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Abstract

We study first order evolutive Mean Field Games where the Hamiltonian are non-coercive. This situa-
tion occurs, for instance, when some directions are “forbidden” to the generic player at some points. We 
establish the existence of a weak solution of the system via a vanishing viscosity method and, mainly, we 
prove that the evolution of the population’s density is the push-forward of the initial density through the 
flow characterized almost everywhere by the optimal trajectories of the control problem underlying the 
Hamilton-Jacobi equation. As preliminary steps, we need to prove that the optimal trajectories for the con-
trol problem are unique (at least for a.e. starting points) and that the corresponding unique optimal control 
has a feedback expression in terms of the intrinsic gradient of the value function.
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1. Introduction

In this paper we study the following Mean Field Game (briefly, MFG)⎧⎨⎩
(i) −∂tu + H(x,Du) = F [m(t)](x) in R2 × (0, T )

(ii) ∂tm − div(m∂pH(x,Du)) = 0 in R2 × (0, T )

(iii) m(x,0) = m0(x), u(x,T ) = G[m(T )](x) on R2,

(1.1)

where, if p = (p1, p2) and x = (x1, x2), the functions H(x, p) is

H(x,p) = 1

2
(p2

1 + h2(x1)p
2
2) (1.2)

where h(x1) is a regular bounded function possibly vanishing and that F and G are strongly 
regularizing coupling operators (see assumptions (H1) – (H4) below).

These MFG systems arise when the dynamics of the generic player are deterministic and, 
when h vanishes, may have a “forbidden” direction; actually, if the evolution of the whole 
population’s distribution m is given, each agent wants to choose the control α = (α1, α2) in 
L2([t, T ]; R2) in order to minimize the cost

T∫
t

[
1

2
|α(τ)|2 + F [m(τ)](x(τ ))

]
dτ + G[m(T )](x(T )) (1.3)

where, in [t, T ], its dynamics x(·) are governed by{
x′

1(s) = α1(s)

x′
2(s) = h(x1(s))α2(s)

(1.4)

with x1(t) = x1 and x2(t) = x2. We see that the direction along x2 is forbidden when h(x1)

has zero value. These kinds of problems are called of “Grushin type” (see [28] or Example 1.1
below).

In the present paper we focus our attention to this two dimensional model because it already 
contains all the main technical issues, however in Section 5 we will consider a generalization to 
the d-dimensional case where the dynamics are governed by

x′(s) = α(s)BT (x(s)), (1.5)

and B(x) is a triangular matrix with a particular structure (see (5.3)). As a matter of fact the 
structure of the degenerate dynamics will play an essential role in our results because it is suffi-
cient for deriving several properties of optimal trajectories mainly their regularity and a uniform 
L∞ estimate of the optimal control laws.

Let us recall that the MFG theory studies Nash equilibria in games with a huge number of 
(“infinitely many”) rational and indistinguishable agents. This theory started with the pioneer-
ing papers by Lasry and Lions [24–26] and by Huang, Malhamé and Caines [21]. A detailed 
description of the achievements obtained in these years goes beyond the scope of this paper; we 
just refer the reader to the monographs [1,12,7,19,20].
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As far as we know, degenerate MFG systems have been poorly investigated up to now. Dragoni 
and Feleqi [18] studied a second order (stationary) system where the principal part of the operator 
fulfills the Hörmander condition; moreover, for variational MFG, Cardaliaguet, Graber, Porretta 
and Tonon [14] tackled degenerate second order systems with coercive (and convex as well) first 
order operators. Hence, these results cannot be directly applied to the non-coercive problem (1.1).

The purpose of this paper is to extend to our degenerate case two properties of MFG systems 
with coercive Hamiltonians (see [12]): the first one is to prove the existence of a solution of (1.1), 
while the second, and main result is the expression of the evolution of the population’s density m
as the push-forward of the distribution at the initial time through the flow characterized almost 
everywhere by the optimal trajectories of the control problem underlying the Hamilton-Jacobi 
equation. Roughly speaking, as in the Lagrangian approach for MFG (see [6,9]), this property 
means that for a.e. starting positions, the agents follow the optimal trajectories associated to the 
Hamilton-Jacobi equation.

In order to establish the representation formula for m, we shall follow some ideas of P-L 
Lions in the lectures at Collège de France (see [12]) but, since H is non-coercive, we have to 
apply also some techniques of [15,13] and the superposition principle [3]. To this end we have to 
study carefully the behaviour of the optimal trajectories of the control problem associated to the 
Hamilton-Jacobi equation (1.1)-(i) especially their uniqueness and their regularity. Crucial points 
will be the application of the Pontryagin maximum principle and the statement of Theorem 2.1
on the uniqueness of the optimal trajectory after a rest time. As far as we know this uniqueness 
property has never been tackled before for this kind of degenerate dynamics and, in our opinion, 
it may have interest in itself.

We point out that our approach could be applied to other first order “degenerate” MFG systems 
but it is essential to prove some uniqueness properties of optimal trajectories in a set of starting 
points of full measure. In general this set depends on the semiconcavity properties of u (see 
Definition 2.3), as in the classical setting, and on the degeneracy of the dynamics.

We now list our notations and the assumptions, we give the definition of (weak) solution to 
system (1.1) and we state the existence result for system (1.1).

Notations and Assumptions. For x = (x1, x2) ∈ R2, φ : R2 → R and � : R2 → R2 differen-
tiable, we set: DGφ(x) := (∂x1φ(x), h(x1)∂x2φ(x)) and divG �(x) := ∂x1�1(x) +h(x1)∂x2�2(x).
We denote by P1 the space of Borel probability measures on R2 with finite first order moment, 
endowed with the Kantorovich-Rubinstein distance d1. We denote C2(R2) the space of functions 
with continuous second order derivatives endowed with the norm

‖f ‖C2 := sup
x∈R2

[|f (x)| + |Df (x)| + |D2f (x)|].

Throughout this paper, unless otherwise explicitly stated, we shall require the following hypothe-
ses:

(H1) the functions F and G are real-valued function, continuous on P1 ×R2;
(H2) the map m → F [m](·) is Lipschitz continuous from P1 to C2(R2); moreover, there ex-

ists C ∈ R such that

‖F [m](·)‖C2 ,‖G[m](·)‖C2 ≤ C, ∀m ∈P1;
(H3) the function h : R → R is C2(R) with ‖h‖C2 ≤ C and Z := {z ∈ R : h(z) = 0} has null 

measure;
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(H4) the initial distribution m0 has a compactly supported density (that we still denote by m0, 
with a slight abuse of notation), m0 ∈ C2,δ(R2), for a δ ∈ (0, 1).

Example 1.1. Easy examples of h are h(x1) = sin(x1) or h(x1) = x1√
1+x2

1

, (see [28] where the 

term h(x1) = x1√
1+x2

1

is introduced as a degenerate diffusion term).

We now introduce our definition of solution of the MFG system (1.1) and state the main result 
concerning its existence.

Definition 1.1. The pair (u, m) is a solution of system (1.1) if:

1) (u, m) ∈ W 1,∞(R2 × [0, T ]) × C0([0, T ]; P1(R2)) and for all t ∈ [0, T ], m(t) is absolutely 
continuous w.r.t. the Lebesgue measure on R2. Let m(·, t) denote the density of m(t). The 
function (x, t) 
→ m(x, t) is bounded;

2) Equation (1.1)-(i) is satisfied by u in the viscosity sense;
3) Equation (1.1)-(ii) is satisfied by m in the sense of distributions.

Here below we state the main result of this paper.

Theorem 1.1. Under the above assumptions:

1. System (1.1) has a solution (u, m) in the sense of Definition 1.1,
2. m is the push-forward of m0 through the characteristic flow

{
x′

1(s) = −ux1(x(s), s), x1(0) = x1,

x′
2(s) = −h2(x1(s))ux2(x(s), s), x2(0) = x2.

(1.6)

Remark 1.1. Uniqueness holds under classical hypothesis on the monotonicity of F and G as in 
[12].

This paper is organized as follows. Section 2 is devoted to the study of optimal trajectories 
in this degenerate case. We will establish a crucial point of the paper: a uniqueness property of 
the optimal trajectory of the associated control problem. Moreover still in this section we will 
find some properties of the solution u of the Hamilton-Jacobi equation (1.1)-(i) with fixed m: 
we will prove that u is Lipschitz continuous in (x, t) and semiconcave in x. In Section 3 we 
study the continuity equation (1.1)-(ii) where u is the solution of the Hamilton-Jacobi equation 
found in the previous section. Section 4 is devoted to the proof of the Theorem 1.1. Section 5
is devoted to illustrate the d-dimensional case; since the techniques are very similar to those 
used in the previous sections we will just show the new issues. Finally, the Appendix splits into 
three parts: in the first one, we give some results on the concatenation of optimal trajectories and 
the Dynamic Programming Principle while in the last two parts we introduce the notion of the 
G-differentiability and we prove the main properties on the G-differentials which will be used 
along the paper. Indeed in this degenerate case the results on differentials and semiconcavity 
established in [11] cannot be directly applied.
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2. Formulation of the optimal control problem

For every 0 ≤ t ≤ T and x := (x1, x2) ∈ R2 we consider the following optimal control prob-
lem, where the functions f, g, h satisfy the Hypothesis 2.1 here below.

Definition 2.1 (Optimal Control Problem (OC)).

Minimize Jt (x(·), α) :=
T∫

t

1

2
|α(s)|2 + f (x(s), s) ds + g(x(T )) (2.1)

subject to (x(·), α) ∈ A(x, t), where

A(x, t) :=
{
(x(·), α(·)) ∈ AC([t, T ];R2) × L2([t, T ];R2) : (1.4) holds a.e. with x(t) = x

}
.

(2.2)
A pair (x(·), α) in A(x, t) is said to be admissible. We say that x∗ is an optimal trajectory if there 
is a control α∗ such that (x∗, α∗) is optimal for (OC). Also, we shall refer to the system (1.4) as 
to the dynamics of the optimal control problem (OC).

In what follows, the functions f, g and h satisfy the following conditions.

Hypothesis 2.1.

(i) f ∈ C0([0, T ], C2(R2)) and there exists a constant C such that

‖f (·, t)‖C2(R2) + ‖g‖C2(R2) + ‖h‖C2(R) ≤ C, ∀t ∈ [0, T ].

(ii) The set Z = {z ∈ R : h(z) = 0} has null measure.

Condition (ii) will play a crucial role to prove some stationary condition (see Lemma 2.1) and 
the uniqueness of the optimal trajectory after a rest time (see Theorem 2.1).

Remark 2.1. Notice that, given a control law α ∈ L2([t, T ]; R2), the Hypothesis 2.1 on h implies 
that, given the initial point x, there is a unique trajectory x(·) such that (x(·), α) ∈ A(x, t).

Remark 2.2 (Existence of optimal solutions). Hypothesis 2.1-(i) ensures that the optimal control 
problem (OC) admits a solution (x∗, α∗).

Definition 2.2. The value function for the cost Jt defined in (2.1) is

u(x, t) := inf {Jt (x(·), α) : (x(·), α) ∈A(x, t)} . (2.3)

An optimal pair (x∗(·), α∗) for the control problem (OC) in Definition 2.1 is also said to be 
optimal for u(x, t).
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2.1. Necessary conditions and regularity for the optimal trajectories

The application of the Maximum Principle (see [16, Theorem 22.17]) yields the following 
necessary conditions.

Proposition 2.1 (Necessary conditions for optimality). Let (x∗, α∗) be optimal for (OC). There 
exists an arc p ∈ AC([t, T ]; R2), hereafter called the costate, such that

1. The pair (α∗, p) satisfies the adjoint equations: for a.e. s ∈ [t, T ]

p′
1 = −p2h

′(x∗
1 )α∗

2 + fx1(x
∗, s) (2.4)

p′
2 = fx2(x

∗, s), (2.5)

the transversality condition

−p(T ) = Dg(x∗(T )) (2.6)

together with the maximum condition

max
α=(α1,α2)∈R2

p1(s)α1 + p2(s)h(x∗
1 (s))α2 − |α|2

2
=

= p1(s)α
∗
1(s) + p2(s)h(x∗

1 (s))α∗
2(s) − |α∗(s)|2

2
a.e. s ∈ [t, T ]. (2.7)

2. The optimal control α∗ is given by{
α∗

1 = p1

α∗
2 = p2h(x∗

1 )
a.e on [t, T ]. (2.8)

3. The pair (x∗, p) satisfies the system of differential equations: for a.e. s ∈ [t, T ]

x′
1 = p1 (2.9)

x′
2 = h2(x1)p2 (2.10)

p′
1 = −p2

2h
′(x1)h(x1) + fx1(x, s) (2.11)

p′
2 = fx2(x, s) (2.12)

with the mixed boundary conditions x∗(t) = x, p(T ) = −Dg(x∗(T )).

