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Abstract

The aim of this article is to study a Cahn-Hilliard model for a multicomponent mixture with cross-
diffusion effects, degenerate mobility and where only one of the species does separate from the others. 
We define a notion of weak solution adapted to possible degeneracies and our main result is (global in 
time) existence. In order to overcome the lack of a-priori estimates, our proof uses the formal gradient flow 
structure of the system and an extension of the boundedness by entropy method which involves a careful 
analysis of an auxiliary variational problem. This allows to obtain solutions to an approximate, time-discrete 
system. Letting the time step size go to zero, we recover the desired weak solution where, due to their low 
regularity, the Cahn-Hilliard terms require a special treatment.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

The aim of this work is to study a Cahn-Hilliard model with degenerate mobility for a multi-
component mixture where cross-diffusion effects between the different species of the system are 
taken into account, and where only one species does separate from the others. The motivation for 
considering such a model stems from the fact that there exist multiphase systems where miscible 
entities may coexist in one single phase of the system, [1,2]. In the latter phase, cross-diffusion 
effects between the different miscible chemical species may have to be taken into account in 
order to correctly model the evolution of the concentrations or of the volumic fractions of each 
species.

More precisely, let � be a regular, open, bounded subdomain of Rd with d = 1, 2, 3. We 
assume that the mixture is composed of n + 1 species for some positive n ∈ N \ {0}, occupying 
the domain �. Let T > 0 be some final time. For all 0 ≤ i ≤ n, we denote by ui(t, x) the volumic 
fraction of the ith species at time t ∈ [0, T ] and point x ∈ �. We are interested in proving the 
existence of weak solutions u := (u0, u1, . . . , un) to a system of the form:

∂tu = div (M(u)∇μ) , (1.1)

that satisfy

∀0 ≤ i ≤ n, 0 ≤ ui(t, x) ≤ 1, and
n∑

i=0

ui(t, x) = 1 for a.e. t ∈ [0, T ], x ∈ �.

Here, for all u ∈ Rn+1+ , M(u) ∈ R(n+1)×(n+1) is a degenerate mobility matrix whose precise 
expression is given in Section 2, while μ is the chemical potential, defined as

μ = DuE(u).

In this work, the energy functional E : L∞(�)n+1 →R ∪ {±∞} is given by
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E(u) :=

⎧⎪⎨⎪⎩
∫
�

n∑
i=0

(ui lnui − ui + 1) + ε

2
|∇u0|2 + βu0(1 − u0)dx, if u0 ∈ H 1(�),

+∞, otherwise,

(1.2)

for some constants ε > 0 and β > 0. The logarithmic terms in this energy functional account 
for diffusion while the other two terms are responsible for phase separation: the gradient term 
penalizes transitions while the last term encourages u0 to be either one or zero. Note that in 
contrast to most other multi-phase Cahn-Hilliard systems, in our case, the last two terms only act 
on u0, a situation called degenerate Ginzburg-Landau energy in [3]. The model is equivalent to 
the standard classical two-phase Cahn-Hilliard model with degenerate mobility in the case where 
n = 1 and β = 1

ε
(see [4] for example). In the case when ε = β = 0, system (1.1) boils down to 

a multi-species degenerate cross-diffusion system with size exclusion that was studied in the 
following series of publications [5–8]. Let us also mention [9] where the cross-diffusion system 
with non-local interactions was studied which can be seen as a non-local precursor of our system.

Let us put our work into perspective with respect to previous results for multi-species Cahn-
Hilliard and cross-diffusion systems.

Cahn-Hilliard systems
The scalar Cahn-Hilliard equation was introduced in [10] as a model for phase separation. 

Existence of weak solution was first shown in the case of constant mobility, see e.g. [11,12], and 
later extended to degenerate, concentration dependent mobilities [4]. For more details we refer 
the reader to the review [13] and the monograph [14]. Multi-species Cahn-Hilliard systems have 
been studied in several earlier works and usually consider an energy functional of the form

E(u) :=
∫
�

[
�(u) + 1

2
∇u · �∇u

]
dx,

for some symmetric positive semidefinite matrix � ∈ R(n+1)×(n+1) and bulk free-energy func-
tional �. In [15], Elliott and Luckhaus proved a global existence result for such a multiphase 
Cahn-Hilliard system with constant mobility and � = γ I for some γ > 0. In [16], the authors 
generalized their result to the case of a degenerate concentration-dependent mobility matrix with 
a positive definite matrix �. Recently, in [17], the authors proposed a novel hierarchy of multi-
species Cahn-Hilliard systems which are consistent with the standard two-species Cahn-Hilliard 
system, and which read as the model introduced above with � a positive-definite matrix, a con-
stant mobility, and a particular bulk energy functional �. Numerical methods for such systems 
were proposed and analyzed in several contributions, see e.g. [18,19].

In all these works, global existence results are obtained for various mobility matrices M , bulk 
energy functionals �, and, at least up to our knowledge, always for a positive definite matrix 
� which implies, from a modeling point of view, that each species composing the mixture has 
the tendency to separate from all other species. This also facilitates the analysis compared to our 
system since it ensures H 2-regularity in space for all species ui , i = 0, . . . , n, while this can only 
be expected for u0 in our case.

Cross-diffusion systems with size exclusion
Systems of partial differential equations with cross-diffusion have gained a lot of interest in 

recent years [20–24] and appear in many applications, for instance the modeling of population 
dynamics of multiple species [25] or cell sorting or chemotaxis-like applications [26,27].
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One major difficulty in the analysis of such strongly coupled systems is the lack of a priori 
estimates. Maximum principles are not available in general and since such systems are often only 
degenerate parabolic, classical energy estimates obtained by (formally) testing with the solution 
itself do not work. In particular it is not possible to obtain L∞ bounds (e.g. non-negativity) by 
choosing suitable test functions as done in [16] for a multi-species Cahn-Hilliard system. For 
some cross-diffusion systems that feature an entropic or formal gradient flow structure, these 
issues can be overcome. More precisely, for systems that can be written as

∂tu = div(M(u)∇∂ue(u)),

where e :Z →R is the entropy density corresponding to the entropy functional

E(u) =
∫
�

e(u) dx,

with

Z :=
{

u := (u0, . . . , un) ∈ Rn+1+ ,

n∑
i=0

ui = 1

}
,

and for all u := (u0, . . . , un) ∈ Z , ∂ue(u) = (∂u0e(u), . . . , ∂une(u)). If the mobility matrix is 
positive semidefinite, a formal calculation immediately shows that the entropy is non-increasing 
since

d

dt
E(u) = −

∫
�

∇∂ue(u)tM(u)∇∂ue(u) dx ≤ 0.

Thus all quantities appearing in the entropy remain bounded if the entropy of the initial con-
figuration is finite. The lack of maximum principles can be compensated by introducing en-
tropy variables defined as partial derivatives of the entropy density. More precisely, one defines 
h : Z → Rn+1 as h(u) := ∂ue(u) = (∂u0e(u), . . . , ∂une(u)) for all u ∈ Z . It turns out that, under 
appropriate assumptions, h is a one-to-one mapping and thus for arbitrary w its inverse satisfies 
h−1(w) ∈ Z . This idea was first applied in [5] and later extended to more general systems in [24]
and coined boundedness by entropy.

In our case, the method is not directly applicable due to the gradient term in the entropy density 
and one of our contributions is its extension through the analysis of an auxiliary variational 
problem.

Finally, let us remark that the question of regularity and uniqueness for cross-diffusion sys-
tems with entropic structure is mostly open except for a few works that, however, require 
additional assumptions, [28,29,7].

Contribution and structure of the paper
In this article we prove the existence of global weak solutions to system (1.1) with energy 

(1.2) and supplemented with appropriate initial- and boundary conditions.
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The novelty of our work lies in the following contributions.

(a) This is, to the best of our knowledge, the first attempt to a cross-diffusion Cahn-Hilliard 
system.

(b) We are able to treat of an energy that only involves Cahn-Hilliard terms acting on u0 but not 
separately on the other species which yields to a transport term with low regularity in these 
equations. This is done by an appropriate definition of weak solution and a careful analysis 
when performing the limit of an approximate time-discrete system. A similar situation has 
so far only been studies in the case of a non-degenerate mobility [30].

(c) We generalize the boundedness-by-entropy to some case when one cannot explicitly invert 
h but instead has to solve a system of elliptic PDEs with logarithmic non-linearities. The 
literature on such systems is rather sparse (see [31,32]) but using variational methods we 
obtain existence of positive solutions.

This manuscript is organized as follows. In Section 2, we give a precise definition of our 
mobility matrix, introduce our notion of weak solution and state the main existence theorem. The 
proof is based on the introduction of a regularized time discrete approximate problem, depending 
on a positive time step τ , which is presented in Section 3. We derive a priori estimates and prove 
the existence of time-discrete iterates via a Schauder fixed point argument. Finally, in Section 5
we exploit the regularity properties obtained in Section 4 in order to pass to the limit τ → 0+
and obtain a solution to (1.1).

We intend to study the sharp-interface limit of this model in a future work.

2. Preliminaries and main result

Let us first introduce some notation used in the manuscript, give a precise definition of (1.1)
and state our notion of weak solution together with the main existence result.

2.1. Notation

We assume in all the sequel that � is an open, bounded subdomain of Rd with d ≤ 3 so that 
the embedding H 2(�) ↪→ L∞(�) is compact and fix a final time T > 0. By N∗ := N \ {0} we 
denote the set of positive integers, while | · | stands for the Lebesgue measure of Rd . For a vector 
a ∈Rn, diag(a) denotes the n × n matrix that has the components of a on its diagonal.

For any ψ, φ ∈ H 2(�), we denote by

〈φ,ψ〉H 2(�) :=
∫
�

φψ + ∇φ · ∇ψ + 
φ
ψdx,

and by ‖φ‖H 2(�) :=√〈φ,φ〉H 2(�). Moreover, we denote by (H 2(�))′ the dual space of H 2(�). 
Similarly, for all l = 0, 1, 2, and for all φ = (φi)1≤i≤n, ψ = (ψi)1≤i≤n ∈ (H l(�))n, we denote by

〈φ,ψ〉Hl(�)n =
n∑

i=1

〈φi,ψi〉Hl(�),

with
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‖φ‖(H l(�))n :=
√

〈φ,φ〉(H l(�))n

and, for all φ = (φi)1≤i≤n ∈ (L∞(�))n, we set

‖φ‖(L∞(�))n :=
√√√√ n∑

i=1

‖φi‖2
L∞(�).

Finally, we define the mapping κ :R+ ×R+ →R by

κ(a, b) =
{

a
1−b

if 1 − b �= 0,

0 otherwise.
(2.1)

2.2. Cahn-Hilliard cross-diffusion system

Let us present the system we consider in this article in full detail. Let ε > 0 and β > 0 and for 
all u = (u0, . . . , un) ∈

(
L∞(�) ∩ H 1(�)

)× (L∞(�))n consider the energy

E(u) =
∫
�

n∑
i=0

(ui lnui − ui + 1) + ε

2
|∇u0|2 + βu0(1 − u0)dx.

For all 0 ≤ i ≤ n let us introduce the chemical potentials, defined (on the formal level at this 
point) via

μi = Dui
E(u) = lnui ∀ i = 1, . . . , n,

as well as

μ0 = Du0E(u) = lnu0 − ε
u0 + β(1 − 2u0),

so that μ := (μ0, μ1, . . . , μn) = DE(u). Let us also introduce the auxiliary variables

wi := lnui − lnu0 ∀ i = 1, . . . , n, (2.2)

and

w0 := −ε
u0 + β(1 − 2u0).

To specify the mobility matrix let, for 0 ≤ i �= j ≤ n, Kij denote some positive real number 
satisfying Kij = Kji . Then for u ∈ Rn+1, let M(u) := (

Mij (u)
)

0≤i,j≤n
∈ R(n+1)×(n+1) be the 

matrix

Mij (u) := −Kijuiuj ∀ i �= j = 0, . . . , n,

Mii(u) :=
∑

Kijuiuj ∀ i = 0, . . . , n. (2.3)
0≤j �=i≤n

583



V. Ehrlacher, G. Marino and J.-F. Pietschmann Journal of Differential Equations 286 (2021) 578–623
With these definitions, system (1.1) can be written, formally, in the scalar form:

∂tui = div

( ∑
1≤j �=i≤n

Kijuiuj∇(μi − μj ) + Ki0uiu0∇(μi − μ0)

)

= div

( ∑
1≤j �=i≤n

Kijuiuj∇(wi − wj) + Ki0uiu0∇(wi − w0)

)

= div

( ∑
1≤j �=i≤n

Kij (uj∇ui − ui∇uj ) + Ki0(u0∇ui − ui∇u0) − Ki0uiu0∇w0

)
,

(2.4)

for 1 ≤ i ≤ n and

∂tu0 = div

⎛⎝ ∑
1≤i≤n

Ki0uiu0∇(μ0 − μi)

⎞⎠ .

= div

⎛⎝ ∑
1≤i≤n

Ki0uiu0∇(w0 − wi)

⎞⎠
= div

⎛⎝ ∑
1≤i≤n

(Ki0(ui∇u0 − u0∇ui) + Ki0uiu0∇w0)

⎞⎠ .

