‖v0‖2
μ − λ

∫
R3

f v2
0dx = lim

n→∞

⎛⎜⎝‖vn‖2
μ − λ

∫
R3

f v2
ndx

⎞⎟⎠≤ 0,

and so v0 ∈ 
−
μ . Thus, v0 ∈ 
−

μ ∩ �+
μ (p) which is impossible. Therefore, we can conclude that 

N+
μ,λ is uniform bounded for μ > 0 sufficiently large. This completes the proof. �
When N+

μ,λ and N−
μ,λ are separated and N0

μ,λ = ∅, any non-zero minimizer for Jμ,λ on N+
μ,λ

(or on N−
μ,λ) is also a local minimizer on Nμ,λ and so will be a critical point for Jμ,λ on Nμ,λ

and a nontrivial solution of Equation 
(
Eμ,λ

)
. Since 

∫
R3 Qφ

p
1 dx < 0, we can obtain that 
−

μ ∩
�−

μ (p) 
= ∅ for all μ > 0. Furthermore, we have the following result.

Theorem 4.3. Suppose that 4 < p < 6 and 
∫
�

Qφ
p

1 dx < 0. Then for each λ1 (f�) ≤ λ <
λ1 (f�) + δ0, there exists a minimizer of Jμ,λ(u) on N+

μ,λ for μ > 0 sufficiently large.

Proof. By Lemmas 3.6 and 4.2, N+
μ,λ 
= ∅ and N+

μ,λ is uniformly bounded for μ > 0 sufficiently 
large. Then there exists Ca,λ > 0 such that ‖u‖μ ≤ Ca,λ for all u ∈ N+

μ,λ. Hence, making use of 
(2.1), for u ∈ N+

μ,λ we have

Jμ,λ(u) ≥ −a

4
‖u‖4

μ − (p − 2)‖Q‖∞
2p

∫
R3

|u|p dx

≥ −a

4
C4

a,λ − (p − 2)‖Q‖∞
2pSp

|{V < c}| 6−p
6 C

p
a,λ. (4.13)

Thus, Jμ,λ is bounded from below on N+
μ,λ and so infu∈N+

μ,λ
Jμ,λ(u) is finite. Since 

∫
�

Qφ
p
1 dx <

0 and 
∫
�

|∇φ1|2 dx − λ 
∫
�

f�φ2
1dx < 0, which indicates that the function hφ1 (t) = Jμ,λ (tφ1)

have t+0 > 0 and κ0 < 0 are independent of μ such that t+0 φ1 ∈ N+
μ,λ and

inf
0<t<∞hφ1 (t) = hφ1

(
t+0
)= κ0 < 0.

This implies that
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inf
u∈N+

μ,λ

Jμ,λ (u) ≤ κ0 < 0 for μ > 0 sufficiently large. (4.14)

Then by the Ekeland variational principle [17], there exists a minimizing sequence {un} ⊂ N+
μ,λ

such that

lim
n→∞Jμ,λ(un) = inf

u∈N+
μ,λ

Jμ,λ(u) ≤ κ0 and J ′
μ,λ(un) = o (1) .

Since ‖un‖μ ≤ Ca,λ. Thus, by Proposition 2.5, there exist a subsequence {un} and u0 ∈ X such 
that J ′

μ,λ(u0) = 0 and un → u0 strongly in Xμ for μ > 0 sufficiently large, which implies that 
Jμ,λ has minimizer u0 in N+

μ,λ for μ sufficiently large, and so

Jμ,λ(u0) = lim
n→∞Jμ,λ(un) = inf

u∈N+
μ,λ

Jμ,λ(u) ≤ κ0 < 0,

which implies that u0 is a minimizer on N+
μ,λ for μ > 0 sufficiently large. �

We now turn our attention to N−
μ,λ. Since

Jμ,λ(u) = 1

4

⎛⎜⎝‖u‖2
μ − λ

∫
R3

f u2dx

⎞⎟⎠+
(

1

4
− 1

p

)∫
R3

Q |u|p dx > 0 for all u ∈ N−
μ,λ, (4.15)

we have infu∈N−
μ,λ

Jμ,λ(u) ≥ 0 for all μ > 0. Since max {Q,0} 
≡ 0 in �, similar to the arguments 

in (4.3), there exists Da,λ > 0 independent of μ such that infu∈N−
μ,λ

Jμ,λ(u) < Da,λ and the set

{
Jμ,λ < Da,λ

} :=
{
u ∈ N−

μ,λ : Jμ,λ(u) < Da,λ

}

= ∅ for μ > 0 sufficiently large.

Furthermore, we have the following results.

Lemma 4.4. Suppose that 4 < p < 6 and 
∫
�

Qφ
p
1 dx < 0. Then for each λ1 (f�) ≤ λ <

λ1 (f�) + δ0, we have the following results.
(i) There exists Ca,λ > 0 such that ‖u‖μ ≤ Ca,λ for all u ∈ {Jμ,λ < Da,λ

}
and for μ > 0 suffi-

ciently large.
(ii) We have

inf
u∈N−

μ,λ

Jμ,λ(u) = inf
u∈{Jμ,λ<Da,λ

}Jμ,λ(u) > 0

for μ > 0 sufficiently large.