Proof. 1. Hypothesis 2.1 -(i) ensures the validity of the assumptions of the Maximum Principle 
[16, Theorem 22.17] with the Hamiltonian

Hη(s, x1, x2,p1,p2, α1, α2) = p1α1 + p2h(x1)α2 − η

(
1 |α|2 + f (x, s)

)
.

2
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Since the endpoint is free, [16, Corollary 22.3] implies that the deduced necessary conditions 
hold in normal form (i.e., with η = 1): the claim follows directly.

2. The maximum condition (2.7) implies that

Dα

(
p1(s)α1 + p2(s)h(x∗

1 (s))α2 − |α|2
2

)
α=α∗

= 0 a.e. s ∈ [t, T ]

from which we get (2.8).
3. Conditions (2.9) – (2.10) follow directly from the dynamics (1.4) replacing α∗

1 , α∗
2 by means 

of (2.8). Condition (2.11) follows similarly from (2.4), whereas (2.12) coincides with (2.5). �
Let us emphasize that the next corollary establishes the regularity of optimal trajectories and 

an L∞ estimate of optimal control laws independent of the starting point (x, t). This will be an 
essential tool to prove the Lipschitz property in Lemma 2.3-(2).

Corollary 2.1 (Feedback control and regularity). Let (x∗, α∗) be optimal for (OC) starting from 
(x, t) and p be the related costate as in Proposition 2.1. Then:

1. The costate p = (p1, p2) is uniquely expressed in terms of x∗ for every s ∈ [t, T ] by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
p1(s) = −gx1(x

∗(T )) −
T∫

s

fx1(x
∗, τ ) − p2

2h
′(x∗

1 )h(x∗
1 ) dτ,

p2(s) = −gx2(x
∗(T )) −

T∫
s

fx2(x
∗, τ ) dτ.

(2.13)

2. The optimal control α∗ = (α∗
1 , α∗

2) is a feedback control (i.e., a function of x∗), uniquely 
expressed for a.e. s ∈ [t, T ] by⎧⎪⎪⎨⎪⎪⎩

α∗
1(s) = −gx1(x

∗(T )) +
s∫

T

fx1(x
∗, τ ) − p2

2h
′(x∗

1 )h(x∗
1 ) dτ,

α∗
2(s) = p2(s)h(x∗

1 (s)).

(2.14)

3. The optimal control α∗ and the costate p are of class C1, the optimal trajectory x∗ is of 
class C2. In particular the equalities (2.8) – (2.14) do hold for every s ∈ [t, T ].

4. There is a constant C independent of (x, t) such that ‖p‖∞ ≤ C and ‖α∗‖∞ ≤ C.
5. Assume that, for some k ∈N , h ∈ Ck+1 and Df (x, s) is of class Ck . Then α∗, p are of class 

Ck+1 and x∗ is of class Ck+2.

Proof. Point 1 is an immediate consequence of (2.11) – (2.12) together with the endpoint con-
dition p(T ) = −Dg(x∗(T )). Point 2 follows then directly from (2.8).

3. Since x∗ is continuous, the continuity of α∗ follows from (2.14). The dynamics (1.4) then 
yield that x∗ ∈ C1. Again (1.4) gives x∗ ∈ C2. Relations (2.13) and (2.14) imply, respectively, 
that p and α∗ are of class C1.
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4. By Hypothesis 2.1-(i), the system (2.13) allows to easily obtain the boundedness of pi , 
i = 1, 2 uniformly on (x, t). By (2.14) we get the statement.

5. The relations (2.13) and the C1-regularity of x∗ and p imply that, actually, p ∈ C2. There-
fore, (2.14) gives the C2-regularity of α∗ and, finally, the dynamics (1.4) yield the C3-regularity 
of x∗. Further regularity of x∗, α∗ and p follows by a standard bootstrap inductive argument. �
2.2. Uniqueness of the trajectories after the initial time

Next Theorem 2.1 implies that the optimal trajectories for u(x, t) do not bifurcate at any time 
r > t whenever h(x1) �= 0 (see Corollary 2.2), otherwise they may rest at x in an interval from 
the initial time t but they do not bifurcate as soon as they leave x.

Theorem 2.1 (Uniqueness of the optimal trajectory after the rest time). Under Hypothesis 2.1, 
let x∗ be an optimal trajectory for u(x, t).

1. Assume that h(x∗
1 (τ )) �= 0 for some t < τ < T . For every τ ≤ r < T there are no other 

optimal trajectories for u(x∗(r), r) other than x∗, restricted to [r, T ].
2. Assume that h(x1) = 0. Let tx∗ be the rest time for x∗ defined by

tx∗ := sup{r ∈ [t, T ] : x∗ ≡ x on [t, r]}.

For every r > tx∗ there are no optimal trajectories for u(x∗(r), r), other than x∗ restricted 
to [r, T ].

The next Lemma 2.1 relates the initial constancy of a trajectory to a stationary condition and 
is a key argument of the proof of Point 2 of Theorem 2.1.

Lemma 2.1 (A stationary condition). Assume that h(x1) = 0. Let x∗ = (x∗
1 , x∗

2 ) be a trajectory 
starting from x at time t , and r ∈ [t, T ]. Then

x∗ ≡ x on [t, r] ⇔ h(x∗
1 ) ≡ 0 on [t, r]. (2.15)

Proof. If h(x∗
1 ) = 0 on [t, r] then x∗

1 belongs to set of the zeros of h, which has null measure by 
Hypothesis 2.1. It follows that x∗

1 ≡ x1 on [t, r]. Moreover, the dynamics (1.4) imply that x∗
2 ≡ x2

on [t, r], so that x∗ ≡ x on [t, r]. The opposite implication is trivial, since h(x1) = 0. �
Remark 2.3. Let us point out that, assuming h(x1) = 0, the stationary trajectories x∗ = x on 
[t, r] are the only singular trajectories in [t, r] of the optimal control problem (OC) (for the 
classical definition of singular trajectories see [8, Section 2, Def.19] or [10, Def. 2.3]).

Proof of Theorem 2.1. 1. Let r ∈ [τ, T [ and y∗ be optimal for u(x∗(r), r). Point 1 of Proposi-
tion 6.1 in the Appendix ensures that the concatenation z∗ of x∗ with y∗ at r is optimal for u(x, t). 
Let p := (p1, p2), q := (q1, q2) be the costates associated to x∗ := (x∗

1 , x∗
2 ) and, respectively, to 

z∗ := (z∗
1, z

∗
2). Both (x∗, p) and (z∗, q) satisfy (2.9) – (2.12) on [t, T ]. Now, Corollary 2.1 shows 

that x∗ and z∗ are of class C1. Since x∗ = z∗ on [t, τ ], the fact that τ > t , together with (2.9), 
imply
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p1(τ ) = (x∗
1 )′(τ ) = lim

s→τ−(x∗
1 )′(s) = lim

s→τ−(z∗
1)

′(s) = (z∗
1)

′(τ ) = q1(τ ),

whereas (2.10), and the fact that h(x∗
1 (τ )) �= 0 analogously yield

p2(τ ) = (x∗
2 )′(τ )

h2(x∗
1 (τ ))

= (z∗
2)

′(τ )

h2(z∗
1(τ ))

= q2(τ ).

Therefore, both (x∗, p) and (z∗, q) are absolutely continuous solutions to the same Cauchy 
problem on [t, T ], with initial data at τ , for the first order differential system (2.9)-(2.12). The 
regularity assumptions on f, h and Cauchy-Lipschitz Theorem guarantee the uniqueness of the 
solution. Thus x∗ = z∗ on [τ, T ], from which we obtain the desired equality x∗ = y∗ on [r, T ].

2. We assume that tx∗ < T , otherwise the claim is trivial. We deduce from Lemma 2.1 that 
there is τ ∈ [tx∗ , r] satisfying h(x∗

1 (τ )) �= 0. Point 1 of Theorem 2.1 yields the conclusion. �
Corollary 2.2. Let x∗ be an optimal trajectory for u(x, t). If h(x1) �= 0, for every t < r < T there 
are no other optimal trajectories starting from x∗(r) at time r , other than x∗, restricted to [r, T ].

2.3. The Hamilton-Jacobi equation and the value function of the optimal control problem

The aim of this section is to study the Hamilton-Jacobi equation (1.1)-(i) with m fixed, namely

{−∂tu + 1
2 |DGu|2 = f (x, t) in R2 × (0, T ),

u(x,T ) = g(x) on R2 (2.16)

where DGu(x) := (∂x1u(x), h(x1)∂x2u(x)). Under Hypothesis 2.1, we shall prove several regu-
larity properties of the solution (especially Lipschitz continuity and semiconcavity). As a first 
step, in the next lemma we show that the solution u of (2.16) can be represented as the value 
function of the control problem (OC) defined in (2.3).

Lemma 2.2. Under Hypothesis 2.1, the value function u, defined in (2.3), is the unique bounded 
uniformly continuous viscosity solution to problem (2.16).

Proof. The Dynamic Programming Principle (stated in Proposition 6.1 in Appendix below) 
yields that the value function is a solution to problem (2.16). Applying classical results on 
uniqueness (see, for example, [11, eq. (7.40) and Thm. 7.4.14]), we obtain the statement. More-
over, taking as admissible control the law α = 0, from the representation formula (2.3), using the 
boundedness of f and g, we have |u(x, t)| ≤ CT . �

In the following lemma we prove the Lipschitz continuity in both variables x and t of the value 
function. We shall need this property for instance to prove the a.e. differentiability of u(x(·), ·).

Lemma 2.3 (Lipschitz continuity). Under Hypothesis 2.1, there hold:

1. u(x, t) is Lipschitz continuous with respect to the spatial variable x,
2. u(x, t) is Lipschitz continuous with respect to the time variable t .
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Proof. In this proof, CT will denote a constant which may change from line to line but it always 
depends only on the constants in the assumptions (especially the Lipschitz constants of f and g) 
and on T .

1. Let t be fixed. We follow the proof of [12, Lemma 4.7]. From Remark 2.2 we know that 
there exists α(·) optimal control for u(x, t) and x(·) optimal trajectory i.e.:

u(x1, x2, t) =
T∫

t

1

2
|α(s)|2 + f (x(s), s) ds + g(x(T )). (2.17)

From the boundedness of u (established in Lemma 2.2) and our assumptions, there exists a 
constant CT such that ‖α‖L2(t,T ) ≤ CT .

We consider the path x∗(s) starting from y = (y1, y2), with control α. Hence

x∗
1 (s) = y1 +

s∫
t

α1(τ ) dτ = y1 − x1 + x1(s)

x∗
2 (s) = y2 +

s∫
t

h(y1 − x1 + x1(τ ))α2(τ ) dτ

= y2 − x2 + x2(s) +
s∫

t

h(y1 − x1 + x1(τ ))α2(τ ) − h(x1(τ ))α2(τ ) dτ.

Using the Lipschitz continuity of f and h and the boundedness of h we get

f (x∗(s), s)

≤ f (x1(s), x2(s), s) + L|y1 − x1| +

+ L

∣∣∣∣∣∣y2 − x2 +
s∫

t

h(y1 − x1 + x1(τ ))α2(τ ) − h(x1(τ ))α2(τ ) dτ

∣∣∣∣∣∣
≤ f (x1(s), x2(s), s) + L|y1 − x1| + L|y2 − x2| + L′|y1 − x1|

s∫
t

|α2(τ )|dτ

≤ f (x(s), s) + L|y1 − x1| + L|y2 − x2| + L′|y1 − x1|T 1
2

( s∫
t

(α2(s))
2 ds

) 1
2

.

By the same calculations for g and substituting equality (2.17) in

u(y1, y2, t) ≤
T∫

1

2
|α(s)|2 + f (x∗(s), s) ds + g(x∗(T )),
t
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we get

u(y1, y2, t) ≤ u(x1, x2, t) + CT (|y2 − x2| + |y1 − x1|).

Reversing the role of x and y we get the result.
2. Thanks to the boundedness of h and the bound of α uniform on (x, t) proved in Corol-

lary 2.1-4, we can follow the same arguments as those in the proof of [12, Lemma 4.7], hence 
obtaining

|x(s) − x| ≤ C(s − t)‖α‖∞ ≤ CT (s − t). �
In the following lemma we establish the semiconcavity of u(x, t) w.r.t. x; we recall here below 

the definition of semiconcavity with linear modulus and we refer the reader to the monograph 
[9] for further properties.

