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We consider a mild solution u of a well-posed, inhomogeneous, Cauchy problem,
u* (t)=A(t) u(t)+ f (t), on a Banach space X, where A( } ) is periodic. For a problem
on R+, we show that u is asymptotically almost periodic if f is asymptotically
almost periodic, u is bounded, uniformly continuous and totally ergodic, and the
spectrum of the monodromy operator V contains only countably many points of
the unit circle. For a problem on R, we show that a bounded, uniformly continuous
solution u is almost periodic if f is almost periodic and various supplementary con-
ditions are satisfied. We also show that there is a unique bounded solution subject
to certain spectral assumptions on V, f and u. � 1999 Academic Press
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1. INTRODUCTION

For a well-posed Cauchy problem

u* (t)=A(t) u(t) (t�0), u(0)=x # X, (1.1)
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on a complex Banach space X with (unbounded) linear operators A(t)
(t # R+), the solutions of (1.1) lead to an evolution family U=
[U(t, s) : t�s�0] in the space L(X ) of bounded linear operators on X,
i.e.,

(1) U(t, t)=I, U(t, r) U(r, s)=U(t, s) for t�r�s in R+,

(2) [(t, s) # R+_R+: t�s] � L(X ) : (t, s) [ U(t, s) is strongly con-
tinuous,

(3) there are constants M�1 and | # R such that &U(t, s)&�
Me|(t&s), for t�s in R+.

We refer to [11], [18], [26] for conditions implying the existence of an
evolution family. For a function f: R+ � X a mild solution of the
inhomogeneous Cauchy problem

u* (t)=A(t) u(t)+ f (t) (t�0),

is defined by

u(t)=U(t, 0) u(0)+|
t

0
U(t, r) f (r) dr (t�0). (1.2)

When the Cauchy problem (1.1) is periodic, i.e., there exists q>0 such that
A(t+q)=A(t) for t # R+, the corresponding evolution family U is periodic
in the following sense

U(t+q, s+q)=U(t, s) (t�s�0). (1.3)

In the present paper we study the asymptotic behaviour of an individual
mild solution u depending on properties of the inhomogeneity f. We shall
be concerned with q-periodic evolution families according to the above
definition, without assuming the existence of a related Cauchy problem. In
particular, we deduce almost periodicity properties of the function u from
almost periodicity properties of the inhomogeneity f in conjunction with
spectral conditions on the monodromy operator V=U(q, 0) of the evolu-
tion family U. Vu~ [28, Theorem 3.2] showed that a bounded, uniformly
continuous solution u is asymptotically almost periodic when f#0, assum-
ing that V is power-bounded, the intersection of the spectrum _(V ) of V
with the unit circle 1 is countable, and #V is mean-ergodic for every # # 1.
Other results in this area have been obtained by Ruess and Summers [23]
and Kreulich [13]. In Section 2, we shall generalise Vu~ 's result to
inhomogeneous problems on R+. Our approach is based on a modification
of a factorisation technique developed in [2], where the corresponding
question was discussed in the autonomous situation.
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Given a q-periodic evolution family U=[U(t, s) : t�s�0], there is an
extension to an evolution family U=[U(t, s) : t�s # R] such that

U(t+q, s+q)=U(t, s) (t�s # R).

Given a function f: R � X, one can consider solutions of the equation

u(t)=U(t, s) u(s)+|
t

s
U(t, r) f (r) dr (t�s # R) (1.4)

as corresponding to complete mild solutions of the inhomogeneous Cauchy
problem on R:

u* (t)=A(t) u(t)+ f (t) (t # R).

If f is almost periodic and the evolution family has a Floquet representa-
tion, Vu~ [28, Theorems 4.2 and 4.5] showed firstly that a bounded,
uniformly continuous, totally ergodic solution u of (1.4) is almost periodic
if _(V ) & 1 is countable, and secondly that there is a unique almost peri-
odic solution subject to some other conditions when there is an absence of
resonance between V and f. The latter result has also been proved by Naito
and Nguyen [16] without assuming a Floquet representation, but instead
assuming that t [ U(t+q, t) is norm-continuous. In Section 3, we shall
prove such results without assuming the existence of a Floquet representa-
tion or any norm-continuity. We shall also give a periodic version of a
recent result of Arendt and Schweiker [3].

2. SOLUTIONS ON THE HALF-LINE

We begin by recalling some notation and terminology from [2].
Let BUC(R+, X ) be the space of all bounded, uniformly continuous

functions from R+ to a complex Banach space X. Let S=[S(t) : t�0] be
the C0-semigroup of translations on BUC(R+, X ) given by (S(t) f )(s)=
f (s+t). Denote by D the generator of S. Consider the quotient space

Y0=BUC(R+, X )�C0 (R+, X ),

and let ?0 : BUC(R+, X ) � Y0 be the quotient map, so

&?0 f &=inf [& f& g& : g # C0 (R+, X )]=lim sup
t � �

& f (t)&.

