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1. Introduction

The concept of principal eigenvalue for boundary value problems of elliptic operators has been
extended, in the last decades, to quasi-nonlinear and fully-nonlinear equations (somehow “abusing”
the name of eigenvalue) see [1,2,26,28,29,22,7,23], etc. In all the cases we know, two features of the
operators are requested, homogeneity and ellipticity.

The meta-definition of these principal eigenvalues could be the following: Given a zero order and
odd operator H with the same homogeneity than the second order elliptic operator F , and given
a domain Ω , λ is a principal eigenvalue if there exists a nontrivial solution of constant sign of the
problem
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{
F
(
x,∇u, D2u

) + λH(u) = 0 in Ω,

u = 0 on ∂Ω;
not surprisingly, that function will be called an “eigenfunction”.

Of course when F is a second order linear elliptic operator and H(u) = u, the principal eigen-
value is just the first eigenvalue in the “classical” sense, it is well known that it is both simple and
isolated.

It is interesting to notice that when the operator is not “odd” with respect to the Hessian, there
may be two principal eigenvalues, one corresponding to a positive eigenfunction and one correspond-
ing to a negative eigenfunction. This is the case when F is one of the Pucci operators e.g. for some
0 < a < A

F
(

D2u
) := M+

a,A

(
D2u

) := sup
aI�M�AI

Tr
(
M D2u

)

(see [10]). In these cases, or in general when the operator is uniformly elliptic and homogenous of
degree 1, the principal eigenvalues have been proved to be simple and isolated (see [29,22,27]).

When the operator is “quasi-linear” but in divergence form, for example in the case of the p-
Laplacian, it is well known that the principal eigenvalue can be defined through the Rayleigh quotient
and it was proved, independently by Anane [1] and by Ôtani and Teshima [26], that it is simple and
isolated (see also [25]). The variational structure plays a key role there. On the other hand, for the
∞-Laplacian (see [23]), the question of the simplicity of the principal eigenvalue is still open.

The cases treated in this paper concern operators that have the “homogeneity” of the p-Laplacian,
but are “fully-nonlinear” and hence are not variational. In previous works, we proved the existence
of the principal eigenvalues for this large class of operators and many features related to them [6–9].
The inspiration for these definitions and results was the acclaimed work of Berestycki, Nirenberg
and Varadhan [5] where the eigenvalue for linear elliptic operators in general bounded domains was
defined through the maximum principle.

The main questions left open in our previous works were: Are these eigenvalues “simple”? Are
they “isolated”?

We shall now proceed to describe the results obtained in this note but for the sake of comprehen-
sion we shall do it for an operator that exemplifies well the cases treated here (the general conditions
and hypothesis will be given in the next section). For some 0 � α > −1, and some Hölder continuous
function h of exponent 1 + α, let

F [u] := F
(
x,∇u, D2u

) = |∇u|α M+
a,A

(
D2u

) + h(x) · ∇u|∇u|α.

Suppose that Ω is a bounded, smooth domain of R
N . Then we can define

λ+ := sup
{
λ; ∃φ > 0, φ ∈ C(Ω), F [φ] + λφ1+α � 0 in Ω

}
,

λ− := sup
{
λ; ∃φ < 0, φ ∈ C(Ω), F [φ] + λφ|φ|α � 0 in Ω

}
.

It is clear that the inequalities are meant in the “viscosity sense” adapted to these non-smooth oper-
ators (see the next section for a precise definition).

For a much more general context and for any α > −1 we proved in [7] that these are well defined.
For any λ < λ+ the maximum principle holds i.e. if u is a viscosity sub-solution of

{
F [u] + λu|u|α = 0 in Ω,

u = 0 on ∂Ω; (1)

then u � 0 in Ω . Furthermore, for any λ < min{λ+, λ−} and any continuous f there exists a solution
of
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{
F [u] + λu|u|α = f in Ω,

u = 0 on ∂Ω,
(2)

which is Lipschitz continuous.
Of course we also proved that there exist φ+ and φ− respectively positive and negative eigenfunc-

tions in the sense that e.g. for λ = λ+ there exists φ+ > 0 viscosity solution of (1).
One of the question we answer here is, if ψ > 0 is another solution of (1) with λ = λ+ , is it true

that there exists t > 0 such that φ+ = tψ? The answer is yes for α ∈ (−1,0], for any domain Ω such
that ∂Ω has only one connected component. When ∂Ω has two connected components we can prove
the result when N = 2.

Let us recall that for any α > −1 and any N we proved in [8] the simplicity of the eigenvalue for
radial solutions.

It is clear that these results are somehow equivalent to a “strong comparison principle” i.e. it is
equivalent to know that if two solutions are one above the other in some open set O and they “touch”
at some point of O then they coincide in O. In Proposition 4.4, we prove such a result when at least
one of the solutions has the gradient bounded away from zero in O.

This restriction implies that in order to apply Proposition 4.4 we need to know that there is some
subset O of Ω where this condition is satisfied. Naturally the Hopf’s lemma, together with a C1 reg-
ularity, is the convenient ingredient since it guarantees that the gradient is bounded away from zero
in a neighborhood of ∂Ω . This explains why we start by proving a C 1,β regularity result, which is
interesting in itself, but mainly it is essential in the proof of the simplicity of the principal eigen-
value.

The regularity result is proved through a fixed point theorem. Let us mention that in general
the tools to prove regularity are the Alexandroff–Bakelman–Pucci (ABP) inequality and some “sub-
linearity” of the operator. In a recent paper Davila, Felmer and Quaas have proved ABP [17] for fully-
nonlinear operators, but in this case it does not seem to be useful to prove C 1,β regularity because
the difference of a sub- and super-solution may not be a sub-solution of an elliptic equation. It is
interesting to remark that Imbert [21] used ABP to prove a local Hölder regularity.

The dimensional restriction is due to the fact that when there are two connected components of
the boundary of Ω , we are led to use Sard’s theorem. A famous counterexample of Whitney shows
that Sard’s theorem does not hold if the functions are only C1. It seems that the least regularity that
can be asked is C N−1,1 (see e.g. [4]), and since we cannot hope for a better regularity than C 2,β with
β ∈ (0,1) we have to require that N = 2.

When the boundary is connected, it is enough to know that the solutions are C 1,β ; this is the
regularity we obtain for the solutions, when α is negative.

Other important results concerning eigenvalues are given as a consequence of simplicity. In par-
ticular we prove that there are no eigenfunctions that change sign for λ = λ± . Further results include
the strict monotonicity of the eigenvalue with respect to the inclusion of domains. And finally that
the eigenvalues are isolated.

The paper is organized as follows: In the next section we give the precise hypothesis concern-
ing the operator and we recall the known results concerning singular operators. In section three we
prove the C1,β regularity of the solutions. Section four is devoted to the strong comparison principle
and simplicity of the principal eigenvalues. We end the paper with other properties of the eigenval-
ues.

2. Assumptions and known results

Let Ω be a bounded C 2 domain of R
N . Let us recall what we mean by viscosity solutions, adapted

to our context.

Definition 2.1. Let g be a continuous function on Ω ×R, then v , continuous on Ω is called a viscosity
super-solution (respectively sub-solution) of F (x,∇u, D2u) = g(x, u) if for all x0 ∈ Ω:
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– Either there exists an open ball B(x0, δ), δ > 0 in Ω on which v = c ∈ R and 0 � g(x, c), for all
x ∈ B(x0, δ) (respectively 0 � g(x, c) for all x ∈ B(x0, δ)).