Definition 2.3. Let u : Rd → R. We say that u is semiconcave (with linear modulus) if there 
exists a constant C ≥ 0 such that for all λ ∈ [0, 1],

λu(y) + (1 − λ)u(x) − 2u(λy + (1 − λ)x) ≤ Cλ(1 − λ)|y − x|2

for all x, y ∈Rd .

The semiconcavity of u will be used in the study of the relationship between the regularity 
of the value function and the uniqueness of the optimal trajectories. It is worth to remark that it 
is possible to prove that u(x, t) is also semiconcave with respect to the χ -lines associated to the 
Grushin dynamics, as introduced in [5, Example 2.4], but this does not seem to be useful to our 
results.

Lemma 2.4 (Semiconcavity). Under Hypothesis 2.1, the value function u, defined in (2.3), is 
semiconcave with respect to the variable x.

Proof. For any x, y ∈R2 and λ ∈ [0, 1], consider xλ := λx + (1 −λ)y. Let α(s) and xλ(s) be an 
optimal control and optimal trajectory for u(xλ, t):

xλ(s) = (xλ,1(s), xλ,2(s)) =
(

xλ,1 +
s∫

t

α1(τ ) dτ, xλ,2 +
s∫

t

h(xλ,1(τ ))α2(τ ) dτ

)
.

Let x(s) and y(s) satisfy (1.4) with initial condition respectively x and y still with the same 
control α, optimal for u(xλ, t). We have to estimate λu(x, t) + (1 − λ)u(y, t) in terms of 
u(xλ, t). To this end, arguing as in the proof of [12, Lemma 4.7], we have to estimate the terms 
λf (x(s), s) + (1 − λ)f (y(s), s) and λg(x(T )) + (1 − λ)g(y(T )).

We explicitly provide the calculations for the second component x2(s) since the calculations 
for x1(s) are the same as in [12]. We have
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x2(s) = x2 +
s∫

t

h(x1(τ ))α2(τ ) dτ

= x2 − xλ,2 + xλ,2(s) +
s∫

t

(h(x1(τ )) − h(xλ,1(τ )))α2(τ ) dτ,

and analogously for y2(s). For the sake of brevity we provide the explicit calculations only for f
and we omit the analogous ones for g; we write f (x1, x2) := f (x1, x2, s). We have

λf (x(s)) + (1 − λ)f (y(s))

= λf

⎛⎝x1(s), xλ,2(s) + x2 − xλ,2 +
s∫

t

(h(x1(τ )) − h(xλ,1(τ )))α2(τ ) dτ

⎞⎠
+(1 − λ)f

⎛⎝y1(s), xλ,2(s) + y2 − xλ,2 +
s∫

t

(h(y1(τ )) − h(xλ,1(τ )))α2(τ ) dτ

⎞⎠ .

In the Taylor expansion of f centered in xλ(s) the contribution of the first variable can be dealt 
with as in [12]. Assuming without any loss of generality x1 = y1, the contribution of the second 
variable gives

λf (x(s)) + (1 − λ)f (y(s)) = f (xλ(s)) + ∂x2f (xλ(s))

(
λ(x2 − xλ,2) + (1 − λ)(y2 − xλ,2)

+ λ

s∫
t

(h(x1(τ )) − h(xλ,1(τ )))α2(τ ) dτ

+ (1 − λ)

s∫
t

(h(y1(τ )) − h(xλ,1(τ )))α2(τ ) dτ

)
+ R,

where R is the error term of the expansion, namely

R = λ
∂2
x2,x2

f (ξ1)

2

(
x2 − xλ,2 +

s∫
t

(h(x1(τ )) − h(xλ,1(τ )))α2(τ ) dτ

)2

+ (1 − λ)
∂2
x2,x2

f (ξ2)

2

(
y2 − xλ,2 +

s∫
t

(h(y1(τ )) − h(xλ,1(τ )))α2(τ ) dτ

)2

, (2.18)

for suitable ξ1, ξ2 ∈R2.
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Since λ(x2 − xλ,2) + (1 − λ)(y2 − xλ,2) = 0, we get

λf (x(s)) + (1 − λ)f (y(s)) = f (xλ(s)) + ∂x2f (xλ(s))

s∫
t

I (τ )α2(τ ) dτ + R, (2.19)

with I (τ ) := −h(xλ,1(τ )) + λh(x1(τ )) + (1 − λ)h(y1(τ )). Now, our aim is to estimate I (τ ). 
Since xλ,1(τ ) = λx1(τ ) +(1 −λ)y1(τ ), x1(τ ) −xλ,1(τ ) = (1 −λ)(x1 −y1) and y1(τ ) −xλ,1(τ ) =
λ(y1 − x1), the Taylor expansion for h centered in xλ,1(τ ) yields

I (τ ) = 1

2
(1 − λ)λ(y1 − x1)

2[(1 − λ)h′′(ξ) + λh′′(̃ξ )],

for suitable ξ, ̃ξ ∈ R. Our Hypothesis 2.1 entails

|I (τ )| ≤ (1 − λ)λC(y1 − x1)
2.

Replacing the inequality above in (2.19), we obtain

λf (x2(s)) + (1 − λ)f (y2(s)) ≤ f (xλ,2(s)) + C2T (1 − λ)λ(y1 − x1)
2 + R. (2.20)

Let us now estimate the error term R in (2.18). We have

(
x2 − xλ,2 +

s∫
t

(h(x1(τ )) − h(xλ,1(τ )))α2(τ ) dτ

)2

≤ 2(x2 − xλ,2)
2 + 2

( s∫
t

(h(x1(τ )) − h(xλ,1(τ )))α2(τ ) dτ

)2

≤ 2(1 − λ)2(x2 − y2)
2 + 2C(1 − λ)2(x1 − y1)

2 ≤ C(1 − λ)2|x − y|2

and, analogously

(
y2 − xλ,2 +

s∫
t

(h(y1(τ )) − h(xλ,1(τ )))α2(τ ) dτ

)2

≤ Cλ2|x − y|2.

Then, replacing these two inequalities in (2.18), we infer

R ≤ C(1 − λ)λ|x − y|2. (2.21)

Taking into account (2.21) and (2.20), we get the semiconcavity of u. �
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3. The continuity equation

In this section we want to study equation (1.1)-(ii). Since h is independent of x2, taking 
account of (1.2), this partial differential equation can be rewritten as

∂tm − ∂x1(m∂x1u) − h2(x1)∂x2(m∂x2u) = ∂tm − divG(mDGu) = 0. (3.1)

Hence our aim is to study the well posedness of the problem

{
∂tm − divG(mDGu) = 0, in R2 × (0, T ),

m(x,0) = m0(x), on R2,
(3.2)

where u is a solution to problem

{−∂tu + 1
2 |DGu|2 = F [m(t)](x) in R2 × (0, T ),

u(x,T ) = G[m(T )](x), on R2,
(3.3)

where the function m is fixed in C0([0, T ], P1). Note that this problem is equivalent to (2.16)
with a fixed m.

Observe that, by Lemma 2.3-(1), in (3.2) the drift v = (∂x1u, h2(x1)∂x2u) is only bounded; 
this lack of regularity prevents to apply the standard results (uniqueness, existence and repre-
sentation formula of m as the push-forward of m0 through the characteristic flow; e.g., see [3, 
Proposition 8.1.8]) for drifts which are Lipschitz continuous in x. We shall overcome this dif-
ficulty applying the superposition principle [3, Theorem 8.2.1] and proving several results on 
the optimal trajectories for the control problem stated in Section 2. The superposition principle 
yields a representation formula of m as the push-forward of some measure on C0([0, T ], R2)

through the evaluation map et , see the proof of Proposition 3.2. In the following theorem, we 
shall obtain uniqueness, existence and some regularity result for the solution to (3.2).

Theorem 3.1. Under assumptions (H1) – (H4), for any m ∈ C0([0, T ], P1) problem (3.2) has 
a unique bounded solution m in the sense of Definition 1.1. Moreover m ∈ L∞([0, T ], P2)

and it is a Lipschitz continuous map from [0, T ] to P1 with a Lipschitz constant bounded by 
‖Du‖∞‖h2‖∞. Moreover, the function m satisfies:

∫
R2

φ dm(t) =
∫
R2

φ(γ x(t))m0(x) dx ∀φ ∈ C0
0(R2), ∀t ∈ [0, T ] (3.4)

where, for a.e. x ∈ R2, γ x is the solution to (1.6).

The proof of Theorem 3.1 is given in the next two subsections which are devoted to the exis-
tence result (see Proposition 3.1), and respectively to the uniqueness result by the representation 
formula (see Proposition 3.2) and to the Lipschitz regularity (see Corollary 3.1).
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3.1. Existence of the solution

As in [13, Appendix] (see also [12, Section 4.4]), we now want to establish the existence 
of a solution to the continuity equation via a vanishing viscosity method, applied on the whole
MFG system. In this way, in the second equation DGu is replaced by DGuσ which is regular by 
standard regularity theory for parabolic equations and this implies the regularity of the solution 
of the second equation (see [15]).

Proposition 3.1. Under assumptions (H1) – (H4), problem (3.2) has a bounded solution m in the 
sense of Definition 1.1. Moreover m(t, ·) ∈ L∞([0, T ], P2) and m(t, ·) is 1/2-Hölder continuous 
from (0, T ) to P1.

We consider the solution (uσ , mσ ) to the following problem

⎧⎨⎩
(i) − ∂tu − σ�u + 1

2 |DGu|2 = F [m](x) in R2 × (0, T )

(ii) ∂tm − σ�m − divG(mDGu) = 0 in R2 × (0, T )

(iii) m(x,0) = m0(x), u(x,T ) = G[m(T )](x) on R2.

(3.5)

Let us recall that equation (3.5)-(ii) has a standard interpretation in terms of a suitable stochastic 
process (see relation (3.8) below). Our aim is to find a solution to problem (3.2) letting σ →
0+. To this end some estimates are needed; as a first step, we establish the well-posedness of 
system (3.5).

Lemma 3.1. Under assumptions (H1) – (H4), for any m ∈ C0([0, T ], P1), there exists a unique 
bounded classical solution (uσ , mσ ) to problem (3.5). Moreover, mσ > 0.

Proof. From Lemma 3.2 here below, the solution uσ of (3.5)-(i) is bounded in R2 × [0, T ]. 
Hence, from standard regularity results for quasilinear parabolic equations, we obtain the ex-
istence and uniqueness of a classical solution uσ in all R2 × [0, T ]. Now mσ is the classical 
solution of the linear equation

∂tm − σ�m + b · Dm + c0m = 0, m(0) = m0

with b and c0 Hölder continuous coefficients. Hence, still applying classical results, we get the 
existence and uniqueness of a classical solution mσ of (3.5)-(ii). From assumptions on m0 and 
the classical maximum principle we get that mσ > 0. �

Let us now prove that the functions uσ are Lipschitz continuous and semiconcave uniformly 
in σ .

Lemma 3.2. Under the same assumptions of Lemma 3.1, there exists a constant C > 0, indepen-
dent of σ such that

‖uσ ‖∞ ≤ C, ‖Duσ ‖∞ ≤ C and D2uσ ≤ C ∀σ > 0.
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Proof. The L∞-estimate easily follows from the Comparison Principle and assumption (H2) 
because the functions w± := C ± C(T − t) are respectively a super- and a subsolution for (3.5)-
(i) if C is sufficiently large.

We refer to [12] for the proof of the uniform Lipschitz continuity of the functions uσ . The 
proof is similar to the deterministic one proved in Lemma 2.3 and it uses the representation 
formula by means a stochastic optimal control problem:

uσ (x, t) = minE

( T∫
t

[
1

2
|α(τ)|2 + f (Y (τ), τ )

]
dτ + g(Y (T ))

)

where, in [t, T ], Y(·) is governed by a stochastic differential equation

{
dY1 = α1(t)dt + √

2σdB1,t

dY2 = h(Y1(t))α2(t)dt + √
2σdB2,t

, (3.6)

where Y(t) = x and Bt is a standard 2-dimensional Brownian motion. (For an analytic proof see 
also [27, Chapter XI]).