Then S induces a C0 -group S0=[S0(t): t # R] on Y0 consisting of
isometries. A closed subspace F of BUC(R+, X ) is said to be translation-
biinvariant if F=[ f # BUC(R+, X ) : S(t) f # F] for each t�0, or, equiv-
alently, if F contains C0(R+, X ) and F0 :=F�C0(R

+, X )�Y0 is
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S0 -invariant. A discussion of these properties, and some examples, can be
found in [2].

For ' # R, let

M' (u)= lim
{ � �

1
{ |

{

0
e&i'tS(t) u dt

if this exists in BUC(R+, X ). When M' (u) exists, there exists x # X such
that M' (u)(t)=ei'tx for all t. As in [2], we say that u is uniformly ergodic
at i' if M' (u) exists, and that u is totally ergodic if u is uniformly ergodic
at every point of iR.

For later use, we mention the following lemma, the proof of which is
given in [1, Lemma 2.2] (see also [6, Theorem 2.2]).

Lemma 2.1. Let A be the generator of a C0 -group W of isometries on the
Banach space Z. Let z # Z, ! # R, and suppose that there exist a
neighbourhood G of i! in C and a holomorphic function h: G � Z such that
h(*)=R(*, A) z whenever * # G and Re *>0. Then i! # \(Az ), where Az is
the generator of the restriction of W to the closed linear span of [W(t) z: t #
R] in Z.

For the remainder of this section, U will be a q-periodic evolution
family, so that property (1.3) holds. Denote by V the monodromy operator
U(q, 0) of U. For notational convenience we set Us (t, r)=U(t+s, r+s)
and Vs=Us (q, 0) for t�r and s # R+. Furthermore, we define
fs (t)= f (t+s) for s, t�0 and f # BUC(R+, X ). Note that Vs+q=Vs and
_(Vs)"[0] is independent of s # R+ [10, Proposition 6.3] and that for
* # \(V ) the mapping s [ R(*, Vs) from R+ into L(X ) is q-periodic and
strongly continuous [21, proof of Proposition 12].

Lemma 2.2. Let F be a closed subspace of BUC(R+, X ), let f # F, and
suppose that

(1) f has relatively compact range,

(2) if B # L(X ) and n # Z, then s [ exp(2?ins�q) Bf (s) belongs to F.

Let T: R+ � L(X ) be strongly continuous and q-periodic. Then s [ T(s) f (s)
belongs to F.

Proof. Let Tn be the nth Cesa� ro mean of the Fourier series of T, so Tn

is a q-periodic trigonometric polynomial with values in L(X ) and
&Tn (s)&�sup0�t�q&T(t)&. By Feje� r's Theorem, Tn(s) x � T(s) x, uniformly
for s�0, for each x # X. Since f has relatively compact range, Tn (s) f (s) �
T(s) f (s) uniformly for s�0. By (2), Tn ( } ) f ( } ) # F, so T( } ) f ( } ) # F. K
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Lemma 2.3. Let U=[U(t, s) : t�s�0] be a q-periodic evolution family
on the Banach space X and let F be a closed translation-invariant subspace
of BUC(R+, X ). Let f # F, e*q # \(V ), and define

wf (s)=|
q

0
Us (q, r) fs (r) dr, r*, f (s)=R(e*q, Vs ) wf (s) (2.1)

for s�0. Suppose that

(1) f has relatively compact range,

(2) if g # F, B # L(X ) and n # Z, then s [ exp(2?ins�q) Bg(s) belongs
to F.

Then wf # F and r*, f # F.

Proof. Replacing F by the subspace of all functions in F with
relatively compact range, we may assume that every function in F has
relatively compact range.

For r # [0, q] and s�0, let

Rf (r)(s)=Us (q, r) fs (r).

By Lemma 2.2, Rf (r) # F.
Let r # [0, q] and &�0 such that r+& # [0, q]. Then

&Us (q, r+&) fs (r+&)&Us (q, r) fs (r)&

�&Us (q, r+&)&(& fs (r+&)& fs (r)&+&(I&Us (r+&, r)) fs (r)&)

� 0

as & � 0, uniformly for s�0, since f has relatively compact range and U is
q-periodic and strongly continuous. Thus Rf is continuous from the right.
A similar argument leads to continuity of Rf from the left. Hence,
wf=�q

0 Rf (r) dr # F. Since s [ R(e*q, Vs ) is strongly continuous and
q-periodic, r*, f # F, by Lemma 2.2. K

We are now in a position to formulate the main result of this section.

Theorem 2.4. Let U=[U(t, s): t�s�0] be a q-periodic evolution
family on the Banach space X, and suppose that _(V ) & 1 is countable. Let
f # BUC(R+, X ) with relatively compact range, and suppose that u #
BUC(R+, X ) satisfies (1.2) and that u is uniformly ergodic at i' whenever
ei'q # _(V ) & 1. Let F be a closed, translation-biinvariant subspace of
BUC(R+, X ), satisfying the following conditions:

(1) f # F,
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(2) M'(u) # F whenever ei'q # _(V ) & 1,

(3) if g # F, B # L(X ) and n # Z, then s [ exp(2?ins�q) Bg(s) belongs
to F.

