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1. Introduction

Let D be a bounded open domain of R3 with regular boundary ∂ D , consider Newtonian fluid
described by the stochastic 3-dimensional Navier–Stokes equation on D ,

∂u(t, x)

∂t
− ν�u(t, x) + (

u(t, x) · ∇)u(t, x) = −∇p(t, x) + f (t, x) + G(u, ξ)(t, x), (1.1)

with the incompressibility condition
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div u(t, x) = 0, t ∈ [0,∞), x ∈ D, (1.2)

the boundary condition

u(t, x) = 0, t ∈ [0,∞), x ∈ ∂ D, (1.3)

and the initial condition

u(0, x) = u0(x), x ∈ D. (1.4)

The fluid is described by the velocity field u = u(t, x) and the pressure field p = p(t, x). The pa-
rameter ν > 0 is the kinematic viscosity. Here G is an operator acting on noise and solution. When
the process ξ(t, x) is a Brownian motion, the stochastic equation (1.1) has been studied by many au-
thors, see [3,5,6,8]. It is known that there exists a global solution of the martingale problem for this
case; and also the Markov selections for the martingale solution, see [5,7,8].

Up to our knowledge, there have no results as the ξ(t, x) is a Lévy noise. In this paper, we prove
that there exist Martingale solutions of stochastic 3D Navier–Stokes equations with jump, and then
we prove that there exist Markov selections for the martingale solutions.

We consider the usual abstract form of Eqs. (1.1)–(1.4). Let D∞ be the space of infinitely differen-
tiable 3-dimensional vector fields u(x) on D with compact support strictly contained in D , satisfying
div u(x) = 0. Denote by Vα the closure of D∞ in the Soblev space [Hα(D)]3, for α � 0, and in partic-
ular

H = V 0, V = V 1.

Denote by | · |H and 〈·,·〉H,H the norm and inner product in H . Identifying H with its dual space H ′ ,
and let V ′

α the dual space of Vα , we have Vα ⊂ H = H ′ ⊂ V ′
α with continuous injections. Denote the

dual pairing between Vα and V ′
α by 〈·,·〉Vα,V ′

α
.

Let D(A) = [H2(D)]3 ∩ V , and define the linear operator A : D(A) ⊂ H → H as Au = −P�u, where
P is the projection from [L2(D)]3 to H . Since V coincides with D(A1/2), we can endow V with
the norm ‖u‖V = |A1/2u|H . The operator A is positive selfadjoint with compact resolvent. Let 0 <

λ1 � λ2 � · · · be the eigenvalues of A, and e1, e2, . . . be the corresponding eigenvectors, which form
a complete orthonormal system in H . We remark that ‖u‖2

V � λ1|u|2H .

Remark 1.1. Note that D(A) = {u =∑∞
i=1 ui · ei ∈ H :∑∞

i=1 λ2
i u2

i < ∞}, we may endow D(A) with the
inner product

〈u, v〉D(A) =
∞∑

i=1

λ2
i ui vi,

ui = 〈u, ei〉H , vi = 〈v, ei〉H for every u, v ∈ D(A). So D(A) is a Hilbert space with the inner product
〈·,·〉D(A) and { ei

λi
}i∈N is a complete orthonormal system of D(A). For the dual space of D(A), D(A)′ =

{u = ∑∞
i=1 ui · ei:

∑∞
i=1

u2
i

λ2
i

< ∞} and endow D(A)′ with the inner product 〈u, v〉D(A)′ = ∑∞
i=1

ui vi

λ2
i

,

D(A)′ is a Hilbert space. For every u ∈ D(A), v ∈ D(A)′ , 〈u, v〉D(A),D(A)′ = ∑∞
i=1 ui vi , and if v ∈ H ,

we have 〈u, v〉D(A),D(A)′ = 〈u, v〉H . It will be convenient to use fractional powers of the operator A, as
well as their domains D(Aα) for α ∈ R .
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Define the bilinear operator B(u, v) : V × V → (V ∩ [L2(D)]3)′ as

〈
B(u, v), z

〉= ∫
D

z(x) · (u(x) · ∇)v(x)dx, z ∈ V ∩ [L2(D)
]3

.

From the incompressibility condition, 〈B(u, v), v〉 = 0, 〈B(u, v), z〉 = −〈B(u, z), v〉. By [11], there exists
β > 1, B can be extended to a continuous operator

B : H × H → D
(

A−β
)

and

∣∣〈w, B(u, v)
〉∣∣� C |u|H |v|H‖w‖Aβ . (1.5)

Eqs. (1.1)–(1.4) have the abstract form as a stochastic evolution equation:

⎧⎪⎨⎪⎩
du(t) + ν Au(t)dt + B

(
u(t), u(t)

)
dt = f (t)dt +

∫
|x|K �1

F
(
u(t−), x

)
Ñp(dt,dx),

u(0) = u0.

(1.6)

In this article, we assume that

(i) u0 ∈ H and f ∈ L2([0,∞); V ′).
(ii) p = p(t), t ∈ D p is a stationary Ft -Poisson point process of the class (QL) on a measurable space

K , with compensator tλ(U ). λ(dx) is the characteristic measure of p satisfying
∫

K |x|2K ∧ 1λ(dx) <

∞. N p(dt,dx) is the counting measure defined as follows:

Np
(
(0, t] × U

)= #
{

s ∈ D p; s � t, p(s) ∈ U
}

for t > 0, U ∈ B(K ), where D p is the domain of p, Ñ p(dt,dx) = N p(dt,dx) − dtλ(dx).
(iii) F (·,·) is measurable function from H × K to H .

2. Preliminaries

Let (E, r) denote a metric space. Denote by B the Borel σ -field of (E, r), Pr(E) the set of all
probability measures on (E,B). Let D E [0,∞) be the space of right continuous functions from [0,∞)

into (E, r) having left limits, with the Skorokhod metric d(·,·) (see in Chapter 3 of [4] for the details).

Lemma 2.1. Assume {x, y, xn} ⊂ D E [0,∞) and θ ∈ E f T (y) = supt∈[0,T ] r(y(t), θ). If limn→∞ d(xn, x) = 0,
then for any T ∈ {t: x(t−) = x(t)},

lim
n→∞ f T (xn) = f T (x).

Proof. By [4], if limn→∞ d(xn, x) = 0, then for any sequence tn ∈ [0,∞), t � 0, and limn→∞ tn = t ,

lim r
(
xn(tn), x(t)

)∧ r
(
xn(tn), x(t−)

)= 0 (2.1)

n→∞
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and x has at most countably many points of discontinuity. We can select a countable subset
Q ⊂ {s ∈ [0, T ]: x(s) = x(s−)} such that Q is dense in [0, T ] and T ∈ Q . For every s ∈ Q ,
limn→∞ r(xn(s), x(s)) = 0. So for any ε > 0,

ε + lim
n→∞ inf

n
sup
s∈Q

r
(
xn(s), θ

)
� sup

s∈Q
r
(
x(s), θ

)
.

Since f T (y) = sups∈Q r(y(s), θ), we have

ε + lim
n→∞ inf

n
f T (xn) � f T (x). (2.2)

On the other hand, from (2.1), for any fixed t ∈ [0, T ], and any ε > 0, there exists δt > 0 and Nt ,
such that for any |s − t| � δt and n � Nt , r(xn(s), x(t)) ∧ r(xn(s), x(t−)) � ε, thus r(xn(s), θ) �
r(x(t), θ) ∨ r(x(t−), θ) + ε. Therefore there exists {Ai = {|ti − s| � δti },1 � i � N}i∈{1,2,...,N} , for n �
max{Nti }i∈{1,2,...,N} ,

sup
s∈[0,T ]

r
(
xn(s), θ

)
� max

1�i�N
r
(
x(ti), θ

)∨ r
(
x(ti−), θ

)+ ε � sup
s∈[0,T ]

r
(
x(t), θ

)+ ε. (2.3)

This implies limn→∞ f T (xn) = f T (x). �
For ξ ∈ D R [0,∞) let

�ξ(s) = ξ(s) − ξ(s−),

U (ξ) = {
u > 0:

∣∣�ξ(s)
∣∣= u for some s

}
,

U u0
T (ξ) = {

u > 0:
∣∣�ξ(s)

∣∣= u > u0 for some s ∈ [0, T ]}.
Then U (ξ), the collection of all jump size of ξ , is at most countable. Let U c(ξ) be the complement of
U (ξ). For u > 0, let

t0(ξ, u) = 0, t p(ξ, u) = inf
{

t > t p−1(ξ, u):
∣∣�ξ(t)

∣∣> u
}
,

t p(ξ, u) is the p-th jump time of ξ with the norm of jump size greater than u. Because ξ ∈ D R [0,∞),
limp→∞ t p(ξ, u) = ∞. Set pT (ξ) = max{p: t p(ξ, u) � T }, it is easy to see that pT (ξ) < ∞.

Lemma 2.2. Suppose g is a continuous function from R to R with g(x) = 0, x ∈ [−u, u] for some positive
constant u. For any fixed T > 0, set

G T (ξ) =
∑
s�T

g
(�ξ(s)

)
, ξ ∈ D R [0,∞).

If ξ is continuous at T , then G T (·) is continuous at ξ .

Proof. Suppose limn→∞ ξn = ξ in D R [0,∞). Let 0 < t1 < t2 < · · · < tm < T be total points with
|�ξ(t)| � u, t ∈ [0, T ]. There exists ε > 0, satisfying

u − ε /∈ U (ξ), [u − ε, u) ∩ U u/2
T (ξ) = ∅.
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Because for any d > 0, the set {t ∈ [0, T ]: |�ξ(t)| � d} only has finite elements, so there exists δ > 0,
such that [u − δ, u) ∩ U u/2

T (ξ) = ∅. Since U (ξ) is at most countable, [u − δ, u) ∩ U c(ξ) �= ∅. Choose
ε > 0, such that u − ε ∈ [u − δ, u) ∩ U c(ξ).

Applying Theorem 15.30 in [16], we know that ti(ξ, u − ε) and �ξ(ti(ξ, u − ε)) is continuous in

D R [0,∞) at ξ . Note that tn+1(ξ, u − ε) > T , let δ = tn+1(ξ,u−ε)−T
2 ∧ T −tn(ξ,u−ε)

2 , there exists N , such
that

∣∣ti(ξm′ , u − ε) − ti(ξ, u − ε)
∣∣� δ

2
, m′ > N, i = 1,2, . . . ,n + 1.

So

G T (ξm′) =
n∑

i=1

g
(�ξm′

(
ti(ξm′ , u − ε)

))
.

Since ti(ξ, u − ε) = ti , G T is continuous at ξ . �
Lemma 2.3. Let X be a Polish space, Pn

w−→ P , ϕn,ϕ : X → R be measurable. If there exists X ′ ∈ B(X) with
P (X ′) = 1 such that for x ∈ X ′ , xn → x in X, ϕn(xn) → ϕ(x) and Pn[|ϕn|1+ε] � C for some ε, C > 0, then

(1) P [|ϕ|] < ∞ and Pn[ϕn] → P [ϕ],
(2) P [|ϕ|1+ε] � C.

Proof. The proof of (1) is similar to the argument as in [8]. We only prove (2). By (1) we have

P
[|ϕ|1+δ

]= lim
n→∞ Pn

[|ϕ|1+δ
]
, for δ ∈ [0, ε).