Let us now prove the part of the statement concerning the semiconcavity. We shall adapt the 
methods of [13, Lemma 5.2]. We fix a direction v = (α1, α2) with |v| = 1 and compute the 
derivative of equation (3.5)-(i) twice with respect to v obtaining

−∂t∂vvu − σ�∂vvu − ∂vv(F [m(t)](x) = −∂vv

[ 1
2

(
(∂1u)2 + h(x1)

2(∂2u)2
)]

= −(DG∂vu)2 − DGu · DG∂vvu − 1
2∂vv(h

2)(∂2u)2 − 4hh′α1∂2u∂2vu

≤ −(DG∂vu)2 − DGu · DG∂vvu + C(1 + |DG∂vu|)

(the last inequality is due to our assumptions and to the first part of the statement). Since 
−(DG∂vu)2 + C(1 + |DG∂vu|) is bounded above by a constant, we deduce

−∂t ∂vvu − σ�∂vvu + DGu · DG∂vvu ≤ C;

on the other hand, we have ‖∂vvu(T , ·)‖∞ ≤ C by assumption (H2) and we can conclude by 
comparison that ∂vvu ≤ C′ for a constant C′ independent of σ . �

Let us now prove some useful properties of the functions mσ .

Lemma 3.3. Under the same assumptions of Lemma 3.1, there exists a constant K > 0, indepen-
dent of σ and of m, such that:

1. ‖mσ ‖∞ ≤ K,

2. d1(m
σ (t1),m

σ (t2)) ≤ K(t2 − t1)
1/2 ∀t1, t2 ∈ (0, T ),

3.

∫
2

|x|2 dmσ (t)(x) ≤ K

⎛⎜⎝∫
2

|x|2 dm0(x) + 1

⎞⎟⎠ ∀t ∈ (0, T ).
R R
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Proof. 1. In order to prove this L∞ estimate, we shall argue as in [13, Appendix]; for simplicity, 
we drop the σ ’s. We note that

divG(mDGu) = DGm · DGu + m(∂11u + h2∂22u) ≤ DGm · DGu + Cm

because of the semiconcavity of u established in Lemma 3.2 yields ∂iiu ≤ C for i = 1, 2 (see 
[11, Proposition1.1.3-(e)]) and m ≥ 0. Therefore, by assumption (H2) the function m satisfies

∂tm − σ�m ≤ DGm · DGu + Cm, m(x,0) ≤ C;

using w = CeCt as supersolution (recall that C is independent of σ ), we infer: ‖m‖∞ ≤ w =
CeCT .

To prove Points 2 and 3 as in the proof of [12, Lemma 3.4 and 3.5], it is expedient to introduce 
the stochastic differential equation

dXt = b(Xt , t)dt + √
2σdBt , X0 = Z0 (3.7)

where b = ( ∂uσ

∂x1
, h2 ∂uσ

∂x2
), Bt is a standard 2-dimensional Brownian motion, and L(Z0) = m0. By 

standard arguments, (see [23] and [22, Chapter 5])

m(t) := L(Xt ) (3.8)

is a weak solution to (3.5)-(ii).
The rest of the proof of Points 2 and 3 follows the same arguments of [12, Lemma 3.4] and, 

respectively, of [12, Lemma 3.5]; therefore, we shall omit it and we refer to [12] for the detailed 
proof. �

Let us now prove that the uσ ’s are uniformly bounded and uniformly continuous in time.

Lemma 3.4. Under the same assumptions of Lemma 3.1, the function uσ is uniformly continuous 
in time uniformly in σ .

Proof. We shall follow the arguments in [13, Theorem 5.1 (proof)]. Let uσ
f := uσ (x, T ); by 

assumption (H2), there exists a constant C1 sufficiently large such that the functions ω± =
uσ

f (x) ± C1(T − t) are respectively super- and subsolution of (3.5)-(i) for any σ ; actually, for 
C1 = 2C we have

−∂tω
+ − σ�ω+ + 1

2
|DGω+|2 − F [m](x) ≥ C1 − σC − C ≥ 0

and similarly for ω−. Hence from the comparison principle we get

‖uσ (x, t) − uσ
f (x)‖∞ ≤ C1(T − t) ∀t ∈ [0, T ]. (3.9)

We look now the source term F [m](x) of (3.5)-(i). The Lipschitz continuity of F w.r.t. m (see 
assumption (H2)) and the uniform continuity of m imply:
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sup
t∈[h,T ]

‖F [m(t)](x) − F [m(t − h)](x)‖∞ ≤ C sup
t∈[h,T ]

d1(m(t),m(t − h)) =: η(h).

The function vσ
h (x, t) := uσ (x, t − h) + C1h + η(h)(T − t) satisfies

− ∂tv
σ
h (x, t) − σ�vσ

h (x, t) + 1

2
|DGvσ

h (x, t)|2 − F [m(t)](x) + η(h)

= F [m(t − h)](x) − F [m(t)](x) + η(h) ≥ 0 ∀t ∈ [h,T ]
and also vσ

h (x, T ) = uσ (x, T −h) +C1h ≥ uσ (x, T ) by estimate (3.9); therefore, again by com-
parison principle, we get uσ (x, t − h) + C1h + η(h)(T − t) ≥ uσ (x, t). In a similar way we also 
obtain uσ (x, t − h) − C1h − η(h)(T − t) ≤ uσ (x, t) accomplishing the proof. �
Proof of Proposition 3.1. We shall follow the proof of [13, Theorem 5.1] (see also [12, Theorem 
4.20]). We observe that, for all σ ∈ (0, 1), mσ belongs to C0([0, T ], K) where K := {μ ∈ P1 :
μ satisfies Point 3 of Lemma 3.3}; moreover, we recall from [12, Lemma 5.7] that K is relatively 
compact in P1.

Lemma 3.2 and Lemma 3.4 imply that uσ uniformly converge to some function u and by stan-
dard stability result for viscosity solutions, the function u solves (3.3), u is Lipschitz continuous 
in x, Duσ → Du a.e. (because of the semiconcavity estimate of Lemma 3.2 and [11, Theorem 
3.3.3]), so, in particular, DGuσ → DGu a.e.

By the bounds on mσ contained respectively in Points 1 and 2 of Lemma 3.3, we obtain that, 
possibly passing to a subsequence, as σ → 0+, mσ converge to some m ∈ C0([0, T ], K) in the 
C0([0, T ], P1) topology and in L∞

loc((0, T ) × R2)-weak-∗ topology. Moreover we deduce that 
m(0) = m0. On the other hand, since mσ is a solution to (3.5)-(ii), for any ψ ∈ C∞

0 ((0, T ) ×R2), 
there holds

T∫
0

∫
R2

mσ
(−∂tψ − σ�ψ + Dψ · DGuσ

)
dx dt = 0;

letting σ → 0+, by the L∞
loc-weak-∗ convergence of mσ and by the convergence a.e. DGuσ →

DGuσ , we conclude that the function m solves (3.2).
Note that we proved that the solution m fulfills the estimates in Lemma 3.3. �

Remark 3.1. Note that the solution m to problem (3.2) fulfills the estimates in Lemma 3.3 with 
K independent of m.

3.2. Uniqueness of the solution

This section is devoted to establish the following uniqueness result for problem (3.2).

Proposition 3.2. Under assumptions (H1) – (H4), problem (3.2) admits at most one bounded 
solution m in the sense of Definition 1.1. Moreover, the function m satisfies:∫

2

φ dm(t) =
∫

2

φ(γ x(t))m0(x) dx, ∀φ ∈ C0
0(R2), ∀t ∈ [0, T ] (3.10)
R R
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where, for a.e. x ∈R2, γ x is the solution to (1.6).

In order to prove this result, it is expedient to establish some properties of the optimal tra-
jectories for the control problem defined in Section 2 and of the value function u(x, t), defined 
in Subsection 2.3. For any (x, t) ∈ R2 × [0, T ], let U(x, t) be the set of the optimal controls of 
the minimization problem (OC) in Definition 2.1. We refer the reader to Appendix 6.2, for the 
precise definition of G-differentiability and for its properties.

Lemma 3.5. The following properties hold:

1. DGu(x, t) exists if and only if α(t) is the same value for any α(·) ∈ U(x, t). Moreover 
DGu(x, t) = −α(t) (i.e., ux1(x, t) = −α1(t), h(x1(t))ux2(x, t) = −α2(t)).

2. In particular, if U(x, t) is a singleton then DGu(x(s), s) exists for any s ∈ [t, T ] where x(s)

is the optimal trajectory associated to the singleton of U(x, t).
3. If x is such that h(x1) �= 0 and DGu(x, t) exists then there is a unique optimal trajectory 

starting from x and DGu(x, t) = −α(t) and hence

x′
1(t) = −∂x1u(x, t), x′

2(t) = −h2(x1)∂x2u(x, t). (3.11)

Proof. 1. We prove that if DGu(x, t) exists then for any α(·) ∈ U(x, t) we have that α(t) is 
unique and DGu(x, t) = −α(t). For any α(·) ∈ U(x, t), let x(·) be the corresponding optimal 
trajectory. Then x(·) and α(·) satisfy the necessary conditions for optimality proved in Propo-
sition 2.1. Take v = (v1, v2) ∈ R2 and consider the solution y(·) of (1.4) with initial condition 
y(t) = (x1 + v1, x2 + h(x1)v2) and control α, namely

y1(s) = x1 + v1 +
s∫

t

α1(τ )dτ = x1(s) + v1,

y2(s) = x2 + h(x1)v2 +
s∫

t

h(y1(τ ))α2(τ )dτ

= x2(s) + h(x1)v2 +
s∫

t

[h(y1(τ )) − h(x1(τ ))]α2(τ )dτ.

Hence there holds

u(x1 + v1, x2 + h(x1)v2, t) − u(x1, x2, t) ≤
T∫

t

⎡⎣f

⎛⎝x1(s) + v1, x2(s) + h(x1)v2 +
s∫

t

[h(y1(τ )) − h(x1(τ ))]α2(τ )dτ

⎞⎠
− f (x1(s), x2(s))

⎤⎦ds + g(y(T )) − g(x(T )).
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For v = t (v̂1, v̂2) with |(v̂1, v̂2)| = 1 and t ∈ R+, as t → 0+, the G-differentiability of u at (x, t)
entails

DGu(x, t) · (v̂1, v̂2) ≤ (I1, I2) · (v̂1, v̂2)

where

I1 :=
T∫

t

fx1(x(s))ds +
T∫

t

(
fx2(x(s))

s∫
t

h′(x1(τ ))α2(τ )dτ

)
ds + gx1(x(T ))

+gx2(x(T ))

T∫
t

h′(x1(τ ))α2(τ )dτ

I2 := h(x1)

⎛⎝ T∫
t

fx2(x(s))ds + gx2(x(T ))

⎞⎠ .

By the arbitrariness of (v̂1, v̂2), we get

DGu(x, t) = (I1, I2).

By (2.12) and (2.6), we obtain

I1 =
T∫

t

fx1(x(s))ds +
T∫

t

(p′
2(s)

s∫
t

h′(x1(τ ))α2(τ )dτ)ds + gx1(x(T ))

−p2(x(T ))

T∫
t

h′(x1(τ ))α2(τ )dτ

=
T∫

t

fx1(x(s))ds −
T∫

t

p2(s)h
′(x1(s))α2(s)ds + gx1(x(T ))

= −α1(t)

where the last inequality is due to (2.13) and (2.8). On the other hand, again by (2.13) and (2.8), 
we have

I2 = −h(x1)p2(t) = −α2(t).

The last three equalities imply: DGu(x, t) = −α(t) which uniquely determines the value of α(·)
at time t .

Conversely we prove that, if for any α(·) ∈ U(x, t), α(t) is unique then DGu(x, t) exists. 
To prove the G-differentiability of u(·, t) in x, by the semiconcavity of u, we need to prove 
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that D∗
Gu(x, t) is a singleton (see Theorem 6.1 in Appendix 6.2 below). Let π ∈ D∗

Gu(x, t). By 
definition of D∗

Gu(x, t) there exist two sequences {xn}, {πn = DGu(xn, t)} such that

xn → x, πn → π. (3.12)

Consider αn ∈ U(xn, t); by the other part of the statement (already proven), we know that

−αn(t) = DGu(xn, t) = πn. (3.13)

Let xn(·) be the trajectory associated to αn and pn be the corresponding costate. By Corollary 2.1-
(4) and by the boundedness of h we get

‖xn1‖∞ + ‖xn2‖∞ + ‖pn1‖∞ + ‖pn2‖∞ + ‖αn1‖∞ + ‖αn2‖∞ ≤ C, for any n. (3.14)

From Corollary 2.1-(3) we can differentiate (2.8), and using (2.11)-(2.12) we get:

α′
n1(s) = p′

n1(s) = −p2
n2(s)h

′(xn1(s))h(xn1(s)) + fx1(xn1(s), s),

α′
n2(s) = pn2(s)h

′(xn1(s))x
′
n1(s) + p′

n2(s)h(xn1(s))

= pn2(s)h
′(xn1(s))αn1(s) + fx2(xn1(s))h(xn1(s)).