– Or ∀ϕ ∈ C 2(Ω), such that v − ϕ has a local minimum (respectively local maximum) at x0 and
∇ϕ(x0) �= 0, one has

F
(
x0,∇ϕ(x0), D2ϕ(x0)

)
� g

(
x0, v(x0)

)
(respectively

F
(
x0,∇ϕ(x0), D2ϕ(x0)

)
� g

(
x0, v(x0)

)
).

A viscosity solution is a function which is both a super-solution and a sub-solution.

Remark 2.2. When F is continuous in p, and F (x,0,0) = 0, this definition is equivalent to the classical
definition of viscosity solutions, as in the User’s guide [16].

We now state the assumptions satisfied by the operator F . Let S be the set of N × N symmetric
matrices, and let α ∈ (−1,0). Then F , defined on Ω × R

N \ {0} × S , is given by

F (x, p, M) = |p|α(
F̃ (x, M) + h(x) · p

)
. (3)

On F̃ we suppose

(F) F̃ (x, tM) = t F̃ (x, M) for any t ∈ R
+ , and there exist A � a > 0 such that for any M ∈ S and any

N ∈ S such that N � 0

a tr(N) � F̃ (x, M + N) − F̃ (x, M) � A tr(N). (4)

Furthermore (x, M) 	→ F̃ (x, M) is continuous.
(J) F̃ is Hölder continuous in x and there exists a continuous function ω with ω(0) = 0, such that if

(X, Y ) ∈ S2 and ζ ∈ R
+ satisfy

−ζ

(
I 0
0 I

)
�

(
X 0
0 Y

)
� 4ζ

(
I −I

−I I

)

and I is the identity matrix in R
N , then for all (x, y) ∈ R

N , x �= y

F̃ (x, X) − F̃ (y,−Y ) � ω
(
ζ |x − y|2).

On h we suppose that:

(H) h is Hölder continuous of exponent 1 + α.

Remark 2.3. Since α < 0, if F̃ satisfies condition (J), then so does F i.e. for X , Y and ζ as above

F
(
x, ζ(x − y), X

) − F
(

y, ζ(x − y),−Y
)
� ω

(
ζ |x − y|2).

Example 2.4. We suppose that h satisfies (H).
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(1) Let 0 < a < A and M+
a,A(M) be the Pucci’s operator M+

a,A(M) = A tr(M+) − a tr(M−) where M±

are the positive and negative part of M , and M−
a,A(M) = −M+

a,A(−M). Then F defined as

F (x, p, M) = |p|α(
M±

a,A(M) + h(x) · p
)

satisfies the assumptions.
(2) Let B(x) be some matrix with Lipschitz coefficients, which is invertible for all x ∈ Ω . Let us

consider A(x) = B
B(x) and the operator F (x, p, M) = |p|α(tr(A(x)(M))+h(x) · p), then F̃ satisfies
(F) and (J), arguing as in [6, Example 2.4].

In the whole paper, we shall suppose that F is as in (3) and we suppose that the conditions (F), (J)
and (H) are satisfied. We begin to recall some of the results obtained in previous papers which will
be needed in this article.

Theorem 2.5. (See [6].) Suppose that c is a continuous, bounded function that satisfies c � 0.
Suppose that f1 and f2 are continuous and bounded and that u and v satisfy

F
(
x,∇u, D2u

) + c(x)|u|αu � f1 in Ω,

F
(
x,∇v, D2 v

) + c(x)|v|α v � f2 in Ω,

u � v on ∂Ω.

If f2 < f1 or if c < 0 in Ω and f2 � f1 then

u � v in Ω.

Using the existence of sub- and super-solutions constructed with the aid of the distance function
to ∂Ω , together with Perron’s method adapted to our context, this comparison theorem allows to
prove the following existence’s result:

Theorem 2.6. (See [7].) Suppose that c � 0 and f is continuous and bounded, then there exists a continuous
solution to

{
F
(
x,∇u, D2u

) + c(x)|u|αu = f in Ω,

u = 0 on ∂Ω.
(5)

If f � 0 then u � 0. If f � 0, u � 0. If c < 0 in Ω , the solution is unique.

Remark 2.7. (See [7].) The Hopf principle asserts that if O is a smooth bounded domain, and u is a
solution of

F
(
x,∇u, D2u

)
� 0 in O (6)

such that u > c inside O and u(x̄) = c at some boundary point of O, then

lim inf
h→0+

u(x̄ − h�ν(x̄)) − u(x̄)

h
> 0,

where �ν(x̄) denotes the unit outer normal of O at x̄.
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In particular this implies that a nonconstant super-solution of (6) has no interior minimum.

We also recall some regularity results.

Proposition 2.8. (See [7].) Let f be a continuous function in Ω . Let u be a viscosity non-negative bounded
solution of

{
F
(
x,∇u, D2u

) = f in Ω,

u = 0 on ∂Ω.
(7)

Then there exists a constant C > 0, C = C(a, A, | f |∞, |h|∞, |u|∞) such that

∣∣u(x) − u(y)
∣∣ � C |x − y|

for any (x, y) ∈ Ω2 .

This proposition implies compactness for bounded sequences of solutions, this will be used in
Section 3.

We shall also need in the proof of Theorem 4.1 the following comparison principle.

Theorem 2.9. (See [8].) Suppose that c is continuous and bounded and that c is positive on Ω . Let u and v be
respectively positive continuous super- and sub-solutions of

|∇u|α(
F̃
(
x, D2u

) + h(x).∇u
) + c(x)u1+α = 0 in Ω.

(1) If u � v > 0 on ∂Ω then u � v in Ω .
(2) If u > v on ∂Ω then u > v on Ω .

3. Regularity

In this section, we establish that the solutions of (7) are C 1,β for some β ∈ (0,1); this will be a
consequence of the known regularity results in the case α = 0. Recall that we are under the assump-
tion that α � 0.

We expect that some C1,β regularity of the solutions be true for more general operators i.e. oper-
ators that are only homogeneous and singularly elliptic but not necessarily of the form given in (3).
As an example, in the second subsection we illustrate this for a class of operators which does not
satisfy (3) and is somehow close to the ∞-Laplacian, though not as degenerate.

3.1. Regularity result

To prove the regularity results announced (which will be stated precisely in Corollary 3.3), we
remark that the solution of some convenient Dirichlet problem can be obtained as a fixed point of
some operator acting in C0(Ω) ∩ W 1,∞ .

We define C0(Ω) as the space of continuous functions on Ω which are zero on the boundary, and
L(Ω) := {u ∈ C0(Ω); u is Lipschitz} with the norm

|u|L := sup
x,y∈Ω, x�=y

|u(x) − u(y)|
|x − y| .

Let g : R
+ → R

+ \ {0} be a continuous and decreasing function such that l 	→ lg(|l|) is increasing
on R

+ .
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Proposition 3.1. Let f ∈ L∞(Ω), let Tε be the operator L → L such that Tεu = v, where v is the unique
solution of

⎧⎨
⎩ F̃

(
x, D2 v

) + h(x) · ∇v = f + εg(|u|)u

g(|∇u|) in Ω,

v = 0 on ∂Ω.

There exists ε0 = ε0(a, A,Ω) such that for any ε < ε0 , Tε has a fixed point in L.

Remark 3.2. The solution is taken in the sense of L p viscosity solutions, see [13,32].