(2.5)

From this set of equations it is clear, at least formally, that

∂t

(
n∑

i=0

ui

)
= 0. (2.6)

Let us introduce an initial condition

u0 = (u0
0, . . . , u

0
n)

of the system which is assumed to satisfy

u0
i (x) ≥ 0 ∀0 ≤ i ≤ n,

n∑
i=0

u0
i (x) = 1, and u(0, x) = u0(x) (2.7)

for a.e. x ∈ �. In view of (2.6) we expect that solutions to system (1.1) satisfy

u0 = 1 −
n∑

i=1

ui, a.e. in (0, T ) × �, (2.8)

and it can be easily checked that, if u satisfies (2.4) and (2.8), then necessarily (2.5) has to be 

satisfied as well. We make a last remark. As 0 ≤ ui ≤ 1 − u0 =
n∑

uj for all 1 ≤ i ≤ n, denoting

j=1
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κi(t, x) := κ(ui(t, x), u0(t, x)), (2.9)

it holds that

u0ui∇w0 = ui

1 − u0
u0(1 − u0)∇w0 = κiJ,

where J := u0(1 − u0)∇w0.
Then, supplementing this set of equations with no-flux boundary conditions, we obtain that 

((ui)0≤i≤n, J ) is a solution to

∂tui = div

( ∑
1≤j �=i≤n

Kij (uj∇ui − ui∇uj ) + Ki0(u0∇ui − ui∇u0) − Ki0κiJ

)
in (0, T ) × �,

u0 = 1 −
n∑

i=1

ui in (0, T ) × �,

J = u0(1 − u0)∇ (−ε
u0 + β(1 − 2u0)) in (0, T ) × �,( ∑
1≤j �=i≤n

Kij (uj∇ui − ui∇uj ) + Ki0(u0∇ui − ui∇u0) − Ki0κiJ

)
· n = 0 in (0, T ) × ∂�,

ui(0, ·) = u0
i in �,

(2.10)
where n denotes the normal unit vector pointing outwards the domain �.

2.3. Notion of weak solution and main result

The aim of our work is to prove the existence of a weak solution to system (2.10) in the 
following sense. We recall that by (H 1(�))′ we mean the dual space of H 1(�). We also introduce 
the sets

A :=
{

u := (ui)1≤i≤n ∈ (L∞(�))n : ui ≥ 0, i = 1, . . . , n, u0 := 1 −
n∑

i=1

ui ≥ 0

}
,

and

B :=
{

φ = (φi)1≤i≤n ∈ (L∞(�))n : φ0 := −
n∑

i=1

φi ∈ H 1(�)

}
.

Definition 1. We say that ((ui)0≤i≤n, J ) is a weak solution to (2.10) if

1. 0 ≤ ui ≤ 1 for every i = 0, . . . , n;

2.
n∑

i=0
ui = 1 a.e. in (0, T ) × �;

3. ui ∈ L2((0, T ); H 1(�)) for all 1 ≤ i ≤ n;
4. u0 ∈ L2((0, T ); H 2(�));
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5. ∂tui ∈ L2((0, T ); (H 1(�))′) for all 0 ≤ i ≤ n;
6. u0 ∈ A ∩B;
7. ui(0, ·) = u0

i for all 0 ≤ i ≤ n;
8. J ∈ (L2((0, T ) × �))d ;
9. J = (1 − u0)u0∇ (−ε
u0 + β(1 − 2u0)) in the following weak sense

T∫
0

∫
�

J · η = −
T∫

0

∫
�

(−ε
u0 + β(1 − 2u0))div((1 − u0)u0η)dxdt

for all η ∈ L2((0, T ); (H 1(�))d) ∩ L∞((0, T ) × �; Rd) which satisfy η · n = 0 on ∂� ×
(0, T );

10. for all 1 ≤ i ≤ n, for all φi ∈ L2((0, T ); H 1(�)),

T∫
0

〈∂tui, φi〉(H 1(�))′,H 1(�)dt

= −
T∫

0

∫
�

⎡⎣ ∑
1≤j �=i≤n

Kij (uj∇ui − ui∇uj ) + Ki0 (u0∇ui − ui∇u0 − κiJ )

⎤⎦ · ∇φidxdt,

where κi(t, x) := κ(ui(t, x), u0(t, x)), with κ defined in (2.1).

Note that due to κ , our definition of weak solution is related (but stronger) than the one 
introduced in [33] for a scalar, degenerate Cahn-Hilliard equation. Our main result is then the 
following.

Theorem 2.1. Let u0 = (u0
0, . . . , u

0
n) ∈ A ∩B be an initial condition satisfying (2.7). Then, there 

exists at least one weak solution u to (2.10) in the sense of Definition 1.

The rest of the article is devoted to the proof of Theorem 2.1 which is structured as follows.
We first prove the existence of solutions to a regularized time discrete version of system (2.10). 

The proof of the existence of solutions to this auxiliary problem is the object of Section 3 and 
is done using Schauder’s fixed point theorem and an extension of the boundedness-by-entropy 
method, while Section 4 is dedicated to estimates on various norms of such solutions. Finally, 
these estimates enable us to identify the limit of the solution to the auxiliary problem as the time 
step goes to 0+ as a weak solution to (2.10) in the sense of Definition 1. This last step is detailed 
in Section 5.

3. Existence of solutions to a regularized discrete in time system

In the sequel we will use the following observations.

Remark 3.1. The following facts hold true:

(i) The set A is a closed, convex, non-empty subset of (L∞(�))n.
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(ii) If u ∈ A, then every ui satisfies the box constraints 0 ≤ ui ≤ 1, i = 0, . . . , n.

The aim of this section is to prove the existence of a solution to a time-discrete regularized 
version of the system introduced in the previous section. More precisely, for every positive time 
step τ > 0, we want to give a rigorous sense to a regularized semi-discretization of our sys-
tem formally defined as follows. For all p ∈ N , given up := (u

p
1 , . . . , up

n ) ∈ A ∩ (H 2(�))n we 

look for a set of functions up+1 := (u
p+1
1 , . . . , up+1

n ) ∈ A that is weak solution to the following 
nonlinear system:

∫
�

u
p+1
i − u

p
i

τ
φidx = −

∫
�

( ∑
1≤j �=i≤n

Kiju
p+1
i u

p+1
j ∇(w

p+1
i − w

p+1
j )

+ Ki0u
p+1
i u

p+1
0 ∇(w

p+1
i − w

p+1/2
0 )

)
· ∇φidx

− τ 〈wp+1
i − w

p+1/2
0 , φi〉H 2(�),

(3.1)

for all 1 ≤ i ≤ n, where

u
p+1
0 := 1 −

n∑
i=1

u
p+1
i , u

p

0 = 1 −
n∑

i=1

u
p
i ,

w
p+1/2
0 := −ε
u

p+1
0 + β(1 − 2u

p

0 ), (3.2)

and

w
p+1
i := lnu

p+1
i − lnu

p+1
0 , i = 1, . . . , n.

Let us emphasize that we use a semi-implicit discretization as we consider the terms arising from 
the concave part of the entropy at the previous time step p. We will see below that this ensures 
that the discrete energy is non-increasing.

To give a rigorous sense to this nonlinear system we will make use of a fixed-point argument. 
First of all, let us point out that, defining

w̄
p+1
i := w

p+1
i − w

p+1/2
0 = lnu

p+1
i − lnu

p+1
0 + ε
u

p+1
0 − β(1 − 2u

p

0 ),

for all 1 ≤ i ≤ n, system (3.1) boils down to

∫
�

u
p+1
i − u

p
i

τ
φidx

= −
∫
�

( ∑
1≤j �=i≤n

Kiju
p+1
i u

p+1
j ∇(w̄

p+1
i − w̄

p+1
j ) + Ki0u

p+1
i u

p+1
0 ∇w̄

p+1
i

)
· ∇φidx

− τ 〈w̄p+1
, φ 〉 2 .

(3.3)
i i H (�)
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The auxiliary variables w̄p+1 = (w̄
p+1
1 , . . . , w̄p+1

n ) will play a central role in the proof of the 
existence of solutions to this semi-discretized regularized system. We have the following result.

Theorem 3.2. Let τ > 0 be a discrete time step, let p ∈ N , and let up ∈ A ∩ (H 2(�))n. Then, 
there exists a solution (up+1, w̄p+1) ∈ (A ∩ (H 2(�))n) × (H 2(�))n to the following coupled 
system: for all 1 ≤ i ≤ n, for all φi ∈ H 2(�),

∫
�

u
p+1
i − u

p
i

τ
φidx

= −
∫
�

( ∑
1≤j �=i≤n

Kiju
p+1
i u

p+1
j ∇(w̄

p+1
i − w̄

p+1
j ) + Ki0u

p+1
i u

p+1
0 ∇w̄

p+1
i

)
· ∇φidx

− τ 〈w̄p+1
i , φi〉H 2(�),

(3.4)

and for all ψ = (ψi)1≤i≤n ∈ B ∩ (L∞(�))n,

∫
�

n∑
i=1

(lnu
p+1
i − lnu

p+1
0 )ψi + ε∇u

p+1
0 · ∇ψ0dx =

n∑
i=1

∫
�

(
w̄

p+1
i + β(1 − 2u

p
0 )
)

ψidx,

(3.5)
where up

0 is given by (2.8). Moreover, the function up+1 satisfies the following property: there 
exists δp > 0 such that

u
p+1
i ≥ δp, for all 1 ≤ i ≤ n, and 1−δp ≥ u

p+1
0 := 1−

n∑
i=1

u
p+1
i ≥ δp, a.e. in (0, T )×�.

(3.6)

Remark 3.3. The weak formulation (3.5) implies that, for all 1 ≤ i ≤ n,∫
�

(lnu
p+1
i − lnu

p+1
0 )ψi − ε∇u

p+1
0 · ∇ψidx =

∫
�

(
w̄

p+1
i + β(1 − 2u

p
0 )
)

ψidx (3.7)

for all ψi ∈ L∞(�) ∩ H 1(�). Besides, since lnu
p+1
i , lnu

p+1
0 , w̄p+1

i , and β(1 − 2u
p

0 ) belong to 
L∞(�), the first three thanks to (3.6) and the last one by assumption, and since the set L∞(�) ∩
H 1(�) is dense in H 1(�), we obtain that (3.7) holds for all ψi ∈ H 1(�). As a consequence, 
u

p+1
0 is the unique solution in H 1(�) to the problem

−
u
p+1
0 = w̄

p+1
i + β(1 − 2u

p
0 ) − lnu

p+1
i + lnu

p+1
0 in D′(�),

∇u
p+1
0 · n = 0 on ∂�.

From now on and in all the rest of Section 3, we fix τ > 0, up := (u
p

1 , . . . , up
n ) ∈ A ∩(H 2(�))n

and denote by up

0 := 1 −
n∑

u
p
i .
i=1
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The proof of Theorem 3.2 makes use of Schauder’s fixed point theorem as follows. We first 
show that for any ũ = (ũ1, . . . , ũn) ∈ A there exists a unique solution w̄ = (w̄1, . . . , w̄n) ∈
(H 2(�))n to the linearized problem: for all 1 ≤ i ≤ n and all φi ∈ H 2(�),

∫
�

ũi − u
p
i

τ
φidx = −

∫
�

( ∑
1≤j �=i≤n

Kij ũi ũj∇(w̄i − w̄j ) + Ki0ũi ũ0∇w̄i

)
· ∇φidx

− τ 〈w̄p+1
i , φi〉H 2(�),

(3.8)

with ũ0 := 1 −
n∑

i=1
ũi . We then prove that the map S1 :A → (H 2(�))n which associates to ũ ∈A

the unique solution w̄ to (3.8) is continuous. This is the object of Section 3.1.
We then show that for all w̄ ∈ (H 2(�))n, there exists a unique solution u ∈A ∩ (H 2(�))n to

∫
�

n∑
i=1

(lnui − lnu0)ψi + ε∇u0 · ∇ψ0dx =
n∑

i=1

∫
�

(
w̄i + β(1 − 2u

p
0 )
)
ψidx, (3.9)

for all ψ = (ψi)1≤i≤n ∈ B∩ (L∞(�))n, with u0 given by (2.8). Problem (3.9) is to be interpreted 
as a weak formulation associated to the relation

lnui − lnu0 = w̄i − ε
u0 + β(1 − 2u
p
0 ).

The map S2 : (H 2(�))n → A which to each w̄ ∈ (H 2(�))n associates the unique solution u ∈A
to (3.9) is then shown to be continuous. These results are proved in Section 3.2.

We finally conclude by showing that the map S = S2 ◦ S1 : A → A is such that S(A) is a 
relatively compact subset of (L∞(�))n, so that Schauder’s fixed point theorem can be used. This 
is the object of Section 3.3.