From (3.14) we get

‖α′
n1‖∞ + ‖α′

n2‖∞ ≤ C, for any n. (3.15)

Hence, from Ascoli-Arzelà Theorem we have that, up to subsequences, αn uniformly converge 
to some α ∈ C0([t, T ], R2). In particular, by the definition of xn1 and xn2 we get:

xn1(s) → x1(s) = x1 +
s∫

t

α1(τ )dτ, uniformly in [t, T ],

xn2(s) → x2(s) = x2 +
s∫

t

h(x1(τ ))α2(τ )dτ uniformly in [t, T ].

Moreover, from stability, α is optimal, i.e. α ∈ U(x, t). From the uniform convergence of the 
αn we have in particular that αn(t) → α(t) where α(t) is uniquely determined by assumption. 
By (3.13), we get πn → π = α(t). This implies that D∗

Gu(x, t) is a singleton, then DGu(x, t)
exists and thank to the first part of the proof DGu(x, t) = −α(t).

2. If U(x, t) = {α(·)} then for any s ∈ [t, T ], α(s) is uniquely determined. Indeed, if there 
exists β ∈ U(x(s), s) the concatenation γ of α and β (see Proposition 6.1 in Appendix 6.1) is 
also optimal, i.e. γ ∈ U(x, t) = {α(·)}. Then applying point 1) with t = s, in x(s) we have that u
is G-differentiable, i.e. DGu(x(s), s) exists.

3. From point 1), we know that for any α(·) ∈ U(x, t) we have that α(t) is unique. If we know 
α(t) and that h(x1(t)) = h(x1) �= 0, then from (2.8) we get p1(t) and p2(t). Hence (2.9)-(2.12)
is a system of differential equations with initial conditions xi(t) and pi(t), i = 1, 2 which admits 
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a unique solution (x(s), p(s)) where x(s) is the unique optimal trajectory starting from x. More-
over still from 1) we have DGu(x, t) = −α(t) and from the dynamics (1.4) we deduce (3.11). �
Lemma 3.6. Consider x = (x1, x2) ∈ R2.

1. Let x(·) := (x1(·), x2(·)) be an absolutely continuous function such that

x(t) = x, (3.16)

and for almost every s ∈ (t, T ),

u(·, s) is differentiable at x(s), (3.17)

and

x′
1(s) = −ux1(x(s), s),

x′
2(s) = −h2(x1(s))ux2(x(s), s),

(3.18)

where u is the solution of (2.16). Then the control law α(s) = (α1(s), α2(s)), with

α1(s) = −ux1(x(s), s), α2(s) = −h(x1(s))ux2(x(s), s)

is optimal for u(x, t).
2. If u(·, t) is G-differentiable at x and h(x1) �= 0 then problem (1.6) has a unique solution 

corresponding to the optimal trajectory.

Proof. We shall adapt the arguments of [12, Lemma 4.11]. Fix (t, x) ∈ (0, T ) ×R2 and consider 
an absolutely continuous solution x(·) to (3.18); note that this implies that Du exists at (x(s), s)
for a.e. s ∈ (t, T ). Since u is Lipschitz continuous (see Lemma 2.3) and h is bounded, also 
the function x(·) is Lipschitz continuous and, consequently, also u(x(·), ·) is Lipschitz. For a.e. 
s ∈ (t, T ) there hold: i) Du(x(s), s) exists, ii) equation (3.18) holds, iii) the function u(x(·), ·)
admits a derivative at s. Fix such a s.

The Lebourg Theorem for Lipschitz function (see [17, Thm 2.3.7] and [17, Thm 2.5.1]) en-
sures that, for any h ∈ R small, there exists (yh, sh) in the segment ((x(s), s), (x(s + h), s + h))

and (ξh
x , ξh

t ) ∈ coD∗
x,tu(yh, sh) such that

u(x(s + h), s + h) − u(x(s), s) = ξh
x · (x(s + h) − x(s)) + ξh

t h (3.19)

(here, “co” stands for the convex hull and D∗
x,tu(yh, sh) is the Euclidean reachable gradient both 

in x and in t , see [4, eq. (4.4)]). The Caratheodory theorem (see [11, Thm A.1.6]) guarantees that 
there exist (λh,i , ξh,i

x , ξh,i
t )i=1,...,4 such that λh,i ≥ 0, 

∑4
i=1 λh,i = 1, (ξh,i

x , ξh,i
t ) ∈ D∗

x,tu(yh, sh)

and (ξh
x , ξh

t ) =∑4
i=1 λh,i(ξ

h,i
x , ξh,i

t ). We claim that ξh,i
x → Dxu(x(s), s) as h → 0. Actually, 

let lix be any cluster point of {ξh,i
x }. By a diagonalization process, there exist (xn, tn) such that 

(xn, tn) → (x(s), s) and Dxu(xn, tn) exist and converge to lix as n → ∞. By [12, Lemma 4.6]
and [11, Proposition 3.1.5-(c)], we have lix = limn Dxu(xn, tn) ∈ D+

x u(x(s), s) = Dxu(x(s), s); 
our claim is proved.
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On the other hand, since u is a viscosity solution to equation (2.16), by [4, Proposition II.1.9], 
we obtain

−ξ
h,i
t + 1

2
(ξ

h,i
x,1)

2 + 1

2
h(yh,1)

2(ξ
h,i
x,2)

2 = f (yh, sh);

in particular, as h → 0, we deduce

ξh
t = 1

2

4∑
i=1

λh,i(ξ
h,i
x,1)

2 + 1

2
h(yh,1)

2
4∑

i=1

λh,i(ξ
h,i
x,2)

2 −f (yh, sh) → 1

2
|DGu(x(s), s)|2 −f (x(s), s).

(3.20)
Dividing (3.19) by h and letting h → 0, by equations (1.6) and (3.20), we infer

d

ds
u(x(s), s) = Dxu(x(s), s) · x′(s) + 1

2
|DGu(x(s), s)|2 − f (x(s), s)

= −1

2
|DGu(x(s), s)|2 − f (x(s), s) = 1

2
|α|2 − f (x(s), s) a.e. s ∈ (t, T )

(recall: −α(s) = DGu(x(s), s)). Integrating this equality on [t, T ] and taking into account the 
final datum of (2.16), we obtain

u(x, t) =
T∫

t

1

2
|α|2 + f (x(s), s)ds + g(x(T )).

Observe that x(·) satisfies the dynamics (1.4) with our choice of α(s); therefore, the last equality 
implies that x(·) is an optimal trajectory with optimal control α(s) = −DGu(x(s), s).

Let us now prove the last part of the statement. By Point 3 of Lemma 3.5, there exists a unique 
optimal trajectory x(·) starting from x at time t ; moreover, by Corollary 2.2, for any s ∈ (t, T ]
there exists a unique optimal trajectory starting from x(s) which is the restriction of x(·) to [s, T ]. 
Then, from the representation of the optimal controls (2.14), there exists a unique optimal control 
α(·) and, from points 1 and 2 of Lemma 3.5, DGu(x(s), s) exists and DGu(x(s), s) = −α(s), i.e. 
x(·) is a solution of (1.6). Moreover this x(·) is the unique solution still because of Point 3 of 
Lemma 3.5. �
Proof of Proposition 3.2. We shall argue following the techniques of [15, Proposition A.1]
which rely on the superposition principle and on the disintegration of a measure (see [3]). We 
denote by �T the set of continuous curve C0([0, T ], R2) and, for any t ∈ [0, T ], we introduce 
the evaluation map: et : �T → R2 as et (γ ) := γ (t). When we say “for a.e.” without specifying 
the measure, we intend w.r.t. the Lebesgue measure.

Let m ∈ C0([0, T ], P1(R2)) be a solution of problem (3.2) in the sense of distributions; in 
other words, it is a solution to the continuity equation (3.1). We observe that assumption [3, 
eq.(8.1.20)] is fulfilled because both Du and h are bounded and mt := m(t, ·) is a measure (see 
[3, pag.169]); hence we can invoke the superposition principle (see [3, Theorem 8.2.1] and also 
[3, pag. 182]). This principle and the disintegration theorem (see [3, Theorem 5.3.1]) entail that 
there exist probability measures η and {ηx}x∈R2 on �T such that
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i) et#η = mt and, in particular, e0#η = m0
ii) ηx ({γ ∈ �T : γ solves (1.6) with t = 0 and x = (x1, x2)}) = 1 for m0-a.e. x

iii) η =
∫
R2

ηx dm0(x).

We recall from assumption (H4) that m0 is absolutely continuous; hence, by assumption (H2) 
and meas{x ∈ R2 : h(x1) = 0} = 0, the optimal synthesis in Lemma 3.6 ensures that for a.e. 
x ∈ R2 the solution γ x to (1.6) with t = 0 and x = (x1, x2) is unique and exists because it is the 
optimal trajectory for the control problem. Therefore, for a.e. x ∈ R2, ηx coincides with δγ x

. In 
conclusion, for any function φ ∈ C0

0(R2), we have

∫
R2

φ dmt =
∫
�T

φ(et (γ ))dη(γ ) =
∫
R2

⎛⎜⎜⎝ ∫
e−1

0 (x)

φ(et (γ ))dηx(γ )

⎞⎟⎟⎠ dm0(x)

=
∫
R2

φ(γ x(t))m0(x) dx.

Since the integrand in the last term is uniquely defined up to a set of null measure, also the first 
term is uniquely defined; consequently, m is uniquely defined. �

In the following corollary we use the previous characterization to prove the Lipschitz regular-
ity of m.

Corollary 3.1. The unique bounded solution m to problem (3.2) is a Lipschitz continuous map 
from [0, T ] to P1(R2) with a Lipschitz constant bounded by ‖Du‖∞‖h2‖∞.

Proof. Let m be the unique solution to problem (3.2) as in Proposition 3.1 and Proposition 3.2. 
Fix φ, a 1-Lipschitz continuous function on R2. By relation (3.10), for any t1, t2 ∈ [0, T ], we 
infer ∫

R2

φ dmt1 −
∫
R2

φ dmt2 =
∫
R2

φ(γ x(t1)) − φ(γ x(t2))m0(x) dx

≤
∫
R2

∣∣γ x(t1) − γ x(t2)
∣∣m0(x) dx

≤ ‖Du‖∞‖h2‖∞|t1 − t2|

where the last relation is due to the definition of γ as solution to problem (1.6) and to the bound-
edness of Du and of h. Hence, passing to the supφ in the previous inequality, the Kantorovich-
Rubinstein theorem (see, for instance, [12, Theorem 5.5]) ensures

d1(mt ,mt ) ≤ ‖Du‖∞‖h2‖∞|t1 − t2|. �
1 2
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Proof of Theorem 3.1. The existence of m follows from Proposition 3.1, the uniqueness and 
the representation formula comes from Proposition 3.2 and the Lipschitz regularity is proved in 
Corollary 3.1 here above. �
4. Proof of the main Theorem

This section is devoted to the proof of our main Theorem 1.1.

Proof of Theorem 1.1. 1. We shall argue following the proof of [12, Theorem 4.1]. Consider 
the set

C := {m ∈ C0([0, T ],P1); m(0) = m0}
endowed with the norm of C0([0, T ]; P1). Observe that it is a nonempty closed and convex subset 
of C0([0, T ]; P1). We introduce a map T as follows: to any m ∈ C we associate the solution u

to problem (2.16) with f (x, t) = F [m(t)](x) and g(x) = G[m(T )](x) and to this u we associate 
the solution μ =: T (m) to problem (3.2). By Theorem 3.1 the function T (m) belongs to C hence 
T maps C into itself. We claim that the map T has the following properties:

(a) T is a continuous map with respect to the norm of C0([0, T ]; P1)

(b) T is a compact map.

(a) It suffices to follow the same arguments as those in [12, Lemma 4.19]) or in [2, Theorem 
2.1]).

(b) Since C is closed, it is enough to prove that T (C) is a precompact subset of C0([0, T ]; P1). 
Let (μn)n be a sequence in T (C) with μn = T (mn) for some mn ∈ C; we wish to prove that, pos-
sibly for a subsequence, μn converges to some μ in the C0([0, T ]; P1(R2))-topology as n → ∞. 
By Remark 3.1, the functions T (mn) satisfy the estimates in Lemma 3.3 with a constant inde-
pendent of n. Since the subsets of P1 whose elements have uniformly bounded second moment 
are relatively compact in P1 (see [12, Lemma 5.7]), Remark 3.1 and Proposition 3.1 ensures that 
the sequence (T (mn))n is uniformly bounded in C1/2([0, T ]; P1) and L∞(0, T ; P2). By arguing 
as in the proof of Proposition 3.1, we obtain that, possibly for a subsequence (still denoted by 
T (mn)), T (mn) converges to some μ in the C0([0, T ]; P1(R2))-topology (for more details see 
also [2, Theorem 2.1]). Invoking Schauder fixed point Theorem, we accomplish the proof of 1.