Then u # F.

Proof. Let G :=[* # C : e*q # \(V )]. For * # G, let r*, f be defined by
(2.1), and let

H(*)(s) :=|
q

0
e&*te*qR(e*q, Vs+t ) us (t) dt (s�0).

By Lemma 2.3, r*, f # F. By the Dominated Convergence Theorem, H
maps G into the space Cb(R+, X ) of bounded, continuous functions from
R+ to X. Moreover, H is locally bounded, and for each s�0, the map
* [ H(*)(s) is holomorphic. It follows from Cauchy's Integral Formula
that H : G � Cb(R+, X ) is continuous, and from Morera's Theorem that H
is holomorphic. We shall show below that H actually takes values in
BUC(R+, X ).

We first establish a local description of the resolvent of the generator D
of the translation semigroup S. Note that

us (t)=Us (t, 0) u(s)+|
t

0
Us (t, r) fs (r) dr

for s, t�0, and hence

us (t+q)&Vs+tus (t)=|
t+q

t
Us (t+q, r) fs (r) dr=|

q

0
Us+t (q, r) fs+t (r) dr.

Let Re *>0. Then R(*, D) exists and is given by the Laplace transform of
the semigroup S, so

(R(*, D) u)(s)=|
�

0
e&*t(S(t) u)(s) dt=|

�

0
e&*tus (t) dt (s�0).

Assume, in addition, that * # G. Then, for s�0,

(R(*, D) u)(s)=|
�

0
e&*tR(e*q, Vs+t )(e*q&Vs+t ) us(t) dt

=H(*)(s)+|
�

0
e&*tR(e*q, Vs+t )(us (t+q)&Vs+t us (t)) dt

=H(*)(s)+|
�

0
e&*tR(e*q, Vs+t ) |

q

0
Us+t (q, r) fs+t(r) dr dt
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=H(*)(s)+|
�

0
e&*tr*, f (s+t) dt

=H(*)(s)+(R(*, D) r*, f)(s). (2.2)

It follows that

H(*)=R(*, D) u&R(*, D) r*, f # BUC(R+, X )

whenever Re *>0 and * # G. By analytic continuation, H(*) # BUC(R+, X )
whenever * belongs to the union G0 of the connected components of G
which intersect [* # C : Re *>0].

The group S0 on Y0=BUC(R+, X )�C0 (R+, X ) induces a C0 -group SF

on

YF :=BUC(R+, X )�F=Y0 �F0 ,

and SF (t) ?F f =?F S(t) f for all f # BUC(R+, X ), where ?F : BUC(R+,
X ) � YF is the quotient map. Let DF be the generator of SF . Since F

contains r*, f and is translation-invariant, R(*, D) r*, f # F, so

R(*, DF ) ?Fu=?F R(*, D) u=?F(H(*))

whenever Re *>0 and * # G. This shows that * [ R(*, DF) ?Fu has a
holomorphic extension to a map g: G0 � YF=BUC(R+, X )�F, given by
g(*)=?F(H(*)). Let ZF, u be the closed linear span of [SF(t) ?Fu : t # R]
in YF . By Lemma 2.1,

_(DF, u)�[* # iR : e*q # _(V )]

where DF, u is the generator of the restriction of SF to ZF, u . In particular,
_(DF, u) is countable.

To finish the proof, suppose that u � F. Then ZF, u is non-zero and
therefore the spectrum _(DF, u) is nonempty [15, Lemma 7.6, p. 91]. Since
_(DF, u ) is countable and closed in iR, it has an isolated point i'. By [9,
Theorem 8.16], this point is an eigenvalue. So, there is a non-zero z # ZF, u

such that SF (t) z=ei'tz for all t # R. From assumption (2), we know that

lim
{ � �

1
{ |

{

0
e&i'tS(t) us dt=e i'sM'(u) # F.

Applying ?F , taking linear combinations and interchanging limits, it
follows that

0{z= lim
{ � �

1
{ |

{

0
e&i'tSF(t) z dt=0.

This contradiction proves the result. K
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Remark 2.5. 1. The formula (2.2) for R(*, D) u is valid whenever U is
q-periodic and u satisfies (1.2). It is based on the variation of constants
formula for u and can be written explicitly as

(R(*, D) u)(s)=|
q

0
e&*te*qR(e*q, Vs+t) us(t) dt

+|
�

0
e&*tR(e*q, Vs+t) |

q

0
Us+t(q, r) fs+t(r) dr dt. (2.3)

Moreover, (R(*, D) u)(s) is the Laplace transform of us and if ' # R the
existence of the Cesa� ro mean M'(u) is equivalent (for u # BUC(R+, X )) to
the existence of the Abel mean lim: a 0 :R(:+i', D) u in BUC(R+, X ). It
follows that if ei'q # \(V ) and ri', f is uniformly ergodic at i', then u is
uniformly ergodic at i' and M' (u)=M' (ri', f). An application of Lemma
2.3 shows that ri', f is uniformly ergodic at i' if f has relatively compact
range and f is uniformly ergodic at i'$ whenever '$&' # (2?�q) Z.