Before giving the proof of Proposition 3.1 we shall prove the main result of this section i.e.

Corollary 3.3. Suppose that F̃ , h satisfy respectively (F), (J) and (H) and that f ∈ C(Ω). Let u be a solution, in
the sense of Definition 2.1, of

{ |∇u|α(
F̃
(
x, D2u

) + h(x) · ∇u
) = f in Ω,

u = 0 on ∂Ω.

Then u ∈ C 1,β (Ω) for some β ∈ (0,1).
If F̃ is convex and f is Cβ for some β ∈ (0,1) then there exists γ ∈ (0,1) such that u ∈ C 2,γ (Ω).

Proof. We prove first the announced regularity result for the equation

{ |∇u|α(
F̃
(
x, D2u

) + h(x) · ∇u
) − ε|u|αu = f in Ω,

u = 0 on ∂Ω,
(8)

when ε is small enough.
Fix δ > 0 and let vδ be a fixed point of Tε with g : l 	→ (|l|2 + δ2)

α
2 . We now prove that it is the

unique solution, in the sense of Definition 2.1, of

{(|∇u|2 + δ2) α
2
(

F̃
(
x, D2u

) + h(x) · ∇u
) − ε

(
δ2 + |u|2) α

2 u = f in Ω,

u = 0 on ∂Ω.
(9)

We detail the proof that vδ is a super-solution, an analogous procedure gives that it is also a sub-
solution. First observe that since F̃ satisfies (F), by standard regularity results vδ ∈ C 1,β (Ω) for all
β < 1 (see Evans [18], Caffarelli [12], Caffarelli and Cabré [14] and Winter [32]; see also [15] for
precise a priori bounds under our conditions).

According to Definition 2.1 of viscosity solution, we have to distinguish wether vδ is locally con-
stant or not. Let x̄ ∈ Ω .

If for some c0 ∈ R, vδ(x) = c0 for x in a neighborhood of x̄, from the equation

−ε
(
δ2 + c2

0

) α
2 c0 � f ,

which is the same condition required by Definition 2.1.
On the other hand, suppose that there exists ϕ in C 2 such that (vδ −ϕ)(x) � (vδ −ϕ)(x̄) = 0, with

∇ϕ(x̄) �= 0. Since vδ is C 1,β , ∇ϕ(x̄) = ∇vδ(x̄) hence using the fact that vδ is a super-solution of the
fixed point equation:
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F̃
(
x̄, D2ϕ(x̄)

) + h(x̄) · ∇ϕ(x̄) �
(

f (x̄) + ε
(∣∣vδ(x̄)

∣∣2 + δ2) α
2 vδ(x̄)

)(|∇vδ|2(x̄) + δ2)− α
2

= (
f (x̄) + ε

(∣∣ϕ(x̄)
∣∣2 + δ2) α

2 ϕ(x̄)
)(|∇ϕ|2(x̄) + δ2)−α

2

i.e.

(|∇ϕ|2(x̄) + δ2) α
2
(

F̃
(
x̄, D2ϕ(x̄)

) + h(x̄) · ∇ϕ(x̄)
) − ε

(∣∣ϕ(x̄)
∣∣2 + δ2) α

2 ϕ(x̄) � f .

Both the requirements of Definition 2.1 are satisfied and vδ is a super-solution of (9).
Proceeding similarly for the sub-solutions we have obtained that vδ is a solution of (9). Further-

more there exists C depending only on the structural constants of F̃ and h such that

‖vδ‖C 1,β (Ω) � C
(| f |∞ + ε|vδ|1+α∞

)(|∇vδ|2∞ + δ2)− α
2

� C
(| f |∞ + ε|vδ|1+α∞

)(|∇vδ|2∞ + 1
)− α

2 .

By Proposition 2.8, vδ is Lipschitz, with Lipschitz constants independent of δ; this implies both
that the bounds on the C 1,β norm do not depend on δ and that we can pass to the limit in
Eq. (9).

Stability of viscosity solutions implies that, for δ → 0, vδ converges to the unique solution of

{ |∇u|α(
F̃
(
x, D2u

) + h(x) · ∇u
) − ε|u|αu = f in Ω,

u = 0 on ∂Ω.

Proving in that way that u ∈ C 1,β (Ω) for some β and satisfies

‖u‖C 1,β (Ω) � C
(| f |∞ + ε|u|1+α∞

)|∇u|−α∞ .

The case ε = 0 is obtained by writing Eq. (8) as

|∇u|α(
F̃
(
x, D2u

) + h(x) · ∇u
) − ε|u|αu = f − ε|u|αu,

and, since u ∈ L∞ , in the previous estimates we just replace f with f − ε|u|αu.
When F̃ is convex or concave since x 	→ |x|−α is Hölder continuous and there exists β ∈ (0,1) such

that u ∈ C 2,β (Ω). �
Remark 3.4. The result of Corollary 3.3 can be extended to solutions of

{ |∇u|α(
F̃
(
x, D2u

) + h(x) · ∇u
) + g(x, u) = f in Ω,

u = 0 on ∂Ω,

where g : Ω × R → R is continuous and bounded.

Proof of Proposition 3.1. Clearly L(Ω), equipped with the norm |.|L is a Banach space. It is well
known (see [16]) that for any k ∈ L∞ there exists a unique solution v of

{
F̃
(
x, D2 v

) + h(x) · ∇v = k in Ω,

v = 0 on ∂Ω.
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Furthermore v is Lipschitz continuous and there exists some constant c which depends only on the
structural data such that

|v|L � c|k|∞.

Let ε be small enough in order that εc dΩ < 1 where dΩ is the diameter of Ω .
Let G be the inverse function of l 	→ lg(l). Let d = max{dΩ,1}, f0 = c| f |∞

1−εdc and

B = {
u ∈ L(Ω), such that |u|L � G( f0)

}
.

B is a convex and compact subset of L. And observe that |u|∞ � |u|LdΩ . We use the fact that
l 	→ lg(|l|) is increasing and g is decreasing to obtain that, if u ∈ B,

∣∣Tε(u)
∣∣

L � c
| f |∞ + ε dΩ G( f0)g(dΩ G( f0))

g(G( f0))

� c
| f |∞ + ε dG( f0)g(G( f0))

g(G( f0))

� c
(| f |∞ + εd f0

) G( f0)

f0
= G( f0).

So that Tε(B) ⊂ B , Tε is continuous and compact, and Schauder’s fixed point theorem implies the
result. �
3.2. Other operators

We now present an example for which the results of the previous section can be extended to even
though it does not satisfy the previous assumptions.

Let q � 0 and α ∈ (−1,0], we define the operator F : R
N \ {0} × S → R by

F (p, M) = |p|α
(

tr M + q

〈
Mp

|p| ,
p

|p|
〉)

:= |p|α F̃ (M, p).

As this operator is not defined on points where the gradient is zero, we consider viscosity solutions
as in Definition 2.1.

Proposition 3.5. Suppose that u is a viscosity solution of

{
F

(∇u, D2u
) = f in Ω,

u = 0 on ∂Ω,
(10)

with f ∈ C(Ω). Then there exists β = β(q, N) ∈ (0,1) such that u is in C1,β (Ω).

Proof. Recall that the (q + 2)-Laplacian is defined by

�q+2u = |∇u|q
(

�u + q

|∇u|2
〈
D2u(∇u),∇u

〉)
.