Proof. (i) Suppose on the contrary. Then there exist a sequence {μn} ⊂ R+ with μn → ∞ and 
a sequence un ∈ {Jμn,λ < Da,λ

}
such that ‖un‖μn → ∞ as n → ∞. Let vn = un . Then by 
‖un‖μn
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Theorem 3.1, we may assume that for every μ > 0 there exist subsequence {vn} and v0 ∈ H 1
0 (�)

such that vn ⇀ v0 in Xμ and vn → v0 in Lr
(
R3
)

for all 2 ≤ r < 6. Then

lim
n→∞

∫
R3

Q|vn|pdx =
∫
R3

Q|v0|pdx (4.16)

and

lim
n→∞

∫
R3

f v2
ndx =

∫
R3

f v2
0dx. (4.17)

Dividing (4.15) by ‖un‖2
μn

gives

Jμn,λ(un)

‖un‖2
μn

= 1

4

⎛⎜⎝1 − λ

∫
R3

f v2
ndx

⎞⎟⎠+
(

1

4
− 1

p

)
‖un‖p−2

μn

∫
R3

Q |vn|p dx. (4.18)

Since ‖un‖μn → +∞ and Jμn,λ(un)

‖un‖2
μn

→ 0, by (4.16)–(4.18), we have that 
∫
R3 Q|vn|pdx → 0 and 

so 
∫
R3 Q|v0|pdx = 0. We now show that for each μ > 0, we have vn → v0 in Xμ. Suppose 

otherwise, then by (4.17) and (4.18), there exists μ > 0 such that∫
R3

|∇v0|2dx − λ

∫
R3

f v2
0dx = ‖v0‖2

μ − λ

∫
R3

f v2
0dx

< lim inf
n→∞

⎛⎜⎝‖vn‖2
μn

− λ

∫
R3

f v2
ndx

⎞⎟⎠= 0.

Thus, v0 
= 0 and

v0

‖v0‖μ

= v0(∫
�

|∇v0|2dx
)1/2 ∈ 
−

μ ∩ �+
μ (p) ,

which is impossible. Hence vn → v0 in Xμ. It follows that ‖v0‖μ = 1, 
∫
R3 V v2

0dx = 0 and

‖v0‖2
μ − λ

∫
R3

f v2
0dx + a ‖v0‖4

D1,2 =
∫
R3

Q|v0|pdx = 0.

Thus, for every μ > 0, there holds v0 ∈ 
0
μ ∩ �0

μ (p) which is impossible as 
−
μ ∩ �+

μ (p) = ∅. 
Hence there exists Ca,λ > 0 such that ‖u‖μ ≤ Ca,λ for all u ∈ {Jμ,λ < Da,λ

}
and for μ > 0

sufficiently large.
(ii) Since infu∈N−

μ,λ
Jμ,λ(u) ≥ 0, by Lemma 4.2 and the Ekeland variational principle [17], there 

exists a minimizing sequence {un} ⊂ {
Jμ,λ < Da,λ

}⊂ N− such that
μ,λ
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lim
n→∞Jμ,λ(un) = inf

u∈N−
μ,λ

Jμ,λ(u) and J ′
μ,λ(un) = o (1) .

By part (i), there exists Ca,λ > 0 such that ‖un‖μ ≤ Ca,λ. Then by Proposition 2.5, and so there 
exist a subsequence {un} and u0 ∈ N−

μ,λ such that un → u0 in Xμ and J ′
μ,λ(u0) = 0 for μ > 0

sufficiently large. If infu∈N−
μ,λ

Jμ,λ(u) = 0, then

Jμ,λ(u0) = lim
n→∞Jμ,λ(un) = inf

u∈N−
μ,λ

Jμ,λ(u) = 0.

It then follows exactly as in the proof in part (i) that u0‖u0‖μ
∈ 
0

μ ∩ �0
μ (p) which is impossible 

as 
−
μ ∩ �+

μ (p) = ∅. This completes the proof. �
Theorem 4.5. Suppose that 4 < p < 6 and 

∫
�

Qφ
p
1 dx < 0. Then for each λ1 (f�) ≤ λ <

λ1 (f�) + δ0, there exists a minimizer of Jμ,λ(u) on N−
μ,λ for μ > 0 sufficiently large.

Proof. By Lemmas 4.2, 4.4 and the Ekeland variational principle [17], for each μ > μ0 (λ) there 
exists a minimizing sequence {un} ⊂ {

Jμ,λ < Da,λ

}⊂ N−
μ,λ such that

lim
n→∞Jμ,λ(un) = inf

u∈N−
μ,λ

Jμ,λ(u) > 0 and J ′
μ,λ(un) = o (1) .