From Hölder’s inequality

Pn
[|ϕ|1+δ

]
�
(

Pn
[|ϕ|1+ε

])(1+δ)/(1+ε) � C (1+δ)/(1+ε),

and by Fatou lemma

P
[|ϕ|1+ε

]
� C . �

Remark 2.1. By [4], if (E, r) is separable and complete, then (D E [0,∞),d) is a Polish space.

To get our main results, we need to prove the tightness in vector valued Skorokhod space. The
Aldous criterion for tightness is a sufficient condition for proving the tightness, refer to [9,10]. In
[13,14], by using this criterion, one can get the tightness in Skorokhod space once the energy in-
equality is proved, thus martingale problem is formulated on vector valued Skorokhod space and
with Gaussian as the limit measure. We use the same Aldous criterion to get the tightness in vector
valued Skorokhod space, see Lemmas 2.4 and 2.5. Also we prove the energy inequality.

Lemma 2.4. (See [1].) Let E be a separable Hilbert space with the inner product 〈·,·〉. For an orthonormal basis
{ek}k∈N in E, define the function r2

N : E → R+ by

r2
N(x) =

∑
k�N+1

〈x, ek〉2, N ∈ N.
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Let D be a total and closed under addition subset of E. Then the sequence {Xn}n∈N of stochastic processes with
trajectories in D E [0,∞) is tight iff it is D-weakly tight and for every ε > 0 and t > 0,

lim
N→∞ lim

n→∞ sup P
(
r2

N

(
Xn(s)

)
> ε for some s ∈ [0, t])= 0. (2.4)

Remark 2.2. If there exist positive C and a sequence λn satisfying λn → ∞ such that

E P
(

sup
s∈[0,t]

r2
N

(
Xn(s)

))
� C

λN
,

then (2.4) holds.

Let {Xn} be a sequence of random elements of D R [0, T ], and {τn, δn} be such that:

(a) For each n, τn is a stopping time with respect to the natural σ -fields, and takes only finitely many
values.

(b) For each n, the constant δn ∈ [0, T ] satisfy δn → 0 as n → ∞.

We introduce the following condition on {Xn}: for each sequence {τn, δn} in (a), (b),

(A) Xn(τn + δn) − Xn(τn) → 0, in probability.

For f ∈ D R [0, T ], let J ( f ) denote the maximum of the jump | f (t) − f (t−)|.

Lemma 2.5. (See [2].) Suppose that {Xn}n∈N satisfies (A), and either {Xn(0)} and { J (Xn)} are tight on the
line; or {Xn(t)} is tight on the line for each t ∈ [0, T ], then {Xn} is tight in D R [0, T ].

3. Existence of martingale solution of Eq. (1.6)

We divide this section into additive Lévy and multiplicative noise parts. Instead of martingale
representation theorems like wiener processes as in [6] etc., we use the Lévy–Khinchin formula for
additive Lévy noise. For the multiplicative noise, this method fall to use and we use martingale char-
acter.

3.1. Additive Lévy noise

Eq. (1.6) has the following form:

du(t) + [
ν Au(t) + B

(
u(t), u(t)

)]
dt =

∞∑
i=1

σiei dLi(t) (3.1)

where {Li(t)}i∈N are independent Lévy processes defined on a complete probability space (Ω, F ,

(Ft)t�0, P ),

Li(t) =
t+∫

0

∫
|x|�1

xÑi(dt,dx), Ñi(dt,dx) = Ni(dt,dx) − dtλ(dx).

{Ni(dt,dx)}i∈N are independent Poisson random measure with
∫
|x|�1 x2λ(dx) < ∞.
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3.2. Finite dimensional models

Let Hn = span{ei,1 � i � n}, πn is the orthogonal projection of H on Hn , and An is the restriction
of A to Hn . Bn(·,·) : Hn × Hn → Hn the continuous bilinear operator defined as〈

Bn(u, v), w
〉= 〈

B(u, v), w
〉

for every u, v, w ∈ Hn , Bn(u, v) = πn B(u, v).
Consider the equation on Hn:

dXn
t + [

ν An Xn
t + Bn

(
Xn

t , Xn
t

)]
dt =

n∑
i=1

σiei dLi(t). (3.2)

Let (Xn
t )t�0 be the RC LL adapted solution of Eq. (3.2). In the following, C(·) means a positive

constant with dependent only on the elements in the bracket.

Theorem 3.1. Assume E|Xn
0|2H < ∞, then for every T > 0,

E

(
sup

t∈[0,T ]
∣∣Xn

t

∣∣2
H + 2ν

T∫
0

∥∥Xn
s

∥∥2
V ds

)
� C

(
E
∣∣Xn

0

∣∣2
H , T ,

n∑
i=1

σ 2
i ,

∫
|x|�1

x2λ(dx)

)
, (3.3)

∣∣Xn
t

∣∣2
H + 2ν

t∫
0

∥∥Xn
s

∥∥2
V ds = ∣∣Xn

0

∣∣2
H + 2

t∫
0

〈
Xn(s−),

n∑
i=1

σiei dLi(s)

〉
H

+
n∑

i=1

t∫
0

∫
|x|�1

σ 2
i x2 dNi(ds,dx), (3.4)

E
∣∣Xn

t

∣∣2
H + 2νE

t∫
0

∥∥Xn
s

∥∥2
V ds = E

∣∣Xn
0

∣∣2
H + t

n∑
i=1

σ 2
i

∫
|x|�1

x2λ(dx). (3.5)

Proof. From Eq. (3.2) and Itó formula (refer to [12]), we have

∣∣Xn
t

∣∣2
H = ∣∣Xn(0)

∣∣2
H − 2ν

t∫
0

〈
An Xn

s , Xn
s

〉
H ds − 2

t∫
0

〈
Bn
(

Xn
s , Xn

s

)
, Xn

s

〉
H ds

+ 2

t∫
0

〈
Xn(s−),

n∑
i=1

σiei dLi(s)

〉
H

+
n∑

i=1

t∫
0

∫
|x|�1

σ 2
i x2 dNi(ds,dx).

Since 〈Bn(x, x), x〉 = 0 for every x ∈ Hn ,
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∣∣Xn
t

∣∣2
H + 2ν

t∫
0

∥∥Xn
s

∥∥2
V ds = ∣∣Xn(0)

∣∣2
H + 2

t∫
0

〈
Xn(s−),

n∑
i=1

σiei dLi(s)

〉
H

+
n∑

i=1

t∫
0

∫
|x|�1

σ 2
i x2 dNi(ds,dx).

Set Mn
t = 2

∫ t
0 〈Xn(s−),

∑n
i=1 σiei dLi(s)〉H , since for T > 0,

n∑
i=1

E

( T∫
0

∫
|x|�1

〈
Xn(s),σieix

〉2
Hλ(dx)ds

)
< ∞, (3.6)

Mn
t is a square integrable martingale.

Define the stopping time τm = inf{t � 0: |Xn
t |2H � m}, then

∣∣Xn
t∧τm

∣∣2
H �

∣∣Xn(0)
∣∣2

H + Mn
t∧τm

+
n∑

i=1

t∧τm∫
0

∫
|x|�1

σ 2
i x2 dNi(ds,dx),

and thus

E
∣∣Xn

t∧τm

∣∣2
H � E

∣∣Xn(0)
∣∣2

H + t

(
n∑

i=1

σ 2
i

) ∫
|x|�1

x2λ(dx).

From this inequality and the monotone convergence theorem, we get

E

T∫
0

∣∣Xn
t

∣∣2
H dt � T

(
E
∣∣Xn

0

∣∣2
H + T

(
n∑

i=1

σ 2
i

) ∫
|x|�1

x2λ(dx)

)
.

Thus

n∑
i=1

E

( T∫
0

∫
|x|�1

〈
Xn(s),σieix

〉2
λ(dx)ds

)
=

n∑
i=1

E

( T∫
0

〈
Xn(s), ei

〉2 ·
∫

|x|�1

σ 2
i x2λ(dx)ds

)

� E

( T∫
0

∣∣Xn(s)
∣∣2

H ds

)
·
(

n∑
i=1

σ 2
i

) ∫
|x|�1

x2λ(dx)

< ∞,

so Mn
t is now a square integrable martingale. The (3.4) and (3.5) are follows.

For the inequality (3.3), since

∣∣Xn
t

∣∣2
H �

∣∣Xn
0

∣∣2
H + ∣∣Mn(t)

∣∣+ n∑
i=1

t∫
0

∫
|x|�1

σ 2
i x2Ni(ds,dx),
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we have

sup
t∈[0,T ]

∣∣Xn
t

∣∣2
H �

∣∣Xn
0

∣∣2
H + 1 + sup

t∈[0,T ]
∣∣Mn(t)

∣∣2 +
n∑

i=1

T∫
0

∫
|x|�1

σ 2
i x2Ni(ds,dx)

and

E sup
t∈[0,T ]

∣∣Xn
t

∣∣2
H � E

∣∣Xn
0

∣∣2
H + 1 + E sup

t∈[0,T ]
∣∣Mn(t)

∣∣2 + T

(
n∑

i=1

σ 2
i

) ∫
|x|�1

x2λ(dx)

� E
∣∣Xn

0

∣∣2
H + 1 + C

n∑
i=1

E

T∫
0

∫
|x|<1

〈
Xn(s−),σieix

〉2
Ni(ds,dx) + T

(
n∑

i=1

σ 2
i

) ∫
|x|�1

x2λ(dx)

� E
∣∣Xn

0

∣∣2
H + 1 + C E

( T∫
0

∣∣Xn(s)
∣∣2

H ds

)
·
(

n∑
i=1

σ 2
i

) ∫
|x|�1

x2λ(dx)

+ T

(
n∑

i=1

σ 2
i

) ∫
|x|�1

x2λ(dx)

� E
∣∣Xn

0

∣∣2
H + 1 + T

(
n∑

i=1

σ 2
i

) ∫
|x|�1

x2λ(dx)

+ C T

(
E
∣∣Xn(0)

∣∣2
H + T

(
n∑

i=1

σ 2
i

) ∫
|x|�1

x2λ(dx)

)(
n∑

i=1

σ 2
i

) ∫
|x|�1

x2λ(dx)

< ∞.

(3.5) implies the second part of the bound (3.3). �
Corollary 3.1. Let τ � 0 be a stopping time and (Xn

t )t�0 be a càdlàg adapted processes that P-a.s. satisfy (3.2)
for t ∈ [0, τ (ω)]. Assume E|Xn

0|2H < ∞. Then for T > 0,

E

(
sup

t∈[0,T ]
∣∣Xn

t∧τ

∣∣2
H + 2ν

T∫
0

∥∥Xn
s∧τ

∥∥2
V ds

)
� C

(
E
∣∣Xn

0

∣∣2
H , T ,

n∑
i=1

σ 2
i ,

∫
|x|�1

x2λ(dx)

)
. (3.7)

Lemma 3.1. Suppose (X (1)
t ) and (X (2)

t ) be two solutions of Eq. (3.2) on interval [0, T ]. Set �t = X (1)
t − X (2)

t
and Cn,B be a constant such that 〈Bn(x, y), x〉H � Cn,B |x|2H |y|H , x, y ∈ Hn. Then

|�t |H � |�0|H exp

{
2Cn,B

t∫
0

∣∣X (2)
s

∣∣
H ds

}
.