3.1. Definition and continuity of the map S1

Lemma 3.4. For any ũ ∈A, there exists a unique solution w̄ ∈ (H 2(�))n to the problem: for all 
1 ≤ i ≤ n, for all φi ∈ H 2(�),

∫
�

ũi − u
p
i

τ
φidx = −

∫
�

( ∑
1≤j �=i≤n

Kij ũi ũj∇(w̄i − w̄j ) + Ki0ũi ũ0∇w̄i

)
· ∇φidx

− τ 〈w̄i, φi〉H 2(�),

(3.10)

where ũ0 satisfies (2.8). Furthermore, there exists a constant M0 > 0, depending only on n, τ , 
and �, such that

‖w̄‖(H 2(�))n ≤ M0. (3.11)

Proof. We fix ũ := (ũi)1≤i≤n ∈ A and introduce the matrices G(ũ) := (Gij (ũ))1≤i,j≤n and 
H(ũ) := (Hij (ũ))1≤i,j≤n ∈Rn×n defined by
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Gij (ũ) := −Kij ũi ũj ∀ i �= j = 1, . . . , n,

Gii(ũ) :=
∑

1≤j �=i≤n

Kij ũi ũj ∀ i = 1, . . . , n,

and

H(ũ) = diag(K10ũ1ũ0, . . . ,Kn0ũnũ0).

Then, system (3.10) can be equivalently written as

− 1

τ

∫
�

(ũ − up) · φdx =
∫
�

∇φ · G(ũ)∇w̄dx +
∫
�

∇φ · H(ũ)∇w̄dx + τ 〈φ, w̄〉(H 2(�))n ,

(3.12)

for all φ ∈ (H 2(�))n. Let us point out that

0 ≤ G(ũ) ≤ nKIn and 0 ≤ H(ũ) ≤ KIn (3.13)

almost everywhere in �, in the sense of symmetric matrices, with K := max
0≤i �=j≤n

Kij and In

being the identity matrix of Rn×n. The existence and uniqueness of a solution to (3.12) is then a 
consequence of Lax-Milgram’s theorem. In particular, taking φ = w̄ in (3.12) gives

τ‖w̄‖2
(H 2(�))n

≤ 1

τ

n∑
i=1

‖ũi − u
p
i ‖L2(�)‖w̄i‖L2(�)

≤ 1

τ

(
n∑

i=1

‖ũi − u
p
i ‖2

L2(�)

)1/2

‖w̄‖H 2(�).

Since ũ and up belongs to A, this implies that

‖w̄‖(H 2(�))n ≤ 1

τ 2 2
√

n|�|,

which yields estimate (3.11).

Let us denote by S1 : A ⊂ (L∞(�))n → (H 2(�))n the application that associates to each 
ũ ∈A the unique solution w̄ to (3.10). We have the following result.

Lemma 3.5. The map S1 : A ⊂ (L∞(�))n → (H 2(�))n is continuous.

Proof. Let ũ1, ũ2 ∈ A and set w̄1 = S1(ũ1) as well as w̄2 = S1(ũ2). For all 1 ≤ i �= j ≤ n we 
have
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Gij (ũ1) − Gij (ũ2) = −Kij

[
ũ1

i (ũ
1
j − ũ2

j ) + ũ2
j (ũ

1
i − ũ2

i )
]
,

Gii(ũ1) − Gii(ũ2) =
∑

1≤j �=i≤n

Kij

[
ũ1

i (ũ
1
j − ũ2

j ) + ũ2
j (ũ

1
i − ũ2

i )
]
,

Hii(ũ1) − Hii(ũ2) = Ki0

[
ũ1

i (ũ
1
0 − ũ2

0) + ũ2
0(ũ

1
i − ũ2

i )
]
,

which yield the Lipschitz estimates

‖Gij (ũ1) − Gij (ũ2)‖L∞(�) ≤ K
(
‖ũ1

j − ũ2
j‖L∞(�) + ‖ũ1

i − ũ2
i ‖L∞(�)

)
,

‖Gii(ũ1) − Gii(ũ2)‖L∞(�) = K

⎡⎣(n − 1)‖ũ1
i − ũ2

i ‖L∞(�) +
∑

1≤j �=i≤n

‖ũ1
j − ũ2

j‖L∞(�)

⎤⎦ ,

‖Hii(ũ1) − Hii(ũ2)‖L∞(�) = K
[
‖ũ1

0 − ũ2
0‖L∞(�) + ‖ũ1

i − ũ2
i ‖L∞(�)

]
.

Since ‖ũ1
0 − ũ2

0‖L∞(�) ≤
n∑

i=1
‖ũ1

i − ũ2
i ‖L∞(�), there exists a constant C > 0, only depending on 

n and K , such that

−C

(
n∑

i=1

‖ũ1
i − ũ2

i ‖L∞(�)

)
In ≤ G(ũ1) − G(ũ2) ≤ C

(
n∑

i=1

‖ũ1
i − ũ2

i ‖L∞(�)

)
In (3.14)

and

−C

(
n∑

i=1

‖ũ1
i − ũ2

i ‖L∞(�)

)
In ≤ H(ũ1) − H(ũ2) ≤ C

(
n∑

i=1

‖ũ1
i − ũ2

i ‖L∞(�)

)
In, (3.15)

almost everywhere in �, in the sense of symmetric matrices. Then, for all φ ∈ (H 2(�))n,

1

τ

∫
�

(ũ1 − ũ2) · φdx

= −
∫
�

∇φ ·
(
G(ũ1)∇w̄1 − G(ũ2)∇w̄2

)
dx −

∫
�

∇φ ·
(
H(ũ1)∇w̄1 − H(ũ2)∇w̄2

)
dx

− τ 〈φ, w̄1 − w̄2〉(H 2(�))n .

Choosing φ = w̄1 − w̄2 in the above equality and using (3.11), (3.14), (3.15), and (3.13) gives 
the existence of a constant C′ > 0, depending only on n, K , |�|, and τ such that

τ‖w̄1 − w̄2‖2
(H 2(�))n

= − 1

τ

∫
(ũ1 − ũ2) · (w̄1 − w̄2)dx
�
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−
∫
�

∇(w̄1 − w̄2) ·
(
G(ũ1)∇(w̄1 − w̄2)

)
dx −

∫
�

∇(w̄1 − w̄2) ·
(
G(ũ1) − G(ũ2)

)
∇w̄2dx

−
∫
�

∇(w̄1 − w̄2) ·
(
H(ũ1)∇(w̄1 − w̄2)

)
dx −

∫
�

∇(w̄1 − w̄2) ·
(
H(ũ1) − H(ũ2)

)
∇w̄2dx

≤ − 1

τ

∫
�

(ũ1 − ũ2) · (w̄1 − w̄2)dx −
∫
�

∇(w̄1 − w̄2) ·
(
G(ũ1) − G(ũ2)

)
∇w̄2dx

−
∫
�

∇(w̄1 − w̄2) ·
(
H(ũ1) − H(ũ2)

)
∇w̄2dx

≤ C′
(

n∑
i=1

‖ũ1
i − ũ2

i ‖L∞(�)

)
‖w̄1 − w̄2‖(H 2(�))n .

Thus,

‖w̄1 − w̄2‖(H 2(�))n ≤ C′
(

n∑
i=1

‖ũ1
i − ũ2

i ‖L∞(�)

)
,

which yields the continuity of S1.

3.2. Definition and continuity of the map S2

The aim of this section to prove the existence and uniqueness of a solution u ∈ A to the 
problem

w̄i = lnui − lnu0 + ε
u0 − β(1 − 2u
p
0 ), i = 1, . . . , n, (3.16)

when w̄ ∈ (H 2(�))n is given.
In the case when ε = β = 0, there is an algebraic relation which allows to explicitly express u

in terms of w̄ and ensures that u ∈ A (the boundedness-by-entropy method [5,24]). In our case, 
the situation is more involved, since, due to gradient term in the entropy, the densities ui are 
solutions to the nonlinear coupled elliptic system (3.16).

More precisely, we will identify the solution u to (3.16) as the unique weak solution in A ∩B
to the variational problem

∫
�

n∑
i=1

(lnui − lnu0)φi + ε∇u0 · ∇φ0dx =
n∑

i=1

∫
�

(
w̄i + β(1 − 2u

p

0 )
)
φidx, (3.17)

for all φ ∈ B ∩ (L∞(�))n which will be equivalently characterized as the unique solution to the 
minimization problem

minFw̄(v) (3.18)

v∈A
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where for all v ∈A we define

Fw̄(v) =

⎧⎪⎪⎨⎪⎪⎩
+∞ if v /∈ B∫
�

n∑
i=0

vi lnvi + ε

2
|∇v0|2 −

n∑
i=1

vifidx otherwise,

with fi := w̄i + β(1 − 2u
p
0 ) for all 1 ≤ i ≤ n.

The goal of this section is to rigorously prove all these claims. To this aim, we will proceed 
into three steps: first we show that minimizers to (3.18) exist, then that these minimizers are 
solutions to (3.17), and finally that the solution to (3.17) is unique.

Lemma 3.6. For all w̄ ∈ (H 2(�))n, problem (3.18) admits at least one minimizer u ∈A.

Proof. Let w̄ ∈ (H 2(�))n. For all 1 ≤ i ≤ n, let fi := w̄i + β(1 − 2u
p

0 ) ∈ H 2(�) ⊂ L∞(�). Let 
us first show that Fw̄ is bounded from below on A. Fix u = (ui)1≤i≤n ∈A. Since x lnx −x +1 ≥
0 for all x ∈ [0, 1] and since − 

∫
�

ui ≥ −|�| for all i = 0, . . . , n, we have

∫
�

n∑
i=0

ui lnuidx ≥
∫
�

n∑
i=0

(ui − 1)dx = −n|�|. (3.19)

Moreover,

−
∫
�

uifidx ≥ −‖fi‖L∞(�)|�|, (3.20)

for all 1 ≤ i ≤ n. Collecting these estimates gives the existence of a constant C > 0, which only 
depends on n and �, such that

Fw̄(u) ≥ −C

(
1 +

n∑
i=1

‖fi‖L∞(�)

)
.

This shows that Fw̄ is bounded from below on A. Thus, infA Fw̄ > −∞. We now seek for func-
tions v∗ ∈A such that Fw̄(v∗) < ∞. Following [9, Theorem 2.5] we may take

v∗
i = e−|x|2

1 +
n∑

i=1
e−|x|2

, ∀ i = 1, . . . , n.

Then we have

infFw̄ ≤ Fw̄(v∗). (3.21)

A
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Thus, there exists a minimizing sequence 
(
u(m)

)
m∈N ⊂ A such that Fw̄

(
u(m)

)
is bounded and

lim
m→∞Fw̄

(
u(m)

)
= inf

A
Fw̄.

Using the estimate (3.21) we see that if m is sufficiently large we have Fw̄
(
u(m)

)≤ Fw̄(v∗) < ∞, 

which in particular implies that 
(∥∥∇u

(m)
0

∥∥
L2(�)

)
m∈N is bounded as well. Therefore, without re-

labeling we can conclude that ∇u
(m)
0 ⇀ ∇u∗

0 weakly in L2(�), and thus also u(m)
0 → u∗

0 strongly 
in Lp(�), for every 1 ≤ p < ∞ (due to the L∞-bound) and also a.e. in �. Additionally, as the 
u

(m)
i are bounded in L2(�), we know that they converge, up to a subsequence, weakly in L2(�), 

to some u∗
i . This implies, by convexity,∫

�

u∗
i lnu∗

i dx ≤ lim inf
m→∞

∫
�

u
(m)
i lnu

(m)
i dx

as well as ∫
�

|∇u∗
0|2 dx ≤ lim inf

m→+∞

∫
�

∣∣∇u
(m)
0

∣∣2 dx.

Furthermore, the weak convergence in L2(�) yields that for all 0 ≤ i ≤ n∫
�

(−u
(m)
i + 1

)
dx →

∫
�

(−u∗
i + 1

)
dx,

while the strong convergence gives∫
�

u
(m)
0

(
1 − u

(m)
0

)
dx →

∫
�

u∗
0

(
1 − u∗

0

)
dx.

This implies

Fw̄(u∗) ≤ lim inf
m→+∞Fw̄(u(m)) = inf

A
Fw̄,

and then u∗ is a minimizer of Fw̄ on A.

Lemma 3.7. For all w̄ ∈ (H 2(�))n there exists δw̄ > 0 such that for any minimizer u to (3.18) it 
holds

ui ≥ δw̄ ∀1 ≤ i ≤ n, 1 − δw̄ ≥ u0 := 1 −
n∑

i=1

ui ≥ δw̄, a.e. in �.

Besides, for all N > 0, there exists δ > 0 which only depends on n, �, τ , β , and N , such that for 
all w̄ ∈ (H 2(�))n with ‖w̄‖(H 2(�))n ≤ N and for any minimizer u to (3.18) it holds that
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ui ≥ δ ∀1 ≤ i ≤ n, 1 − δ ≥ u0 := 1 −
n∑

i=1

ui ≥ δ a.e. in �.

Proof. Let w̄ ∈ (H 2(�))n and for all 1 ≤ i ≤ n let us denote by fi := w̄i + β(1 − 2u
p
0 ) ∈

H 2(�) ⊂ L∞(�). Let u be a minimizer of Fw̄ on A.