Since infu∈N−
μ,λ

Jμ,λ(u) < Da,λ, by Lemma 4.4 (i), there exists a positive constant Ca,λ indepen-

dent of μ such that ‖un‖μ ≤ Ca,λ. Thus, by Proposition 2.5, there exist a subsequence {un} and 
u0 ∈ X such that J ′

μ,λ(u0) = 0 and un → u0 strongly in Xμ for μ > 0 sufficiently large, which 
implies that Jμ,λ has minimizer u0 in ∈ N−

μ,λ for μ sufficiently large, and so

Jμ,λ(u0) = lim
n→∞Jμ,λ(un) = inf

u∈N−
μ,λ

Jμ,λ(u) < Da,λ,

which implies that u0 is a minimizer on N−
μ,λ. This completes the proof. �

We are now ready to prove Theorem 1.2: By Theorems 4.3 and 4.5, there exists δ0 > 0
such that, when λ1 (f�) ≤ λ < λ1 (f�)+ δ0, Jμ,λ has minimizers in each of N+

μ,λ and N−
μ,λ for μ

sufficiently large. Since Jμ,λ(u) = Jμ,λ(|u|), we may assume that these minimizers are positive. 
Moreover, by Lemma 3.6 we may assume that N+

μ,λ and N−
μ,λ are separated and N0

μ,λ = ∅. It 

follows that the minimizers are local minimizers in Nμ,λ which do not lie in N0
μ,λ and so by 

Lemma 2.4, they are positive solutions of Equation 
(
Eμ,λ

)
.

5. The case when N = 3 and p = 4

We are now ready to prove Theorem 1.3: (i) When 0 < λ < λ1 (f�). Similar to the argu-
ment of proofs in Lemma 4.1 and Theorem 1.1, Jμ,λ has minimizer u0 in Nμ,λ = N−

μ,λ for μ
sufficiently large. Since Jμ,λ(u) = Jμ,λ(|u|), by Lemma 2.4, we may assume that u0 is a positive 
solution of Equation 

(
Eμ,λ

)
such that Jμ,λ(u

−
μ) = infu∈N− Jμ,λ(u) > 0.
μ,λ
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(ii) Since 
0 < ∞, by Lemma 3.4 (ii) for each a ≥ 
0 and 0 < λ < λ1 (f�), we have Nμ,λ =
∅ for μ sufficiently large, this implies that for each a ≥ 
0 and 0 < λ < λ1 (f�), Equation 

(
Eμ,λ

)
does not admit nontrivial solution.

(iii) Since 
0 < ∞, by Lemma 3.4 (iii), for each a > 
0 and λ ≥ λ1 (f�), we have Nμ,λ =
N+

μ,λ and N+
μ,λ = {tmin(u)u : u ∈ �−

μ (p)} for μ > 0 sufficiently large. Now, we will show that 
N+

μ,λ is uniform bounded for μ > 0 sufficiently large. Suppose on the contrary. Then there exist 
sequences {μn} ⊂R and un ∈ N+

μn,λ such that μn → ∞ and ‖un‖μn → ∞ as n → ∞. Clearly,

‖un‖2
μn

− λ

∫
R3

f u2
ndx =

∫
R3

Q|un|4dx − a ‖un‖4
D1,2 < 0. (5.1)

Let vn = un‖un‖μn
. Then by Theorem 3.1, we may assume that for every μ > 0 there exists v0 ∈

H 1
0 (�) such that

vn ⇀ v0 in Xμ;vn → v0 in Lr
(
R3
)

for all 2 ≤ r < 6.

Thus,

lim
n→∞

∫
R3

f v2
ndx =

∫
R3

f v2
0dx (5.2)

and

lim
n→∞

∫
R3

Q |vn|p dx =
∫
R3

Q |v0|p dx. (5.3)

Moreover, by Fatou’s Lemma,∫
R3

|∇v0|2dx ≤ lim inf
n→∞

∫
R3

|∇vn|2dx. (5.4)

Dividing (5.1) by ‖un‖2
μn

gives

‖vn‖2
μn

− λ

∫
R3

f v2
ndx = ‖un‖2

μn

⎛⎜⎝∫
R3

Q|vn|4dx − a ‖vn‖4
D1,2

⎞⎟⎠< 0. (5.5)

Since

lim
n→∞

⎛⎜⎝‖vn‖2
μn

− λ

∫
3

f v2
ndx

⎞⎟⎠= 1 − λ lim
n→∞

∫
3

f v2
ndx = 1 − λ

∫
3

f v2
0dx (5.6)
R R R
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and ‖un‖μn → ∞, by (5.3)–(5.6), it obtains that
∫
R3 Q|v0|4dx−a ‖v0‖4

D1,2 ≥ 0 and 
∫
R3 f v2

0dx >

0. Moreover, by v0 ∈ H 1
0 (�), (5.2) and (5.5), for every μ > 0,

‖v0‖2
μ − λ

∫
R3

f v2
0dx =

∫
R3

|∇v0|2dx − λ

∫
R3

f v2
0dx

≤ lim inf
n→∞

⎛⎜⎝‖vn‖2
μn

− λ

∫
R3

f v2
ndx

⎞⎟⎠≤ 0.