2. In Theorem 2.4, the conditions (1) and (3) and the assumption
that f has relatively compact range can be replaced by the assumption that
r*, f # F whenever e*q # \(V ).

When f#0, we obtain the following corollary, which is a generalization
of a result of Vu~ [28, Theorem 3.2], as mentioned in the introduction.
Note that the ergodicity condition on V assumed in that theorem implies
that U( } , 0) x is totally ergodic for all x # X.

Corollary 2.6. Let U=[U(t, s) : t�s�0] be a q-periodic evolution
family on the Banach space X, and suppose that _(V ) & 1 is countable. Let
x # X and consider the function u=U( } , 0) x : R+ � X. Assume that
u # BUC(R+, X ) and that u is uniformly ergodic at i' whenever
ei'q # _(V ) & 1. Let F be a closed, translation-biinvariant subspace of
BUC(R+, X ) and suppose that F contains M'(u) whenever e i'q # _(V ) & 1.
Then u # F.

We are now in a position to discuss almost periodicity properties of u.
Let AAP(R+, X ) be the space of all asymptotically almost periodic func-
tions from R+ to X, so

AAP(R+, X )=C0 (R+, X )�span[ei' } x: ' # R, x # X].

See [12, Theorem 9.3] for other characterisations of AAP(R+, X ).

Proposition 2.7. (Asymptotic almost periodicity). Let U=[U(t, s) :
t�s�0] be a q-periodic evolution family on the Banach space X and sup-
pose that _(V ) & 1 is countable. Let f # AAP(R+, X ), and consider a func-
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tion u which satisfies (1.2). Assume that u # BUC(R+, X ) and that u is
uniformly ergodic at i' whenever ei'q # _(V ) & 1. Then u # AAP(R+, X ).

Proof. This follows from Theorem 2.4 with F=AAP(R+, X ). K

Remark 2.8. Proposition 2.7 remains valid if AAP(R+, X ) is replaced
by the space WRC(R+, X ) of all Eberlein-weakly almost periodic functions
with relatively compact range. See [22], [24] for further properties of
these functions, and [13] for results related to this version of Proposition
2.7.

Proposition 2.9. (Stability). Let U=[U(t, s) : t�s�0] be a q-peri-
odic evolution family on the Banach space X, and suppose that _(V ) & 1 is
countable. Let f # AAP(R+, X ), and consider a function u which satisfies
(1.2). Assume that u # BUC(R+, X ) and that one of the following two condi-
tions is satisfied:

(1) f # C0 (R+, X ), u is uniformly ergodic at i' and M' (u)=0 when-
ever ei'q # _(V ) & 1;

(2) u is totally ergodic and M' (u)=0 for all ' # R.

Then u # C0 (R+, X ).

Proof. In case (1), this follows from Theorem 2.4 with F=C0 (R+, X ).
In case (2), it follows from Proposition 2.7 and the fact that any asymptoti-
cally almost periodic function whose means are all 0 belongs to C0 (R+, X )
(see [14, p. 24]). K

Now consider the space APq (R+, X ) of all asymptotically q-periodic
functions from R+ to X, as in [25, Section 6]. Thus

APq (R+, X )=C0 (R+, X )�[g # BUC(R+, X ) : g is q-periodic]

=C0 (R+, X )�span[ei(2?n�q) } x : n # Z, x # X]

=[ f # AAP(R+, X ) : M' ( f )=0 unless ' # (2?�q) Z].

Proposition 2.10. (Asymptotic periodicity). Let U=[U(t, s) : t�s�
0] be a q-periodic evolution family on the Banach space X, and suppose that
_(V ) & 1�[1]. Let f # APq (R+, X ), and consider a function u which
satisfies (1.2). Assume that u # BUC(R+, X ) and that u is uniformly ergodic
at i' whenever ' # (2?�q) Z. Then u # APq (R+, X ).

Proof. This follows from Theorem 2.4 with F=APq (R+, X ). K

In applications, it is not easy to check whether individual solutions u
have means M' (u). We shall show in Proposition 2.13 that this condition
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is automatically satisfied when _(V ) & 1 consists only of poles of the resol-
vent of V. For this, we follow the approach in [28] via the sequences
(u(nq))n�0 , and we shall need the following two preliminary results, the
first of which is similar to [12, Theorem 9.7]. Recall that a sequence (xn )
in X is said to be asymptotically almost periodic if xn= yn+an , where
&yn& � 0 as n � �, and for every =>0 there exist #r # 1 and
br # X (r=1, 2, ..., m) such that &an&�m

r=1 #n
r br&<= for all n.

Proposition 2.11. Let U=[U(t, s): t�s�0] be a q-periodic evolution
family on the Banach space X. Let f # BUC(R+, X ), and consider a function
u which satisfies (1.2).

(1) If f # C0 (R+, X ) and &u(nq)& � 0 as n � �, then u # C0 (R+, X ).

(2) If f # AAP(R+, X ) and (u(nq))n�0 is asymptotically almost
periodic, then u # AAP(R+, X ).