We first prove a fixed point property. For ε > 0 and δ > 0 let Tlap be the map defined on L such that
Tlapu = v is the solution of
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{
�q+2(v) = (

f + ε
(|u|2 + δ2) α

2 u
)(|∇u|2 + δ2) q−α

2 in Ω,

v = 0 on ∂Ω.

Recall that by regularity results for the (q + 2)-Laplacian (e.g. [19,31,24]), there exist β ∈ (0,1) and
Clap > 0 such that

∣∣Tlap(u)
∣∣

C 1,β � Clap
(| f |∞ + ε

(|u|2∞ + δ2) α
2 |u|∞

) 1
q+1

(|∇u|2∞ + δ2) q−α
2(q+1) . (11)

Let lε be a solution of

lq+1
ε = Clap

(| f |∞ + ε
(
(dΩ lε)

2 + δ2) α
2 dΩ lε

)(
l2ε + δ2) q−α

2 ,

which exists for ε < ε0 for some ε0 small enough. We define the closed convex compact set in L(Ω)

B = {
u ∈ L(Ω), |u|L � lε

}
.

Then Tlap B ⊂ B and by the Schauder fixed point theorem there exists uδ ∈ C 1,β a solution of

{
�q+2(u) = (

f + ε
(|u|2 + δ2) α

2 u
)(|∇u|2 + δ2) q−α

2 in Ω,

u = 0 on ∂Ω.

As before, we can show that uδ is a solution in the sense of Definition 2.1 of

{(|∇u|2 + δ2) α−q
2 �q+2(u) − ε

(|u|2 + δ2) α
2 u = f in Ω,

u = 0 on ∂Ω.

Arguing as in the proof of Hölder’s and Lipschitz’s regularity in [7], one can prove some uniform
Lipschitz estimates on uδ . Then it is clear from the estimates in (11) that the C1,β norm of uδ is
independent of δ; letting δ go to zero, uδ converges to u a solution of

⎧⎨
⎩ |∇u|α

(
�u + q

〈
D2u

( ∇u

|∇u|
)

,
∇u

|∇u|
〉)

− ε|u|αu = f in Ω,

u = 0 on ∂Ω.

When ε = 0, the regularity is obtained by writing Eq. (10) under the form

⎧⎨
⎩ |∇u|α

(
�u + q

〈
D2u

( ∇u

|∇u|
)

,
∇u

|∇u|
〉)

− ε|u|αu = f − ε|u|αu in Ω,

u = 0 on ∂Ω.

�

4. Strong comparison principle and uniqueness of the first eigenfunction

Let c(x) be a continuous and bounded function. As in the introduction we define

λ+ := sup
{
λ ∈ R; ∃φ > 0, φ ∈ C(Ω), |∇φ|α(

F̃
(
x, D2φ

) + h(x) · ∇φ
) + c(x)φα+1 � 0 in Ω

}
,

λ− := sup
{
λ ∈ R; ∃φ < 0, φ ∈ C(Ω), |∇φ|α(

F̃
(
x, D2φ

) + h(x) · ∇φ
) + c(x)|φ|αφ � 0 in Ω

}
.

We prove the uniqueness result for λ+ , the changes to bring for λ− being obvious.
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Theorem 4.1. Suppose that Ω is a bounded regular domain such that

– either ∂Ω is connected;
– or, if N = 2 and F̃ is concave or convex, ∂Ω has at most two connected components.

Suppose that c(x) + λ+ > 0 in Ω .
If ψ and ϕ are two positive eigenfunctions for the eigenvalue λ+ , there exists t > 0 such that ψ ≡ tϕ .

Remark 4.2. When the boundary has two connected components our proof relies on Sard’s the-
orem which holds true for C N−1,1 functions (see [4]) this explains the conditions N = 2 and the
convexity of F̃ .

Remark 4.3. When α > 0 and ∂Ω is connected, the result still holds, if one knows that the gradient
of one of the eigenfunction is bounded away from zero in a neighborhood of the boundary. For this it
would be sufficient to have a C 1 regularity result near the boundary.

In order to prove Theorem 4.1 we shall need a few results concerning comparison principle and
applications of Hopf’s principle. We begin by a strong comparison principle inside Ω for sub- and
super-solutions u and v which coincide at one point x̄ inside Ω , where |∇u|(x̄) �= 0, or |∇v|(x̄) �= 0:

Proposition 4.4. Suppose that u and v are respectively nonnegative C 1 solutions of

F
(
x,∇u, D2u

)
� f in Ω,

F
(
x,∇v, D2 v

)
� g in Ω,

with f � g. Suppose that O is an open connected subset of Ω , such that

(1) u � v in O,
(2) either |∇u(x)| �= 0, or |∇v(x)| �= 0 in O.

Then either u ≡ v or u > v in O.

Proof. Either u ≡ v or there exists x0 ∈ O such that u(x0) > v(x0).
Suppose by contradiction that there exists some point x1 such that u(x1) = v(x1) which can be

chosen in such a way that, for R = |x1 − x0|, u > v in B(x0, R) and x1 is the only point in the closure
of that ball on which u and v coincide.

Without loss of generality, one can assume that B(x0,
3R
2 ) ⊂ O and ∇v �= 0 in O.

We shall prove that there exist constants c > 0 and δ > 0 such that

u � v + δ
(
e−c|x−x0| − e

−3cR
2

) ≡ v + w in
R

2
� |x − x0| = r � 3R

2
.

This will contradict the fact that u(x1) = v(x1).
Let δ � min|x−x0|= R

2
(u − v), so that

u � v + w on ∂

(
B

(
x0,

3R

2

)
\ B

(
x0,

R

2

))
.

Let ϕ be some test function for v from above, by the hypothesis on v there exists L1 and L2 such
that L1 � |∇ϕ| � L2 in the annulus. A simple calculation on w implies that, if c � 1

a (
2A(N−1)

R + 2|h|∞)

then
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|∇ϕ + ∇w|α · ( F̃
(
x, D2ϕ + D2 w

) + h(x) · (∇ϕ + ∇w)
)

� |∇ϕ + ∇w|α(
F̃
(
x, D2ϕ

) + h(x) · ∇ϕ
) + |∇ϕ + ∇w|α(

M−(
D2 w

) + h(x) · ∇w
)

� |∇ϕ + ∇w|α g

|∇ϕ|α + |∇ϕ + ∇w|α
(

ac2 − Ac

(
N − 1

r

)
− |h|∞c

)
δe−cr

� |∇ϕ + ∇w|α g

|∇ϕ|α + |∇ϕ + ∇w|α ac2

2
δe−cr .

We also impose that δ < RL1e
16 , which implies in particular that |∇w| � |∇ϕ]

8 .
We now use the inequalities

∣∣|∇ϕ + ∇w|α − |∇ϕ|α∣∣ � |α||∇w||∇ϕ|α−1
(

1

2

)α−1

� |∇ϕ|α
2

to get

|∇ϕ + ∇w|α(
F̃
(
x, D2ϕ + D2 w

) + h(x) · (∇ϕ + ∇w)
)

� g − |g|∞|∇ϕ|−1|α|21−αcδe−cr + Lα
2

ac2

4
δe−cr .

It is now enough to choose

c = sup

{
2(

2A(N−1)
R + |h|∞)

a
,

24−α|g|∞
aL1Lα

2

}

to finally obtain

|∇ϕ + ∇w|α(
F̃
(
x, D2ϕ + D2 w

) + h(x) · (∇ϕ + ∇w)
)
� f + ac2δLα

2 e−cr

8

i.e.