Step 1: Let us first show that there exists 1 > δ > 0, which only depends on n, �, β , τ , and 
n∑

i=1
‖w̄i‖L∞(�), such that δ ≤ u0 almost everywhere in �. The precise value of δ will be specified 

later in the proof.
We reason by contradiction and assume that the Lebesgue measure of the set

Mδ := {x ∈ � : u0(x) < δ}

is positive. Now, let us define

uδ
0 := max(u0, δ),

uδ
i := ui − (uδ

0 − u0)
ui

1 − u0
, i = 1, . . . , n, (3.22)

and uδ := (uδ
1, . . . , u

δ
n). In (3.22), since 1 − u0 =

n∑
j=1

uj ≥ ui ≥ 0, the function ui

1−u0
is well-

defined almost everywhere using the convention that ui

1−u0
= 0 as soon as ui = 0. By definition, 

it holds that 1 ≥ uδ
0 ≥ 0 and uδ

0 +
n∑

i=1
uδ

i = 1. Furthermore, uδ
i (x) = 0 for all x ∈ � such that 

ui(x) = 0. For all x ∈ � such that ui(x) > 0, it follows that 1 − u0(x) ≥ ui(x) > 0 and

uδ
i (x) = ui(x)

(
1 − uδ

0(x) − u0(x)

1 − u0(x)

)
≥ 0, since

uδ
0(x) − u0(x)

1 − u0(x)
≤ 1 − u0(x)

1 − u0(x)
= 1.

As a consequence, uδ ∈ A and uδ
0 = 1 −

n∑
i=1

uδ
i . We now prove that for δ sufficiently small, 

Fw̄(uδ) < Fw̄(u). Indeed, using the convexity of the function [0, 1] � x �→ x ln(x), the fact that 
|∇uδ

0| ≤ |∇u0| a.e. in � and that uδ
i = ui on Mc

δ = {x ∈ � : u0(x) ≥ δ} yields

Fw̄(uδ) − Fw̄(u)

≤
∫

Mδ

n∑
i=1

[uδ
i lnuδ

i − ui lnui] + [uδ
0 lnuδ

0 − u0 lnu0] −
n∑

i=1

fi(u
δ
i − ui)dx

≤
∫ n∑

i=1

[lnuδ
i + 1](uδ

i − ui) + [lnuδ
0 + 1](uδ

0 − u0) −
n∑

i=1

fi(u
δ
i − ui)dx
Mδ
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=
∫

Mδ

n∑
i=1

−[lnuδ
i + 1](uδ

0 − u0)
ui

1 − u0
+ [lnuδ

0 + 1](uδ
0 − u0)dx

−
∫

Mδ

n∑
i=1

fi(u
δ
i − ui)dx. (3.23)

To estimate the first term we note that

uδ
i = ui − (uδ

0 − u0)
ui

1 − u0
= ui

1 − u0
(1 − uδ

0),

for all 1 ≤ i ≤ n. Therefore,

∫
Mδ

n∑
i=1

−[lnuδ
i + 1](uδ

0 − u0)
ui

1 − u0
dx

≤
∫

Mδ

n∑
i=1

[∣∣∣∣ln( ui

1 − u0

)(
ui

1 − u0

)∣∣∣∣+ ∣∣∣∣ln (1 − uδ
0

)( ui

1 − u0

)∣∣∣∣+ ui

1 − u0

]
(uδ

0 − u0)dx.

Using the fact that max
x∈[0,1] |x lnx| = 1

e
, the fact that uδ

0 ≥ δ and that ui

1−u0
≤ 1, we obtain that, if 

δ ≤ 1/2,

∫
Mδ

n∑
i=1

−[lnuδ
i + 1](uδ

0 − u0)
ui

1 − u0
dx

≤ n

(
1

e
+ | ln(1 − δ)| + 1

) ∫
Mδ

(uδ
0 − u0)dx

≤ n

(
1

e
+ ln 2 + 1

) ∫
Mδ

(uδ
0 − u0)dx.

In addition, it holds that∫
Mδ

[lnuδ
0 + 1](uδ

0 − u0)dx = (ln δ + 1)

∫
Mδ

(uδ
0 − u0)dx.

Finally, the last terms in (3.23) are estimated as follows:

−
∫ n∑

i=1

fi(u
δ
i − ui)dx ≤

n∑
i=1

‖fi‖L∞(�)

∫
(uδ

0 − u0)dx
Mδ Mδ
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≤
(

n∑
i=1

‖w̄i‖L∞(�) + 3nβ

) ∫
Mδ

(uδ
0 − u0)dx,

using |uδ
i − ui | ≤ uδ

0 − u0. Combining all these estimates gives

Fw̄(uδ) − Fw̄(u) ≤ (ln δ + C)

∫
Mδ

(uδ
0 − u0)dx,

with

C =
n∑

i=1

‖w̄i‖L∞(�) + 3nβ + n

(
1

e
+ ln 2 + 1

)
.

Finally, we observe that 
∫
Mδ

(uδ
0 − u0) > 0, because the function uδ

0 − u0 is assumed to be 
positive on the set Mδ which has positive measure. Thus, if the value of δ is chosen so that 
δ < min

( 1
2 , e−C

)
, we have that ln δ + C < 0 which implies

Fw̄(uδ) − Fw̄(u) < 0,

the desired contradiction. We have thus proved that, for every minimizer u ∈ A to (3.18), there 

exists δw̄ > 0 such that u0 ≥ δw̄, where u0 = 1 −
n∑

i=1
ui .

Moreover, the value of δ can be chosen so that it only depends on n, β , �, τ , and N as soon 
as w̄ is assumed to satisfy ‖w̄‖(H 2(�))n ≤ N , since H 2(�) is compactly embedded in L∞(�).

Step 2: Let us now show that there exists 1 > δ > 0, which only depends on n, �, β , τ , and 
n∑

i=1
‖w̄i‖L∞(�), such that 1 − u0 =

n∑
n=1

ui ≥ δ almost everywhere in �. As before, the precise 

value of δ will be specified later in the proof. As in Step 1, we argue by contradiction assuming 
that the set

Nδ := {x ∈ � : 1 − δ < u0(x)}
has positive measure. Let us now define

uδ
0 := min(u0,1 − δ),

and uδ
i as in (3.22). We still obtain that uδ := (uδ

1, . . . , u
δ
n) ∈ A and that uδ

0 = 1 −
n∑

i=1
uδ

i . Doing 

similar calculations as in Step 1 gives

Fw̄(uδ) − Fw̄(u)

≤
∫ n∑

i=1

[lnuδ
i + 1](uδ

i − ui) + [lnuδ
0 + 1](uδ

0 − u0)dx −
∫ n∑

i=1

fi(u
δ
i − ui)dx.

(3.24)
Nδ Nδ
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On the one hand, it holds that

∫
Nδ

n∑
i=1

[lnuδ
i + 1](uδ

i − ui)dx =
∫
Nδ

n∑
i=1

−[lnuδ
i + 1](uδ

0 − u0)
ui

1 − u0
dx

≤
∫
Nδ

n∑
i=1

[∣∣∣∣ln( ui

1 − u0

)(
ui

1 − u0

)∣∣∣∣+ 1

]
(u0 − uδ

0)dx +
∫
Nδ

n∑
i=1

ui

1 − u0

(− ln
(
1 − uδ

0

)
(uδ

0 − u0)
)
dx

≤
(

n

(
1

e
+ 1

)
+ ln δ

)∫
Nδ

(u0 − uδ
0)dx,

as 
n∑

i=1
ui = 1 − u0 and 1 − uδ

0 = δ in Nδ . Furthermore, if 1
2 ≥ δ, we can estimate the second term 

on the right-hand side of (3.24) as

∫
Nδ

[lnuδ
0 + 1](uδ

0 − u0)dx ≤ (ln 2 + 1)

∫
Nδ

(u0 − uδ
0)dx,

while the terms involving fi are estimated with similar calculations as in Step 1. Then we have

Fw̄(uδ) − Fw̄(u) ≤ (ln δ + C)

∫
Nδ

(u0 − uδ
0)dx,

with

C = ln 2 + 1 +
n∑

i=1

‖wi‖L∞(�) + 3nβ + n

(
1

e
+ 1

)
.

We then reach the desired contradiction as soon as the value of δ is chosen such that δ <

min(1/2, e−C). Moreover, as in Step 1, we obtain that the value of δ can be chosen so that it 
only depends on n, β , �, τ , and N , as soon as w̄ is assumed to satisfy ‖w̄‖(H 2(�))n ≤ N .

Step 3: It remains to prove that for all 1 ≤ i ≤ n there exists 1 > δ > 0 such that ui ≥ δ a.e. in 
�. Without any loss of generality it is sufficient to prove the claim for i = 1. To this end, let us 
again reason by contradiction and assume that the set

Oδ := {x ∈ � : u1(x) < δ}

has positive measure. Denoting by δ0 the positive lower bound on 1 − u0 obtained from Step 2, 
assuming that 0 < δ ≤ δ0

, we define
2
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uδ
1 = max(u1, δ),

uδ
j := uj − (uδ

1 − u1)
uj

1 − u0 − u1
, j = 2, . . . , n,

uδ
0 := u0.

Denoting by uδ := (uδ
1, . . . , u

δ
n), we again have uδ ∈ A and that uδ

0 = u0 = 1 −
n∑

i=1
uδ

i . Arguing 

as in Steps 1 and 2 gives again the existence of a constant c > 0, which only depends on τ , n, β , 
and � such that, if δ < min

(
1/2, δ0/2

)
, then

Fw̄(uδ) − Fw̄(u) ≤ (C + ln δ)

∫
Oδ

(uδ
1 − u1)dx,

with

C :=
n∑

i=1

‖w̄i‖L∞(�) + c.

Thus, we obtain that Fw̄(uδ) − Fw̄(u) < 0 if the value of δ is chosen such that δ <

min
( 1

2 , δ0/2, e−C
)

which yields the desired contradiction. Moreover, if w̄ is assumed to sat-
isfy ‖w̄‖(H 2(�))n ≤ N , the value of δ can be chosen such that it only depends on τ , n, �, β , and 
N . Hence the desired result.

We remark that the technique of constructing competitors to the scalar Cahn-Hilliard energy 
was also used in [34], yet in a different context.

Lemma 3.8. Every minimizer u ∈ A of (3.18) belongs to B and is a weak solution to (3.16) in 
the sense that

∫
�

n∑
i=1

(lnui − lnu0)φi + ε∇u0 · ∇φ0dx =
n∑

i=1

∫
�

(
w̄i + β(1 − 2u

p

0 )
)
φidx, (3.25)

for all φ ∈ B ∩ (L∞(�))n. In particular,

lnui − lnu0 + ε
u0 = w̄i + β(1 − 2u
p
0 ) in D′(�), (3.26)

for all 1 ≤ i ≤ n.

Proof. Fix φ ∈ B∩ (L∞(�))n. Due to Lemma 3.7 we know that for every t > 0 sufficiently small 
u + tφ ∈A ∩B. Moreover, since u is a minimizer of (3.18) it holds that
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0 ≤ lim
t→0

Fw̄(u + tφ) − Fw̄(u)

t

= lim
t→0

∫
�

n∑
i=0

(ui + tφi) ln(ui + tφi) − ui lnui

t
+ ε

2

|∇(u0 + tφ0)|2 − |∇u0|2
t

+
n∑

i=1

fiφidx.

(3.27)

Lemma 3.7 and the Lebesgue dominated convergence theorem then give

lim
t→0

∫
�

n∑
i=0

(ui + tφi) ln(ui + tφi) − ui lnui

t
+ ε

2

|∇(u0 + tφ0)|2 − |∇u0|2
t

+
n∑

i=1

fiφidx

=
∫
�

n∑
i=1

(lnui − lnu0)φi + ε∇u0 · ∇φ0 +
n∑

i=1

fiφidx.

(3.28)

Combining (3.27) and (3.28) yields∫
�

n∑
i=1

(lnui − lnu0)φi + ε∇u0 · ∇φ0 +
n∑

i=1

fiφidx ≥ 0.

Replacing φ by −φ we obtain that u satisfies (3.25). Finally, for all 1 ≤ i ≤ n, we obtain (3.26) by 
considering a test function φ = (φj )1≤j≤n such that φi ∈ D(�) and φj = 0 for all 1 ≤ j �= i ≤ n.

Lemma 3.9. System (3.25) has at most one solution u ∈A ∩B.

Proof. Let us suppose that there exist two weak solutions u and ũ in A ∩B to (3.25). Subtracting 
the respective equations yields

0 =
∫
�

n∑
i=1

(lnui − ln ũi − (lnu0 − ln ũ0))φi + ε∇(u0 − ũ0) · ∇φ0dx,

for all φ ∈ B ∩ (L∞(�))n. Now, choosing φi = ui − ũi for all 1 ≤ i ≤ n so that φ0 = − 
n∑

i=1
(ui −

ũi ) = u0 − ũ0 we obtain

0 =
∫
�

n∑
i=1

(lnui − ln ũi − (lnu0 − ln ũ0))(ui − ũi ) + ε∇(u0 − ũ0) · ∇(u0 − ũ0)dx

=
∫
�

n∑
i=1

(lnui − ln ũi )(ui − ũi ) + (lnu0 − ln ũ0)(u0 − ũ0) + ε|∇(u0 − ũ0)|2dx.

The monotonicity of the logarithm implies (lnx− lny)(x−y) ≥ 0 for all x, y > 0, which implies 
that all terms in the above integral are non-negative, so that a.e. in �
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(lnui − ln ũi )(ui − ũi ) = 0 ∀0 ≤ i ≤ n

and

∇(u0 − ũ0) = 0.