Proof. Note that the function u is continuous. For 0�s�q,

u(nq+s)=U(s, 0) u(nq)+|
s

0
U(s, r) f (nq+r) dr.

Now (1) follows immediately.
For (2), suppose that the sequence (u(nq))n�0 and the function f are

both asymptotically almost periodic. By considering trigonometric polyno-
mials approximating the almost periodic parts, it is straightforward to
establish the following property of simultaneous =-almost periods (see [12,
Corollary 2.3 and pp. 163�164]). For any =>0, there exist non-negative
integers M and l such that, for all non-negative integers k, there exists
m # [k, k+1, } } } , k+l] such that

&u((n+m) q)&u(nq)&<= whenever n�M, and

& f (t+mq)& f (t)&<= whenever t�Mq.

For such m, and for n�M and 0�s�q,

&u(nq+s+mq)&u(nq+s)&

=&U(s, 0)(u((n+m) q)&u(nq))+|
s

0
U(s, r)( f(nq+r+mq)& f (nq+r)) dr&

�C&u((n+m) q)&u(nq)&+Cq sup
t�nq

& f (t+mq)& f (t)&

�C(1+q) =,

where C=sup0�r�s�q&U(s, r)&. Now mq is a C(1+q) =-almost period for
u. Thus u # AAP(R+, X ). K
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With essentially the same proof as Proposition 2.11 (2), one can show
that if f # AP(R, X ), u is a solution of (1.4) on R, and (u(nq))n # Z is an
almost periodic sequence, then u # AP(R, X ). This clarifies a question of Vu~
[28, p. 411].

The following is a discrete analogue of a result given in [1, Theorem 5.2]
for homogeneous autonomous Cauchy problems.

Proposition 2.12. Let T # L(X) and suppose that _(T ) & 1 consists
only of poles of the resolvent of T. Let x # X, and suppose that (Tnx)n�0 is
bounded. Then (Tnx) is an asymptotically almost periodic sequence.

Proof. Let hm (*)=��
n=0 *nT n+mx ( |*|<1). When *&1 # \(T), hm (*)=

(I&*T )&1 Tmx. If * # 1 is a singular point of h0 , then *&1 is a pole of the
resolvent of T. Arguing as in [1, Theorem 5.2], the assumption that (T nx)
is bounded implies that limrZ1 (1&r) hm (r*) exists, uniformly for m�0.
The result now follows from [7, Theorem 6.1]. K

Now we are able to give an analogue for homogeneous periodic
problems of the result of [1, Theorem 5.2].

Proposition 2.13. Let U=[U(t, s) : t�s�0] be a q-periodic evolution
family on the Banach space X, and suppose that _(V) & 1 consists only of
poles of the resolvent of V. Let x # X and suppose that the function
u :=U( } , 0) x : R+ � X is bounded. Then u # AAP(R+, X).

Proof. Consider the sequence (u(nq))n�0 . Since u(nq)=Vnx, it follows
from Proposition 2.12 that the sequence is asymptotically almost periodic.
By Proposition 2.11, u # AAP(R+, X). K

3. SOLUTIONS ON THE LINE

Now we turn to solutions of (1.4) on R. In this context, U=
[U(t, s) : t�s # R] will be a q-periodic evolution family on R with
monodromy operator V=U(q, 0), and we shall use the same notation as
in Section 2, with R+ replaced by R and variables such as s and t taking
any value in R. We shall consider subspaces F of BUC(R, X) which are
invariant under the C0-group S of translations on R. The analogues of
Lemmas 2.2 and 2.3 hold, mutatis mutandis. We now state the analogue of
Theorem 2.4.

Theorem 3.1. Let U=[U(t, s) : t�s # R] be a q-periodic evolution
family on the Banach space X, and suppose that _(V) & 1 is countable. Let
f # BUC(R, X) with relatively compact range, and suppose that u # BUC(R, X)
satisfies (1.4) and that u is uniformly ergodic at i' whenever ei'q # _(V) & 1.
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Let F be a closed, translation-invariant subspace of BUC(R, X), satisfying
the following conditions:

(1) f # F,

(2) M' (u) # F whenever e i'q # _(V) & 1,

(3) if g # F, B # L(X) and n # Z, then s [ exp(2?ins�q) Bg(s) belongs
to F.

Then u # F.

Proof. The proof is very similar to Theorem 2.4. The analogues of
Lemmas 2.2 and 2.3 hold, the equality (2.2) now holds for all s # R, and
one works with the C0 -group SF on YF :=BUC(R, X)�F, induced by
translations. K

To give more concrete results, we shall need the notion of the spectrum
of a function f # L�(R, X):

sp( f )=[! # R : for all =>0 there exists , # L1(R)

such that supp(,� )�(!&=, !+=) and , V f{0] .