F
(
x,∇(v + w), D2(v + w)

)
> F

(
x,∇u, D2u

)
.

By the comparison principle, Theorem 2.5,

u � v + w

in the annulus B(x0,
3R
2 ) \ B(x0,

R
2 ) which is the desired contradiction. This ends the proof of Propo-

sition 4.4. �
A consequence of Proposition 4.4 is the following: Let ∂νu be the normal derivative ∇u · �ν where

�ν is the unit outer normal to ∂Ω . Then

Proposition 4.5. Suppose that Ω is a smooth bounded domain of R
N and f � g. Let u and v be respectively

nonnegative C 1(Ω) solutions of
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{
F
(
x,∇u, D2u

)
� f in Ω,

u = 0 on ∂Ω,{
F
(
x,∇v, D2 v

)
� g in Ω,

v = 0 on ∂Ω.

If u � v in Ω and if there exists x̄ ∈ ∂Ω such that ∂νu(x̄) = ∂ν v(x̄) then there exists ε > 0 such that

u ≡ v in Ω \ Ωε

where Ωε is the set of points of Ω whose distance to the connected component of the boundary which contains
x̄ is greater than ε .

Proof. By Hopf principle in Remark 2.7, |∇u| > 0 and |∇v| > 0 on ∂Ω then the regularity of u and v
implies that there exists ε > 0, L1 and L2 such that L1 � |∇u|, |∇v| � L2 in Ω \ Ωε .

If there exists a point x1 of Ω \ Ωε such that u(x1) = v(x1), we have nothing to prove, using
Proposition 4.4. So we can suppose by contradiction that there exists a ball B ⊂ Ω which is tangent
to ∂Ω in x̄, with u > v in B . Let x2 be the center of B , and let R = |x̄ − x2|.

Let w = δ(e−c|x−x2| − e−c|x2−x̄|), where δ is chosen such that δ � inf|x−x2|= R
2
(u − v). Reasoning as

in Proposition 4.4 we get that there exists c such that

u � v + w in B(x2, R) \ B

(
x2,

R

2

)
.

This implies in particular that

∣∣∂νu(x̄)
∣∣ �

∣∣(∂ν v + ∂ν w)(x̄)
∣∣.

Since |(∂ν v + ∂ν w)(x̄)| > |∂ν v(x̄)| this contradicts the hypotheses and ends the proof of Proposi-
tion 4.5. �
Remark 4.6. Observe that Proposition 4.5 holds under the weaker condition that only one of the
functions u or v satisfies the boundary condition say e.g. v; as long as there is x̄ ∈ ∂Ω where they
are both zero and where ∂νu(x̄) = ∂ν v(x̄). Indeed, in order to apply Proposition 4.4 in Ω \ Ωε it is
enough that only one of the functions satisfies |∇v| > 0.

In the sequel we shall need the following well-known result:

Lemma 4.7. Suppose that O is an open bounded set. There exists some point on ∂ O where ∂ O satisfies the
interior sphere condition.

See [11] for more complete results on that property.

Proof of Theorem 4.1. Let d(x) denote the distance to the boundary of Ω . Suppose that ψ and ϕ are
two positive eigenfunctions and let Γ = sup ψ

ϕ and γ = inf ψ
ϕ . These extrema are well defined and

positive because, using Hopf lemma and the comparison principle, there exist c1 and c2 such that in
a neighborhood of ∂Ω:

c1d(x) � ψ(x),ϕ(x) � c2d(x)

(see [7] for the details). We need to prove that γ = Γ .
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We begin to observe that Γ is “achieved” on the boundary, in the sense that e.g. there exists a
sequence (xn)n that converges to x̄ ∈ ∂Ω , such that ψ

ϕ (xn) → Γ :

Indeed, suppose not, then, there exists an open set Ω ′ , Ω ′ � Ω such that on Ω \ Ω ′

ψ

ϕ
� Γ − ε

for some ε > 0. Since ψ > 0 in Ω ′ , the comparison principle in Theorem 2.9 implies that ψ �
(Γ − ε)ϕ in Ω ′ and finally in all Ω , and this contradicts the definition of the upper bound.

In particular one has ∂�νψ(x̄) = Γ ∂�νϕ(x̄) and by Corollary 3.3 ψ and ϕ are C 1,β . The hypotheses of
Proposition 4.5 are satisfied by ψ and Γ ϕ therefore ψ = Γ ϕ in a neighborhood of the component of
∂Ω that contains x̄.

Proceeding analogously for γ , we obtain that there exists x ∈ ∂Ω where the infimum is “achieved”.
Then ψ

ϕ = γ on a neighborhood of the connected component of ∂Ω that contains x.
When ∂Ω is connected this implies that Γ = γ and it ends the proof in that case.
We are now in the hypothesis that N = 2, F̃ is convex or concave and ∂Ω has two connected

components. In that case, there exist Ω1 and Ω2, simply connected, smooth and bounded, such that
Ω1 � Ω2 and Ω = Ω2 \ Ω1.

By the previous reasoning, we have obtained that

ψ ≡ Γ1ϕ in a neighborhood of ∂Ω1,

and

ψ ≡ Γ2ϕ in a neighborhood of ∂Ω2,

with {Γ1,Γ2} = {Γ,γ }.
For i = 1,2, let

Ai be the connected component of
{

x, ψ(x) = Γiϕ(x), ∇ψ(x) �= 0 or ∇ϕ(x) �= 0
}

whose boundary contains ∂Ωi .
Ai is open. Indeed if x1 ∈ A1 then ψ(x1) = Γ1ϕ(x1) and there is a neighborhood of x1, say

Nx1 , where either ∇ψ �= 0 or ∇ϕ �= 0. Hence, using Proposition 4.4, ψ = Γ1ϕ in Nx1 and then
Nx1 ⊂ A1.

Observe that if ∂ A1 ∩ ∂Ω2 �= ∅ or ∂ A2 ∩ ∂Ω1 �= ∅, this ends the proof of Theorem 4.1, since it
implies that Γ = γ . We then suppose that these intersections are empty.

Let Gi := Ai ; Ki := ∂Gi ∩ Ω , and Mi := Ω \ Gi .
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Let us note that Ki satisfies that, for all x ∈ Ki , ψ(x) = Γiϕ(x), ∇ψ(x) = 0 and ∇ϕ(x) = 0. To see
this, let us observe that ∂Gi ⊂ ∂ Ai since Gi is closed, then it is sufficient to prove that these equalities
are true on the boundary of Ai intersected with Ω:

The first equality is true by continuity and the others two because otherwise one would have a
point x ∈ Ki , with ψ(x) = Γiϕ(x), ∇ψ(x) �= 0 or ∇ϕ(x) �= 0, and then by Proposition 4.4, there would
exist an open neighborhood of x on which all these facts still hold, and x would belong to Ai , this
contradicts the notion of boundary.