The strict monotonicity of the logarithm thus implies that ui = ũi for 0 ≤ i ≤ n, which yields the 
desired result.

We then define S2 : (H 2(�))n → A as the application which to any w̄ ∈ (H 2(�))n associates 
the unique minimizer u of (3.18), which is also the unique solution in A ∩B to (3.25). Our next 
aim is to prove that S2 is a continuous map. To this end, we are going to prove that, if 

(
w̄(m)

)
m∈N

is a sequence in (H 2(�))n which strongly converges in (H 2(�))n to some w̄ ∈ (H 2(�))n, then 
the sequence of minimizers to the functionals 

(
Fw̄(m)

)
m∈N converges to the minimizer of Fw̄. We 

first collect some regularity properties of the minimizers.

Lemma 3.10. For all w̄ ∈ (H 2(�))n, it holds that S2(w̄) ∈ (H 2(�))n. Moreover, for all N > 0, 
there exists a constant M1 > 0, which only depends on n, �, ε, β , and N , such that for all 
w̄ ∈ (H 2(�))n with ‖w̄‖(H 2(�))n ≤ N , we have

‖S2(w̄)‖(H 2(�))n ≤ M1.

Proof. Let w̄ ∈ (H 2(�))n, u := S2(w̄). We first point out that, since u is a minimizer of Fw̄ on 
A and therefore Fw̄(u) ≤ Fw̄(0) = 0, it holds

ε

2
‖∇u0‖2

L2(�)
≤ n|�| sup

x∈[0,1]
|x lnx| + 3β|�|

(
n∑

i=1

‖w̄i‖L∞(�)

)
,

≤ n|�|
e

+ 3β|�|
(

n∑
i=1

‖w̄i‖H 2(�)

)
,

≤ n|�|
e

+ 3β
√

n|�|‖w̄‖(H 2(�))n .

Moreover, from Lemma 3.8 we have

lnui − lnu0 + ε
u0 = w̄i + β(1 − 2u
p
0 ) (3.29)

for all 1 ≤ i ≤ n, in the sense of distributions. Now Lemma 3.7 implies ‖ lnui‖L∞(�) ≤ | ln δw̄|
and ‖ lnu0‖L∞(�) ≤ | ln δw̄|. This yields 
u0 ∈ L2(�) and

ε‖
u0‖L2(�) ≤ |�|1/2 (2| ln δw̄| + ‖w̄i‖L∞(�) + 3β
)

≤ |�|1/2 (2| ln δw̄| + Ce‖w̄‖(H 2(�))n + 3β
)
,

where Ce is the embedding constant for H 2(�) ↪→ L∞(�). Moreover, if w̄ satisfies ‖w̄‖(H 2(�))n

≤ N , there exists δ > 0, whose value only depends on n, �, β , and N , such that ‖ lnui‖L∞(�) ≤
| ln δ| and ‖ lnu0‖L∞(�) ≤ | ln δ|. Hence, in this case,
601



V. Ehrlacher, G. Marino and J.-F. Pietschmann Journal of Differential Equations 286 (2021) 578–623
ε‖
u0‖L2(�) ≤ |�|1/2 (2| ln δ| + N + 3β) .

Let us now prove that ∇ui ∈ L2(�) for all 1 ≤ i ≤ n. Taking into account (3.29) we obtain that

w̄j − w̄i = ln
uj

ui

∀1 ≤ i, j ≤ n,

which implies that uj = uie
w̄j −w̄i . Then, for all 1 ≤ i ≤ n, it holds that

−∇u0 = ∇
⎛⎝ n∑

j=1

uj

⎞⎠= ∇
⎛⎝ui

⎛⎝1 +
∑

1≤j �=i≤n

ew̄j −w̄i

⎞⎠⎞⎠
=
⎛⎝1 +

∑
1≤j �=i≤n

ew̄j −w̄i

⎞⎠∇ui + ui

∑
1≤j �=i≤n

ew̄j −w̄i ∇(w̄j − w̄i),

so that

∇ui =
−∇u0 + ui

∑
1≤j �=i≤n

ew̄j −w̄i ∇(w̄j − w̄i)

1 + ∑
1≤j �=i≤n

ew̄j −w̄i
=

−∇u0 + ∑
1≤j �=i≤n

uj∇(w̄j − w̄i)

1 + ∑
1≤j �=i≤n

ew̄j −w̄i
.

Thus, taking into account that 0 ≤ uj ≤ 1 for all 1 ≤ j ≤ n, we obtain ∇ui ∈ L2(�) for all 
1 ≤ i ≤ n and

‖∇ui‖L2(�) ≤ ‖∇u0‖L2(�) + (n − 1)‖∇w̄i‖L2(�) +
∑

1≤j �=i≤n

‖∇w̄j‖L2(�).

Moreover, using the fact that d ≤ 3 yields the compact embedding H 1(�) ↪→ L4(�), there exists 
a constant C > 0 which only depends on � and n such that

‖∇ui‖L4(�) ≤ ‖∇u0‖L4(�) + (n − 1)‖∇w̄i‖L4(�) +
∑

1≤j �=i≤n

‖∇w̄j‖L4(�),

≤ C
(‖u0‖H 2(�) + ‖w̄‖H 2(�)n

)
.

Finally, for all 1 ≤ i ≤ n we have

−
u0 = div

⎛⎝⎛⎝1 +
∑

1≤j �=i≤n

ew̄j −w̄i

⎞⎠∇ui + ui

∑
1≤j �=i≤n

ew̄j −w̄i ∇(w̄j − w̄i)

⎞⎠ ,

= 2

⎛⎝ ∑
ew̄j −w̄i ∇(w̄j − w̄i)

⎞⎠ · ∇ui +
⎛⎝1 +

∑
ew̄j −w̄i

⎞⎠
ui
1≤j �=i≤n 1≤j �=i≤n
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+ ui div

⎛⎝ ∑
1≤j �=i≤n

ew̄j −w̄i ∇(w̄j − w̄i)

⎞⎠
= 2

∑
1≤j �=i≤n

ew̄j −w̄i ∇(w̄j − w̄i) · ∇ui +
⎛⎝1 +

∑
1≤j �=i≤n

ew̄j −w̄i

⎞⎠
ui

+ ui

∑
1≤j �=i≤n

ew̄j −w̄i |∇(w̄j − w̄i)|2 + ew̄j −w̄i 
(w̄j − w̄i).

Hence,


ui = 1(
1 + ∑

1≤j �=i≤n

ew̄j −w̄i

)
⎡⎣−
u0 − 2

∑
1≤j �=i≤n

ew̄j −w̄i ∇(w̄j − w̄i) · ∇ui

⎤⎦

+ 1(
1 + ∑

1≤j �=i≤n

ew̄j −w̄i

)
⎡⎣−

∑
1≤j �=i≤n

uj |∇(w̄j − w̄i)|2 − uj
(w̄j − w̄i)

⎤⎦ ,

which implies that 
ui ∈ L2(�) and

‖
ui‖L2(�) ≤ ‖
u0‖L2(�) + 2‖∇ui‖L4(�)‖∇(w̄j − w̄i)‖L4(�)

+
∑

1≤j �=i≤n

(‖∇(w̄j − w̄i)‖L4(�)

)2 + ‖
(w̄j − w̄i)‖L2(�).

Thus, there exists a constant C′ > 0, which only depends on � and n, such that

‖
ui‖L2(�) ≤ C′ (‖u0‖H 2(�) + ‖u0‖2
H 2(�)

+ ‖w̄‖(H 2(�))n + ‖w̄‖2
(H 2(�))n

)
.

Collecting all these estimates gives the desired result.

Lemma 3.11. The map S2 : (H 2(�))n → A ⊂ (L∞(�))n is continuous.

Proof. The continuity of the map S2 is a consequence of the bounds of Lemma 3.10. Indeed, let (
w̄(m)

)
m∈N ⊂ (H 2(�))n be a sequence strongly converging to some w̄ ∈ (H 2(�))n. Set u(m) :=

S2(w̄(m)) for all m ∈ N . Let us prove that 
(
u(m)

)
m∈N strongly converges in (L∞(�))n to u :=

S2(w̄).
First of all, since the sequence 

(
w̄(m)

)
m∈N is bounded in (H 2(�))n, then Lemma 3.10 entails 

that also the sequence 
(
u(m)

)
m∈N is bounded in (H 2(�))n. Up to the extraction of a subsequence 

(still denoted by 
(
u(m)

)
m∈N for the sake of simplicity), there exists ũ ∈ (H 2(�))n such that

u(m) ⇀ ũ weakly in (H 2(�))n as m → +∞.
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Let us prove that necessarily ũ = u, which will imply that the whole sequence 
(
u(m)

)
m∈N weakly 

converges in (H 2(�))n to u.
Let us observe that the compact embeddings (H 2(�))n ↪→ (L∞(�))n and H 2(�))n ↪→

(H 1(�))n imply

u(m) → ũ strongly in (L∞(�))n and u
(m)
0 → ũ0 strongly in H 1(�)

as m → +∞. Thus, we obtain

Fw̄(m)

(
u(m)

)
→Fw̄

(
ũ
)

as m → +∞.

Besides, since for all v ∈ A, Fw̄(m)

(
u(m)

) ≤ Fw̄(m) (v) and Fw̄(m) (v) →Fw̄(v) as m → +∞, we 
obtain

Fw̄
(
ũ
)≤ Fw̄(v) ∀v ∈ A.

Hence, ũ is the unique minimizer of Fw̄ on A, i.e., ũ = u. As a consequence, the whole sequence (
u(m)

)
m∈N weakly converges to u in (H 2(�))n. Finally, the compact embedding (H 2(�))n ↪→

(L∞(�))n implies that the sequence 
(
u(m)

)
m∈N strongly converges in (L∞(�))n to u, which 

yields the desired convergence. Hence, the continuity of the map S2.

3.3. Proof of Theorem 3.2

Let us define S :A → A as S = S2 ◦S1, with S1 :A → (H 2(�))n defined in Section 3.1 and 
S2 : (H 2(�))n → A defined in Section 3.2. Thanks to Lemma 3.5 and Lemma 3.11 we obtain 
that S is continuous. Besides, using Lemma 3.4 together with Lemma 3.10 we obtain that S(A)

is a bounded subset of (H 2(�))n and hence a relatively compact subset of (L∞(�))n. Since A
is a closed convex non-empty subset of (L∞(�))n, Schauder’s fixed point theorem ensures the 
existence of a fixed point up+1 ∈ A such that up+1 = S(up+1). Gathering the different results 
proved in Section 3.1 and Section 3.2 yield the desired properties on the fixed-point up+1.

4. Estimates on the solutions of the time discrete regularized system

Let T > 0 be a fixed final time. For all 0 < τ ≤ 1 Theorem 3.2 implies that, for any initial 
condition u0 ∈ A ∩ (H 2(�))n, there exists a sequence (up)p∈N ⊂ A ∩ (H 2(�))n defined by 
recursion such that (up+1, w̄p+1) ∈ (A ∩ (H 2(�))n) × (H 2(�))n is a solution to (3.4)-(3.5) for 
all p ∈N .

For all p ∈N∗ if up := (u
p
1 , . . . , up

n ) and w̄p := (w̄
p
1 , . . . , w̄p

n ), we set

u
p

0 := 1 −
n∑

i=1

u
p
i , up := (u

p

0 , u
p

1 , . . . , u
p
n ), and w

p
i := lnu

p
i − lnu

p

0 ∀1 ≤ i ≤ n.

We also denote by wp+1/2
0 := −ε
u

p+1
0 + β(1 − 2u

p
0 ) and finally set wp+1 := (w

p+1/2
0 , wp+1

1 ,

. . . , wp+1
n ), for all p ∈N .
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We then define several piecewise constant in time functions as follows: for all p ∈ N∗, for all 
1 ≤ i ≤ n and all t ∈ (tp−1, tp], we set

u(τ )(t) = up, u(τ)(t) = up, u
(τ)
i (t) = u

p
i , u

(τ)
0 (t) = u

p
0 ,

w̄(τ ) = w̄p, w̄
(τ)
i = w̄

p
i , w

(τ)
i = w

p
i = lnu

p
i − lnu

p
0 , w

(τ)
0 = w

p−1/2
0 , w(τ) = wp.

(4.1)

At time t = 0 we define u(τ )(0) = u0. Let P (τ) ∈ N∗ be the lowest integer such that tP (τ) ≥ T . 
Furthermore, we introduce the time-shifted solution στu(τ ) as

στ u(τ )(t) = up−1 for all t ∈ (tp−1, tp], p ∈N∗,

whose components are given by (στu
(τ)
1 , . . . , στu

(τ)
n ), and set στu

(τ)
0 := 1 −

n∑
i=1

στu
(τ)
i . For all 

u = (u0, u1, . . . , un) ∈ (L∞(�) ∩ H 1(�)) × (L∞(�))n we define

Econv(u) =
∫
�

n∑
i=0

ui lnui + ε

2
|∇u0|2dx

and Econc(u) =
∫
�

βu0(1 − u0)dx.