Here, ,� denotes the Fourier transform of , and , V f is the convolution of
, and f. There are several alternative definitions of sp( f ). In particular,
sp( f ) is the support of the Fourier transform of the vector-valued distribu-
tion associated with f, and it coincides with the Carleman spectrum [20,
Proposition 0.5]. If f # BUC(R, X) and Df is the generator of the restric-
tion of S to the closed linear span of [S(t) f : t # R] in BUC(R, X), then
_(Df)=i sp( f ) (see [1, Section 2], [27, Section 3]).

For a closed subset 4 of R, let L�
4 (R, X ) be the space of all functions

f # L�(R, X ) such that sp( f )�4. A simple argument in harmonic analysis
shows that f # L�

4 (R, X ) if and only if , V f =0 whenever , # L1(R) and
supp(,� ) & 4 is empty (for f # BUC(R, X ), this can also be seen by observ-
ing that the latter property coincides with Arveson's definition of spectrum
and spectral subspaces [4, p. 225], [9, p. 206] and the generator of the
restriction D4 to this subspace also satisfies _(D4)=i4 [9, Theorem
8.19]). It is almost immediate from this or the definition of the spectrum
that sp(, V f )�supp(,� ) & sp( f ) for any , # L1(R) and f # L�(R, X ) (see
[8, Lemma 3.2.38] and [20, Proposition 0.6]).

We shall also need notation for the following q-periodic version of the
spectrum:

7q( f )=sp( f )+(2?�q) Z�R.
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For a closed, translation-invariant subspace F of BUC(R, X), we let
spF( f ) be the F-spectrum of f, as in [5, Section 4], [25, Section 3]:

spF ( f )=[! # R : for all =>0 there exists , # L1(R)

such that supp(,� )�(!&=, !+=) and , V f � F] .

Then i spF ( f )=_(DF, f ), where DF, f is the generator of the restriction of
the group SF to the closed linear span of [SF (t) ?F f : t # R] in
YF=BUC(R, X)�F [1, proof of Theorem 3.4].

The following general result relates the spectra of the various com-
ponents of the equation (1.4). An analogous result for autonomous
problems on R+ is given in [2, Proposition 3.1].

Proposition 3.2. Let U=[U(t, s) : t�s # R] be a q-periodic evolution
family on the Banach space X. Let f # BUC(R, X) with relatively compact
range, and suppose that u # BUC(R, X) is a solution of (1.4). Then

sp(u)�[' # R : ei'q # _(V)] _ 7q ( f ).

Proof. Let G=[* # C : e*q # \(V)] and

F=[g # BUC(R, X) : sp(g)�7q ( f )].

By the analogue of Lemma 2.3, wf # F and r*, f # F whenever * # G. Define
F: G � F by F(*)=r*, f . Then F is holomorphic.

Let DF be the generator of the translation group on F, so _(DF)=
i7q ( f ) [9, Theorem 8.19]. Equation (2.2) in Theorem 2.4 gives

R(*, D) u=H(*)+R(*, DF ) r*, f

whenever * # G and Re *>0. The term R(*, DF ) r*, f has a holomorphic
F-valued extension to G"i7q ( f ) given by the same formula. In the proof
of Theorem 2.4 it is shown that H is a holomorphic function from G0 to
BUC(R, X), where G0 is the union of the connected components of G
which intersect [* # C : Re *>0]. It follows that R(*, D) u has a
holomorphic extension to a map from G0"i7q ( f ) into BUC(R, X). Since
sp(u)=&i_(Du ), Lemma 2.1 now gives the result. K

Let AP(R, X) denote the space of all almost periodic functions from R
to X, so

AP(R, X)=span[ei' } x : ' # R, x # X].

For further properties of these functions, see [12], [14]. The following
result answers a question of Vu~ who proved cases (2) and (3) under the
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additional assumption that U has a Floquet representation [28, Theorem
4.2].

Theorem 3.3. (Almost periodicity). Let U=[U(t, s) : t�s # R] be a
q-periodic evolution family on the Banach space X and suppose that _(V) & 1
is countable. Let f # AP(R, X), and suppose that u # BUC(R, X) is a solution
of (1.4) on R and that one of the following conditions holds:

(1) u is uniformly ergodic at i' whenever ei'q # _(V) & 1,

(2) u has relatively weakly compact range,

(3) X does not contain c0 .

Then u # AP(R, X).

Proof. In case (1), the result follows from Theorem 3.1 with
F=AP(R, X).

In general, the proofs of Lemmas 2.2 and 2.3 and Theorem 2.4 show that
the map * [ R(*, DAP) ?AP u (Re *>0) has a holomorphic extension near
i' whenever ei'q # \(V). Since spAP(u)=&i_(DAP, u) this together with
Lemma 2.1 yields spAP(u)�[' # R : ei'q # _(V)], which is countable. Each
of the three cases now follows from [25, Theorem 3.11] (see also [1,
Remark 3.3 and Corollary 3.5]). K

Of the three alternative conditions in Theorem 3.3, the first is hard to
verify in applications, and the other two are specific to the cases of almost
periodic functions and a few other special classes. In the remainder of this
section we shall give some results of more general applicability, in which
we assume that _(V) and sp( f ) are out of phase. The first is an adaptation
to the periodic case of a result of [3] for the autonomous case.