2. Theorem 3.1 ensures that, if (u, m) is a solution of (1.1), for any function φ ∈ C0
0(R2), we 

have ∫
R2

φ dm(t) =
∫
R2

φ(γ x(t))m0(x) dx (4.1)

where γ x is the solution of (1.6) (with t = 0 and x = (x1, x2)) and it is uniquely defined for a.e. 
x ∈ R2. �
Remark 4.1. As in [12, Theorem 4.20] also the vanishing viscosity method may be applied 
to prove the existence of a solution of system (1.1). Actually, it suffices to follow the same 
arguments of Section 3.1 with F [m](x) and G[m(T )](x) replaced respectively by F [mσ ](x)

and G[mσ (T )](x). Note also that Lemma 3.3 ensures that the function mσ ∈ C0([0, T ], P1). 
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Because of the degenerate term h, we cannot directly deduce the representation formula (4.1)
invoking the results in [12], but we can apply the results of Section 3.2.

5. The d-dimensional case

In this section we show that the results proved before can be generalized to the d-dimensional 
case. We consider dynamics governed by a triangular matrix whose coefficients have a suitable 
structure (see (5.3) below). This type of matrix allows us to obtain a L∞ estimate of the op-
timal control associated to the Hamilton-Jacobi equation (5.1)-(i) which plays a crucial role in 
our argument. Moreover the assumption (H3′) here below on the set Z allows us to apply the 
representation formula also in this case. The proofs rely on the same arguments of the problem 
studied in the previous sections; hence we only emphasize the main differences.

5.1. Assumptions and main result

We consider the following Mean Field Game system⎧⎨⎩
(i) −∂tu + H(x,Du) = F [m(t)](x) in Rd × (0, T )

(ii) ∂tm − div(m∂pH(x,Du)) = 0 in Rd × (0, T )

(iii) m(x,0) = m0(x), u(x,T ) = G[m(T )](x) on Rd ,

(5.1)

where, for x = (x1, · · · , xd) and p = (p1, · · · , pd), the function H(x, p) is

H(x,p) = 1

2
|pB(x)|2 (5.2)

with B(x) = B(x1, ..., xd) is a d × d matrix of the form⎛⎜⎜⎜⎜⎝
h11 0 0 0 · · · 0

h21(x1) h22(x1) 0 0 · · · 0
h31(x1) h32(x1, x2) h33(x1, x2) 0 · · · 0

· · · · · · · · · · · · · · · 0
hd1(x1) hd2(x1, x2) hd3(x1, x2, x3) . . . hd(d−1)(x1, . . . , xd−1) hdd(x1, . . . , xd−1)

⎞⎟⎟⎟⎟⎠
(5.3)

namely the matrix B(x) is triangular inferior, the first column has terms which depend only 
on x1 except h11 which is constant; for j ≥ 2 the diagonal terms hjj depend on the variables 
(x1, x2, . . . , xj−1) and the terms hij with i > j depend on the variables (x1, x2, . . . , xj ). More 
precisely

hij =

⎧⎪⎨⎪⎩
0 if i < j

hjj (x1, x2, . . . , xj−1), if i = j

hij (x1, x2, . . . , xj ), if i > j.

We introduce the determinant function �(x)

�(x) = detB(x) = h11h22(x1) · · ·hdd(x1, . . . , xd−1). (5.4)

We shall assume the following hypotheses.
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(H1′) The functions F and G are real-valued function, continuous on P1(Rd) ×Rd ;
(H2′) The map m → F [m](·) is Lipschitz continuous from P1(Rd) to C2(Rd); moreover, there 

exists C ∈R such that

‖F [m](·)‖C2 ,‖G[m](·)‖C2 ≤ C, ∀m ∈ P1(R
d),

(H3′) h11 is a constant, the functions hij : Ri−1 → R are C2(Ri−1) with ‖hij‖C2 ≤ C and 
Z := {z ∈Rd : �(z) = 0} has null measure (hence h11 �= 0).

(H4′) m0 has a compactly supported density m0 ∈ C2,δ(Rd), for a δ ∈ (0, 1).

The MFG system (5.1) arises when the generic player chooses the control α ∈ L2([t, T ]; Rd)

in order to minimize the cost

T∫
t

[
1

2
|α(τ)|2 + F [m(τ)](x(τ ))

]
dτ + G[m(T )](x(T )) (5.5)

where, in [t, T ], its dynamics x(·) ∈Rd are governed by

{
x′(s) = α(s)BT (x(s)), a.e. s ∈ (t, T ),

x(t) = x
(5.6)

with α = (α1, ..., αd) ∈ Rd .
Note that, from (5.2), we have ∂pH(x, p) = p B(x) BT (x). The main theorem is

Theorem 5.1. Under the above assumptions:

1. System (5.1) has a solution (u, m),
2. m is the push-forward of m0 through the characteristic flow

x′(s) = −Du(x(s), s)B(x(s))BT (x(s)), x(0) = x. (5.7)

To prove Theorem 5.1 we follow the steps used in the previous sections.

5.2. Optimal control problem

For every 0 ≤ t ≤ T and x ∈Rd we consider the following optimal control problem

Definition 5.1 (Optimal Control Problem (OCd)). Minimize Jt(x(·), α) as in (2.1) subject to 
(x(·), α(·)) ∈ A(x, t), where

A(x, t) :=
{
(x(·), α(·)) ∈ AC([t, T ];Rd) × L2([t, T ];Rd) : (5.6) holds

}
. (5.8)

We assume that the functions f, g and the matrix B = (hij ) satisfy the following assumptions.
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Hypothesis 5.1. f ∈ C0([0, T ], C2(Rd)) and there exists a constant C such that

‖f (·, t)‖C2(Rd ) + ‖g‖C2(Rd ) + ‖hij‖C2(Ri−1) ≤ C, ∀t ∈ [0, T ].

The set Z := {z ∈Rd : �(z) = 0} has null measure.

Note that also in this case Remark 2.2 still holds. The definition of the value function u(x, t)
is the same as in the 2-dim case (2.3).

The application of the Maximum Principle yields the following necessary conditions.

Proposition 5.1 (Necessary conditions for optimality). Let (x∗, α∗) be optimal for (OCd). There 
exists an arc p ∈ AC([t, T ]; Rd), hereafter called the costate, such that

1. The pair (α∗, p) satisfies the adjoint equations

p′(s) = −Dx(p · α∗(s)BT (x∗(s))) + Dxf (x∗(s), s) a.e. s ∈ [t, T ], (5.9)

the transversality condition

−p(T ) = Dg(x∗(T )) (5.10)

together with the maximum condition

max
α=(α1,...,αd )∈Rd

(p(s) · αBT (x∗(s))) − |α|2
2

=

= (p(s) · α∗(s)BT (x∗(s))) − |α∗(s)|2
2

a.e. s ∈ [t, T ]. (5.11)

2. The optimal control α∗ is given by

α∗(s) = p(s)B(x∗(s)), a.e on [t, T ]. (5.12)

3. The pair (x∗, p) satisfies the system of differential equations for a.e. s ∈ [t, T ]⎧⎨⎩ (i) x′ = p B(x)BT (x),

(ii) p′ = −Dx |p B(x)|2
2

+ Dxf (x, s)
(5.13)

with the mixed boundary conditions

x∗(t) = x, p(T ) = −Dg(x∗(T )). (5.14)

Corollary 5.1 (Feedback control and regularity). Let Hypothesis 5.1 hold. Let (x∗, α∗) be opti-
mal for (OCd), and p be the corresponding costate as in Proposition 5.1. Then:
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1. The unique solution of the Cauchy problem

p′(s) = −
(

Dx |p B(x∗(s))|2
2

)
+ Dxf (x∗(s), s), p(T ) = −Dg(x∗(T ))

is the costate p associated to (x∗, α∗).
2. The optimal α∗ is a feedback control and it is uniquely expressed by α∗ = p B(x∗).
3. The functions x∗ and α∗ are of class C1. In particular equations (5.9) and (5.13) hold for 

every s ∈ [t, T ].
4. There is a constant C independent of (x, t) such that ‖α∗‖∞ + ‖p‖∞ ≤ C.
5. Assume that, for some k ∈ N , hij ∈ Ck+1 for all d ≥ i ≥ j ≥ 1 and that Dxf ∈ Ck . Then p

and α∗ are of class Ck+1 and x∗ is of class Ck+2.

Proof. The proof follows the lines as in Corollary 2.1 for d = 2. We only outline the proof 
of point 4 where the method is slightly different. The structure of the matrix B , given in (5.3), 
allows us to obtain a diagonal system of differential equations in (5.13)-(ii). More precisely since 
the functions hij in the matrix B do not depend on the last variable xd , the last coordinate of 
Dx |p(s)B(x)|2 is 0, then the last component of (5.13)-(ii) is p′

d(s) = fxd
(x∗(s), s); this equation 

and the hypothesis on the data imply that pd is bounded uniformly on (x, t). Using again the 
structure of that matrix B , remarking that the (d − 1)-th component of Dx |p(s)B(x)|2 is

∂

∂xd−1
(pd−1 h(d−1)(d−1)(x1, . . . , xd−2) + pd hd(d−1)(x1, . . . , xd−1))

2.

Hence still from (5.13)-(ii) we get

p′
d−1 = fxd−1(x

∗(s), s) − (pd−1 h(d−1)(d−1) + pd hd(d−1))pd

∂hd(d−1)

∂xd−1
.

Now using the uniform boundedness of pd obtained just before and the assumptions on hij , 
f and g, the differential equation satisfied by pd−1 is linear with bounded coefficients. Hence 
we obtain the uniform boundedness of pd−1. Applying the same procedure iteratively, we get 
that every component pi of p is uniformly bounded. Once obtained p we immediately get the 
uniform bound on optimal α∗ thanks to (5.12). �
Theorem 5.2 (Uniqueness of the optimal trajectory after the initial time). Under Hypothesis 5.1, 
let x∗ be an optimal trajectory for u(x, t).

1. Assume that �(x∗(τ )) �= 0 for some t < τ < T . For every τ ≤ r < T there are no other 
optimal trajectories for u(x∗(r), r), other than x∗, restricted to [r, T ].

2. Assume that �(x) = 0. Let tx∗ be defined by

tx∗ := sup{r ∈ [t, T ] : �(x∗) = 0 on [t, r]}.

For every r > tx∗ there are no optimal trajectories starting from x∗(r) at time r , other than 
x∗ restricted to [r, T ].
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Proof. 1. For r ∈ [τ, T [, let y∗ be an optimal trajectory starting from x∗(r) at time r . The con-
catenation z∗ of x∗ with y∗ at r is optimal for u(x, t). Let p and q be the costates associated to 
x∗ and, respectively, to z∗. Both (x∗, p) and (z∗, q) are solutions to the same Cauchy problem 
(5.13). Corollary 5.1 shows that x∗ and z∗ are of class C1. Since �(x∗(τ )) �= 0, then the ma-
trix B(x∗(τ ))BT (x∗(τ )) is invertible whose inverse we denote β(τ) := [B(x∗(τ ))BT (x∗(τ ))]−1. 
Hence, from (5.13), it is possible to write

p(τ) = β(τ)(x∗(τ ))′.

Since x∗ = z∗ on [t, τ ], the fact that τ > t and the C1 regularity of x∗ and z∗ imply

p(τ) = β(τ)(x∗(τ ))′ = lim
s→τ− β(s)(x∗(s))′ = lim

s→τ− β(s)(z∗(s))′ = β(τ)(z∗(τ ))′ = q(τ).

Therefore, both (x∗, p) and (z∗, q) are C1 solutions to the same Cauchy problem on [t, T ], with 
Cauchy data at τ , for the first order differential system (5.13). The regularity assumptions on 
f, h and Cauchy Lipschitz Theorem guarantee the uniqueness of the solution. Thus x∗ = z∗ on 
[τ, T ], from which we obtain the desired equality x∗ = y∗ on [r, T ].

2. We assume tx∗ < T , otherwise the claim is trivial. We deduce that there exists τ ∈ [tx∗ , r]
satisfying �(τ) �= 0. Point 1 of Theorem 5.2 yields the conclusion. �
Corollary 5.2. Let x∗ be an optimal trajectory for (OCd). If �(x) �= 0, for every 0 < r < T there 
are no other optimal trajectories starting from x∗(r) at time r , other than x∗, restricted to [r, T ].