We now show that vn → v0 in Xμ. Suppose on the contrary. Then

‖v0‖2
μ − λ

∫
R3

f v2
0dx =

∫
R3

|∇v0|2dx − λ

∫
R3

f v2
0dx

< lim inf
n→∞

⎛⎜⎝‖vn‖2
μn

− λ

∫
R3

f v2
ndx

⎞⎟⎠≤ 0,

since 
∫
R3 V v2

0dx = 0. Hence v0‖v0‖μ
∈ 
−

μ ∩ �+
μ (p) which is impossible. Since vn → v0 in Xμ, 

then ‖v0‖μ = 1. Hence v0 ∈ �0
μ (p) and so v0 ∈ �+

μ (p). Moreover,

‖v0‖2
μ − λ

∫
R3

f v2
0dx = lim

n→∞

⎛⎜⎝‖vn‖2
μ − λ

∫
R3

f v2
ndx

⎞⎟⎠≤ 0,

and so v0 ∈ 
−
μ . Thus, v0 ∈ 
−

μ ∩ �+
μ (p) which is impossible. Therefore, we can conclude 

that N+
μ,λ is uniform bounded for μ > 0 sufficiently large. Then similar to the argument of 

proof in Theorem 4.3, Jμ,λ has minimizer u+
μ in Nμ,λ = N+

μ,λ for μ sufficiently large such that 
Jμ,λ(u

+
μ) < 0. Since Jμ,λ(u

+
μ) = Jμ,λ(|u+

μ |), by Lemma 2.4, we may assume that u+
μ is a positive 

solution of Equation 
(
Eμ,λ

)
.

(iv) The proof is essentially same as that in part (iii), so we omit it here.

We are now ready to prove Theorem 1.4: Since λ−2
1 (f�)

∫
�

Qφ4
1dx < a < 
0,

�p (φ1) =
∫
�

Q|φ1|pdx − a

⎛⎝∫
�

|∇φ1|2 dx

⎞⎠2

< 0 for p = 4.

By Lemma 3.7, there exists δ0 > 0 such that for every λ1 (f�) ≤ λ < λ1 (f�) + δ0, N±
μ,λ are 

nonempty sets and Nμ,λ = N+
μ,λ ∪ N−

μ,λ for μ > 0 sufficiently large. Then similar to the argu-

ment of proof in Theorem 1.2, Equation 
(
Eμ,λ

)
has two positive solutions u−

μ and u+
μ satisfying 

Jμ,λ

(
u+

μ

)
< 0 < Jμ,λ

(
u−

μ

)
for μ > 0 sufficiently large.
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6. The case when N ≥ 3 and 2 < p < min {4,2∗}

6.1. The proof of Theorem 1.5

We are now ready to prove Theorem 1.5: For 0 < λ < λ1 (f ) and u ∈ X\ {0}, we know that 
tu ∈ N0

μ if and only if h′
tu (1) = h′′

tu (1) = 0, i.e., the following system of equations is satisfied:{
at3 ‖u‖4

D1,2 + t
(‖u‖2

μ − λ
∫
RN f u2dx

)− tp−1
∫
RN Q |u|p dx = 0,

3at2 ‖u‖4
D1,2 + (‖u‖2

μ − λ
∫
RN f u2dx

)− (p − 1)tp−2
∫
RN Q |u|p dx = 0.

(6.1)

By solving the system (6.1) with respect to the variables t and a, we have

t (u) =
(

2
(‖u‖2

μ − λ
∫
RN f u2dx

)
(4 − p)

∫
RN Q |u|p dx

)1/(p−2)

and

a(u) = p − 2

4 − p

(
4 − p

2

)2/(p−2)

Aλ(u),

where

Aλ(u) =
(∫

RN Q|u|pdx
)2/(p−2)

‖u‖4
D1,2

(‖u‖2
μ − λ

∫
RN f u2dx

)(4−p)/(p−2)
. (6.2)

We conclude that a(u) is the unique parameter a > 0 for which the fibrering map hu has a critical 
point with second derivative zero at t (u). Hence, if a > a(u), then hu is increasing on (0, ∞)

and has no critical point. Moreover, for 0 < λ < λ1 (f ), we define

Aλ = p − 2

4 − p

(
4 − p

p

)2/(p−2)

sup
u∈X\{0}

Aλ(u). (6.3)

Note that by (3.3) and the Hölder and Sobolev inequalities,

Aλ(u) ≤

⎛⎝‖Q‖∞
(∫

{V ≥c} u
2dx + ∫

{V <c} u
2dx

) 2∗−p

2∗−2

( ‖u‖2∗
D1,2

S2∗

) p−2
2∗−2

⎞⎠2/(p−2)

‖u‖4
D1,2

(‖u‖2
μ − λ

∫
RN f u2dx

)(4−p)/(p−2)

≤
(

λ̃1,μ (f )

λ̃1,μ (f ) − λ

)(4−p)/(p−2)

⎛⎜⎝‖Q‖∞ |{V < c}| 2∗−p

2∗ ‖u‖
N(p−2)

2
D1,2 ‖u‖

(N−2)
(
2∗−p

)
2

μ

Sp ‖u‖2(p−2)

D1,2 ‖u‖4−p
μ

⎞⎟⎠
2/(p−2)

≤
(

λ̃1,μ (f )

λ̃1,μ (f ) − λ

)(4−p)/(p−2)
⎛⎝‖Q‖∞ |{V < c}| 2∗−p

2∗

Sp

⎞⎠2/(p−2)

for al μ > μ0 (λ) ,
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which implies that for each 0 < λ < λ1 (f ),

Aλ <
1

2

(
(4 − p)λ1 (f�)

p (λ1 (f�) − λ)

)(4−p)/(p−2)
⎛⎝‖Q‖∞ |{V < c}| 2∗−p

2∗

Sp

⎞⎠2/(p−2)

,

for μ > 0 sufficiently large. Hence, the energy functional Jμ,λ has no any nontrivial critical 
points for a > Aλ for μ > 0 sufficiently large. Consequently, we complete the proof.