For all τ > 0 and t > 0 we define the entropy functional

E(τ)(t) :=
∫
�

u
(τ)
i (t) lnu

(τ)
i (t) + ε

2
|∇u

(τ)
0 (t)|2 + βu

(τ)
0 (t)(1 − u

(τ)
0 (t))dx

= Econv(u(τ )(t)) + Econc(u(τ )(t))

so that, for all p ∈ N ,

E(τ)(tp+1) =
∫
�

n∑
i=0

u
p+1
i lnu

p+1
i + ε

2
|∇u

p+1
0 |2 + βu

p+1
0 (1 − u

p+1
0 )dx

= Econv(up+1) + Econc(up+1).

Remark 4.1. It is easy to check that there exists a constant C̃ > 0, independent of τ , such that 
E
(
u(τ )(t)

)≥ −C̃ for all t > 0.

The objective of this section is to collect some estimates on the solution u(τ ) which will be 
used in the sequel to pass to the limit as τ → 0+ in the time discrete regularized system. We begin 
by stating an important property of the mobility matrix M which will be used in the following.
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Lemma 4.2. Let z ∈Rn+1 and let M be defined as in (2.3). Then, for all u ∈Rn+1+ ,

zT M(u)z ≥ 0.

Proof. Indeed, for all u = (u0, . . . , un) ∈ Rn+1+ and all z = (z0, . . . , zn) ∈ Rn+1 we have

zT M(u)z =
n∑

i,j=0
j �=i

ziMij (u)zj +
n∑

i=0

Mii(u)z2
i

=
n∑

i,j=0
j �=i

(−Kijuiuj zizj ) + 1

2

n∑
i=0

Mii(u)z2
i + 1

2

n∑
j=0

Mjj (u)z2
j

=
n∑

i,j=0
j �=i

(−Kijuiuj zizj ) + 1

2

n∑
i,j=0
j �=i

Kij uiuj z
2
i + 1

2

n∑
i,j=0
i �=j

Kijuiuj z
2
j

=
n∑

i,j=0
j �=i

Kijuiuj

(
1

2
z2
i + 1

2
z2
j − zizj

)

= 1

2

n∑
i,j=0
j �=i

Kijuiuj (zi − zj )
2 ≥ 0,

which gives us the conclusion.

We now state the monotonicity of the energy functional E(τ).

Lemma 4.3. For all τ > 0, the sequence (E(τ)(tp))p∈N∗ is non-increasing. Moreover, there ex-
ists C > 0 such that for all τ > 0 and all t > 0,

∫
�

|∇u
(τ)
0 (t)|2dx ≤ C. (4.2)

Proof. We test each equation in (3.4) with the test function φi = w̄
p+1
i = w

p+1
i − w

p+1/2
0 and 

then sum over i = 1, . . . , n. On the left-hand side, exploiting the convexity and concavity prop-
erties of the functions [0, 1] � x �→ x lnx and [0, 1] � x �→ x(1 − x), respectively, together with 
Remark 3.3, we have
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n∑
i=1

∫
�

u
p+1
i − u

p
i

τ
(w

p+1
i − w

p+1/2
0 )dx

=
n∑

i=1

∫
�

u
p+1
i − u

p
i

τ

[
lnu

p+1
i − lnu

p+1
0 + ε
u

p+1
0 − β(1 − 2u

p
0 )
]
dx

=
n∑

i=1

∫
�

u
p+1
i − u

p
i

τ
lnu

p+1
i dx +

∫
�

u
p+1
0 − u

p

0

τ

(
lnu

p+1
0 − ε
u

p+1
0 + β(1 − 2u

p

0 )
)

dx

≥ 1

τ

[
Econv(up+1) − Econv(up) + Econc(up+1) − Econc(up)

]
= 1

τ

[
E(up+1) − E(up)

]
.

(4.3)

On the right-hand side, exploiting Lemma 4.2 and the definition of the matrix M , see (2.3), we 
have

n∑
i=1

∫
�

( ∑
1≤j �=i≤n

Kiju
p+1
i u

p+1
j ∇(w

p+1
i − w

p+1
j )

+ Ki0u
p+1
i u

p+1
0 ∇(w

p+1
i − w

p+1/2
0 )

)
· ∇(w

p+1
i − w

p+1/2
0 )dx

=
∫
�

(∇wp+1)T M(up+1)∇wp+1dx ≤ 0.

(4.4)

From (4.3)-(4.4) it follows that

1

τ

[
E(up+1) − E(up)

]
≤ 0 ∀p ∈ N,

which implies that the sequence (E(up))p∈N is non-increasing. In particular, there exists a con-
stant C > 0 such that E(up) ≤ E(u0) ≤ C, which in turn entails

ε

2

∫
�

|∇u
p

0 |2dx ≤ C,

for every p ∈ N . Taking into account (4.1) yields the desired result.

We now use the monotonicity of the entropy functional in order to establish some a-priori 
estimates that will be used to pass to the limit as τ → 0+ in the time discrete system.

Lemma 4.4. There exists a constant C > 0, independent of τ > 0, such that

n∑
i=0

T∫ ∫ |∇u
(τ)
i |2

u
(τ)
i

dxdt ≤ C,
0 �
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T∫
0

∫
�

|
u
(τ)
0 |2dxdt ≤ C,

T∫
0

∫
�

(1 − u
(τ)
0 )u

(τ)
0 |∇w

(τ)
0 |2dxdt ≤ C, (4.5)

τ

n∑
i=1

T∫
0

‖w(τ)
i − w

(τ)
0 ‖2

H 2(�)
dt ≤ C. (4.6)

Proof. First of all, let us introduce k := min
0≤i �=j≤n

Kij . We test each equation of (3.4) with φi =
w̄

p+1
i = w

p+1
i − w

p+1/2
0 and sum for i = 1, . . . , n. On the right-hand side we have

M := −
n∑

i=1

∫
�

( ∑
1≤j �=i≤n

Kiju
p+1
i u

p+1
j ∇(w

p+1
i − w

p+1
j )

+Ki0u
p+1
i u

p+1
0 ∇(w

p+1
i − w

p+1/2
0 )

)
· ∇(w

p+1
i − w

p+1/2
0 )dx

−τ‖wp+1
i − w

p+1/2
0 ‖2

H 2(�)

= −
n∑

i=1

∫
�

( ∑
1≤j �=i≤n

(Kij − k)u
p+1
i u

p+1
j ∇(w

p+1
i − w

p+1
j )

+(Ki0 − k)u
p+1
i u

p+1
0 ∇(w

p+1
i − w

p+1/2
0 )

)
· ∇(w

p+1
i − w

p+1/2
0 )dx (4.7)

−k

n∑
i=1

∫
�

( ∑
1≤j �=i≤n

u
p+1
i u

p+1
j ∇(w

p+1
i − w

p+1
j )

+u
p+1
i u

p+1
0 ∇(w

p+1
i − w

p+1/2
0 )

)
· ∇(w

p+1
i − w

p+1/2
0 )dx

−τ

n∑
i=1

‖wp+1
i − w

p+1/2
0 ‖2

H 2(�)

= A + B + C.

First of all observe that

A = −
∫
�

(∇wp+1)t M̃(up+1)∇wp+1dx ≤ 0,

where M̃ is the matrix defined as in (2.3) but with Kij replaced by Kij − k and where we used 
again Lemma 4.2. Let us consider the second term in (4.7). We have
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B = −k

n∑
i=1

∫
�

( ∑
1≤j �=i≤n

u
p+1
i u

p+1
j ∇(w

p+1
i − w

p+1
j )

+ u
p+1
i u

p+1
0 ∇(w

p+1
i − w

p+1/2
0 )

)
· ∇(w

p+1
i − w

p+1/2
0 )dx

= −k

n∑
i=1

∫
�

( ∑
1≤j �=i≤n

u
p+1
i u

p+1
j ∇(w

p+1
i − w

p+1
j ) + u

p+1
i u

p+1
0 ∇w

p+1
i

)
· ∇w

p+1
i dx

+ k

n∑
i=1

∫
�

∑
1≤j �=i≤n

u
p+1
i u

p+1
j ∇(w

p+1
i − w

p+1
j ) · ∇w

p+1/2
0 dx

+ 2k

n∑
i=1

∫
�

u
p+1
i u

p+1
0 ∇w

p+1
i · ∇w

p+1/2
0 dx − k

n∑
i=1

∫
�

u
p+1
i u

p+1
0 |∇w

p+1/2
0 |2dx

=: B1 + B2 + B3 + B4.

We estimate the terms of the expression above separately. First of all, taking into account (2.2)
we have

B1 = −k

n∑
i=1

∫
�

⎛⎝ ∑
1≤j �=i≤n

u
p+1
i u

p+1
j ∇(w

p+1
i − w

p+1
j ) + u

p+1
i u

p+1
0 ∇w

p+1
i

⎞⎠ · ∇w
p+1
i dx

= −k

n∑
i=1

∫
�

∑
0≤j �=i≤n

u
p+1
i u

p+1
j

(
∇ lnu

p+1
i − ∇ lnu

p+1
j

)
· ∇
(

lnu
p+1
i − lnu

p+1
0

)
dx

= −k

n∑
i=1

∫
�

∑
0≤j �=i≤n

(u
p+1
j ∇u

p+1
i − u

p+1
i ∇u

p+1
j ) ·

(
∇u

p+1
i

u
p+1
i

− ∇u
p+1
0

u
p+1
0

)
dx

= −k

n∑
i=1

∫
�

((1 − u
p+1
i )∇u

p+1
i − u

p+1
i ∇(1 − u

p+1
i )) ·

(
∇u

p+1
i

u
p+1
i

− ∇u
p+1
0

u
p+1
0

)
dx

= −k

n∑
i=1

∫
�

(∇u
p+1
i − u

p+1
i ∇u

p+1
i + u

p+1
i ∇u

p+1
i ) ·

(
∇u

p+1
i

u
p+1
i

− ∇u
p+1
0

u
p+1
0

)
dx

= −k

n∑
i=1

∫
�

|∇u
p+1
i |2

u
p+1
i

− ∇u
p+1
i · ∇u

p+1
0

u
p+1
0

dx

= −k

∫
�

n∑
i=1

|∇u
p+1
i |2

u
p+1
i

− ∇(1 − u
p+1
0 ) · ∇u

p+1
0

u
p+1
0

dx

= −k

∫ n∑
i=1

|∇u
p+1
i |2

u
p+1
i

+ |∇u
p+1
0 |2

u
p+1
0

dx
�
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= −k

∫
�

n∑
i=0

|∇u
p+1
i |2

u
p+1
i

dx.

Exploiting symmetries gives

B2 = k

n∑
i=1

∫
�

∑
1≤j �=i≤n

u
p+1
i u

p+1
j ∇(w

p+1
i − w

p+1
j ) · ∇w

p+1/2
0 dx = 0.

Moreover, taking into account the definition of wp+1/2
0 , see (3.2), and using again the fact that 

∇u
p+1
0 · n = 0 on ∂�, we have

B3 = 2k

n∑
i=1

∫
�

u
p+1
i u

p+1
0 ∇w

p+1/2
0 · ∇w

p+1
i dx

= 2k

n∑
i=1

∫
�

u
p+1
i u

p+1
0 ∇w

p+1/2
0 ·

(
∇u

p+1
i

u
p+1
i

− ∇u
p+1
0

u
p+1
0

)
dx

= 2k

n∑
i=1

∫
�

(
u

p+1
0 ∇u

p+1
i − u

p+1
i ∇u

p+1
0

)
· ∇w

p+1/2
0 dx

= 2k

∫
�

(
u

p+1
0 ∇(1 − u

p+1
0 ) − (1 − u

p+1
0 )∇u

p+1
0

)
· ∇w

p+1/2
0 dx

= −2k

∫
�

∇u
p+1
0 · ∇w

p+1/2
0 dx,

= 4kβ

∫
�

∇u
p+1
0 · ∇u

p
0 dx − 2k

∫
�

∇u
p+1
0 · ∇(−ε
u

p+1
0 )dx

≤ 4kβ‖∇u
p+1
0 ‖L2(�)‖∇u

p

0 ‖L2(�) − 2kε

∫
�

|
u
p+1
0 |2dx

≤ C − 2kε

∫
�

|
u
p+1
0 |2dx,

where in the last two passages we applied the Cauchy-Schwarz’s inequality and then (4.2). Fi-
nally, by using the constraint (2.8) we get

B4 = −k

n∑
i=1

∫
�

u
p+1
i u

p+1
0 |∇w

p+1/2
0 |2dx = −k

∫
�

(1 − u
p+1
0 )u

p+1
0 |∇w

p+1/2
0 |2dx. (4.8)

From (4.7)-(4.8) we then have
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M ≤ −k

n∑
i=0

∫
�

|∇u
p+1
i |2

u
p+1
i

dx + C − 2kε

∫
�

|
u
p+1
0 |2dx

− k

∫
�

(1 − u
p+1
0 )u

p+1
0 |∇w

p+1/2
0 |2dx.

Therefore, reasoning as in the proof of Lemma 4.3 gives

k

n∑
i=0

∫
�

|∇u
p+1
i |2

u
p+1
i

dx + 2kε

∫
�

|
u
p+1
0 |2dx + k

∫
�

(1 − u
p+1
0 )u

p+1
0 |∇w

p+1/2
0 |2dx

+ τ

n∑
i=1

‖wp+1
i − w

p+1/2
0 ‖2

H 2(�)

≤ C + 1

τ

(
E(up) − E(up+1

)
).