The proof is similar to the case of white noise as in [5].
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Theorem 3.2. For every F0-measurable Xn
0 : Ω → Hn, there exists a unique càdlàg adapted solution (Xn

t )t�0
of Eq. (3.2) on (Ω, F , (Ft)t�0, P ). If the initial conditions xm converge to x in Hn, the corresponding solutions
converge P -a.s. uniformly in time on bounded intervals. And (Xn

t )t�0 has Feller property.

Proof. Step 1 (Existence for bounded initial value Xn
0). Assume that |Xn

0|H � C for some positive con-
stant C . For any m > C , let Bm

n (·) : Hn → Hn be a Lipschitz continuous function such that Bm
n (x) =

Bn(x, x) for every |x|Hn � m.
Consider the equation

dY (m)
t = [−ν AnY (m)

t − Bm
n

(
Y (m)

t , Y (m)
t

)]
dt +

n∑
i=1

σiei dLi(t).

It has globally Lipschitz coefficients, so there exists a unique càdlàg adapted solution (Y (m)
t )t�0, this

is a classical result which can be obtained by contraction principle.
Defined τm = inf{t � 0: |Y (m)

t |H � m} ∧ T . Up to τm , the solution Y (m)
t is also a solution of the

original equation (3.2). Since |Xn
0|H < C , we have

E
(

sup
t∈[0,T ]

∣∣Y (m)
t∧τm

∣∣2
H

)
� C

(
E
∣∣Xn

0

∣∣2
H , T ,

n∑
i=1

σ 2
i ,

∫
|x|�1

x2λ(dx)

)
.

In particular,

E
(

1{τm<T } sup
t∈[0,T ]

∣∣Y (m)
t∧τm

∣∣2
H

)
� C

(
E
∣∣Xn

0

∣∣2
H , T ,

n∑
i=1

σ 2
i ,

∫
|x|�1

x2λ(dx)

)
,

which implies

P (τm < T ) � 1

m2
C

(
E
∣∣Xn

0

∣∣2
H , T ,

n∑
i=1

σ 2
i ,

∫
|x|�1

x2λ(dx)

)
.

If N > m, τN � τm, P (Y (N)
t = Y (m)

t , t ∈ [0, τm]) = 1. Let τ∞ = supm>C τm , we can define a process Y (∞)
t

for t ∈ [0, τ∞) uniquely, which equal to Y (m)
t on [0, τm] for every m. Hence Y (∞)

t is a solution on
[0, τ∞). Since for any m,

P (τ∞ < T ) � P (τm < T ) � C

m2
,

P (τ∞ < T ) = 0. Thus Y (∞)
t is a solution for t ∈ [0, T − ε] for any small ε > 0, which shows that there

exists a global solution.

Step 2 (Existence for general initial value Xn
0). For general case, let Ωm = {|Xn

0|2H � m}. Define X (m)
0

as Xn
0 on Ωm . Let (Y (m)

t )t�0 be the unique solution of equation (3.2) with initial condition X (m)
0 . If

N > m, then

P
(
Ωm ∩ (Y (N)

t = Y (m)
t for every t � 0

))= P (Ωm).
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We may then uniquely define a process Y (∞)
t on Ω ′ =⋃

m Ωm as Y (∞)
t = Y (m)

t on Ωm , it is clear that

Y (∞)
t solves Eq. (3.2) on Ω ′ . But P (Ω ′) = 1, hence we have proved the existence of a global solution.

Below we will let (Y x
t )t�0 be the unique solution with initial condition x ∈ Hn .

Step 3. Uniqueness and continuous of the solution are follows from Lemma 3.1, which also implies
his implies Markov property and the Feller property. �
3.3. Solution to the martingale problem

Let Ω = D D(A)′ [0,∞), denote T the Skorokhod topology of Ω , and Tt the Skorokhod topology of
D D(A)′ [0, t], let F = σ(T ), Ft = σ(Tt).

Definition 3.1. Given a probability measure μ0 on H , a probability measure P on (Ω, F ) is called a
solution of the martingale problem associated to Eq. (3.1) with initial law μ0, if

(1) for every T > 0,

P

(
sup

t∈[0,T ]
|ξt |2H +

T∫
0

‖ξt‖2
V ds < ∞

)
= 1. (3.8)

(2) for every ϕ ∈ D∞ the process Mϕ
t defined P -a.s. on (Ω, F ) as

Mϕ
t (ξ) := 〈ξt − ξ0,ϕ〉H +

t∫
0

ν〈ξs, Aϕ〉H ds −
t∫

0

〈
B(ξs,ϕ), ξs

〉
H ds. (3.9)

(Mϕ
t , Ft, P ) is a Lévy process. Further more, {Mei }i∈N are independent Lévy processes defined on

the complete probability space (Ω, F , (Ft)t�0, P ), and the characteristic function is

E P exp

{
iu

(
Mei

t2
− Mei

t1

σi

)}
= exp

{
(t2 − t1)

∫
|x|�1

(
eiux − 1 − iux

)
λ(dx)

}
(3.10)

for t2 � t1 � 0.
(3) μ0 = π0 P .

Theorem 3.3. Assume σ 2 = ∑∞
i=1 σ 2

i < ∞. Let μ be a probability measure on H such that m2 =∫
H |x|2Hμ(dx) < ∞. Then there exists at least one solution to the martingale problem (3.1) with initial condi-

tion μ.

Proof. Let (W , (Wt)t�0, Q , (Li(t))t�0,i∈N ) be a stochastic basis supporting. u0 : W → H is W0-
measurable random variable with law μ. Let Xn

0 = πnu0.
For every n, there exists a unique càdlàg adapted solution (Xn

t )t�0 of Eq. (3.2) in Hn , with initial
condition Xn

0 . (Xn
t )t�0 is a càdlàg adapted process in Hn . Since Hn ⊂ D(A)′ . It defines a probability

measure Pn on D D(A)′ [0,∞).

Step 1 (Tightness). Let D = D(A). From Lemma 2.4, we have to prove that Xn is D-weakly tight and
for every ε > 0, t > 0,

lim lim sup P
(
r2

N

(
Xn(s)

)
> ε for some s ∈ [0, t])= 0.
N→∞ n→∞
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First (D-weakly tightness).
For every ϕ ∈ D(A), we prove that {〈Xn(·),ϕ〉D(A)′,D(A), t ∈ [0, T ]} is tight for every T > 0.
For τn, δn satisfies (a), (b), since

〈
Xn(τn + δn) − Xn(τn),ϕ

〉
D(A)′,D(A)

=
n∑

i=1

〈
σihi

[
Li(τn + δn) − Li(τn)

]
,ϕ
〉
H −

τn+δn∫
τn

[〈
ν An Xn(s) + Bn

(
Xn(s), Xn(s)

)
,ϕ
〉
H

]
ds,

we have

Q
(∣∣〈Xn(τn + δn) − Xn(τn),ϕ

〉
D(A)′,D(A)

∣∣� ε
)

� Q

[ τn+δn∫
τn

∣∣〈ν An Xn(s),ϕ
〉
H

∣∣ds � ε

3

]
+ Q

[ τn+δn∫
τn

∣∣〈Bn
(

Xn(s), Xn(s)
)
,ϕ
〉
H

∣∣ds � ε

3

]

+ Q

[∣∣∣∣∣
〈

n∑
i=1

σiei
[
Li(τn + δn) − Li(τn)

]
,ϕ

〉
H

∣∣∣∣∣� ε

3

]
= I1 + I2 + I3.

Since limn→∞ δn = 0,
∑∞

i=1 σ 2
i < ∞,

I1 � Q

( τn+δn∫
τn

∣∣Xn(s)
∣∣2

H + |Aϕ|2H ds � 2ε

3ν

)

� Q

((
sup

0�s�T

∣∣Xn(s)
∣∣2

H + |Aϕ|2H
)
δn � 2ε

3ν

)
→ 0, as n → ∞,

I3 � Q

( ∞∑
i=1

σ 2
i

[
Li(τn + δn) − Li(τn)

]2|ϕ|2H �
(

ε

3

)2
)

→ 0, as n → ∞.

Since for every ξ ∈ V ,
∫ t

0 |〈B(us, ξ), us〉|ds � C(ξ)
∫ t

0 |us|1/2
H ‖us‖3/2

V ds,

I2 � Q

(
C(ϕ) sup

s∈[0,T ]
∣∣Xn

(s)

∣∣1/2
H

τn+δn∫
τn

∥∥Xn(s)
∥∥3/2

V ds � ε

3

)

� Q

(
C(ϕ) sup

s∈[0,T ]
∣∣Xn

(s)

∣∣1/2
H

( τn+δn∫
τn

∥∥Xn(s)
∥∥2

V ds

)3/4

δ
1/4
n � ε

3

)

� Q

(
C(ϕ)

(
sup

s∈[0,T ]
∣∣Xn

(s)

∣∣2
H +

τn+δn∫
τn

∥∥Xn(s)
∥∥2

V ds

)
δ

1/4
n � ε

3

)
→ 0, as n → ∞,

so 〈Xn(.),ϕ〉D(A)′,D(A) satisfies (A).
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Since

Q
(〈

Xn
0,ϕ

〉2
D(A)′,D(A)

)
� |ϕ|2H Q

(∣∣Xn
0

∣∣2
H

)
� m2|ϕ|2H

and

J
(〈

Xn(·),ϕ〉D(A)′,D(A)

)
� max

i∈N

{|σi |
} · |ϕ|H ,

J (〈Xn,ϕ〉D(A)′,D(A)) and 〈Xn
0,ϕ〉2

D(A)′,D(A)
are tight on line. Thus 〈Xn(·),ϕ〉D(A)′,D(A) is tight in

D R [0, T ] by Lemma 2.5.
Second. Let hk = λiei , which forms a complete orthonormal system of D(A)′ . Since

E Q
[

sup
s∈[0,t]

r2
N

(
Xn(s)

)]= E Q
[

sup
s∈[0,t]

( ∑
k�N+1

〈
Xn(s),hk

〉2
D(A)′

)]
�

E Q [sups∈[0,t] |Xn(s)|2H ]
λ2

N+1

� Ct

λ2
N+1

,

(2.4) is proved by Lemma 2.4.

Denote Pn = Q ◦ (Xn)−1, since {Xn} is tight in D D(A)′ [0,∞), there exist nk such that Pnk

w−→ P in
D D(A)′ [0,∞).

Step 2 (P is a martingale solution).
We need to check the properties (1)–(3) in Definition 3.1.
(1) of Definition 3.1. Given R, N > 0,

f T
N,R(ξ) = sup

t∈[0,T ]

N∑
n=1

〈
ξ(t), en

〉2
H ∧ R = sup

t∈[0,T ]

N∑
n=1

λ2
n

〈
ξ(t),hn

〉2
D(A)′ ∧ R.

By [5], we know that, if X is process with sample paths in D E [0,∞), E is a metric space, then the
complement in [0,∞) of D(X) ≡ {t ∈ [0,∞): P {X(t) = X(t−)} = 1} is at most countable. Let Z = {t ∈
[0,∞): P {ξ(t) = ξ(t−)} = 1}. For every T ∈ Z , denote Ω0

T = {ξ ∈ D D(A)′ [0,∞): ξ(T ) = ξ(T −)}, then
P (Ω0

T ) = 1. By Lemmas 2.1, 2.3 and Theorem 3.1,

lim
k→∞

Pnk f T
N,R = P f T

N,R � C

(
m2, T ,

n∑
i=1

σ 2
i ,

∫
|x|�1

x2λ(dx)

)
,

so we have (1).
(2) of Definition 3.1. We just prove that {Mei }i∈N are independent Lévy processes.