Theorem 3.4. Let U=[U(t, s) : t�s # R] be a q-periodic evolution
family on the Banach space X, and suppose that _(V) & 1 is finite. Let
f # AP(R, X), and suppose that _(V) contains no accumulation points of
[ei'q : ' # sp( f )]. Let u # BUC(R, X) be a solution of (1.4) on R. Then
u # AP(R, X).

Proof. By Proposition 3.2,

sp(u)�[' # R : ei'q # _(V)] _ 7q ( f ).

By [3, Proposition 3.4], spAP (u) consists only of accumulation points of
sp(u), so the assumptions imply that each point of spAP (u) is an accumula-
tion point of 7q ( f ).

The argument of Theorem 2.4 shows that

spAP (u)=&i_(DAP, u)�[' # R : ei'q # _(V)].
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It follows from the assumptions that spAP(u) is empty, so u # AP(R, X), by
[25, Proposition 3.1]. K

Remark 3.5. Theorem 3.4 remains valid if the space AP(R, X) is
replaced throughout by any closed, translation-invariant subspace of
BUC(R, X) containing AP(R, X) and consisting only of functions with
relatively compact range.

We shall show in Theorem 3.8 that if f has relatively compact range and
_(V) and sp( f ) are out of phase, then there is a unique solution u of (1.4)
with sp(u)�7q ( f ). This situation has been studied by Vu~ [28] and Naito
and Nguyen [16], under some supplementary conditions, and by Vu~ and
Schu� ler [29] in the autonomous case. Our proof is based on that of [16],
but first we require two lemmas.

Lemma 3.6. Let 4 be a closed subset of R such that '+(2?n�q) # 4
whenever ' # 4 and n # Z. Let f # L�

4 (R, X), and let T: R � L(X) be
strongly continuous and q-periodic. Then the spectrum of s [ T(s) f (s) is
contained in 4.

Proof. As in Lemma 2.2, Feje� r's Theorem provides a uniformly boun-
ded sequence (Tn ) of q-periodic trigonometric polynomials with values in
L(X) such that Tn (s) x � T(s) x, uniformly in s, for each x # X. It follows
from the assumption on 4 that the spectrum of s [ Tn (s) f (s) is contained
in 4. Thus, if , # L1(R) and (supp ,� ) & 4 is empty, then

0=|
�

&�
,(t&s) Tn (s) f (s) ds � |

�

&�
,(t&s) T(s) f (s) ds,

as n � �, by the Dominated Convergence Theorem. Thus, ��
&�

,(t&s) T(s) f (s) ds=0 for all such ,. This proves the result. K

We shall say that a (norm-)closed, translation-invariant subspace Z of
L�(R, X) is convolution-invariant if , V f # Z whenever , # L1(R) and f # Z.
Note that , V f is always bounded and uniformly continuous. Examples of
convolution-invariant spaces include:

(1) norm-closed translation-invariant subspaces of BUC(R, X);

(2) translation-invariant subspaces of L�(R, X) which are weakly
closed for the natural duality between L�(R, X) and L1(R, X*);

(3) L�
4 (R, X) for any closed subset 4 of R.
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Lemma 3.7. Let 4 be a closed subset of R, and let Z be a closed, transla-
tion-invariant, convolution-invariant subspace of L�

4 (R, X) containing the
functions s [ ei'sx (' # 4, x # X). Define W: Z � Z by

(Wf )(s)= f (s&q).

Then _(W) is the closure of [e&i'q : ' # 4].

Proof. Since ei' } x is an eigenvector of W with eigenvalue e&i'q, it is
immediate that [e&i'q : ' # 4]�_(W).

Now let Zc=Z & BUC(R, X ) and Wc=S(&q)| Zc . Since the spectrum of
the generator of the restriction of S to Zc is i4 [9, Theorem 8.19], it
follows from the Weak Spectral Mapping Theorem for C0 -groups [15,
Theorem 7.4, p. 91] that _(Wc )=[e&i'q: ' # 4]. Moreover, if + # \(Wc ) & 1,
there exists a C2-function , on 1 such that ,(z)=(+&z)&1 for all z in a
neighbourhood N of _(Wc ) & 1 in 1. Let (an) be the sequence of Fourier
coefficients of ,, and bn=+an&an&1 . Then (an) # l1(Z) and

:
�

n=&�

bn zn=(+&z) :
�

n=&�

anzn=1

whenever z # N. It follows from the spectral theory of invertible isometries
(for example, [19, Corollary 8.1.11] and [8, Lemma 3.2.38]) that

:
�

n=&�

an (Wc )n (+IZc&Wc )= :
�

n=&�

bn (Wc )n=IZc . (3.1)