6.2. The proofs of Theorems 1.6, 1.7

First, we define

α+
μ,λ = inf

u∈N+
μ,λ

Jμ,λ (u) .

Then we have the following results.

Proposition 6.1. Suppose that N = 3, 2 < p < 4 and conditions (V1) − (V3) and (D1) − (D3)

hold. Then the following statements are true.
(i) For each λ > 0 and a > 0, we have N+

μ,λ is uniformly bounded for μ > 0 sufficiently large;
(ii) For each λ > 0 and a > 0, there exist two numbers d0, D0 > 0 such that

inf
u∈N−

μ,λ∪N0
μ,λ

Jμ,λ(u) ≥ 0 > −d0 > α+
μ,λ > −D0 for μ > 0 sufficiently large.

Proof. (i) Let u ∈ N+
μ,λ. Then by (2.2) and the Hölder and Sobolev inequalities,

‖u‖2
μ <

a (4 − p)

(p − 2)

⎛⎜⎝ ∫
R3

|∇u|2 dx

⎞⎟⎠
2

+ λ‖f ‖L3/2

S2

∫
R3

|∇u|2 dx. (6.4)

Moreover, using the Sobolev, Hölder and Hardy inequalities, condition (D3) and (6.4) gives

1 =
∫
R3 Q |u|p dx + λ

∫
R3 f u2dx

‖u‖2
μ + a ‖u‖4

D1,2

<

∫
R3 Q |u|p dx + λ

∫
R3 f u2dx

a ‖u‖4
D1,2

= 1

aS
3(p−2)

2

⎡⎢⎣∫|x|>R∗ Q
4

6−p u2dx + ‖Q‖
4

6−p∞
∣∣BR∗ (0)

∣∣ 2
3 S−2

∫
R3 |∇u|2 dx

‖u‖
2(14−3p)

6−p

D1,2

⎤⎥⎦
6−p

4

+ λ‖f ‖L3/2

aS2 ‖u‖2
D1,2

≤ 1

aS
3(p−2)

2

⎡⎢⎢⎢⎣
∫
|x|>R∗

(
V u2

) 2(4−p)
6−p

( |u|
|x|
) 2(p−2)

6−p

dx

‖u‖
2(14−3p)

6−p

D1,2

+ ‖Q‖
4

6−p∞
∣∣BR∗ (0)

∣∣ 2
3 S−2

‖u‖
4(4−p)

6−p

D1,2

⎤⎥⎥⎥⎦
6−p

4

+ λ‖f ‖L3/2

aS2 ‖u‖2
D1,2
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≤ 1

aS
3(p−2)

2

⎡⎢⎣C0

(∫
|x|>R∗ V (x)u2dx

‖u‖4
D1,2

) 2(4−p)
6−p

+ ‖Q‖
4

6−p∞
∣∣BR∗ (0)

∣∣ 2
3 S−2

‖u‖
4(4−p)

6−p

D1,2

⎤⎥⎦
6−p

4

+ λ‖f ‖L3/2

aS2 ‖u‖2
D1,2

<
1

aS
3(p−2)

2

⎡⎢⎣C0

(
a (4 − p)

μ(p − 2)
+ λ‖f ‖L3/2

μS2 ‖u‖2
D1,2

) 2(4−p)
6−p

+ ‖Q‖
4

6−p∞
∣∣BR∗ (0)

∣∣ 2
3

S2 ‖u‖
4(4−p)

6−p

D1,2

⎤⎥⎦
6−p

4

+ λ‖f ‖L3/2

aS2 ‖u‖2
D1,2

where C0 is the sharp constant of Caffarelli-Kohn-Nirenberg inequality. This implies that there 
exists a constant d1 > 0, dependent on a and λ such that∫

R3

|∇u|2 dx ≤ d1 for all u ∈ N+
μ,λ and for μ > 0 sufficiently large. (6.5)

Thus, by (6.4) and (6.5), we have

‖u‖2
μ <

a(4 − p)

p − 2
d2

1 + λ‖f ‖L3/2

S2 d1 for all u ∈ N+
μ,λ.

(ii) By Theorem 3.8 (ii), there exists d0 > 0 such that α+
μ,λ < −d0 := Jμ,λ

(
t+a φ1

)
. Next, we 

prove that there exist constants D0, μ2 > 0 such that

α+
μ,λ > −D0 for all μ ≥ μ2 and a > 0.

Let u ∈ N+
μ,λ. Similar to (6.4), we obtain

∫
R3

f u2dx ≤ λ‖f ‖L3/2

S2

∫
R3

|∇u|2 dx

and

∫
R3

Q |u|p dx ≤ C
6−p

4
0

S
3(p−2)

2

(
a (4 − p)

2λ (p − 2)

) 4−p
2 ‖u‖4

D1,2 + ‖Q‖∞
∣∣BR∗ (0)

∣∣ 6−p
6

Sp
‖u‖p

D1,2 .