(i) Obviously, Mei (0) = 0, P -a.e.
(ii) We prove (3.10).

Choose t1, t2 ∈ Z , let Ωt1,t2 = {ξ ∈ D D(A)′ [0,∞): ξ(ti) = ξ(ti−), i = 1,2}, then P (Ωt1,t2 ) = 1. Let

F ei
m (ξ) = exp

{
iu

Mei
t2

(πmξ) − Mei
t1

(πmξ)

σ

}
.

i
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Suppose limn→∞ ξn = ξ , ξn ∈ D D(A)′ [0,∞), ξ ∈ Ωt1,t2 , it is easy to check that limn→∞ F ei
m (ξn) = F ei

m (ξ).
By Lemma 2.3,

lim
k→∞

E Pnk F ei
m (ξ) = E P F ei

m (ξ).

Since

E Pnk

[∣∣∣∣∣
t2∫

t1

〈
B(πmξs,πmξs), ei

〉
ds −

t2∫
t1

〈
B(ξs, ξs), ei

〉
ds

∣∣∣∣∣
]

� E Pnk

[ t2∫
t1

∣∣〈B(πmξs − ξs,πmξs), ei
〉
ds
∣∣]+ E Pnk

[ t2∫
t1

∣∣〈B(ξs,πmξs − ξs), ei
〉
ds
∣∣]

� C‖ei‖Aβ E Pnk

[ t2∫
t1

|πmξs − ξs|H |ξs|H ds

]

� C‖ei‖Aβ

(
E Pnk

[ t2∫
t1

|πmξs − ξs|2H ds

])1/2(
E Pnk

[ t2∫
t1

|ξs|2H ds

])1/2

� C‖ei‖Aβ

λ
1/2
m+1

E Pnk

[ t2∫
t1

|ξs|2V ds

]

� C̃‖ei‖Aβ

λ
1/2
m+1

,

we have for every ε > 0, there exists M , for m > M ,

∣∣E Pnk
[
e

iu(
M

ei
t2

(πm(ξ))−M
ei
t1

(πm(ξ))

σi
)]− E Pnk

[
e

iu(
M

ei
t2

(ξ)−M
ei
t1

(ξ)

σi
)]∣∣

� E Pnk
∣∣1 − e

iu

∫ t2
t1

〈B(πmξs ,πmξs),ei 〉ds−∫ t2
t1

〈B(ξs ,ξs),ei 〉ds

σi
∣∣

� ε,

then we get lim(k,m)→∞ E Pnk e
iu(

M
ei
t2

(πm(ξ))−M
ei
t1

(πm(ξ))

σi
) = exp{(t2 − t1)

∫
|x|�1(eiux − 1 − iux)λ(dx)}.

Note that

lim
m→∞ E P F ei

m (ξ) = E P e
iu(

M
ei
t2

(ξ)−M
ei
t1

(ξ)

σi
)
,

(2) is proved. By the same argument, it can be proved that {Mei }ı∈N are independent.
(3) of Definition 3.1. Since limk→∞ Pnk (ϕ) = P (ϕ), ϕ ∈ Cb(D D(A)′ [0,∞)). ϕ(ξ) = ei〈u,ξ(0)〉 ∈

Cb(D D(A)′ [0,∞)), for every u ∈ D(A), limk→∞ Pnkϕ(ξ) = Pϕ(ξ), hence Π0 P = μ. �
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Remark 3.1. In fact, Pn is tight in L2(0, T ; H) also. Let K be a separable Hilbert space, W α,p(0, T ; K )

be the space (cf. [5]) of all measurable functions f : [0, T ] → K such that

‖ f ‖p
W α,p(0,T ;K )

:=
T∫

0

∣∣ f (t)
∣∣p

K dt +
T∫

0

T∫
0

| f (t) − f (r)|p
K

|t − r|1+αp
dt dr < ∞.

Note that for p = 2, 0 < α < 1
2 ,

E Q

∥∥∥∥∥
n∑

i=1

σiei Li(·)
∥∥∥∥∥

2

W α,2(0,T ;H)

= E Q

T∫
0

∣∣∣∣∣
n∑

i=1

σiei Li(t)

∣∣∣∣∣
2

H

dt + E Q

T∫
0

T∫
0

| ∫ t
r

∑n
i=1 σiei dLi(s)|2H
|t − r|1+2α

dt dr

=
T∫

0

E Q

∣∣∣∣∣
n∑

i=1

σiei Li(t)

∣∣∣∣∣
2

H

dt + 2

T∫
0

T∫
r

E Q | ∫ t
r

∑n
i=1 σiei dLi(s)|2H

|t − r|1+2α
dt dr

� σ 2T 2
∫

|x|�1

x2λ(dx) + σ 2
∫

|x|�1

x2λ(dx)

T∫
0

T∫
0

1

|t − r|2α
dt dr

< ∞.

Let Jn
t = − ∫ t

0 [ν An Xn
s + Bn(Xn

s , Xn
s )]ds, we have (cf. [5])

∥∥ Jn·
∥∥2

W 1,2(0,T ;D(A−γ ))
� Cν

T∫
0

∥∥Xn
s

∥∥2
V ds + C sup

s∈[0,T ]
∣∣Xn

s

∣∣2
H

T∫
0

∥∥Xn
s

∥∥2
V ds,

for γ ∈ (3/2,2), therefore

E Pn
[‖ξ‖W α,2([0,T ];D(A−γ ))

]
� C

(
ν,m2, T ,

∫
|x|�1

x2λ(dx),σ 2
)

for every α ∈ (0,1/2). From Theorem 4.6 in [5], the family of measures {Pn} is tight in L2(0, T ; H).

4. General case

For the multiplicative noise, in addition to the hypotheses of Section 1, we assume that there exists
0 < p < 2 such that for every u, u1, u2 ∈ H and x ∈ K .∫

|x|�1

∣∣F (u1, x) − F (u2, x)
∣∣2

Hλ(dx) � C1
{|u1 − u2|2H ∧ |u1 − u2|p

H

}
, (4.1)

∫
|x|�1

∣∣F (u, x)
∣∣2

Hλ(dx) � C2
(
1 + |u|2H

)
. (4.2)

Let Ωα = D V ′
α
[0,∞), Tα the Skorokhod topology of Ωα , T α

t the Skorokhod topology of D V ′
α
[0, t],

and F α
t the σ -algebra generated by T α

t . And we assume ν = 1.
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Definition 4.1. Given a probability measure μ0 on H , a probability measure P on (Ωα, Fα) is called
a solution of the martingale problem associated to Eq. (1.6) with initial law μ0, if

(1) for every T > 0,

P

(
sup

t∈[0,T ]
|ξt |2H +

T∫
0

‖ξs‖2
V ds < ∞

)
= 1.

(2) for every ϕ ∈ Vα the process 〈ξt ,ϕ〉V ′
α,Vα

is a semi-martingale, (Mϕ
t , F α

t , P ) is a square integrable

càdlàg martingale. Here Mϕ
t is defined P -a.s. on (Ωα, Fα) as

Mϕ
t (ξ) = 〈ξt − ξ0,ϕ〉H +

t∫
0

〈ξs, Aϕ〉H ds −
t∫

0

〈
B(ξs,ϕ), ξs

〉
H ds −

t∫
0

〈
ϕ, f (s)

〉
V ,V ′ ds,

satisfies

Mϕ
t (ξ) =

∑
0�s�t

�〈ξs,ϕ〉H −
t∫

0

∫
|x|�1

〈
F (ξs, x),ϕ

〉
Hλ(dx)ds.

(3) μ0 = π0 P .

In the following of the paper, we denote (Ω, F , Ft) as (Ωα, Fα, F α
t ).

Remark 4.1.
∑

0�s�t �〈ξs,ϕ〉H − ∫ t
0

∫
|x|�1〈F (ξs, x),ϕ〉Hλ(dx)ds may have no sensible in path, in Defi-

nition 4.1, but it has meaning in mean. This can be seen from following. Let εn ↓ 0, define a continuous
function gn on R ,

gn(x) =
{

x, |x| � 2εn,

0, |x| � εn.

Let

Gn(ξ)(t) =
∑

0�s�t

gn
(�〈ξs,ϕ〉H

)−
t∫

0

∫
|x|�1

gn
(〈

F (ξs, x),ϕ
〉
H

)
λ(dx)ds.

(Gn, Ft, P ) is a square integrable càdlàg martingale, and there exists G , limn→∞ Gn = G in
(Ω, P ) × L2([0, T ]; R), so G is a square integrable càdlàg martingale, and we denote G(ξ)(t) =∑

0�s�t �〈ξs,ϕ〉H − ∫ t
0

∫
|x|�1〈F (ξs, x),ϕ〉Hλ(dx)ds.

Theorem 4.1. Assume (4.1)–(4.2). For any probability measure μ on H with m2 = ∫
H |x|2Hμ(dx) < ∞, there

exists a martingale solution of Eq. (1.6).

The proof of this theorem is based on a classical Galerkin approximation scheme.
Let un(t) be the càdlàg adapted solution of the following equation (4.3) in Hn ,
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⎧⎪⎨⎪⎩
dun(t) + Anun(t)dt + Bn

(
un(t), un(t)

)
dt = fn(t)dt +

∫
|x|�1

Fn
(
un(t−), x

)
Ñp(dt,dx),

un
0 ∈ Hn,

(4.3)

where fn(t) = πn f (t), Gn(u) = πnG(u), Fn(u, x) = πn F (u, x).

Lemma 4.1. Assume E|un(0)|2H < ∞, then for every T > 0,

E sup
0�t�T

∣∣un(t)
∣∣2

H + E

T∫
0

∥∥un(s)
∥∥2

V ds � C

(
T ,

T∫
0

∥∥ fn(s)
∥∥2

V ′ ds, E
∣∣un(0)

∣∣2
H

)
(4.4)

for some positive C(·).

Proof. Apply Itô’s formula on (4.3), and note that 〈x, Bn(x, x)〉H = 0,

∣∣un(t)
∣∣2

H = ∣∣un(0)
∣∣2

H − 2

t∫
0

〈
un(s), Anun(s)

〉
H ds − 2

t∫
0

〈
un(s), Bn

(
un(s), un(s)

)〉
H ds

+ 2

t∫
0

〈
un(s), fn(s)

〉
V ,V ′ ds

+
t+∫

0

∫
|x|�1

∣∣un(s−) + Fn
(
un(s−), x

)∣∣2
H − ∣∣un(s−)

∣∣2
H Ñ(ds,dx)

+
t∫

0

∫
|x|�1

∣∣un(s) + Fn
(
un(s), x

)∣∣2
H − ∣∣un(s)

∣∣2
H − 2

〈
un(s), Fn

(
un(s), x

)〉
Hλ(dx)ds,

∣∣un(t)
∣∣2

H + 2

t∫
0

∥∥un(s)
∥∥2

V ds = ∣∣un(0)
∣∣2

H + 2

t∫
0

〈
un(s), fn(s)

〉
V ,V ′ ds

+
t+∫

0

∫
|x|�1

∣∣un(s−) + Fn
(
un(s−), x

)∣∣2
H − ∣∣un(s−)

∣∣2
H Ñ(ds,dx)

+
t∫

0

∫
|x|�1

∣∣Fn
(
un(s), x

)∣∣2
Hλ(dx)ds.