Now, consider f # Z. For any , # L1(R), , V f # Zc , so (3.1) gives

:
�

n=&�

an (+Wn(, V f )&Wn+1 (, V f ))=, V f,

and the series converges uniformly for &,&1�1. As , runs through an
approximate identity of L1(R), Wn(, V f ) � Wnf in norm if f is uniformly
continuous; pointwise if f is continuous; or in the sense of vector-valued
distributions if f is measurable (that is, �R �Wn(, V f ) � �R �Wnf for every
� # C �

c (R)). It follows that

:
�

n=&�

an Wn(+I&W ) f =f

for all f # Z. Thus +I&W has the inverse ��
n=&� anWn, and + # \(W). K

Theorem 3.8. Let U=[U(t, s) : t�s # R] be a q-periodic evolution
family on the Banach space X. Let f # Cb(R, X), and suppose that
_(V ) & [ei'q : ' # sp( f )] is empty. Then:

324 BATTY, HUTTER, AND RA� BIGER



(1) There is at most one u # Cb(R, X ) such that (a) u is a solution of
(1.4) on R, and (b) sp(u)�7q( f ).

(2) Let F be a closed, translation-invariant subspace of BUC(R, X )
such that s [ exp(2?ins�q) Bg(s) belongs to F whenever g # F, B # L(X )
and n # Z. Suppose that f # F and f has relatively compact range. Then there
exists u # F satisfying (a) and (b) above, and u has relatively compact range.

Proof. We consider the evolution semigroup [T (t) : t�0] defined on
Cb(R, X ) by

(T (t) g)(s)=U(s, s&t) g(s&t) (t�0, s # R, g # Cb(R, X)).

This semigroup may not be strongly continuous. Let

Ec=[g # Cb(R, X ) : &T (t) g& g& � 0 as t � 0+].

Then the evolution semigroup restricts to a C0 -semigroup on Ec , whose
generator will be denoted by L. A standard argument shows that Ec con-
tains all g # Cb(R, X ) with relatively compact range.

Let u # Cb(R, X). A simple calculation shows that u satisfies (1.4) if and
only if

(T(t) u)(s)&u(s)=&|
t

0
(T (r) f )(s) dr.

This implies that u # Ec . Furthermore, if f # Ec , then u satisfies (1.4) if and
only if u # D(L) and Lu=&f (cf. [17, Lemma 1.1] or [16, Lemma 2]).

Let [S(t) : t # R] be the translation group on Cb(R, X ). Define V� :
Cb(R, X ) � Cb(R, X ) by

(V� g)(s)=Vsg(s).

Note that

T (q)=V� S(&q)=S(&q) V� . (3.2)

(1) Let

Z=[g # Cb(R, X) : sp(g)�7q( f )]=Cb(R, X ) & L�
7q( f )(R, X ).

Then Z is convolution-invariant, and invariant under T (q), S(&q) and V� ,
by Lemma 3.6. Let * # \(V )"[0], so * # \(Vs) for all s. Given g # Z, let
v(s)=R(*, Vs) g(s). Then v # Z by Lemma 3.6, and (*I&V� ) v= g. Thus
*I&V� maps Z onto Z. Moreover, (*I&V� ) is injective, since each *IX&Vs

is injective. This shows that _(V� |Z)�_(V) _ [0].
By Lemma 3.7,

_(S(&q)|Z)=[e&i'q : ' # 7q( f )]=[e&i'q : ' # sp( f )].

325ALMOST PERIODICITY OF MILD SOLUTIONS



By restricting (3.2) to Z, it follows that

_(T (q)|Z)�[*1*2 : *1 # _(V� | Z ), *2 # _(S(&q)| Z)].

Our assumptions imply that 1 # \(T (q)|Z).
If u and v are solutions of (1.4) in Z, then

(T (q) u)(s)&u(s)=(T (q) v)(s)&v(s)=&|
t

0
(T (r) f )(s) dr,

so (T (q)&I)(u&v)=0. Since (T (q)&I )|Z is injective, it follows that u=v.

(2) Now, let

Z=[g # F : g has relatively compact range, sp(g)�7q( f )].

Under the assumptions of (2), f # Z�Ec , and Z is invariant under T (t), by
Lemma 2.2. Let LZ be the generator of the C0-semigroup [T (t)| Z : t�0],
so LZ is the restriction of L to D(L) & Z. Arguing as in (1) above, but
using Lemma 2.2 in place of Lemma 3.6, we see that 1 # \(T (q)|Z). Since
[e*q: * # _(LZ)]�_(T (q)| Z), it follows that 0 # \(LZ). Hence there is
exactly one u # Z such that u # D(LZ) and LZu=&f. This proves (2). K

By taking F=AP(R, X ) in Theorem 3.8 (2), we obtain the following
corollary, which answers a question of Vu~ [28], who proved the result
under the assumption that V has a Floquet representation. The result has
also been proved by Naito and Nguyen [16], under the assumption that
t [ Vt is norm-continuous.

Corollary 3.9. Let U=[U(t, s) : t�s # R] be a q-periodic evolution
family on the Banach space X. Let f # AP(R, X), and suppose that
_(V ) & [ei'q : ' # sp( f )] is empty. Then there is a unique u # Cb(R, X ) such
that (a) u is a solution of (1.4) on R, and (b) sp(u)�7q( f ). Moreover,
u # AP(R, X).
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