Using the above inequalities gives

Jμ,λ (u) = 1

2

⎛⎜⎝‖u‖2
μ − λ

∫
R3

f u2dx

⎞⎟⎠+ a

4
‖u‖4

D1,2 − 1

p

∫
R3

Q|u|pdx

>

⎡⎣a

4
− C

6−p
4

0

S
3(p−2)

2

(
a (4 − p)

2λ (p − 2)

) 4−p
2

⎤⎦‖u‖4
D1,2 − ‖Q‖∞

∣∣BR∗ (0)
∣∣ 6−p

6

Sp
‖u‖p

D1,2
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−λ‖f ‖L3/2

2S2
‖u‖2

D1,2 .

This implies that there exists a constant Da,λ > 0 such that α+
μ,λ > −Da,λ for μ > 0 sufficiently 

large. Moreover, for u ∈ N−
μ,λ ∪ N0

μ,λ, by (2.2),

Jμ,λ(u) = 1

4

⎛⎜⎝‖u‖2
μ − λ

∫
R3

f u2dx

⎞⎟⎠− 4 − p

4p

∫
R3

Q|u|pdx

≥ (4 − p) (p − 2)

8p

∫
R3

Q|u|pdx > 0.

Therefore,

inf
u∈N−

μ,λ∪N0
μ,λ

Jμ,λ(u) ≥ 0 > −d0 > α+
μ,λ > −Da,λ,

for μ > 0 sufficiently large. This completes the proof. �
Proposition 6.2. Suppose that N ≥ 4, 2 < p < 2∗ and conditions (V1) − (V3) and (D1) − (D2)

hold. Then the following statements are true.
(i) For each λ > 0 and a > 0, we have N+

μ,λ is uniformly bounded for μ > 0 sufficiently large;
(ii) For each λ > 0 and a > 0, there exist two numbers d0, D0 > 0 such that

inf
u∈N−

μ,λ∪N0
μ,λ

Jμ,λ(u) ≥ 0 > −d0 > α+
μ,λ > −D0 for μ > 0 sufficiently large.

Proof. (i) Let u ∈ N+
μ,λ. Then by (2.2) and the Hölder and Sobolev inequalities,

‖u‖2
μ <

a (4 − p)

(p − 2)
‖u‖4

D1,2 + λ‖f ‖LN/2

S2

∫
RN

|∇u|2 dx. (6.6)

Moreover, using the Sobolev and Hölder inequalities and (6.6) gives

1 =
∫
RN Q |u|p dx + λ

∫
RN f u2dx

‖u‖2
μ + a ‖u‖4

D1,2

<

∫
RN Q |u|p dx + λ

∫
RN f u2dx

a ‖u‖4
D1,2

≤
‖Q‖∞

(
1
μc

‖u‖2
μ + |{V <c}|2/N

S2

∫
RN |∇u|2 dx

) 2p−N(p−2)
4

aSN(p−2)/2 ‖u‖
8−N(p−2)

2
D1,2

+ λ‖f ‖LN/2

aS2 ‖u‖2
D1,2

<
‖Q‖∞

[
a(4−p)
μc(p−2)

‖u‖4
D1,2 +

(
λ‖f ‖

LN/2

μcS2 + |{V <c}|2/N

S2

)
‖u‖2

D1,2

] 2p−N(p−2)
4

aSN(p−2)/2 ‖u‖
8−N(p−2)

2

+ λ‖f ‖LN/2

aS2 ‖u‖2
D1,2

.

D1,2
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Since

8 − N (p − 2)

2
≥ 2p − N (p − 2) for N ≥ 4,

this implies that there exists a constant d1 > 0, dependent on a and λ such that

‖u‖D1,2 ≤ d1 for all u ∈ N+
μ,λ and for μ > 0 sufficiently large. (6.7)

Thus, by (6.6) and (6.7), we have

‖u‖2
μ <

a(4 − p)

p − 2
d4

1 + λ‖f ‖LN/2

S2 d2
1 for all u ∈ N+

μ,λ.

(ii) The proof is essentially same as that in Proposition 6.1 (ii), so we omit it here. �
We are now ready to prove Theorem 1.6: (i) By the Ekeland variational principle [17], 

Lemma 6.4 and Proposition 6.1, for each 0 < λ < λ1 (f�) and 0 < a < a0 there exists a bounded 
sequence {un} ⊂ N+

μ,λ such that

Jμ,λ (un) = α+
μ,λ + o(1) and J ′

μ,λ (un) = o(1) in X−1
μ .