Moreover ∂M1 = ∂Ω2 ∪ K1 (and ∂M2 = ∂Ω1 ∪ K2).
Indeed note that M1 ∩ ∂Ω1 = ∅ since A1 contains an open neighborhood of ∂Ω1, then ∂M1 ⊂

(Ω ∩ ∂G1) ∪ (C(G1) ∩ ∂Ω) ⊂ (Ω ∩ ∂G1) ∪ ∂Ω1 ∪ ∂Ω2 and since ∂M1 ∩ ∂Ω1 = ∅, ∂M1 ⊂ ∂Ω2 ∪ K1. To
prove the reverse inclusion, let x ∈ K1, then for all r > 0, B(x, r) ∩ (RN \ G1) �= ∅. Taking r such that
B(x, r) ⊂ Ω one gets x ∈ M1. On the other hand x /∈ M1, since if x ∈ M1 there exists some ball B(x, ε)

included in M1, and x ∈ K1 implies B(x, ε) ∩ G1 �= ∅, a contradiction.
It is clear that ∂Ω2 is included in M1, and it has no point of M1 since M1 is an open subset of Ω .
Let us admit for a while the following three claims,

Claim 1. Mi is connected for i = 1,2.

Claim 2. ∂Gi has at most two connected components i.e. Ki is connected.

Claim 3. ∂(M1 ∩ M2) = K1 ∪ K2 .

Let us finish the proof. Using the fact that both Ki are connected, since ψ ∈ C 2,β we can ap-
ply Sard’s theorem to conclude that there exist two constants ci such that ψ|Ki = ci for i = 1 and
i = 2.

Suppose that there exists one point x̄ ∈ M = M1 ∩ M2 such that ψ(x̄) < min(c1, c2). Then ψ would
have a local minimum inside M , a contradiction with Hopf principle (Remark 2.7). Then the minimum
is achieved on the boundary of M , suppose to fix the ideas that c1 � c2. Now take a ball in M where
ψ > c1 that touches K1 at some point x1 (Lemma 4.7) by Hopf’s principle ∇ψ(x1) �= 0, this contradicts
the fact that for all x ∈ Ki , ∇ψ(x) = 0.

Now since ψ cannot be locally constant we have proved that M = ∅, then Γ1 = Γ2 or equivalently
Γ = γ . This ends the proof of Theorem 4.1 provided we prove the claims.

Proof of Claim 1. To fix the ideas we consider the case i = 1.
Let us recall that ∂M1 = (∂G1 ∩Ω)∪∂Ω2. Suppose that M1 has at least two connected components,

M1,1, M1,2, necessarily one of them, say M1,2, has a boundary which contains ∂Ω2. Then ∂M1,1 ⊂
K1 = Ω ∩ ∂G1, so M1,1 is a connected open set on the boundary of which ψ and φ have their
gradient equal to zero.

We prove that M1,1 is simply connected.
If not there exists some open regular domain O ′ , O ′ ⊂ Ω2, with ∂ O ′ ⊂ M1,1, O ′ is not included in

M1,1, and ∂M1,1 is not included in O ′ . This implies that O ′ is not included in M1. Indeed, if O ′ ⊂ M1,
since M11 is connected, this implies that O ′ ⊂ M11. Let x ∈ O ′ \ M1, then x ∈ G1, hence G1 ∩ O ′ �= ∅.

Either G1 ⊂ O ′ , then ∂M1,1 ⊂ K1 ⊂ O ′ and the contradiction is in the choice of O ′ .
Or G1 ∩ C(O ′) �= ∅, and this contradicts the fact that ∂ O ′ ⊂ M1,1. We have obtained that M1,1 is

simply connected.
By Sard’s theorem there exists a constant c1,1 such that ψ = c1,1 on ∂M1,1. Then one gets a contra-

diction with Hopf’s principle. Indeed, either there exists a minimum inside M1,1 and this contradicts
Remark 2.7, or c1,1 is a minimum for ψ and taking some point on the boundary of M1,1 which
possesses the interior sphere condition, one gets once more a contradiction with Hopf’s principle.

We have obtained that M1,1 = ∅ and M1 is connected. �
Proof of Claim 2. We prove this claim by establishing that G1 ∪ Ω1 is simply connected. Let O be a
simply connected open set, such that O ⊂ Ω2, ∂ O ⊂ G1 ∪ Ω1. We need to prove that O ⊂ G1 ∪ Ω1.
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If O ⊂ Ω1 it is true. If not, O ∩ G1 �= ∅ and if O ⊂ G1 the result holds, so we assume both that
O ∩ G1 �= ∅ and O ∩ C(G1) �= ∅. Then O ∩ M1 �= ∅. Since M1 is a connected set which meets O
we claim that ∂ O ∩ M1 �= ∅. Indeed, if not M1 ⊂ O . Then one would have M1 ⊂ O ⊂ Ω2, a contra-
diction since ∂Ω2 ⊂ M1. Then ∂ O ∩ M1 �= ∅, which implies that M1 ∩ (G1 ∪ Ω1) �= ∅, once more a
contradiction.

To prove that K2 is a connected set, one proves proceeding as above that M2 ∪ Ω1 is simply
connected. �
Proof of Claim 3. A first inclusion can be obtained as follows

∂(M1 ∩ M2) = M1 ∩ M2 \ (M1 ∩ M2)

⊂ M1 ∩ M2 ∩ (
(Ω \ M1) ∪ (Ω \ M2)

)
⊂ (∂M1 ∩ M2) ∪ (∂M2 ∩ M1)

⊂ K1 ∪ K2.

To prove the reverse inclusion, we recall that, by hypothesis, G1 ∩ G2 = ∅.
Then K1 ⊂ G1 ⊂ M2. Let x ∈ K1 and r > 0. We need to prove that B(x, r) ∩ (M1 ∩ M2) �= ∅. Since

M2 is open there exists a ball B(x, ε) ⊂ M2. One can assume that ε < r. Since x ∈ K1 ⊂ ∂M1, B(x, ε)∩
M1 �= ∅ and also B(x, ε) ∩ M1 �= ∅. Finally,

B(x, ε) ∩ M1 ∩ M2 ⊂ B(x, r) ∩ M1 ∩ M2, hence x ∈ M1 ∩ M2.

x ∈ K1 implies x /∈ M1 hence x /∈ M1 ∩ M2 i.e. K1 ⊂ ∂(M1 ∩ M2). In the same manner K2 ⊂
∂(M1 ∩ M2). �

We have also obtained the following strong comparison principle:

Theorem 4.8. Suppose that N = 2, that Ω and ∂Ω are connected. Suppose that f is a continuous function
on Ω , f � 0, and f not identically zero. Suppose that u and v are respectively super- and sub-solution of

{
F
(
x,∇u, D2u

) = f in Ω,

u = 0 on ∂Ω.

We assume in addition that u ∈ C 1(Ω) ∩ C1,1(Ω), and that u � v in Ω . Then either u > v inside Ω or u ≡ v.

Remark 4.9. The symmetric result holds for f � 0, assuming that the sub-solution v ∈ C 1(Ω) ∩
C1,1(Ω).

Proof. First we remark that by the strong maximum principle u > 0 since f �≡ 0.
Then by Hopf’s principle ∂�νu < 0 on the boundary.
Using Proposition 4.5 there exists a neighborhood of the boundary where either u ≡ v or u > v . In

that last case one can conclude by using the comparison principle in Theorem 2.9 and u > v in Ω .
If u ≡ v on a neighborhood of ∂Ω , as in the previous proof, let

A be the connected component of
{

x, u(x) = v(x), ∇u(x) �= 0
}
,

whose boundary contains ∂Ω . Let G := A, K := ∂G ∩ Ω , M = Ω \ G .
We want to prove that M = ∅. Suppose not, proceeding as in the proof of Theorem 4.1, it can be

proved that M and K are connected, hence ∂M = K . Furthermore, ∇u = ∇v = 0 on K .
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Then, using Sard’s theorem, u is constant on K and, since M cannot contain a local minimum of u,
the minimum of u is achieved on the boundary i.e. on K ; this contradicts the Hopf principle on some
point where the interior sphere condition is satisfied, since ∇u = 0 on K . Finally M = ∅ and u ≡ v
in Ω . �
5. Further results about the principal eigenvalues

In all this section we suppose that c(x) + λ± > 0 on Ω .