Since 2
∫ t

0 〈un(s), fn(s)〉V ,V ′ ds �
∫ t

0 ‖un(s)‖2
V ds + ∫ t

0 | fn(s)|2V ′ ds, we have

∣∣un(t)
∣∣2

H +
t∫ ∥∥un(s)

∥∥2
V ds �

∣∣un(0)
∣∣2

H +
t∫ ∣∣ fn(s)

∣∣2
V ′ ds
0 0
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+
t+∫

0

∫
|x|�1

∣∣Fn
(
un(s−), x

)∣∣2
H + 2

〈
un(s−), Fn

(
un(s−), x

)〉
H Ñ(ds,dx)

+
t∫

0

∫
|x|�1

∣∣Fn
(
un(s), x

)∣∣2
Hλ(dx)ds.

By Burkholder–Davis–Gundy inequality,

E sup
t∈[0,T ]

∣∣∣∣∣
t+∫

0

∫
|x|�1

∣∣Fn
(
un(s−), x

)∣∣2
H + 2

〈
un(s−), Fn

(
un(s−), x

)〉
H Ñ(ds,dx)

∣∣∣∣∣
� E sup

t∈[0,T ]

∣∣∣∣∣
t+∫

0

∫
|x|�1

∣∣Fn
(
un(s−), x

)∣∣2
H Ñ(ds,dx)

∣∣∣∣∣
+ E sup

t∈[0,T ]

∣∣∣∣∣
t+∫

0

∫
|x|�1

2
〈
un(s−), Fn

(
un(s−), x

)〉
H Ñ(ds,dx)

∣∣∣∣∣
� E

[ T +∫
0

∫
|x|�1

4
〈
un(s−), Fn

(
un(s−), x

)〉2
H Np(ds,dx)

]1/2

+ E

[ T +∫
0

∫
|x|�1

∣∣Fn
(
un(s−), x

)∣∣4
H Np(ds,dx)

]1/2

� 2E

{
sup

t∈[0,T ]
∣∣un(s)

∣∣
H ·
[ T +∫

0

∫
|x|�1

∣∣Fn
(
un(s−), x

)∣∣2
H Np(ds,dx)

]1/2}

+ E

[ T +∫
0

∫
|x|�1

∣∣Fn
(
un(s−), x

)∣∣2
H Np(ds,dx)

]

� 1

4
E sup

t∈[0,T ]
∣∣un(s)

∣∣2
H + 5E

[ T +∫
0

∫
|x|�1

∣∣Fn
(
un(s−), x

)∣∣2
H Np(ds,dx)

]
.

So

3

4
E sup

t∈[0,T ]
∣∣un(t)

∣∣2
H �

∣∣un(0)
∣∣2

H +
T∫

0

∣∣ f (s)
∣∣2

V ′ ds + 6E

T∫
0

∫
|x|�1

∣∣Fn
(
un(s), x

)∣∣2
Hλ(dx)ds
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�
∣∣un(0)

∣∣2
H +

T∫
0

∣∣ f (s)
∣∣2

V ′ ds + 6C E

T∫
0

(
1 + ∣∣un(s)

∣∣2
H

)
ds

�
∣∣un(0)

∣∣2
H +

T∫
0

∣∣ f (s)
∣∣2

V ′ ds + 6C T + 6C

T∫
0

E
(

sup
s′∈[0,s]

∣∣un(s)
∣∣2

H

)
ds.

By Gronwall lemma,

E sup
s∈[0,T ]

∣∣un(s)
∣∣2

H � C

(
T ,
∣∣un(0)

∣∣2
H ,

T∫
0

∣∣ fn(s)
∣∣2

V ′ ds

)
.

Since

E

T∫
0

∥∥un(s)
∥∥2

V ds �
∣∣un(0)

∣∣2
H +

T∫
0

∥∥ f (s)
∥∥2

V ′ ds + E

T∫
0

∫
|x|�1

∣∣Fn
(
un(s), x

)∣∣2
Hλ(dx)ds

�
∣∣un(0)

∣∣2
H +

T∫
0

∥∥ f (s)
∥∥2

V ′ ds + E

T∫
0

C
(
1 + ∣∣un(s)

∣∣2
H

)
ds

�
∣∣un(0)

∣∣2
H +

T∫
0

∥∥ f (s)
∥∥2

V ′ ds + C T + C T E sup
s∈[0,T ]

∣∣un(s)
∣∣2

H .

(4.4) is proved. �
Corollary 4.1. Let τ � 0 be a stopping time and (un(t))t�0 a càdlàg adapted process that P-a.s. satisfies
Eq. (4.3) for t ∈ [0, τ (ω)]. Assume E|un(0)|2Hn

< ∞. Then, for every T > 0,

E
(

sup
t∈[0,T ]

∣∣un(t ∧ τ )
∣∣2

Hn

)
� C

(
T ,

T∫
0

∥∥ fn(s)
∥∥2

V ′ ds, E
∣∣un(0)

∣∣2
Hn

)
.

Lemma 4.2. For every F0-measurable un(0) : Ω → Hn, there exists a unique càdlàg adapted solution
(un(t))t�0 of Eq. (4.3) on (Ω, F , (Ft)t�0, P ).

Proof. Step 1 (Existence for bounded initial condition un(0)). Assume that |un(0)|Hn � C for some con-
stant C > 0. For any m > C , let Bm

n (·) : Hn → Hn be a Lipschitz continuous function such that
Bm

n (x) = Bn(x, x) for every |x|Hn � m. Consider the equation

dun(t) + Anun(t)dt + Bm
n

(
un(t), un(t)

)
dt = fn(t)dt +

∫
|x|�1

Fn
(
un(t−), x

)
Ñp(dt,dx)
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with initial condition un(0). It has globally Lipschitz coefficients, so there exists a unique càdlàg
adapted solution (u(m)

n (t))t�0 by the standard classical argument. Let τm be defined as

τm = inf
{

t � 0:
∣∣u(m)

n

∣∣
Hn

� m
}∧ T ,

the solution (u(m)
n (t))t∈[0,τm] is also a solution of Eq. (4.3). (Just note that for u(m)

n (τm) is decided by
t ∈ [0, τm).) Therefore, by Corollary 4.1, we have

E
(

sup
t∈[0,T ]

∣∣u(m)
n (t ∧ τm)

∣∣2
Hn

)
� C

(
T , E

∣∣un(0)
∣∣2

Hn
,

T∫
0

∥∥ f (s)
∥∥2

V ′ ds

)
.

In particular

E
(
1τm<T

∣∣u(m)
n (τm)

∣∣2
Hn

)
� C

(
T , E

∣∣un(0)
∣∣2

Hn
,

T∫
0

∥∥ f (s)
∥∥2

V ′ ds

)
,

which implies

P (τm < T ) � 1

m2
C

(
T , E

∣∣un(0)
∣∣2

Hn
,

T∫
0

∥∥ f (s)
∥∥2

V ′ ds

)
.

Since |u(m)
n (T ∧ τm)|2Hn

� m2 on {τm < T }, τM � τm as M > m and

P
(
u(M)

n (t) = u(m)
n (t), t ∈ [0, τm)

)= 1,

therefore, if τ∞ := supm>C {τm}, we may uniquely define a process u(∞)
n (t) for t ∈ [0, τ∞), which equal

to u(m)
n (t) on [0, τm) for every m. Hence u(∞)

n (t) is a solution on [0, τ∞). Since

P (τ∞ < T ) � P (τm < T ) � C

m2
,

for every m, P (τ∞ < T ) = 0. Thus u(∞)
n is a solution for t ∈ [0, T − ε] for every small ε > 0. Since T

is arbitrary, we have proved global existence.

Step 2 (Existence for general initial condition un(0)). Let Ωm ∈ F be defined as Ωm = {|un(0)|2Hn
� m}.

Define u(m)
n (0) as un(0) on Ωm , 0 otherwise. Let (u(m)

n (t))t�0 be the unique solution of Eq. (4.3) with

initial condition u(m)
n (0). If M > m, then

P
(
Ωm ∩ (u(M)

n (t) = u(m)
n (t) for every t � 0

))= P (Ωm).

We may then uniquely define a process un on Ω ′ =⋃
m Ωm as un(t) = u(m)

n (t) on Ωm , it is clear that
un solves Eq. (2.4) on Ω ′ . Since P (Ω ′) = 1, we have get a global solution. �
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5. Proof of Theorem 4.1

Proof. Let (W , W , (Wt)t�0, Q , p) be a stochastic basis supporting, a W0-measurable random variable
u0 : W → H with law μ, p is a stationary Poisson point process defined as in Section 1. Let Xn

0 = πnu0.
For every n, there exists a unique càdlàg adapted solution (Xn(t))t�0 of Eq. (4.3) in Hn , with initial

condition Xn
0 . Since Hn ⊂ H , (Xn(t))t�0 can be viewed as càdlàg adapted process in V ′

α , so it defines
a probability measure Pn on D V ′

α
[0,∞).

Step 1 (Tightness in Ω ∩ L2([0, T ]; H)). From Lemma 2.4, choose α � 1, let D = Vα , we prove Xn is
D-weakly tight and for every ε > 0 and t > 0,

lim
N→∞ lim

n→∞ sup P
(
r2

N

(
Xn(s)

)
> ε for some s ∈ [0, t])= 0.

First, D-weakly tightness: by using Lemma 2.5, we only need to prove that for every ϕ ∈ D ,
{〈Xn(.),ϕ〉D ′,D} is tight in D R [0, T ].

For every T > 0, by Lemma 4.1

E Q
[

sup
t∈[0,T ]

(〈
Xn(t),ϕ

〉2
D ′,D

)]
� |ϕ|2H E

[
sup

t∈[0,T ]
∣∣Xn(t)

∣∣2
H

]
� |ϕ|2H C

(
T ,

T∫
0

∥∥ f (s)
∥∥2

V ′ ds,m2

)
, (5.1)

so {〈Xn(.),ϕ〉D ′,D} is tight on the line for each t ∈ [0, T ].
For any τn, δn satisfy (a), (b), we have

∣∣〈Xn(τn + δn) − Xn(τn),ϕ
〉
D ′,D

∣∣
�

τn+δn∫
τn

∣∣〈ϕ, Bn
(

Xn(s), Xn(s)
)〉

H

∣∣ds +
τn+δn∫
τn

∣∣〈ϕ, A Xn(s)
〉
H

∣∣ds +
τn+δn∫
τn

∣∣〈ϕ, fn(s)
〉
V ,V ′

∣∣ds

+
∣∣∣∣∣

T∫
0

∫
|x|�1

1(τn,τn+δn]
〈
Fn
(

Xn(s−), x
)
,ϕ
〉
H Ñp(ds,dx)

∣∣∣∣∣
= I1 + I2 + I3 + I4.