It follows from Propositions 2.5, 6.1 that Jμ,λ satisfies the (PS)α+
μ,λ

–condition in N+
μ,λ for μ > 0

sufficiently large. Thus, there exist a subsequence {un} and u+
μ,λ ∈ N+

μ,λ such that un → u+
μ,λ

strongly in Xμ for μ > 0 sufficiently large. Note that α+
μ,λ = Jμ,λ

(
u+

μ,λ

)
< 0. Hence, u+

μ,λ ∈
N+

μ,λ is a minimizer for Jμ,λ on N+
μ,λ. Since |u+

μ,λ| ∈ N+
μ,λ and Jμ,λ

(
|u+

μ,λ|
)

= Jμ,λ

(
u+

μ,λ

)
=

α+
μ,λ < 0, one can see that u+

μ,λ is a positive solution for Equation (Eμ,λ) by Lemma 6.3.
(ii) By the Ekeland variational principle [17], Theorem 3.8 (ii) and Proposition 6.1, for each 
a > 0 and λ ≥ λ1 (f�) there exists a bounded sequence {un} ⊂ N+

μ,λ with Jμ,λ (un) < −d0 <

infu∈N−
μ,λ∪N0

μ,λ
Jμ,λ(u) such that

Jμ,λ (un) = α+
μ,λ + o(1) and J ′

μ,λ (un) = o(1) in X−1
μ .

By Proposition 2.5, we can establish a compactness conclusion for {un}, this means that there 
exist a subsequence {un} and u+

μ,λ ∈ N+
μ,λ such that un → u+

μ,λ strongly in Xμ for μ > 0 suffi-

ciently large. In fact that u+
μ,λ is a positive solution for Equation (Eμ,λ).

We are now ready to prove Theorem 1.7: The proof is essentially same as that in Theo-
rem 1.6, so we omit it here.
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6.3. The proof of Theorem 1.8

Note that u ∈ Nμ,λ if and only if a ‖u‖4
D1,2 +‖u‖2

μ = ∫
RN Q|u|pdx +λ 

∫
RN f u2dx. It follows 

from Lemma 3.2, (3.3) and the Sobolev inequality that

λ̃1,μ (f ) − λ

λ̃1,μ (f )
‖u‖2

μ ≤ ‖u‖2
μ − λ

∫
RN

f u2dx + a ‖u‖4
D1,2 =

∫
RN

Q|u|pdx

≤ ‖Q‖∞ S−p |{V < c}| 6−p
6 ‖u‖p

μ for all u ∈ Nμ,λ and μ > μ0 (λ) .

Thus, it leads to

λ̃1,μ (f )

λ̃1,μ (f ) − λ

∫
RN

Q|u|pdx ≥ ‖u‖2
μ ≥

⎛⎝ Sp
(̃
λ1,μ (f ) − λ

)
λ̃1,μ (f )‖Q‖∞ |{V < c}| 2∗−p

2∗

⎞⎠2/(p−2)

(6.8)

for all u ∈ Nμ,λ and μ > μ0 (λ). Moreover, by (2.2) and (6.8),

Jμ,λ(u) = 1

4

⎛⎜⎝‖u‖2
μ − λ

∫
RN

f u2dx

⎞⎟⎠− 4 − p

4p

∫
RN

Q|u|pdx

≥ (p − 2)
(̃
λ1,μ (f ) − λ

)
4pλ̃1,μ (f )

‖u‖2
μ

≥ p − 2

4p

(
Sp

‖Q‖∞ |{V < c}| 2∗−p

2∗

)2/(p−2)(
λ̃1,μ (f ) − λ

λ̃1,μ (f )

)p/(p−2)

for all u ∈ N−
μ,λ.

Hence, the following statement is true.

Lemma 6.3. Suppose that 2 < p < min {4,2∗} and condition (V1) hold. Then Jμ,λ is coercive 
and bounded below on N−

μ,λ. Furthermore, for all u ∈ N−
μ,λ, there holds

Jμ,λ(u) > dμ := (p − 2)Kp (μ)

4p

(
Sp

‖Q‖∞ |{V < c}| 2∗−p

2∗

)2/(p−2)

,

where K (μ) :=
(

λ̃1,μ(f )−λ

λ̃1,μ(f )

)1/(p−2) ≤
(

λ1(f�)−λ
λ1(f�)

)1/(p−2)

for all μ ≥ μ0.

Let C (p) :=
(

2S
p
p (�)

Q�,min(4−p)

)2/(p−2)

. Then for any u ∈ Nμ,λ with Jμ,λ(u) < p−2
4p

C (p)Kp (μ), 
we deduce that
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p − 2

4p
C (p)Kp (μ) > Jμ,λ(u)

= 1

2

⎛⎜⎝‖u‖2
μ − λ

∫
RN

f u2dx

⎞⎟⎠+ a

4
‖u‖4

D1,2 − 1

p

∫
RN

Q|u|pdx

≥ (p − 2)
(̃
λ1,μ (f ) − λ

)
2pλ̃1,μ (f )

‖u‖2
μ − a(4 − p)

4p
‖u‖4

D1,2

≥ (p − 2)
(̃
λ1,μ (f ) − λ

)
2pλ̃1,μ (f )

‖u‖2
μ − a(4 − p)

4p
‖u‖4

μ . (6.9)

It implies that if 0 < a < C−1 (p), then there exist two positive numbers D̂1 (μ) and D̂2 (μ)

satisfying

0 < D̂1 (μ) < C (p)K (μ) < D̂2 (μ)

such that

‖u‖μ < D̂1 (μ) or ‖u‖μ > D̂2 (μ) . (6.10)

Thus, we have

Nμ,λ

[
p − 2

4p
C (p)Kp (μ)

]
=
{
u ∈ Nμ,λ | Jμ,λ (u) <

p − 2

4p
C (p)Kp (μ)

}
= N(1)

μ,λ ∪ N(2)
μ,λ, (6.11)

where

N(1)
μ,λ :=

{
u ∈ Nμ,λ

[
p − 2

4p
C (p)Kp (μ)

]
: ‖u‖μ < D̂1 (μ)

}
and

N(2)
μ,λ :=

{
u ∈ Nμ,λ

[
p − 2

4p
C (p)Kp (μ)

]
: ‖u‖μ > D̂2 (μ)

}
.