5.3. Proof of the Theorem 5.1

Following the same procedure as in Section 2.3, taking account of Corollary 2.1, we can 
prove that the solution u of the Hamilton-Jacobi equation (5.1)-(i) with m fixed is bounded in 
Rd × [0, T ], Lipschitz continuous with respect to x and t and it is semiconcave with respect to 
x.

Moreover following the arguments used in Lemma 3.5 and Lemma 3.6 and the results on 
G-differentiability stated in subsection 6.3 of the Appendix, we get the optimal synthesis:

Proposition 5.2 (Optimal synthesis). Consider x ∈ Rd . Let x(·) be an absolutely continuous 
function such that x(t) = x, and for almost every s ∈ (t, T ), u(·, s) is differentiable at x(s), and

x′(s) = −Du(x(s), s)B(x(s))BT (x(s)),

where u is the solution of (5.16). Under these assumptions, the control law

α(s) = −Du(x(s), s)B(x(s))

is optimal for u(x, t). If u(·, t) is G-differentiable at x and �(x) �= 0 then problem (5.7) has a 
unique solution corresponding to the optimal trajectory.
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The next step is to study the problem{
∂tm − div(mDuB(x)BT (x)) = 0, in Rd × (0, T ),

m(x,0) = m0(x), on Rd ,
(5.15)

where u is a solution to problem{−∂tu + 1
2 |DuB(x)|2 = F [m(t)](x) in Rd × (0, T ),

u(x,T ) = G[m(T )](x), on Rd ,
(5.16)

where the function m is fixed and is in C0([0, T ], P1).
Using the same arguments of Section 3, we prove the existence and uniqueness of the solution 

m and by the superposition principle we get the representation formula of m as the push-forward 
of some measure on C0([0, T ], Rd) through the flow defined in (5.7).
To adapt the proof of Lemma 3.3-(1), it is important to point out that, thanks to the boundedness 
of the coefficients of B and to the semiconcavity and Lipschitz continuity of u, there holds

div(DuBBT ) =
∑

k

∂k

⎛⎝∑
ij

∂iuhij hkj

⎞⎠=
⎡⎣∑

j

hj D2uhT
j +
∑
ijk

∂iu ∂k(hij hkj )

⎤⎦≤ C,

where C > 0, hj = (hij )i . Note that we can repeat the arguments as in Proposition 3.2 since we 
have the optimal synthesis and the assumption measZ = 0.

With all these ingredients we are able to follow the arguments of Section 4 to infer the proof 
of the main Theorem 5.1.

6. Appendix

6.1. Concatenation of optimal trajectories and the Dynamic Programming Principle

We introduce the notion of concatenation of trajectories and prove a variant of the Dynamic 
Programming Principle.

Definition 6.1. For 0 ≤ t ≤ r < T , let ϕ : [t, T ] → Rn and ψ : [r, T ] → Rn. The concatenation 
of ϕ with ψ at r is the function ξ : [t, T ] → Rn defined by

ξ = ϕ on [t, r], ξ = ψ on [r, T ].

Proposition 6.1 (Dynamic Programming Principle). Let x∗ be optimal for u(x, t), and r ∈ [t, T ]. 
Let α∗ be optimal control for x∗.

1. Let y∗ be optimal for u(x∗(r), r). The concatenation of x∗ with y∗ at r is optimal for u(x, t)
and, moreover,

u(x, t) = u(x∗(r), r) +
r∫

1

2
|α∗(s)|2 + f (x∗(s), s) ds; (6.1)
t
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2. The trajectory x∗, restricted to [r, T ], is optimal for u(x∗(r), r);
3. The couple (x∗, α∗), restricted to [t, r], is optimal for the following optimal control problem 

with prescribed endpoints:

Minimize It,r (x,α) :=
r∫

t

1

2
|α(s)|2 + f (x(s), s) ds,

with (x(·), α) subject to (1.4) and x(r) = x∗(r).
4. The Dynamic Programming Principle holds:

u(x, t) = min
(x(·),α)∈A(x,t)

⎧⎨⎩u(x(r), r) +
r∫

t

1

2
|α(s)|2 + f (x(s), s) ds

⎫⎬⎭ . (6.2)

Proof. 1. Let β∗ be optimal control for y∗. Let (z∗, γ ∗) be the concatenation of (x∗, α∗) with 
(y∗, β∗) at r : clearly (z∗, γ ∗) is admissible for (OC) of Definition 2.1. The minimality of (x∗, α∗)
for u(x, t), and that of (y∗, β∗) for u(x∗(r), r), directly yield

u(x, t) =
r∫

t

1

2
|α∗|2 + f (x∗, s)ds +

⎛⎝ T∫
r

1

2
|α∗|2 + f (x∗, s)ds + g(x∗(T ))

⎞⎠
≥

r∫
t

1

2
|α∗|2 + f (x∗, s)ds + u(x∗(r), r)

=
r∫

t

1

2
|α∗|2 + f (x∗, s)ds +

⎛⎝ T∫
r

1

2
|β∗|2 + f (y∗, s)ds + g(y∗(T ))

⎞⎠
= Jt (z

∗, γ ∗) ≥ u(x, t),

so that the above inequalities are actually equalities, proving (6.1) and the optimality of (z∗, γ ∗).
2. Let (y, β) be admissible for u(x∗(r), r). Let (z, γ ) be the concatenation of (x∗, α∗) with 

(y, β) at r . The conclusion follows from the following inequality:

0 ≤ Jt (z, γ ) − Jt (x
∗, α∗) = Jr(y,β) − Jr(x

∗, α∗).

3. Assume that (x(·), α) is admissible for u(x, t), in the interval [t, r], i.e., satisfies (1.4)
together with the endpoint condition x(r) = x. Then the concatenation (z, γ ) of (x(·), α) with 
(x∗, α∗), restricted to [r, T ], at r is admissible. The minimality of (x∗, α∗) implies that

Jt (x
∗, α∗) ≤ Jt (z, γ ). (6.3)

Now

Jt (x
∗, α∗) = It,r (x

∗, α∗) + Jr(x
∗, α∗), Jt (z, γ ) = It,r (x(·), α) + Jr(x

∗, α∗).
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It follows from (6.3) that It,r (x
∗, α∗) ≤ It,r (x(·), α).

4. We shall follow arguments similar to those of [4, Proposition III.2.5]. Let (x(·), α) be 
admissible and (y∗, β∗) be optimal for u(x(r), r). Let (z, γ ) be the concatenation of (x(·), α)

with (y∗, β∗) at r . Since (z, γ ) is admissible we get

u(x, t) ≤ Jt (z, γ ) =
r∫

t

1

2
|α(s)|2 + f (x(s), s) ds + u(x(r), r),

proving that

u(x, t) ≤ min
(x(·),α)∈A(x,t)

⎧⎨⎩u(x(r), r) +
r∫

t

1

2
|α(s)|2 + f (x(s), s) ds

⎫⎬⎭ .

The opposite inequality follows from (6.1). �
6.2. G-differentials in R2

In this section, we introduce the notion of G-differentiability in the 2-dimensional case and 
we collect several properties of semiconcave functions.

Definition 6.2. A function u : R2 →R is G-differentiable in x ∈ R2 if there exists pG ∈ R2 such 
that

lim
v→0

u(x1 + v1, x2 + h(x1)v2) − u(x1, x2) − (pG, v)

|v| = 0;

in this case we denote pG = DGu(x). We define the G-subdifferential

D−
G u(x) := {p ∈R2| lim inf

v→0

u(x1 + v1, x2 + h(x1)v2) − u(x1, x2) − (p, v)

|v| ≥ 0},

the lower G-Dini derivative in the direction θ (i.e., |θ | = 1)

∂−
G u(x, θ) := lim inf

l→0+,θ ′→θ

u(x1 + lθ ′
1, x2 + h(x1)lθ

′
2) − u(x1, x2)

l

and the generalized G-lower derivative in the direction θ

u0
G,−(x, θ) := lim inf

l→0+,y→x

u(y1 + lθ1, y2 + h(y1)lθ2) − u(y1, y2)

l
.

The G-superdifferential D+
G u(x), the upper G-Dini derivative ∂+

G u(x, θ) and the generalized G-

upper derivative u0
G,+(x, θ) are defined in an analogous way. We introduce the reachable G-

gradients

D∗ u(x) := {p : ∃xn → x, u is G-differentiable at xn and DGu(xn) → p}.
G
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We define the (1-sided) G-directional derivative of u at x in the direction θ as

∂Gu(x, θ) := lim
l→0+

u(x1 + lθ1, x2 + h(x1)lθ2) − u(x1, x2)

l
.

Lemma 6.1.

1. If u is G-differentiable at x, then DGu(x) is unique and D+
G u(x) and D−

G u(x) are both 
nonempty.

2. For h(x1) �= 0, there holds: (p1, p2) ∈ D+u(x) if and only if (p1, h(x1)p2) ∈ D+
G u(x).

3. For h(x1) = 0 and |θ | = 1, there holds:

D+
G u(x) = {(p1,0) : lim sup

v1→0

u(x1 + v1, x2) − u(x1, x2) − p1v1

|v1| ≤ 0}

∂Gu(x, θ) =
{

0 for θ1 = 0

|θ1|∂u(x, (sgn(θ1),0)) for θ1 �= 0

where ∂u(x, θ) is the standard directional derivative of u at x in the direction θ .
4. For Lipschitz continuous function u, there holds:

∂−
G u(x, θ) := lim inf

l→0+
u(x1 + lθ1, x2 + h(x1)lθ2) − u(x1, x2)

l
, (6.4)

If h(x1) = 0 then (p1,p2) ∈ D∗
Gu(x) ⇒ p2 = 0. (6.5)

Proof. Points 1, 2 and 3 are obvious. The equality in (6.4) follows by the arguments of [11, 
Remark 3.1.4]. Let us prove (6.5). For any (p1, p2) ∈ D∗

Gu(x), there exists {xk}k with xk :=
(xk,1, xk,2) → x and DGu(xk) → (p1, p2). Possibly passing to a subsequence, we may assume 
that either h(xk,1) �= 0 for any k or h(xk,1) = 0 for any k. In the first case, by Point 2, we have 
DGu(xk) = (D1u(xk), h(xk,1)D2u(xk)) where D1 and D2 are the partial derivatives with respect 
to x1 and x2. As k → +∞, by the Lipschitz continuity of u, we get p2 = lim

k
h(xk,1)D2u(xk) = 0. 

In the latter case, DGu(x) = (D1u(xk,1), 0) → (p1, 0), the conclusion follows. �
Proposition 6.2. We have

D+
G u(x) = {p : ∂+

G u(x, θ) ≤ (p, θ)∀θ ∈R2}, D−
G u(x) = {p : ∂−

G u(x, θ) ≥ (p, θ)∀θ ∈R2}.

Moreover, D+
G u(x) and D−

G u(x) are both nonempty if and only if u is G-differentiable at x and 
in this case they reduce to the singleton DGu(x) = D−

G u(x) = D+
G u(x).

The proof of this proposition follows the same arguments of [11, Proposition 3.1.5]; ac-
tually the main difference is that one has to consider xk = (x1 + vk,1, x2 + h(x1)vk,2) with 
vk = (vk,1, vk,2) → 0. Hence we shall omit it.

We now generalize the Definition 2.3 of semiconcavity:
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Definition 6.3. Let u : Rd → R. We say that u is semiconcave if there exists a nondecreasing 
upper semicontinuous function ω : (0, +∞) → (0, +∞) such that limρ→0+ ω(ρ) = 0 and for all 
λ ∈ [0, 1], for all x, y ∈ Rd

λu(y) + (1 − λ)u(x) − 2u(λy + (1 − λ)x) ≤ λ(1 − λ)|y − x|ω(|y − x|).

The function ω is called modulus of semiconcavity of u.

Proposition 6.3. Let u be a semiconcave function with modulus of semiconcavity ω. Then there 
hold

1. p ∈ D+
G u(x) if and only if for any v = (v1, v2) ∈ R2

u(x1 + v1, x2 + h(x1)v2) − u(x1, x2) − (p, v) ≤ |(v1, h(x1)v2)|ω(|(v1, h(x1)v2)|); (6.6)

2. If limk xk = x and pk ∈ D+
G u(xk) with limk pk = p, then p ∈ D+

G u(x); hence, D∗
Gu(x) ⊂

D+
G u(x);

3. D+
G u(x, t) �= ∅;

4. If D+
G u(x) = {p} (i.e., it is a singleton), then u is G-differentiable at x.

Proof. 1. Consider p ∈ D+
G u(x). When h(x1) = 0 and v1 = 0, inequality (6.6) is a trivial conse-

quence of Point 3 of Lemma 6.1. Otherwise, the rest of the proof is an adaptation of the argument 
in [11, Proposition 3.3.1] using [11, equation (2.1)] with y = (x1 + v1, x2 + h(x1)v2).