Since limn→∞ δn = 0 and |〈B(u, v), w〉| � C |u|1/4
H ‖u‖3/4

V ‖v‖V |w|1/4
H ‖w‖3/4

V ,

E Q [I2] � ‖ϕ‖V

[
E

T∫
0

∥∥Xn(s)
∥∥2

V ds

]1/2

|δn|1/2 → 0, as n → ∞,

E Q [I1] � Cϕ E Q

[ τn+δn∫
τn

∣∣Xn(s)
∣∣1/2

H

∥∥Xn(s)
∥∥3/2

V ds

]

� Cϕ

[
E Q sup

s∈[0,T ]
∣∣Xn(s)

∣∣2
H

]1/4 ·
[

E Q

T∫
0

∥∥Xn(s)
∥∥2

V ds

]3/4

σ
1/4
n

→ 0, as n → ∞.
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It’s easy to see that E Q [I3] → 0, as n → ∞. Since

E Q

[∣∣∣∣∣
T∫

0

∫
|x|�1

1(τn,τn+δn]
〈
Fn
(

Xn(s−), x
)
,ϕ
〉
H Ñp(ds,dx)

∣∣∣∣∣
2]

= E Q

[ T∫
0

∫
|x|�1

1(τn,τn+δn]
〈
Fn
(

Xn(s−), x
)
,ϕ
〉2
Hλ(dx)ds

]

� E Q

[ T∫
0

1(τn,τn+δn]|ϕ|2H C
(∣∣Xn(s)

∣∣2
H + 1

)
ds

]

� C |ϕ|2H E Q
[

sup
s∈[0,T ]

∣∣Xn(s)
∣∣2

H + 1
]
· δn,

we get I4 → 0, in probability. Thus {〈Xn(t),ϕ〉D ′,D , t ∈ [0, T ]} satisfy (A), and by Lemma 2.5, {Xn(·)} is

D-weakly tight. Finally, since for hk = λ
α/2
k ek ,

E Q
[(

sup
s∈[0,t]

r2
N

(
Xn(s)

))]= E Q
[

sup
s∈[0,t]

( ∑
k�N+1

〈
Xn(s),hk

〉2
D ′

)]

�
E Q [sups∈[0,t] |Xn(s)|2H ]

λα
N+1

� Ct

λα
N+1

,

{Xn} is tight in D D ′ [0,∞).
Next, I will prove that {Xn} is tight in L2([0, T ]; H).
Since

Xn(t) = Xn(0) −
t∫

0

An Xn(s)ds −
t∫

0

Bn
(

Xn(s), Xn(s)
)

ds

+
t∫

0

fn(s)ds +
t+∫

0

Fn
(

Xn(s−), x
)

Ñp(ds,dx)

= I5(t) + I6(t) + I7(t) + I8(t) + I9(t).

For 0 < θ < 1/2,

E Q [∥∥I9(·)
∥∥2

W θ,2([0,T ];H)

]= E Q

[ T∫
0

∣∣I9(t)
∣∣2

H dt

]
+ E Q

[ T∫
o

T∫
0

|I9(t) − I9(s)|2H
|t − s|1+2θ

dt ds

]

=
T∫

E Q [∣∣I9(t)
∣∣2

H

]
dt +

T∫
o

T∫
E Q [|I9(t) − I9(s)|2H ]

|t − s|1+2θ
dt ds
0 0
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=
T∫

0

E Q

[ t∫
0

∫
|x|�1

∣∣Fn
(

Xn(s), x
)∣∣2

Hλ(dx)ds

]
dt

+
T∫

0

T∫
0

E Q [∫ t
s

∫
|x|�1 |Fn(Xn(z), x)|2Hλ(dx)dz]

|t − s|1+2θ
dt ds

� C(T , θ)

{ T∫
0

E Q [∣∣Xn(s)
∣∣2

H

]
ds +

T∫
0

T∫
0

∫ t
s E Q [|Xn(z)|2H ]dz

|t − s|1+2θ
dt ds

}

� C

(
T , θ,

∫ ∥∥ f (s)
∥∥2

V ′ ds,m2

)
.

Since E Q [|I5(t)|2H ] � m2 and E Q [‖I8(.)‖2
W θ,2([0,T ];V ′)] � C4, by Remark 3.1 and Lemma 4.1, for γ ∈

(3/2,2),

E Q [∥∥I6(·) + I7(·)
∥∥

W 1,2([0,T ];D(A−γ ))

]
� C

(
m2, T ,

T∫
0

∥∥ f (s)
∥∥2

V ′ ds

)
.

Therefore

E Pn
[∥∥ξ(·)∥∥W θ,2([0,T ];D(A−γ ))

]
� C

(
m2, T ,

T∫
0

∥∥ f (s)
∥∥2

V ′ ds

)
.

By [5], Theorem 4.6, Pn is tight in L2([0, T ]; H). Hence there exists a probability measure P on Ω ∩
L2

loc([0,∞); H), which is the weak limit of a sub-sequence {Pnk }.

Step 2 (Prove P is a martingale solution). (1) and (3) can be proved by the same argument as in the
proof of Theorem 3.3.

For checking (2), let g(·) be a continuous function from R to R ,

g(x) =
{

x, |x| � 1,

0, |x| � 1/2.

with |g(x)| � |x| and |g′(x)| � C .
For any ϕ ∈ D , choose t ∈ Z (using in Theorem 3.3), let

Y m
n (ξ)(t) =

∑
s∈[0,t]

1

m
g
(
m · 〈�ξ(s),ϕ

〉
D ′,D

)−
t∫

0

∫
|x|�1

1

m
g
(
m · 〈Fn

(
ξ(s), x

)
,ϕ
〉)

λ(dx)ds,

and

Y m(ξ)(t) =
∑

s∈[0,t]

1

m
g
(
m · 〈�ξ(s),ϕ

〉
D ′,D

)−
t∫

0

∫
|x|�1

1

m
g
(
m · 〈F (ξ(s), x

)
,ϕ
〉)

λ(dx)ds.
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First, (Xm, Fs, P ) is a square integrable martingale.
Set Ω0

t = {ξ ∈ Ω: ξ(t) = ξ(t−)}. If ξ ∈ Ω0
t and ξn → ξ in Ω ∩ L2

loc([0,∞); H), by Lemma 2.2,

lim
n→∞

∑
s∈[0,t]

1

m
g
(
m · 〈�ξn(s),ϕ

〉
D ′,D

)= 1

m
g
(
m · 〈�ξ(s),ϕ

〉
D ′,D

)
.

Since

t∫
0

∫
|x|�1

∣∣∣∣ 1

m
g
(
m · 〈Fn

(
ξn(s), x

)
,ϕ
〉)∣∣∣∣λ(dx)ds � 2m

t∫
0

∫
|x|�1

∣∣〈Fn
(
ξn(s), x

)
,ϕ
〉∣∣2

Hλ(dx)ds

� 2mC |ϕ|2H
[ t∫

0

∣∣ξn(s)
∣∣2

H ds + t

]
,

Y m
n (t) is sensible Pn-a.s.

Set

As
n =

{
x: |x| � 1 and

∣∣〈Fn
(
ξn(s), x

)
,ϕ
〉∣∣� 1

2m

}
,

As =
{

x: |x| � 1 and
∣∣〈F (ξ(s), x

)
,ϕ
〉∣∣� 1

2m

}
,

we have

λ
(

As
n

)=
∫

|x|�1

I As
n
(x)λ(dx) � 4m2

∫
|x|�1

∣∣〈Fn
(
ξn(s), x

)
,ϕ
〉∣∣2λ(dx)

� Cm2|ϕ|2H
(∣∣ξn(s)

∣∣2
H + 1

)
,

and

t∫
0

∫
|x|�1

1

m

∣∣g(m · 〈Fn
(
ξn(s), x

)
,ϕ
〉)− g

(
m · 〈F (ξ(s), x

)
,ϕ
〉)∣∣λ(dx)ds

=
t∫

0

∫
As∪As

n

1

m

∣∣g(m · 〈Fn
(
ξn(s), x

)
,ϕ
〉)− g

(
m · 〈F (ξ(s), x

)
,ϕ
〉)∣∣λ(dx)ds

� C

t∫
0

∫
As∪As

n

∣∣〈Fn
(
ξn(s), x

)
,ϕ
〉− 〈

F
(
ξ(s), x

)
,ϕ
〉∣∣λ(dx)ds

� C

[ t∫
0

∫
|x|�1

∣∣〈Fn
(
ξn(s), x

)
,ϕ
〉− 〈

F
(
ξ(s), x

)
,ϕ
〉∣∣2λ(dx)ds

]1/2[ t∫
0

λ
(

As ∪ As
n

)
ds

]1/2



Z. Dong, J. Zhai / J. Differential Equations 250 (2011) 2737–2778 2761
� Cm|ϕ|H ·
[ t∫

0

∫
|x|�1

∣∣〈F (ξn(s), x
)− F

(
ξ(s), x

)
,πnϕ

〉∣∣2 + ∣∣〈F (ξ(s), x
)
,π c

nϕ
〉∣∣2λ(dx)ds

]1/2

·
[ t∫

0

∣∣ξn(s)
∣∣2

H ds +
t∫

0

∣∣ξ(s)
∣∣2

H ds + t

]1/2

� Cm|ϕ|H ·
[ t∫

0

∫
|x|�1

∣∣F (ξn(s), x
)− F

(
ξ(s), x

)∣∣2
Hλ(dx)ds · |ϕ|2H

+ ∣∣π c
nϕ
∣∣2

H ·
t∫

0

∫
|x|�1

∣∣F (ξ(s), x
)∣∣2

Hλ(dx)ds

]1/2

·
[ t∫

0

∣∣ξn(s)
∣∣2

H ds +
t∫

0

∣∣ξ(s)
∣∣2

H ds + t

]1/2

� Cm|ϕ|H

[ t∫
0

∣∣ξn(s) − ξ(s)
∣∣2

H ds · |ϕ|2H + ∣∣π c
nϕ
∣∣2

H ·
t∫

0

[∣∣ξ(s)
∣∣2

H + 1
]

ds

]1/2

·
[ t∫

0

∣∣ξn(s)
∣∣2

H ds +
t∫

0

∣∣ξ(s)
∣∣2

H ds + t

]1/2

.

Thus

lim
n→∞

t∫
0

∫
|x|�1

1

m
g
(
m · 〈Fn

(
ξn(s), x

)
,ϕ
〉)

λ(dx)ds =
t∫

0

∫
|x|�1

1

m
g
(
m · 〈F (ξ(s), x

)
,ϕ
〉)

λ(dx)ds.