5.1. Properties concerning the dependence on the domain of the eigenvalues

The next two theorems concern the strict monotonicity of the principal eigenvalues with respect
to the domain inclusion. We state them in the case of the eigenvalue λ+(Ω), the symmetric results
hold for λ−(Ω) with obvious changes. In the sequel, when no ambiguities arise, we shall write λ+
without writing the dependence on the domain.

Theorem 5.1. Suppose that Ω is a C 2 bounded domain in R
N . If u is a positive solution of

F
(
x,∇u, D2u

) + (
c(x) + λ+)

u1+α = 0 in Ω,

then there exists (∂Ω)′ a connected component of ∂Ω such that

u = 0 on (∂Ω)′.

In particular if ∂Ω is connected, there exists t ∈ R such that u = tφ where φ is a positive eigenfunction corre-
sponding to λ+ .

Proof. To begin with, let us note that u must be zero somewhere on ∂Ω . Suppose not, i.e. u > 0
on Ω . Using the hypothesis c(x) + λ+ > 0, this implies that there exists ε > 0 and λ′ > λ+ such that
uε := u − ε > 0 is a solution of

F
(
x,∇uε, D2uε

) + (
c(x) + λ′)u1+α

ε � 0,

which contradicts the definition of λ+ .
Let φ be an eigenfunction associated to λ+ , so that φ > 0 in Ω and φ = 0 on ∂Ω . We now consider

τ = sup φ
u . Reasoning again as in Theorem 4.1, τ is finite and positive and it must be achieved at least

on one point of the boundary in the sense that there exists a sequence (xn)n , xn ∈ Ω which converges
to x̄ ∈ ∂Ω , with φ(xn)

u(xn)
→ τ .

Hopf principle and the regularity result imply that |∇φ| � L1 > 0, on a neighborhood of the bound-
ary. Let us denote by V the neighborhood of the connected component of ∂Ω that contains x̄. Hence,
by Proposition 4.5, in V either τu ≡ φ or τu > φ. We shall see that the first case holds and this will
end the proof.

Since ∂Ω is C 2, there exists a ball denoted Bx̄(r1) such that Bx̄(r1) ⊂ Ω and Bx̄(r1) ∩ ∂Ω = {x̄}.
Moreover r1 can be chosen such that

⋃
x̄∈∂Ω Bx(r1) ⊂ V . Using Remark 4.6, φ ≡ τu in Bx̄(r1) and

hence in V . �
It is an immediate consequence of the definition of the principal eigenvalues, that if Ω ′ ⊂ Ω then

λ±(Ω ′) � λ±(Ω). In the next theorem we shall prove that the monotonicity is strict.

Theorem 5.2. Let Ω be a C 2 domain with a connected boundary, and Ω ′ a subdomain of Ω .
Suppose that ∂Ω is not included in ∂Ω ′ or, for N = 2 and F̃ convex or concave, suppose only that Ω ′ �= Ω .

Then

λ±(
Ω ′) > λ±(Ω).
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Proof. Let us begin with the first case i.e. we suppose that there exists x0 ∈ ∂Ω such that x0 /∈ ∂Ω ′ .
Then, there exists δ > 0, such that B(x0, δ) ⊂ R

N \ Ω ′ . One can choose δ small enough in order that
∂(Ω \ B(x0, δ)) is connected.

Let Ω ′′ be a smooth domain whose boundary is connected, and such that

Ω ′ ⊂ Ω ′′ ⊂ Ω \ B(x0, δ).

We know that

λ+(
Ω ′) � λ+(

Ω ′′) � λ+(
Ω \ B(x0, δ)

)
� λ+(Ω).

Suppose by contradiction that λ+(Ω ′) = λ+(Ω); this implies that λ+(Ω ′′) = λ+(Ω) := λ+ .
Let φ > 0 be an eigenfunction corresponding to λ+ in Ω . The above assumptions imply that it

satisfies

F
(
x,∇φ, D2φ

) + (
c(x) + λ+)

φ1+α = 0 in Ω ′′,

then, using Theorem 5.1, this implies that φ = 0 on ∂Ω ′′ . This contradicts the fact that φ > 0 in
∂Ω ′′ ∩ Ω and it ends the first case.

We are left to prove the case ∂Ω ∩ ∂Ω ′ = ∂Ω and N = 2.
We argue by contradiction and suppose that λ+(Ω ′) = λ+(Ω). We can assume that Ω ′ is smooth

by replacing Ω ′ with some smooth subdomain Ω ′′ which contains Ω ′ and is such that ∂Ω ′′ ∩ ∂Ω =
∂Ω . Arguing as before, λ+(Ω ′′) = λ(Ω).

For simplicity we rename this set Ω ′ , and we consider some positive eigenfunction φ (respec-
tively φ′) for Ω (respectively for Ω ′). By hypothesis they satisfy the same equation in Ω ′ . Let

τ = sup
Ω ′

φ′

φ
,

proceeding as in the proof of Theorem 4.1, one proves that τ is bounded and achieved on ∂Ω .
Using Proposition 4.5, there exists a closed connected neighborhood of ∂Ω , say G , such that

φ′ ≡ τφ in G , and

∇φ = ∇φ′ = 0 in K := ∂G ∩ Ω.

Hence using Sard’s theorem there exists some constant c such that

φ = c, φ′ = τ c in K .

This of course leads to a contradiction, because either φ < c somewhere in Ω \ G and then φ would
have a local minimum, and this contradicts Remark 2.7. Or φ � c in Ω \ G and then by Hopf’s
lemma and Lemma 4.7, there is a point where ∇φ �= 0 in K , this is again a contradiction. This ends
the proof. �

In recent papers, when α = 0, Armstrong [3], Felmer, Quaas, Sirakov [30,20] have studied some
sort of “Fredholm” alternative in order to establish for which functions f there exists a solution of
the Dirichlet problem when λ− � λ � λ+ .

Here we just present a nonexistence result at resonance. To fix the ideas, in the next theorem we
suppose λ+ < λ− , with obvious symmetric results in the other case.
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In that hypothesis, if f � 0, using the minimum principle below λ− , any solution u of the equation

{
F
(
x,∇u, D2u

) + (
c(x) + λ+)

u1+α = f in Ω,

u = 0 on ∂Ω

is nonnegative.

Theorem 5.3. Suppose that ∂Ω is connected.

Case 1. f � 0 in Ω ( f �≡ 0).

If N = 2 and F̃ is convex or concave or if f > 0 somewhere near the boundary, then there are no solutions
of

{
F
(
x,∇u, D2u

) + (
c(x) + λ+)|u|αu = f in Ω,

u = 0 on ∂Ω.
(12)

Case 2. f � 0 in Ω ( f �≡ 0).