For 0 < a < a0 := p−2
4−p

C−1 (p), we further have

‖u‖μ < D̂1 (μ) < C1/2 (p)K (μ) for all u ∈ N(1)
μ,λ (6.12)

and

‖u‖μ > D̂2 (μ) > C1/2 (p)K (μ) for all u ∈ N(2)
μ,λ. (6.13)

Using (2.2), (6.10), condition (D4) and the Sobolev inequality gives
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h′′
u (1) = −2

⎛⎜⎝‖u‖2
μ − λ

∫
RN

f u2dx

⎞⎟⎠+ (4 − p)

∫
RN

Q|u|pdx

≤ −2
(̃
λ1,μ (f ) − λ

)
λ̃1,μ (f )

‖u‖2
μ + ‖Q‖∞ (4 − p) |{V < c}|

(
2∗−p

)
/2∗

Sp
‖u‖p

μ

< 0 for all u ∈ N(1)
μ,λ.

By (6.9), one has

1

4

⎛⎜⎝‖u‖2
μ − λ

∫
RN

f u2dx

⎞⎟⎠− 4 − p

4p

∫
RN

Q|u|pdx = Jμ,λ (u) <
p − 2

4p
C (p)Kp (μ)

<
p − 2

4p

⎛⎜⎝‖u‖2
μ − λ

∫
RN

f u2dx

⎞⎟⎠
for all u ∈ N(2)

μ,λ, which implies that

2

⎛⎜⎝‖u‖2
μ − λ

∫
RN

f u2dx

⎞⎟⎠< (4 − p)

∫
RN

Q|u|pdx for all u ∈ N(2)
μ,λ. (6.14)

Applying (2.2) and (6.14) leads to

h′′
u (1) = −2

⎛⎜⎝‖u‖2
μ − λ

∫
RN

f u2dx

⎞⎟⎠+ (4 − p)

∫
RN

Q|u|pdx > 0 for all u ∈ N(2)
μ,λ.

Moreover, by Theorem 3.8 (i), there exist t±a > 0 such that t−a wλ,� ∈ N(1)
μ,λ and t+a wλ,� ∈ N(2)

μ,λ. 

Namely, N(i)
μ,λ are nonempty. Hence, we obtain the following result.

Lemma 6.4. Suppose that 2 < p < min {4,2∗} and conditions (V1) − (V3) , (D1) − (D2)

and (D4) hold. Then there exists a0 > 0 such that for every 0 < a < a0 and 0 < λ <[
1 − 2

(
4−p

4

)2/p
]

λ1 (f�), N(1)
μ,λ ⊂ N−

μ,λ and N(2)
μ,λ ⊂ N+

μ,λ are C1 nonempty sub-manifolds. Fur-

thermore, each local minimizer of the functional Jμ,λ in the sub-manifolds N(1)
μ,λ and N(2)

μ,λ is a 
critical point of Jμ,λ in Xμ.

Define

α−
μ,λ = inf

u∈N(1)
Jμ,λ (u) = inf

u∈Nμ,λ

Jμ,λ (u) .
μ,λ
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It follows from Lemma 6.3 and (6.11) that

0 < dμ < α−
μ,λ <

p − 2

4p
C (p)Kp (μ) ≤ p − 2

4p
C (p)

(
λ1 (f�) − λ

λ1 (f�)

)p/(p−2)

. (6.15)

By the Ekeland variational principle [17], there exists a sequence {un} ⊂ N(1)
μ,λ such that

Jμ,λ (un) = α−
μ,λ + o(1) and J ′

μ,λ (un) = o(1) in X−1
μ . (6.16)

We are now ready to prove Theorem 1.8: By (6.10), (6.15), (6.16) and Proposition 2.5, 
for each 0 < a < a0 we can obtain that Jμ,λ satisfies the (PS)α−

μ,λ
–condition in Xμ for μ > 0

sufficiently large. Thus, there exist a subsequence {un} and u−
μ,λ ∈ Xμ such that un → u−

μ,λ

strongly in Xμ for μ > 0 sufficiently large. Hence, u−
μ,λ is a minimizer for Jμ,λ on N(1)

μ,λ. Note 
that

0 < α−
μ,λ = Jμ,λ

(
u−

μ,λ

)
<

p − 2

4p
C (p)

(
λ1 (f�) − λ

λ1 (f�)

)p/(p−2)

,

which implies that u−
μ,λ ∈ N(1)

μ,λ. Since |u−
μ,λ| ∈ N(1)

μ,λ and Jμ,λ

(∣∣∣u−
μ,λ

∣∣∣) = Jμ,λ

(
u−

μ,λ

)
= α−

μ,λ, 

one can see that u−
μ,λ is a positive solution for Equation (Eμ,λ) by Lemma 6.3.
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