Since (Y m
n (ξ)(t), Pn) is a square integrable càdlàg martingale, and for t1 < t2 ∈ Z ,

E Pn
∣∣Y m

n (ξ)(t2) − Y m
n (ξ)(t1)

∣∣2 = E Q

∣∣∣∣∣
t2∫

t1

∫
|x|�1

1

m
g
(
m · 〈Fn

(
Xn(s−), x

)
,ϕ
〉)

Ñp(dx,ds)

∣∣∣∣∣
2

� E Q

t2∫
t1

∫
|x|�1

[
1

m
g
(
m · 〈Fn

(
Xn(s), x

)
,ϕ
〉)]2

λ(dx)ds

� |ϕ|2H E Q

t2∫
t1

∫
|x|�1

∣∣Fn
(

Xn(s), x
)∣∣2

Hλ(dx)ds

� C |ϕ|2H E Q

t2∫
t1

(∣∣Xn(s)
∣∣2

H + 1
)

ds

� C

(
t2 − t1,

t2∫
t

∥∥ f (s)
∥∥2

V ′ ds, E
∣∣X(0)

∣∣2
H

)
|ϕ|2H .
1
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Let t1 = 0 and using Lemma 2.5,

E P
∣∣Y m(ξ)(t2)

∣∣1+ε = lim
n→∞ E Pn

∣∣Y m
n (ξ)(t2)

∣∣1+ε

� sup
n

[
E Pn

∣∣Y m
n (ξ)(t2)

∣∣2](1+ε)/2

�
{

C

(
t2,

t2∫
0

∥∥ f (s)
∥∥2

V ′ ds, E
∣∣u(0)

∣∣2
H

)
|ϕ|2H

}(1+ε)/2

< ∞,

for every 0 < ε < 1. So E P |Y m(ξ)(t2)|2 < ∞. Since for every Ft1 -measurable bounded random vari-
able Z ,

E P{[Y m(t2) − Y m(t1)
] · Z

}= lim
n→∞ E Pn

{[
Y m

n (t2) − Y m
n (t1)

] · Z
}= 0,

(Y m, Fs, P ) is a square integrable càdlàg martingale.
Second, we prove that (Y m, P ) is a Cauchy sequence in L2(Ω × [0, T ]; R), and denote

limm→∞ Y m = Y ϕ .
By Skorokhod embedding theorem, there exists a stochastic basis (Ω ′, F ′, {F ′

t }t�0, P ′) and, on this
basis, Ω ∩ L2

loc([0,∞); H)-valued random variables X ′, X ′
k, k � 1, such that X ′

k has the same law of
Pnk on Ω ∩ L2

loc([0,∞); H), and X ′
k → X ′ in Ω ∩ L2

loc([0,∞); H) P ′-a.s.
Let

Gm1,m2,n(ξ)(t) = Y m2
n (ξ)(t) − Y m1

n (ξ)(t), Gm1,m2(ξ)(t) = Y m2(ξ)(t) − Y m1(ξ)(t).

Then

E P

T∫
0

∣∣Gm1,m2(ξ)(t)
∣∣2 dt =

T∫
0

E P ′[∣∣Gm1,m2

(
Y ′)(t)∣∣2]dt

�
T∫

0

lim inf
n→∞ E P ′[∣∣Gm1,m2,n

(
Y ′

n

)
(t)
∣∣2]dt (5.2)

and

E P ′[
Gm1,m2,n

(
Y ′

n

)
(t)
]2

= E Q

[ t+∫
0

∫
|x|�1

1

m1
g
(
m1 · 〈Fn

(
Xn(s−), x

)
,ϕ
〉)− 1

m2
g
(
m2 · 〈Fn

(
Xn(s−), x

)
,ϕ
〉)

Ñp(dx,ds)

]2

= E Q

[ t∫
0

∫
|x|�1

∣∣∣∣ 1

m1
g
(
m1 · 〈Fn

(
Xn(s), x

)
,ϕ
〉)− 1

m2
g
(
m2 · 〈Fn

(
Xn(s), x

)
,ϕ
〉)∣∣∣∣2λ(dx)ds

]
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= E P ′
[ t∫

0

∫
|x|�1

∣∣∣∣ 1

m1
g
(
m1 · 〈Fn

(
X ′

n(s), x
)
,ϕ
〉)− 1

m2
g
(
m2 · 〈Fn

(
X ′

n(s), x
)
,ϕ
〉)∣∣∣∣2λ(dx)ds

]
.

Note that

E P ′
[ t∫

0

∫
|x|�1

∣∣∣∣ 1

m
g
(
m · 〈F (X ′(s), x

)
,ϕ
〉)− 1

m
g
(
m · 〈Fn

(
X ′

n(s), x
)
,ϕ
〉)∣∣∣∣2λ(dx)ds

]

� Cϕ E P ′
[ t∫

0

∣∣X ′(s) − X ′
n(s)

∣∣p]ds + ∣∣π c
nϕ
∣∣2 E P ′

[ t∫
0

∫
|x|�1

∣∣F (X ′(s), x
)∣∣2λ(dx)ds

]
,

lim
n→∞

t∫
0

∣∣X ′(s) − X ′
n(s)

∣∣2
H ds = 0, P ′-a.s.,

E P ′
t∫

0

∣∣X ′(s) − X ′
n(s)

∣∣2
H ds � C

(
m2, t,

∫ ∥∥ f (s)
∥∥2

V ′ ds

)
,

by Lemma 2.5,

(5.2) = E P ′
[ t∫

0

∫
|x|�1

∣∣∣∣ 1

m1
g
(
m1 · 〈F (X ′(s), x

)
,ϕ
〉)− 1

m2
g
(
m2 · 〈F (X ′(s), x

)
,ϕ
〉)∣∣∣∣2λ(dx)ds

]

� Cϕ

T∫
0

E P ′
[ t∫

0

∫
|x|�1

∣∣F (X ′(s), x
)∣∣2

H ∧
(

1

m2
2

∨ 1

m2
1

)
λ(dx)ds

]
dt

→ 0 as (m1,m2) → ∞.

Third, we prove that E P eiu[M
ei
t −Y ei (t)] = 1.

By using the same method as above, we have for fixed n, (Y m
n , Pn) is Cauchy sequence in L2(Ω ×

[0, T ]; R) and denote mY = limn→∞ Y m
n . For any fixed n > i, let

Mn
m(ξ)(t) = 〈ξt − ξ0, ei〉H +

t∫
0

〈ξs, Aei〉H ds −
t∫

0

〈
B(πmξs, ei),πmξs

〉
H ds −

t∫
0

〈
ei, fn(s)

〉
V ,V ′ ds,

Mn(ξ)(t) = 〈ξt − ξ0, ei〉H +
t∫

0

〈ξs, Aei〉H ds −
t∫

0

〈
B(ξs, ei), ξs

〉
H ds −

t∫
0

〈
ei, fn(s)

〉
V ,V ′ ds,

Mm(ξ)(t) = 〈ξt − ξ0, ei〉H +
t∫
〈ξs, Aei〉H ds −

t∫ 〈
B(πmξs, ei),πmξs

〉
H ds −

t∫ 〈
ei, f (s)

〉
V ,V ′ ds,
0 0 0
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then

∣∣E P eiu[M
ei
t −Y ei (t)] − 1

∣∣
= lim

m→∞
∣∣E P eiu[Mm(t)−Y ei (t)] − 1

∣∣
= lim

m→∞ lim
k→∞

∣∣E P eiu[Mm(t)−Y k(t)] − 1
∣∣

= lim
m→∞ lim

k→∞
lim

n→∞
∣∣E Pn eiu[Mn

m(t)−Y k
n(t)] − 1

∣∣
= lim

m→∞ lim
k→∞

lim
n→∞

∣∣E Pn eiu[Mn
m(t)−Y k

n(t)] − E Pn eiu[Mn(t)−n Y (t)]∣∣
� lim

m→∞ lim
k→∞

lim
n→∞ E Pn

∣∣eiu[∫ t
0 〈B(ξs,ei),ξs〉H −〈B(πmξs,ei),πmξs〉H ds]+iu[n Y (t)−Y k

n (t)] − 1
∣∣

� lim
m→∞ lim

k→∞
lim

n→∞
[

E Pn
∣∣eiu[∫ t

0 〈B(ξs,ei),ξs〉H −〈B(πmξs,ei),πmξs〉H ds] − 1
∣∣+E Pn

∣∣eiu[nY (t)−Y k
n (t)] − 1

∣∣].
We only need to prove the second part equals 0, the first part is similar to prove as Theorem 3.3.
Since

lim
n→∞ E P ′

[ t∫
0

∫
|x|�1

∣∣∣∣ 1

m1
g
(
m1 · 〈Fn

(
X ′

n(s), x
)
,ϕ
〉)− 1

m2
g
(
m2 · 〈Fn

(
X ′

n(s), x
)
,ϕ
〉)∣∣∣∣2λ(dx)ds

]

= E P ′
[ t∫

0

∫
|x|�1

∣∣∣∣ 1

m1
g
(
m1 · 〈F (X ′(s), x

)
,ϕ
〉)− 1

m2
g
(
m2 · 〈F (X ′(s), x

)
,ϕ
〉)∣∣∣∣2λ(dx)ds

]
,

we have

lim
k→∞

lim
n→∞ E Pn

∣∣nY (t) − Y k
n(t)

∣∣2 � lim
k→∞

E P

t∫
0

∫
|x|�1

∣∣F (ξ(s), x
)∣∣2 ∧ 1

k2
λ(dx)ds = 0,

thus limm→∞ limk→∞ limn→∞ E Pn |eiu[nY (t)−Y k
n (t)] − 1| = 0. �

6. Markov selection

We start by giving a few definitions and notations. Let V ⊂ H ⊂ V ′ be a Gelfand triple of separable
Hilbert spaces with continuous injections. Set Ω = D([0,∞); V ′). Denote by B the Borel σ -field of
Ω with Skorokhod topology and by Pr(Ω) the set of all probability measures on (Ω, B). Define the
canonical process ξ : Ω → V ′ as ξt(ω) = ω(t).

6.1. Preliminaries on the state space

For each t � 0, let Ωt = D([0, t]; V ′) (resp. Ωt = D([t,∞); V ′)). Denote by Bt (resp. Bt ) be the
Borel σ -field of Ωt (resp. Ωt ) with Skorokhod topology respectively. Define for each given t > 0, the
map Φt : Ω → Ωt as

Φt(ω)(s) = ω(s − t), s � t.
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Denote CT the σ -field generated by simple cylindrical subsets of ΩT . Recall that

CT = σ
(
ξ−1

t

(
B
(

V ′)) ∣∣ t ∈ [0, T ]).
Lemma 6.1. (See [1].) If V ′ is a separable metric space, then

CT = BT .

Similarly, we can define C = σ(ξ−1
t (B(V ′)) | t ∈ [0,∞)) (resp. C T = σ(ξ−1

t (B(V ′)) | t ∈ [T ,∞))),
and we have

C = B
(
resp. C T = B T ).

Lemma 6.2. The set L∞
loc([0,∞); H) ∩ Ω is a Borel set in Ω . Moreover,

L∞
loc

([0,∞); H
)∩ Ω = D

([0,∞); Hσ

)∩ Ω

where Hσ denotes the space H endowed with the weak topology. Finally, the set L2
loc([0,∞); V ) ∩ Ω is Borel

in Ω as well.

Lemma 6.3. Let P ∈ Pr(Ω) be such that

P
(

D
([0,∞); Hσ

)∩ Ω
)= 1.

Then, for any given t � 0, the mapping ω → ω(t) has a P -modification on Bt which is Bt -measurable with
values in (H, B(H)), where B(H) is the Borel σ -field of H.

For proving Lemma 6.2 we need the following lemma.

Lemma 6.4. Let X and Y be two Banach spaces, such that X ⊂ Y with a continuous injection. If a function
φ(t) belongs to L∞([0, T + ε], X), ε > 0 and is weakly right continuous and has weakly left limits with values
in Y for t ∈ [0, T + ε], then φ is weakly right continuous and has weakly left limits with values in X, when
t ∈ [0, T ].

Proof. If we replace Y by the closure of X in Y , we may suppose that X is dense in Y . Hence the
dense continuous imbedding of X into Y gives by duality a dense continuous imbedding of Y ′ (dual
of Y ), into X ′ (dual of X ):

Y ′ ⊂ X ′.