Multiplying this inequality by τ , summing for 0 ≤ p ≤ P (τ) − 1, and then using Remark 4.1
yields

k

n∑
i=0

T∫
0

∫
�

|∇u
(τ)
i |2

u
(τ)
i

dxdt + 2kε

T∫
0

∫
�

|
u
(τ)
0 |2dxdt + k

T∫
0

∫
�

(1 − u
(τ)
0 )u

(τ)
0 |∇w

(τ)
0 |2dx

+ τ

T∫
0

n∑
i=1

‖w(τ)
i − w

(τ)
0 ‖2

H 2(�)
dt

≤ C(T + 1) + E(u0) + C̃,

which gives the desired result. Note that here E(u0) < ∞ as u0 ∈A ∩B.

Remark 4.5. From (4.6) we have in particular that 
(√

τ(w
(τ)
i − w

(τ)
0 )
)

τ>0
is uniformly bounded 

in L2((0, T ); H 2(�)).

Using similar arguments as in Lemma 4.4, we can obtain further estimates. More precisely, 
we have the following result.

Theorem 4.6. There exists a constant C > 0, independent of τ > 0, such that

T∫
0

∫
�

u
(τ)
i u

(τ)
0 |∇(w

(τ)
i − w

(τ)
0 )|2dxdt ≤ C for all 1 ≤ i ≤ n.

Proof. We argue as in the proof of Lemma 4.4. First of all, we test each equation in (3.3) with 
φi = w

p+1 − w
p+1/2 and sum for i = 1, . . . , n. On the right-hand side we have
i 0
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−
n∑

i=1

∫
�

( ∑
1≤j �=i≤n

Kiju
p+1
i u

p+1
j ∇(w

p+1
i − w

p+1
j )

+ Ki0u
p+1
i u

p+1
0 ∇(w

p+1
i − w

p+1/2
0 )

)
· ∇(w

p+1
i − w

p+1/2
0 )dx

− τ

n∑
i=1

‖wp+1
i − w

p+1/2
0 ‖2

H 2(�)

= −
n∑

i=1

∫
�

∑
1≤j �=i≤n

Kiju
p+1
i u

p+1
j ∇(w

p+1
i − w

p+1
j ) · ∇(w

p+1
i − w

p+1/2
0 )dx

−
n∑

i=1

∫
�

Ki0u
p+1
i u

p+1
0 |∇(w

p+1
i − w

p+1/2
0 )|2dx − τ

n∑
i=1

‖wp+1
i − w

p+1/2
0 ‖2

H 2(�)

≤ −
∫
�

(∇wp+1)T M(up+1)∇wp+1dx −
n∑

i=1

∫
�

Ki0u
p+1
i u

p+1
0 |∇(w

p+1
i − w

p+1/2
0 )|2dx

≤ −
n∑

i=1

∫
�

Ki0u
p+1
i u

p+1
0 |∇(w

p+1
i − w

p+1/2
0 )|2dx,

where we applied Lemma 4.2 with the vectors wp+1 and up+1 and the matrix M given by (2.3). 
Then reasoning again as in Theorem 4.4 gives

n∑
i=1

T∫
0

∫
�

Ki0u
(τ)
i u

(τ)
0 |∇(w

(τ)
i − w

(τ)
0 )|2dxdt ≤ C,

and hence the conclusion follows.

We finally point out that the a-priori estimates collected in Lemma 4.4 and 4.6 allow us to get 
the following

Lemma 4.7. There exists C > 0, independent of τ > 0, such that

T∫
0

∥∥∥∥∥u
(τ)
i (t) − στu

(τ)
i (t)

τ

∥∥∥∥∥
2

(H 2(�))′
dt ≤ C for all 1 ≤ i ≤ n.

Proof. We fix i ∈ {1, . . . , n} and φi ∈ H 2(�). Then, for all p ∈ N , taking into account the fact 
that 0 ≤ u

p+1 ≤ 1 for all 1 ≤ j ≤ n and using Cauchy-Schwarz inequality, we obtain
j
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∣∣∣∣∣∣1τ
∫
�

(u
p+1
i − u

p
i )φidx

∣∣∣∣∣∣≤
∫
�

( ∑
1≤j �=i≤n

|Kiju
p+1
i u

p+1
j ∇(w

p+1
i − w

p+1
j )|

+ |Ki0u
p+1
i u

p+1
0 ∇(w

p+1
i − w

p+1/2
0 )|

)
|∇φi |dx

+ τ 〈wp+1
i − w

p+1/2
0 , φi〉H 2(�)

≤
∫
�

( ∑
1≤j �=i≤n

Kij

(
u

p+1
j |∇u

p+1
i | + u

p+1
i |∇u

p+1
j |

)

+ Ki0u
p+1
i u

p+1
0 |∇w

p+1
i − w

p+1/2
0 |

)
|∇φi |dx

+ τ‖wp+1
i − w

p+1/2
0 ‖H 2(�)‖φi‖H 2(�)

≤ C

⎛⎝ n∑
j=1

‖up+1
j ‖H 1(�) + ‖wp+1

i − w
p+1/2
0 ‖H 1(�)

⎞⎠‖φi‖H 1(�)

+ τ‖wp+1
i − w

p+1/2
0 ‖H 2(�)‖φi‖H 2(�).

Using the previous estimates proved in this section gives the desired result.

5. Passing to the limit as τ → 0+ and proof of Theorem 2.1

The aim of this section is to identify a weak solution to (2.10) in the sense of Definition 1
as the weak limit of some extracted subsequence of (u(τ))τ>0 as τ → 0+. Passing to the limit 
can be done for most terms of the system using either standard arguments in the analysis of 
cross-diffusion systems by the boundedness-by-entropy method (see [24]), or of the Cahn-Hillard 
model with classical degenerate mobility (see [4]). However, some terms appearing in the system 
require specific arguments, which are new at least up to our knowledge, and which we detail 
below. Where not differently specified, the limit will be always understood as τ → 0+.

The different estimates collected in Section 4 yield the existence of a function u =
(u0, . . . , un) ∈ L2((0, T ); H 2(�)) ×(L2((0, T ); H 1(�)))n such that 0 ≤ ui ≤ 1 for all 0 ≤ i ≤ n, 

u0 = 1 −
n∑

i=1
ui , and such that up to the extraction of a subsequence,

u
(τ)
i ⇀ui weakly in L2((0, T );H 1(�)),

u
(τ)
i − στu

(τ)
i

τ
⇀∂tui weakly in L2((0, T ); (H 2(�))′),

for all 1 ≤ i ≤ n and

u
(τ)
0 (t)⇀u0 weakly in L2((0, T );H 2(�)),

u
(τ)
0 − στu

(τ)
0 ⇀∂tu0 weakly in L2((0, T ); (H 2(�))′).
τ
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Using [35, Theorem 1], we also obtain that u(τ)
i → ui strongly in L2((0, T ); L2(�)) and u(τ)

0 →
u0 strongly in L2((0, T ); H 1(�)) and L2((0, T ); L∞(�)). This is a consequence of the compact 
embeddings H 1(�) ↪→ L2(�), H 2(�) ↪→ L∞(�), and H 2(�) ↪→ H 1(�). The uniform bound 

of 
(
u

(τ)
i

)
τ>0

in L∞((0, T ); L∞(�)) implies that, up to the extraction of a subsequence

u
(τ)
i →ui, strongly in Lp((0, T );Lp(�)), ∀1 ≤ p < +∞, 0 ≤ i ≤ n.

Moreover, the uniform bound of 
(
∇u

(τ)
0

)
τ>0

in L∞((0, T ); (L2(�))d) implies that, up to the 

extraction of a subsequence,

∇u
(τ)
0 →∇u0 strongly in Lp((0, T ); (L2(�))d).

Furthermore, up to the extraction of a subsequence, 
(
στu

(τ)
0

)
τ>0

converges to u0 weakly in 

L2((0, T ); H 2(�)) and strongly in L2((0, T ); H 1(�)) and L2((0, T ); L∞(�)). Finally, Re-
mark 4.5 gives

τ
(
w

(τ)
i − w

(τ)
0

)
→0 strongly in L2((0, T );H 2(�)),

for all 1 ≤ i ≤ n.
Equations (3.4) and (3.5) imply that, for all 1 ≤ i ≤ n,

T∫
τ

∫
�

u
(τ)
i − στu

(τ)
i

τ
φidxdt = −

T∫
τ

∫
�

( ∑
1≤j �=i≤n

Kiju
(τ)
i u

(τ)
j ∇(w

(τ)
i − w

(τ)
j )

+ Ki0u
(τ)
i u

(τ)
0 ∇(w

(τ)
i − w

(τ)
0 )

)
· ∇φidxdt

− τ

T∫
τ

〈w(τ)
i − w

(τ)
0 , φi〉H 2(�)dt,

(5.1)

for all piecewise constant functions φi : (0, T ) → H 2(�), with

w
(τ)
i = lnu

(τ)
i − lnu

(τ)
0 and w

(τ)
0 = −ε
u

(τ)
0 + β(1 − 2στu

(τ)
0 ). (5.2)

Since the set of such φi is dense in L2((0, T ); H 2(�)), the weak formulation (5.1) also holds for 
all φi ∈ L2((0, T ); H 2(�)). Using (5.2) then we can rewrite (5.1) equivalently as follows: for all 
φi ∈ L2((0, T ); H 2(�)),
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T∫
τ

∫
�

u
(τ)
i − στu

(τ)
i

τ
φidxdt

= −
T∫

τ

∫
�

∑
1≤j �=i≤n

Kij

(
u

(τ)
j ∇u

(τ)
i − u

(τ)
i ∇u

(τ)
j

)
· ∇φidxdt

−
T∫

τ

∫
�

Ki0u
(τ)
0 ∇u

(τ)
i · ∇φi +

T∫
τ

∫
�

Ki0u
(τ)
0 u

(τ)
i ∇w

(τ)
0 · ∇φidxdt

− τ

T∫
τ

〈w(τ)
i − w

(τ)
0 , φi〉H 2(�)dt.

(5.3)

The different convergences identified above enable to easily identify the limit as τ → 0+, fol-
lowing standard arguments in the study of cross-diffusion systems (see for instance [24]). More 
precisely, for all 1 ≤ i �= j ≤ n it holds that

T∫
τ

∫
�

u
(τ)
i − στu

(τ)
i

τ
φidxdt →

T∫
0

〈∂tui, φi〉(H 2(�))′,H 2(�)dt,

T∫
τ

∫
�

∑
1≤j �=i≤n

Kij

(
u

(τ)
j ∇u

(τ)
i − u

(τ)
i ∇u

(τ)
j

)
· ∇φidxdt

→
T∫

0

∫
�

∑
1≤j �=i≤n

Kij

(
uj∇ui − ui∇uj

) · ∇φidxdt,

T∫
τ

∫
�

Ki0u
(τ)
0 ∇u

(τ)
i · ∇φidxdt →

T∫
0

∫
�

Ki0u0∇ui · ∇φidxdt,

τ

T∫
τ

〈w(τ)
i − w

(τ)
0 , φi〉H 2(�)dt →0. (5.4)

Of course, all these convergences hold up to the extraction of subsequences. Passing to the limit 
in the term

T∫ ∫
Ki0u

(τ)
0 u

(τ)
i ∇w

(τ)
0 · ∇φidxdt
τ �
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requires specific arguments which is the object of the following lemma. We recall that w0 :=
−ε
u0 + β(1 − 2u0) and point out that the convergences stated above imply that w(τ)

0 ⇀ w0

weakly in L2((0, T ); L2(�)) as τ → 0+.

Lemma 5.1. There exists J ∈ L2((0, T ); (L2(�))d) which satisfies J = (1 − u0)u0∇w0 in the 
weak sense, i.e.,

T∫
0

∫
�

J · ηdxdt = −
T∫

0

∫
�

w0 div(u0(1 − u0)η)dxdt,

for all η ∈ L2((0, T ); (H 1(�))d) ∩ L∞((0, T ) × �; Rd) with η · n = 0 on ∂� × (0, T ) and such 
that, up to the extraction of a subsequence,

(1 − u
(τ)
0 )u

(τ)
0 ∇w

(τ)
0 ⇀J weakly in L2((0, T ); (L2(�))d) (5.5)

and

u
(τ)
i u

(τ)
0 ∇w

(τ)
0 ⇀

ui

1 − u0
J weakly in L2((0, T ); (L2(�))d) (5.6)

for all 1 ≤ i ≤ n.

Remark 5.2. The weak limit (5.5) can be obtained using classical arguments for the standard 
Cahn-Hilliard system (see [4] for instance). We recall them in the proof below for the sake of 
completeness. However, obtaining (5.6) is not standard, at least up to our knowledge, and the 
arguments which yield to this convergence are detailed in the proof below. Let us mention here 

that one difficulty in the analysis is that the sequence 
(

u
(τ)
i

1−u
(τ)
0

)
τ>0

does not converge a priori in 

any sense to ui

1−u0
if 1 − u0 = 0 in some parts of the domain �.