If N = 2 and F̃ is convex or concave or if f < 0 somewhere near the boundary, then there are no solutions
of

{
F
(
x,∇u, D2u

) + (
c(x) + λ−)|u|αu = f in Ω,

u = 0 on ∂Ω.
(13)

Proof. We begin by Case 2 and hence we suppose that u is a solution of (13). If u � 0 then, according
to Hopf’s principle, since f � 0, u cannot have an inside minimum and u > 0. But this contradicts the
definition of λ+ . Then there exists some point x0 ∈ Ω where u(x0) < 0. Let −ϕ− be some normalized
eigenfunction for λ− , with ϕ− > 0. −u− is a super-solution of the equation in Ω and we define
Γ = sup u−

ϕ− . Then Γ > 0 and u− � Γ ϕ− .
Reasoning as in Theorem 4.1 we can prove that Γ is achieved on ∂Ω . Furthermore the strong

comparison principle in Proposition 4.5 implies that −u− = −Γ ϕ− in a neighborhood of the bound-
ary.

In particular this implies that f ≡ 0 in a neighborhood of ∂Ω , this ends the proof in one of the
hypotheses of Case 2. In the other hypothesis, i.e. N = 2, Theorem 4.8 in its form with f � 0 implies
u− ≡ Γ ϕ− in Ω . This would imply f ≡ 0 which is a contradiction.

Suppose now that v is a solution of (12), by the minimum principle, since λ+ < λ− , v � 0 in Ω .
Since f �≡ 0, there exists x0 such that v(x0) > 0. Let φ be some positive eigenfunction corresponding
to λ+ , and γ = inf{t: v � tφ}, proceeding as above one can prove that γ > 0 and γ is “achieved” on
the boundary. This implies that v ≡ γ φ in a neighborhood of the boundary. This gives a contradiction
if f < 0 somewhere near the boundary.

Furthermore, in the case N = 2, we can conclude using Theorem 4.8 that v ≡ γ φ everywhere, a
contradiction. �
5.2. Further properties

We want to prove that we can recover some other of the standard properties of the eigenvalues
for linear elliptic equations. We consider the Dirichlet problem
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{
F
(
x,∇u, D2u

) + (
c(x) + λ

)|u|αu = 0 in Ω,

u = 0 on ∂Ω.
(14)

Nontrivial solutions of (14) will be called eigenfunctions.
We now recall the following result, which is an easy consequence of the definitions of λ± and the

maximum and the minimum principle (see [7,9]).

Theorem 5.4. Suppose that Ω is a bounded C 2 domain:

(1) If λ > λ1 = sup(λ+(Ω),λ−(Ω)), then every nontrivial solution of (14) changes sign in Ω .
(2) For any λ between λ+ and λ− there are no nontrivial solutions of (14).

As a consequence of the results of the previous section, we now have further results regarding the
signs of the eigenfunctions.

Theorem 5.5. Suppose that Ω is a C 2 bounded domain and suppose that one of the following hypotheses holds

1. λ+ = λ− and ∂Ω is connected,
2. N = 2 and F̃ is convex or concave, λ+ = λ− , ∂Ω has at most two connected components,
3. N = 2 and F̃ is convex or concave, ∂Ω is connected,

then, any eigenfunction corresponding to λ = λ± is of constant sign.

An application of the previous result is the following

Corollary 5.6. Under the hypotheses of Theorem 5.5, the eigenvalues λ+ or λ− are isolated, i.e. there exists
δ > 0 such that for any λ ∈ (λ±, λ± + δ), the solutions of (14) are trivial.

Proof of Theorem 5.5. In the whole proof, ϕ will denote the positive eigenfunction corresponding to
λ+(Ω), and we suppose by contradiction that there exists ψ , another eigenfunction, that changes sign
and Ω+ = {x ∈ Ω; ψ(x) > 0} and Ω− = {x ∈ Ω; ψ(x) < 0}.

We begin with Case 1 i.e. λ1 = λ+ = λ− and ∂Ω is connected. Clearly, for any connected compo-
nent of Ω+ , denoted by Ω̃+ , respectively for any connected component of Ω− denoted by Ω̃−:

λ+(
Ω̃+) = λ−(

Ω̃−) = λ1.

If ∂Ω̃+ ∩ ∂Ω �= ∂Ω , using Theorem 5.2 one would have λ+(Ω̃+) > λ+(Ω). But, on the other hand,
if ∂Ω̃+ ∩ ∂Ω = ∂Ω , then ∂Ω̃− ∩ ∂Ω �= ∂Ω , and then the contradiction is given by the fact that it
would imply λ−(Ω̃−) > λ−(Ω).

We now suppose to be in the second case i.e. Ω = Ω2 \ Ω1 where for i = 1,2, Ωi is a simply
connected open set, with Ω1 � Ω2.

If ∂Ω+ ∩ ∂Ωi �= ∅ then reasoning as in the proof of Theorem 5.1, ∂Ω+ ∩ ∂Ω = ∂Ωi . The same is
true for Ω− , hence one can assume without loss of generality that ∂Ω+ ∩∂Ω = ∂Ω1 and ∂Ω− ∩∂Ω =
∂Ω2, finally ∂Ω+ ∩ Ω = ∂Ω− ∩ Ω �= ∅.

Since λ+ = λ− , −ϕ is an eigenfunction corresponding to λ− . Reasoning as in the proof of The-
orem 4.1, we can define Γ := sup ψ

ϕ and it is “achieved” on ∂Ω1, while γ := sup −ψ
ϕ is “achieved”

on ∂Ω2. Thanks to Proposition 4.5 ψ = Γ ϕ on a neighborhood of ∂Ω1 and ψ = −γϕ on a neighbor-
hood of ∂Ω2.

We can also define as in the proof of Theorem 4.1 M1, K1, M2, K2 with ∇ψ = ∇ϕ = 0 on K1 and
K2, and K1 and K2 are connected sets in Ω . Since ϕ > 0 in M1 ∩ M2, using Sard’s theorem ci = ϕ|Ki

.
Again reasoning as in Theorem 4.1, the minimum of ϕ is either on K1 or K2 where its gradient is
zero, a contradiction with Hopf principle.
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We consider the last case, i.e. N = 2, λ+ �= λ− and ∂Ω is connected. It is clear, using the maximum
principle, that the result is true for the smallest of the two eigenvalues. We suppose to fix the ideas
that λ− < λ+ and we prove that every eigenfunction corresponding to λ+ is positive.

Since ψ is a positive eigenfunction in Ω+ , λ+(Ω+) = λ+(Ω), in the same manner λ−(Ω−) =
λ−(Ω); but, in dimension 2, this contradicts Theorem 5.2. �
Proof of Corollary 5.6. The result needs only to be proved for λ1 = sup(λ+, λ−). Suppose by contra-
diction that there exists a sequence of eigenvalues (λn)n , such that λn → λ1, λn > λ1.

Let (un)n be a sequence of solutions of (14) with λ = λn such that |un|∞ = 1. This implies that the
Lipschitz norm is uniformly bounded with respect to n (see Proposition 2.8).

Then (un)n is relatively compact and, up to a subsequence, it converges in C(Ω) towards a solution
u of (14) with λ = λ1.

By Theorem 5.5 u must be either positive or negative. Hence for any K = Ω1 ⊂ Ω and for n large
enough un has constant sign in K .

Without loss of generality we can suppose that λ1 = λ+ and u > 0 in Ω and hence un is positive
in K .

We choose Ω1 a regular subset in Ω such that λ−(Ω \ Ω1) > λn . By the minimum principle, since

un � 0 in ∂(Ω \ Ω1),

one gets that un � 0 in Ω \ Ω1, then un is positive in Ω , and this contradicts Theorem 5.4. �
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