2. It follows directly from (6.6).
3. Being semiconcave, the function u is locally Lipschitz continuous. By Rademacher’s the-

orem, there exists a sequence of points {xk}k with limk xk = x where u is differentiable and, in 
particular, G-differentiable with |DGu(xk)| ≤ L (for some L). Possibly passing to a subsequence, 
DGu(xk) → p; hence, by point (2), p ∈ D+

G u(x).

4. By Proposition 6.2, it suffices to prove: p ∈ D−
G u(x). To this end, consider any sequence 

{vk}k , with vk → 0 as k → +∞ and introduce {xk}k as

xk = (xk,1, xk,2) := (x1 + vk,1, x2 + h(xk,1)vk,2).

We observe that: (i) xk → x as k → +∞, (ii) by point (3), ∃pk ∈ D+
G u(xk) with |pk| ≤ L, (iii) 

by point (2) and possibly passing to a subsequence, pk → p as k → +∞. Relation (6.6) centered 
in xk defined above, with v = −vk , gives

− u(xk,1 − vk,1, xk,2 − h(xk,1)vk,2) + u(xk,1, xk,2) − (pk, vk)

≥ −|(vk,1, h(xk,1)vk,2)|ω(|(vk,1, h(xk,1)vk,2)|).

By our choice of xk , this inequality entails
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−u(x1, x2) + u(x1 + vk,1, x2 + h(x1)vk,2) − (p, vk)

|vk|
≥ u(x1 + vk,1, x2 + h(x1)vk,2) − u(x1 + vk,1, x2 + h(xk,1)vk,2) + (pk − p,vk)

|vk|
− |(vk,1, h(xk,1)vk,2)|ω(|(vk,1, h(xk,1)vk,2)|)

|vk|
≥ LL′|vk,2||vk,1|

|vk| + (pk − p,vk/|vk|) − |(vk,1, h(xk,1)vk,2)|ω(|(vk,1, h(xk,1)vk,2)|)
|vk|

where L and L′ are respectively local Lipschitz constants of u and of h. Letting k → +∞, we 
obtain

lim inf
k→+∞

u(x1 + vk,1, x2 + h(x1)vk,2) − u(x1, x2) − (p, vk)

|vk| ≥ 0;

by the arbitrariness of vk , we conclude: p ∈ D−
G u(x). �

In the next statement we establish that semiconcave functions always have directional deriva-
tives.

Proposition 6.4. Let u be a semiconcave function with modulus of semiconcavity ω. Then, for 
any direction θ , the directional derivative ∂Gu(x, θ) exists and the following equalities hold:

∂Gu(x, θ) = ∂−
G u(x, θ) = ∂+

G u(x, θ) = u0
G,−(x, θ).

Proof. The proof is similar to the proof of [11, Theorem 3.2.1] so we just sketch it. Fix a direc-
tion θ and consider 0 < l1 < l2. Relation [11, eq. (2.1)] with λ = 1 − l1/l2, y = (x1 + l2θ1, x2 +
h(x1)l2θ2) entails

u(x1 + l1θ1, x2 + h(x1)l1θ2) − u(x)

l1
≥ u(x1 + l2θ1, x2 + h(x1)l2θ2) − u(x)

l2

−
(

1 − l1

l2

)
|(θ1, h(x1)θ2)|ω(l2|(θ1, h(x1)θ2)|). (6.7)

Passing to the lim infl1→0+ and after to the lim supl2→0+ , we get ∂−
G u(x, θ) ≥ ∂+

G u(x, θ); hence, 
∂Gu(x, θ) exists and it coincides both with the upper and the lower G-Dini derivatives. More-
over, by the definitions of ∂+

G u(x, θ) and of u0
G,−(x, θ), Point 4 of Lemma 6.1 easily entails: 

∂+
G u(x, θ) ≥ u0

G,−(x, θ). Therefore, it remains to prove

∂+
G u(x, θ) ≤ u0

G,−(x, θ). (6.8)

Let ε and � be two fixed positive constants with � ≥ l. Since u is continuous, there exists α
sufficiently small such that

u(x1 + �θ1, x2 + �θ2h(x1)) − u(x) ≤ u(y1 + �θ1, y2 + �θ2h(y1)) − u(y) + ε ∀y ∈ Bα(x).

� �
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By inequality (6.7) (with x, l1 and l2 replaced respectively by y, l), we get

u(y1 + �θ1, y2 + �θ2h(y1)) − u(y)

�
≤ u(y1 + lθ1, y2 + lθ2h(y1)) − u(y)

l

+ � − l

�
|(θ1, h(y1)θ2)|ω(�|(θ1, h(y1)θ2)|) ∀l ∈ (0, �).

By the last two inequalities we deduce

u(x1 + �θ1, x2 + �θ2h(x1)) − u(x)

�
≤ min

y∈Bα(x),l∈(0,�)

u(y1 + lθ1, y2 + lθ2h(y1)) − u(y)

l

+ |(θ1, h(y1)θ2)|ω(�|(θ1, h(y1)θ2)|) + ε.

Taking into account the definition of u0
G,−(x, θ), we get

u(x1 + �θ1, x2 + �θ2h(x1)) − u(x)

�
≤ u0

G,−(x, θ) + |(θ1, h(x1)θ2)|ω(�|(θ1, h(x1)θ2)|) + ε.

In conclusion, passing to the limit for ε → 0+ and then lim sup
�→0

, we obtain inequality (6.8). �

Theorem 6.1. Let u be a semiconcave function. Then, there holds

D+
G u(x) = coD∗

Gu(x); (6.9)

moreover, for any direction θ , the G-directional derivative of u in the direction θ satisfies

∂Gu(x, θ) = min
p∈D+

Gu(x)

(p, θ) = min
p∈D∗

Gu(x)
(p, θ). (6.10)

Proof. We shall use some of the arguments of [11, Theorem 3.3.6]. Let us prove relations (6.10). 
For any direction θ , using Proposition 6.2 and Proposition 6.3-(2), we obtain

∂Gu(x, θ) ≤ min
p∈D+

Gu(x)

(p, θ) ≤ min
p∈D∗

Gu(x)
(p, θ).

Hence, it remains to prove

min
p∈D∗

Gu(x)
(p, θ) ≤ ∂Gu(x, θ) for any direction θ . (6.11)

In order to prove this inequality, we study separately the cases when x1 belongs or not to 
{h(x1) = 0}. Assume h(x1) �= 0 and fix a direction θ . Since u is differentiable a.e., there ex-
ists a sequence {vk}k , with vk ∈ R2, such that: (i) vk → 0 as k → +∞, (ii) vk/|vk| → θ as 
k → +∞, (iii) u is differentiable at xk := (x1 + vk,1, x2 + vk,2h(x1)), (iv) (taking advantage 
of the Lipschitz continuity of u and possibly passing to a subsequence) DGu(xk) converge to 
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some p ∈ D∗
Gu(x) as k → +∞. Applying inequality [11, eq. (3.18)] (with x and y replaced 

respectively by xk and x), we get

u(x) − u(xk) + (Du(xk), (vk,1, h(x1)vk,2)) ≤ |(vk,1, h(x1)vk,2)|ω(|(vk,1, h(x1)vk,2)|). (6.12)

On the other hand, we observe that point (iii) here above and Point 2 of Lemma 6.1 ensure that u

is G-differentiable at xk with DGu(xk) = (D1u(xk), h(xk,1)D2u(xk)). Hence, we have

(Du(xk), (vk,1, h(x1)vk,2)) = (DGu(xk), vk) + D2u(xk)vk,2[h(x1) − h(xk,1)]
≥ (DGu(xk), vk) − C|vk,2||vk,1|,

(6.13)

where the last inequality holds for a suitable C > 0, and is due to the Lipschitz continuity of u

and of h. By (6.12) and (6.13), we get

(DGu(xk), vk/|vk|) ≤ u(xk) − u(x)

|vk| + C|vk,2||vk,1|
|vk| + |(vk,1, h(x1)vk,2)|

|vk| ω(|(vk,1, h(x1)vk,2)|).

Letting k → +∞, we infer: (p, θ) ≤ ∂Gu(x, θ) for some p ∈ D∗
Gu(x) which, in turns, en-

tails (6.11).
Consider now x such that h(x1) = 0. By Point 4 of Lemma 6.1 we have: minp∈D∗

Gu(x)(p, θ) =
minp∈D∗

Gu(x) p1θ1; taking into account also Point 3 of Lemma 6.1, relation (6.11) is equivalent 
to

min
p∈D∗

Gu(x)
p1sgn(θ1) ≤ ∂u(x, (sgn(θ1),0)) ∀θ1 ∈ [−1,1] \ {0}.

In order to prove this relation, we follow an argument similar to the previous case. We consider 
a sequence {vk}k such that: (i) vk → 0 as k → +∞, (ii) vk/|vk| → (sgn(θ1), 0) as k → +∞ (in 
particular vk,2/|vk| → 0), (iii) u is differentiable at xk := (x1 + vk,1, x2 + vk,2) (note that this 
definition is different from the corresponding one in the previous case), (iv) DGu(xk) converge 
to some p ∈ D∗

Gu(x) as k → +∞. Applying inequality [11, eq. (3.18)] (with x and y replaced 
respectively by xk and x), we get

(Du(xk), vk) ≤ u(xk) − u(x) + |vk|ω(|vk|).
Again we get that u is G-differentiable at xk with Du(xk) = (D1u(xk), h(xk,1)D2u(xk)). Hence, 
we deduce

(Du(xk), vk) = (DGu(xk), vk) + D2u(xk)[1 − h(xk,1)]vk,2 ≥ (DGu(xk), vk) − C|vk,2|
where the last inequality is due to the Lipschitz continuity of u and to the boundedness of h. By 
the last two inequalities, we get

(DGu(xk), vk/|vk|) ≤ u(xk) − u(x)

|vk| + C|vk,2|
|vk| + ω(|vk|).

Letting k → +∞, we infer: p1sgn(θ1) ≤ ∂u(x, (sgn(θ1), 0)). Hence, relations (6.10) are com-
pletely proved. Arguing as in [11, Theorem 3.3.6], we infer relation (6.9). �
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6.3. G-differentials in Rd

In this subsection we extend the definition of G-differentiability in the d-dimensional case 
which is used along Section 5.

Definition 6.4. A function u : Rd →R is G-differentiable in x ∈Rd if there exists ρG ∈Rd such 
that

lim
v→0

u(x̃) − u(x) − (ρG, v)

|v| = 0;

where, for v ∈Rd we iteratively define x̃1 = x1 +h11v1, and x̃i = xi +∑d
j=1 hij (x̃1, · · · , x̃i−1)vj , 

where hij are defined in (5.3).
In a way similar to Definition 6.2, we define the G-subdifferential and G-superdifferential, the 

lower and upper G-Dini derivative in the direction θ ∈ Rd , the generalized G-upper and G-lower 
derivative in the direction θ , the reachable G-gradients, the (1-sided) G-directional derivative of 
u at x in the direction θ .

Remark 6.1. If u is differentiable then ρG =: DGu = Du B , where B is defined in (5.3).

By the same arguments as in the 2-dim case in Section 6.2, we get the following results.

Proposition 6.5. Let u be a semiconcave function with modulus of semiconcavity ω. Then there 
hold

1. p ∈ D+
G u(x) if and only if for any v ∈ Rd

u(x̃) − u(x) − (ρG, v) ≤ |x̃ − x|ω(|x̃ − x|), (6.14)

where x̃ is defined as in Definition 6.4.
2. If limk xk = x and pk ∈ D+

G u(xk) with limk pk = p, then p ∈ D+
G u(x); hence, D∗

Gu(x) ⊂
D+

G u(x);

3. D+
G u(x, t) �= ∅;

4. If D+
G u(x) = {p} (i.e., it is a singleton), then u is G-differentiable at x.

Theorem 6.2. Let u be a semiconcave function. Then, there holds

D+
G u(x) = coD∗

Gu(x); (6.15)

moreover, for any direction θ , the G-directional derivative of u in the direction θ satisfies

∂Gu(x, θ) = min
p∈D+u(x)

(p, θ) = min
p∈D∗ u(x)

(p, θ). (6.16)

G G
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