Proof. From (4.5) we know that

T∫
0

∫
�

|u(τ)
0 (1 − u

(τ)
0 )∇w

(τ)
0 |2dxdt ≤

T∫
0

∫
�

u
(τ)
0 (1 − u

(τ)
0 )|∇w

(τ)
0 |2dxdt ≤ C,

for every τ > 0. Then, up to the extraction of a subsequence, there exists J ∈ L2((0, T );
(L2(�))d) such that

u
(τ)
0 (1 − u

(τ)
0 )∇w

(τ)
0 ⇀ J weakly in L2((0, T ); (L2(�))d).

Let us now take η ∈ L2((0, T ); (H 1(�))d) ∩ L∞((0, T ) × �; Rd) which fulfills η · n = 0 on 
∂� × (0, T ). Integrating by parts gives
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T∫
0

∫
�

u
(τ)
0 (1 − u

(τ)
0 )∇w

(τ)
0 ηdxdt

= −
T∫

0

∫
�

(1 − 2u
(τ)
0 )w

(τ)
0 ∇u

(τ)
0 · ηdxdt −

T∫
0

∫
�

u
(τ)
0 (1 − u

(τ)
0 )w

(τ)
0 divηdxdt.

(5.7)

Since w(τ)
0 ⇀ w0 weakly in L2((0, T ); L2(�)), the strong convergence of ∇u(τ) together with 

the fact that u(τ)
0 converges a.e. and is uniformly bounded implies

(1 − 2u
(τ)
0 )w

(τ)
0 ∇u

(τ)
0 ⇀ (1 − 2u

(τ)
0 )w

(τ)
0 ∇u

(τ)
0 , weakly in L1((0, T );L1(�)d)

and enables us to pass to the limit in the first term on the right hand side of (5.7). For the second 
term we argue again using the a.e. convergence of u(τ)

0 and thus obtain (5.5).
Let us now prove the weak convergence (5.6). We know that, up to the extraction of a subse-

quence, u(τ)
0 → u0 strongly in L2((0, T ); L∞(�)). This implies that for almost all t ∈ (0, T )

‖u(τ)
0 (t) − u0(t)‖L∞(�) = Cτ (t)

where Cτ satisfies 

T∫
0

Cτ (t) dt →0 (using a Cauchy-Schwarz inequality). In particular, for all 

δ > 0, denoting by

Eδ,τ := {t ∈ [0, T ], ‖u(τ)
0 (t) − u0(t)‖L∞(�) > δ},

it holds that the Lebesgue measure of the set Eδ,τ goes to 0 as τ goes to 0. We also consider the 
complementary of Eδ,τ , i.e., the set

Eδ,τ,c := {t ∈ [0, T ], ‖u(τ)
0 (t) − u0(t)‖L∞(�) ≤ δ}.

Let now ε > 0 and let us introduce the set

Mε(t) := {x ∈ �,1 − u0(t, x) ≥ ε} ,

together with its complementary

M(t)ε,c := {x ∈ �,1 − u0(t, x) < ε} .

For all t > 0 we can write

u
(τ)
0 (t)u

(τ)
i (t)∇w

(τ)
0 (t)

= χ ε u
(τ)

(t)u
(τ)

(t)∇w
(τ)

(t) + χ ε,c u
(τ)

(t)u
(τ)

(t)∇w
(τ)

(t).
(5.8)
M (t) 0 i 0 M (t) 0 i 0
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Let us consider both terms separately. On the one hand, it holds that u(τ)
i ≤ 1 − u

(τ)
0 . Thus, we 

have

T∫
0

∥∥∥χMε,c(t)u
(τ)
0 (t)u

(τ)
i (t)∇w

(τ)
0 (t)

∥∥∥2

L2(�)
dt ≤

T∫
0

∥∥∥u(τ)
0 (1 − u

(τ)
0 )∇w

(τ)
0

∥∥∥2

L2(�)
dt ≤ C,

for some constant C > 0 independent of τ > 0. Hence, if we consider the function hε,(τ) :
(0, T ) × � → R such that hε,(τ)(t, x) = χMε,c(t)u

(τ)
0 (t, x)u

(τ)
i (t, x)∇w

(τ)
0 (t, x), it follows that 

there exists a function hε ∈ L2((0, T ); (L2(�))d) such that

hε,(τ) ⇀hε weakly in L2((0, T ); (L2(�))d). (5.9)

Besides, since ‖hε‖L2((0,T );(L2(�))d ) ≤ C for all ε > 0, there exists h ∈ L2((0, T ); (L2(�))d)

such that, up to the extraction of a subsequence,

hε ⇀h weakly in L2((0, T ); (L2(�))d) as ε → 0+.

Let us now show that necessarily h = 0. Equation (5.9) implies that

hε,(τ) ⇀hε weakly in L1((0, T ); (L2(�))d),

and that

‖hε‖L1((0,T );L2(�)) ≤ lim inf
τ→0

∥∥∥hε,(τ)
∥∥∥

L1((0,T );L2(�))
.

To prove a bound on the right hand side we exploit the fact that u(τ)
i ≤ 1 − u

(τ)
0 and u(τ)

0 ≤ 1 to 
estimate

∥∥∥hε,(τ)
∥∥∥

L1(0,T ;L2(�))
=

T∫
0

∥∥∥χMε,c(t)u
(τ)
0 (t)u

(τ)
i (t)∇w

(τ)
0 (t)

∥∥∥
L2(�)

dt

≤
T∫

0

∥∥∥χMε,c(t)u
(τ)
0 (t)(1 − u

(τ)
0 (t))∇w

(τ)
0 (t)

∥∥∥
L2(�)

dt

≤
T∫

0

∥∥∥∥χMε,c(t)

√
1 − u

(τ)
0 (t)

∥∥∥∥
L∞(�)

∥∥∥∥√1 − u
(τ)
0 (t)

√
u

(τ)
0 (t)∇w

(τ)
0 (t)

∥∥∥∥
L2(�)

dt

≤
⎛⎝ T∫ ∥∥∥∥χMε,c(t)

√
1 − u

(τ)
0 (t)

∥∥∥∥2

L∞(�)

dt

⎞⎠1/2⎛⎝ T∫ ∥∥∥∥√1 − u
(τ)
0 (t)

√
u

(τ)
0 (t)∇w

(τ)
0 (t)

∥∥∥∥2

L2(�)

dt

⎞⎠1/2
0 0
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≤ C

⎛⎝ T∫
0

∥∥∥∥χMε,c(t)

√
1 − u

(τ)
0 (t)

∥∥∥∥2

L∞(�)

dt

⎞⎠1/2

,

for some constant C > 0 independent of τ . We further estimate the integrand of the last term of 
the inequality above as∥∥∥∥χMε,c(t)

√
1 − u

(τ)
0 (t)

∥∥∥∥
L∞(�)

≤
∥∥∥∥χMε,c(t)

(√
1 − u0(t) +

√
|u0(t) − u

(τ)
0 (t)|

)∥∥∥∥
L∞(�)

≤
∥∥∥χMε,c(t)

√
1 − u0(t)

∥∥∥
L∞(�)

+
∥∥∥∥χMε,c(t)

√
|u0(t) − u

(τ)
0 (t)|

∥∥∥∥
L∞(�)

≤ √
ε + χEε,τ (t)

∥∥∥∥χMε,c(t)

√
|u0(t) − u

(τ)
0 (t)|

∥∥∥∥
L∞(�)

+ χEε,τ,c (t)

∥∥∥∥χMε,c(t)

√
|u0(t) − u

(τ)
0 (t)|

∥∥∥∥
L∞(�)

≤ √
ε + 2χEε,τ (t) + √

ε ≤ 2
√

ε + 2χEε,τ (t).

This gives

T∫
0

∥∥∥∥χMε,c(t)

√
1 − u

(τ)
0 (t)

∥∥∥∥2

L∞(�)

dt ≤ 4T ε +
T∫

0

χEε,τ (t)(4 + 4
√

ε) dt,

≤ 4T ε + (4 + 4
√

ε)|Eε,τ |.

Thus, since |Eε,τ | →0 as τ → 0+, we obtain that

lim inf
τ→0

T∫
0

∥∥∥∥χMε,c(t)

√
1 − u

(τ)
0 (t)

∥∥∥∥2

L∞(�)

dt ≤ 4T ε.

This implies that

lim inf
τ→0

T∫
0

∥∥∥χMε,c(t)u
(τ)
0 (t)u

(τ)
i (t)∇w

(τ)
0 (t)

∥∥∥
L2(�)

dt = lim inf
τ→0

∥∥∥hε,(τ)
∥∥∥

L1((0,T );L2(�))
≤ 2C

√
T ε.

As a consequence,

‖hε‖L1((0,T );L2(�)) ≤ 2C
√

T ε,
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that is, ‖hε‖L1((0,T );L2(�)) → 0 as ε → 0+. Moreover, since hε ⇀ h weakly in L2((0, T );
L2(�)), then the weak convergence holds also in L1((0, T ); L2(�)). This implies that h = 0.

Let us now consider the second term in (5.8). Let gε,(τ) : (0, T ) × � → R be defined by 
gε,(τ)(t, x) = χMε,c(t)u

(τ)
0 (t, x)u

(τ)
i (t, x)∇w

(τ)
0 (t, x). Since∥∥∥gε,(τ)

∥∥∥
L2((0,T ),L2(�))

≤
∥∥∥u(τ)

0 (1 − u
(τ)
0 )∇w

(τ)
0

∥∥∥
L2((0,T );L2(�))

≤ C,

then there exists gε ∈ L2((0, T ); L2(�)) such that, up to the extraction of a subsequence, 
gε,(τ) → gε weakly as τ → 0+. Let us prove that

gε(t, x) = χMε(t)(x)
ui(t, x)

1 − u0(t, x)
J (t, x) for almost all (t, x) ∈ (0, T ) × �.

On the one hand, we have

χMε(t)(x)
u

(τ)
i (t, x)

1 − u
(τ)
0 (t, x)

→ χMε(t)(x)
ui(t, x)

1 − u0(t, x)
for almost all (t, x) ∈ (0, T ) × �.

Besides, χMε (x)
u

(τ)
i (t)

1−u
(τ)
0 (t)

≤ 1 for almost all t ∈ (0, T ) so that Lebesgue’s dominated convergence 

theorem implies that, up to the extraction of a subsequence,

χMε (x)
u

(τ)
i (t)

1 − u
(τ)
0 (t)

→ f ε
i strongly,

in any Lp((0, T ); Lp(�)) for all p > 1, in particular in L2((0, T ); L2(�)). This, together with 
the fact that (1 − u

(τ)
0 )u

(τ)
0 ∇w

(τ)
0 ⇀ J weakly in L2((0, T ); (L2(�))d) yields that

gε,(τ) → f ε
i J

in the sense of distribution. Hence, by uniqueness of the limit, we have

gε = f ε
i J,

which was the desired result. Thus, in the distributional sense,

u
(τ)
0 u

(τ)
i ∇w

(τ)
0 →f ε

i J + hε.

Now, since 1 − u
(τ)
0 → 1 − u0 strongly in L∞(�) and u(τ)

i → ui almost everywhere it holds 
that f ε

i → κi(t, x) almost everywhere, as ε → 0+, being κi(t, x) as defined in (2.9). Thus, the 
Lebesgue dominated convergence theorem gives f ε

i → κi strongly in L2((0, T ); L2(�)) as ε →
0+. Therefore,

f εJ →κiJ,
i
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so that finally, using the fact that hε ⇀ 0 weakly in L2((0, T ); (L2(�))d), we obtain that

u
(τ)
0 u

(τ)
i ∇w

(τ)
0 ⇀ κiJ weakly in L2((0, T ); (L2(�))d)

as τ → 0+, which was the desired result.

We are now in a position to complete the proof of our main theorem.

Proof of Theorem 2.1. We pass to the limit τ → 0+ in (5.3) using (5.4) and Lemma 5.1 which 
enables us to identify the limit

T∫
τ

∫
�

Ki0u
(τ)
0 u

(τ)
i ∇w

(τ)
0 · ∇φidxdt →

T∫
0

∫
�

Ki0κiJ · ∇φidxdt,

for all 1 ≤ i ≤ n. Thus, for all 1 ≤ i ≤ n and all φi ∈ L2((0, T ); H 2(�))

T∫
0

〈∂tui, φi〉H 2(�)′,H 2(�)dt = −
T∫

0

∫
�

∑
1≤j �=i≤n

Kij

(
uj∇ui − ui∇uj

) · ∇φidxdt

−
T∫

0

∫
�

Ki0u0∇ui · ∇φidxdt +
T∫

0

∫
�

Ki0κiJ · ∇φidxdt.

From the obtained weak formulation, it is clear that ∂tui ∈ L2((0, T ); (H 1(�))′) and that, by 
density, we can extend the above formulation to all φi ∈ L2((0, T ); H 1(�)) as follows:

T∫
0

〈∂tui, φi〉H 1(�)′,H 1(�)dt = −
T∫

0

∫
�

∑
1≤j �=i≤n

Kij

(
uj∇ui − ui∇uj

) · ∇φidxdt

−
T∫

0

∫
�

Ki0u0∇ui · ∇φidxdt +
T∫

0

∫
�

Ki0κiJ · ∇φidxdt.

Lastly, we obtain that, necessarily, ui(0, ·) = u0
i using similar arguments as in [24]. Hence 

((ui)0≤i≤n, J ) is a weak solution of system (2.10) in the sense of Definition 1, which concludes 
the proof of Theorem 2.1.
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