By assumption, for each η ∈ Y ′ ,

〈
φ(t),η

〉
Y ,Y ′ → 〈

φ(t0),η
〉
Y ,Y ′ , as t ↓ t0, ∀t0 ∈ [0, T + ε), (6.1)

and ∃ yt0 ∈ Y such that

〈
φ(s),η

〉
Y ,Y ′ → 〈Yt0 , η〉Y ,Y ′ as s ↑ t0, ∀t0 ∈ (0, T + ε]. (6.2)

We next to prove that (6.1) and (6.2) are true for η ∈ X ′ , φ(t), yt ∈ X , t ∈ (0, T ].
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We first prove that for each t ∈ (0, T ], φ(t), yt ∈ X and

∥∥φ(t)
∥∥

X � 2‖φ‖L∞([0,T +ε],X), (6.3)

‖yt‖X � 2‖φ‖L∞([0,T +ε],X). (6.4)

For every t0 ∈ [0, T ], define

Φ̃t0(t) =
{

0, 0 � t < t0, or t > T + ε,

φ(t), t0 � t � T + ε.

We can find a sequence of smooth functions φm from [0, T + ε] into X , such that

∥∥φm(t)
∥∥

X � ‖Φ̃t0‖L∞([0,T +ε];X) � ‖φ‖L∞([0,T +ε];X)

and

〈
φm(t),η

〉
Y ,Y ′ → lims↑t〈Φ̃t0(s),η〉Y ,Y ′ + lim s ↓ t〈Φ̃t0(s),η〉Y ,Y ′

2
, for m → ∞, ∀η ∈ Y ′.

Since

〈
φm(t0),η

〉
Y ,Y ′ →

〈
φt0(s),η

2

〉
Y ,Y ′

, for m → ∞, ∀η ∈ Y ′,

and

∣∣〈φm(t),η
〉
Y ,Y ′

∣∣� ‖φ‖L∞([0,T +ε];X)‖η‖X ′ , ∀m, ∀t ∈ [0, T + ε], ∀η ∈ Y ′,

we have the limit ∣∣∣∣〈φm(t0)

2
, η

〉
Y ,Y ′

∣∣∣∣� ‖φ‖L∞([0,T +ε];X)‖η‖X ′ , ∀η ∈ Y ′.

This inequality shows that φ(t) ∈ X , for every t ∈ [0, T + ε] and that (6.3) holds. For any t ∈ (0, T ],
since ∣∣∣∣〈 yt

2
, η

〉
Y ,Y ′

∣∣∣∣= lim
s↑t

∣∣∣∣〈φ(s)

2
, η

〉
Y ,Y ′

∣∣∣∣� ‖φ‖L∞([0,T +ε];X)‖η‖X ′ , ∀η ∈ Y ′,

yt ∈ X , for t ∈ (0, T + ε], and thus (6.4) holds.
Finally let us prove (6.1), (6.2) hold for η in X ′ . Since Y ′ is dense in X ′ , there exists, for each δ > 0,

some ηδ ∈ Y ′ such that

‖η − ηδ‖X ′ � δ,

then for t > t0,

〈
φ(t),φ(t0),η

〉
′ = 〈

φ(t) − φ(t0),η − ηδ

〉
′ +

〈
φ(t) − φ(t0),ηδ

〉
′ ,
X,X X,X X,X
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we have 〈
φ(t),φ(t0),η

〉
X,X ′ � 4δ‖φ‖L∞([0,T +ε];X) + ∣∣〈φ(t) − φ(t0),ηδ

〉
X,X ′

∣∣.
Since ηδ ∈ Y ′ , the right continuity assumption implies that〈

φ(t) − φ(t0),ηδ

〉
X,X ′ → 0, as t ↓ t0

and hence

lim
t↓t0

∣∣〈φ(t) − φ(t0),ηδ

〉
X,X ′

∣∣� 4δ‖φ‖L∞([0,T +ε];X).

Since δ > 0 is arbitrarily small, (6.1) is proved. (6.2) can be proved similarly. �
Proof of Lemma 6.2. Firstly, we prove the equality. By the resonance theorem and the covering theo-
rem, D([0,∞); Hσ ) ∩ Ω is in L∞

loc([0,∞); H) ∩ Ω . The other inclusion follows from Lemma 6.4.
Secondly, we prove measurability. Notice that the map

f n
t (ω) = ∣∣ω(t)

∣∣
Hn

, Ω → [0,∞)

is continuous for each n. Let {hi}i∈N be a complete orthonormal system of H, Hn = span{hi, i =
1, . . . ,n}. For each t � 0, by Lemma 6.1{

ω ∈ Ω:
∣∣ω(t)

∣∣
H � R

}=
⋂
n�1

{
f n(ω)(t) � R

} ∈ B. (6.5)

Let D ⊂ [0,+∞) be a continuous dense set. It’s easy to prove that

L∞
loc

([0,∞); H
)∩ Ω =

∞⋂
T =1

∞⋃
R=1

⋂
t∈D∩[0,T ]∪{T }

{
ω ∈ Ω:

∣∣ω(t)
∣∣

H � R
}
.

By (6.5), L∞
loc([0,∞); H) ∩ Ω is a Borel subset in B.

Similarly, for each n, T � 0,

gn
T (ω) =

T∫
0

∣∣ω(s)
∣∣2

Vn
ds

is continuous in V , and{
ω ∈ Ω

∣∣∣ T∫
0

∣∣ω(s)
∣∣2

V ds � R

}
=
⋃
n�1

{
ω ∈ Ω

∣∣ gn
T (ω) � R

} ∈ B,

hence,

L2
loc

([0,∞); V
)∩ Ω =

∞⋂
T =1

∞⋃
R=1

{
ω ∈ Ω

∣∣∣ T∫
0

∣∣ω(s)
∣∣2

V ds � R

}
,

which implies that L2
loc([0,∞); V ) is a Borel subset in B. �
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6.1.1. Preliminaries on disintegration and reconstruction of probabilities
Given P ∈ Pr(Ω) and t > 0, we will denote by ω → P |ωBt

: Ω → Pr(Ωt) a regular conditional
probability distribution (RCPD) of P on Bt . Since Ω is a Polish space and every σ -field Bt is finitely
generated, such a function exists and is unique, up to P -null sets. In particular,

P |ωBt

[
ξt = ω(t)

]= 1

for all ω ∈ Ω , and, if A ∈ Bt and B ∈ Bt ,

P (A ∩ B) =
∫
A

P |ωBt
(B)P (dω).

As conditional probabilities correspond to disintegration with respect to a σ -field, we define below
the reconstruction, which is a sort of inverse procedure to disintegration.

Definition 6.1. (See [7].) Consider a probabilities P ∈ Pr(Ω), a time instant t > 0 and a Bt -measurable
map Q : Ω → Pr(Ωt) such that

Q ω

[
ξt = ω(t)

]= 1, for all ω ∈ Ω.

Then denote by P ⊗t Q the unique probability measure on Ω such that

1. P ⊗t Q and P agree on Bt .
2. (Q ω)ω∈Ω is a regular conditional probability distribution of P ⊗t Q on Bt .

The existence of the P ⊗t Q can be proved from the following two lemmas, which are similar with
the case of C([0,∞); V ′), as in Lemma 6.1.1 and Theorem 6.1.2 in [15]. For the readers convenient, we
give the proof in the following.

Lemma 6.5. Fixed s � 0, suppose that P is a probability measure on (Ω, B). If η ∈ Ωs and P (ξ(s) = η(s)) = 1,
then there is a unique probability measure δη ⊗s P on (Ω, B) such that δη ⊗s P (ξ(t) = η(t), 0 � t � s) = 1
and δη ⊗s P (A) = P (A) for all A ∈ Bs .

Proof. The uniqueness is obvious. Let δη be the Dirac measure on Ωs at η, i.e. δη({α ∈ Ωs: α(t) =
η(t), 0 � t � s}) = 1 and Φ : Ω → Ω s be the map defined by Φ(Ω)(t) = ω(t), t � s. By Lemma 6.1, Φ

is measurable on (Ω, Bs), and therefore P ◦ Φ−1 is well defined. Define P̃ = δη × (P ◦ Φ−1) on X̃ ≡
Ωs × Ω s . Set X = {(α,β) ∈ X̃: α(s) = β(s)}, X is a Borel subset of X̃ (denote f (α,β) = α(s) − β(s):
Ωs × Ω s → V ′ , it’s easy to see that X is a Borel subset of X̃). Note that P̃ (X) � δη({α ∈ Ωs: α(s) =
η(s)})P ◦ Φ−1({β ∈ Ω s: β(s) = η(s)}) = 1. Thus P̃ can be restricted to X . Define ψ : X → Ω as

ψ
(
(α,β)

)
(t) =

{
α(t), 0 � t < s,

β(t), t � s.

It is a continuous map from X to Ω , and the restriction of P̃ to X determines, via ψ , a probability
measure on (Ω, B). This is the desired measure δη ⊗s P . �
Remark 6.1. Note that if x, y ∈ Ω , d(x, y) = 0 if and only if x(t) = y(t) for every t � 0; if x, y ∈ Ωs ,
d(x, y) = 0, if and only if x(t) = y(t) for every 0 � t � s.

Lemma 6.6. Fixed t � 0, suppose that ω → Q ω is a mapping of Ω into probability measures on (Ω, B)

satisfies



Z. Dong, J. Zhai / J. Differential Equations 250 (2011) 2737–2778 2769
(i) ω → Q ω(N) is Bt -measurable for all N ∈ B,
(ii) Q ω(ξt(·) = ω(t)) = 1 for all ω ∈ Ω .

Given a probability measure P on (Ω, B), there exists a unique probability measure P ⊗t Q · on (Ω, B)

such that P ⊗t Q · equals P on (Ω, Bt) and {δω ⊗t Q ω} is a RCPD of P ⊗t Q ·|Bt .

Proof. The uniqueness is obvious. We prove the existence of P ⊗t Q · .
Let N = {ξ ∈ Ω: ξ(s1) ∈ Λ1, . . . , ξ(sn) ∈ Λn}, where n � 1, 0 � s1 < · · · < sn , and Λ1, . . . ,Λn ∈

B(V ′), then

δω ⊗t Q ω(N) = X[0,s1)(t)Q ω(N)

+
n−1∑
k=1

X[sk,sk+1)(t)XΛ1

(
ξ(s1)

)
. . . XΛk

(
ξ(sk)

)× Q ω(ξsk+1 ∈ Γk+1, . . . , ξsn ∈ Λn)

+ X[sn,∞)(t)XΛ1

(
ξ(s1)

)
. . . XΛn

(
ξ(sn)

)
.

It is clear that ω → δω ⊗t Q ω(N) is Bt -measurable. By Lemma 6.1 and the monotone class theorem,
the map ω → δω ⊗t Q ω(N) is Bt -measurable for all N ∈ B.

Set

G(N) = E P [δ· ⊗t Q ·(N)
]
, N ∈ B.

It is easy to prove that G has the desired properties of P ⊗t Q · . �
6.2. The Markov property and existence of Markov selections

We first extended some concepts and Theorems in [7] to the space D([0,∞); Hσ ). Since the prov-
ing is almost the same as in [7], we only state them without proving.

Given a family (Px)x∈H of probability measures, the Markov property can be stated as

P x|ωBt
= Φt Pω(t), for P x-a.s. ω ∈ Ω

for each x ∈ H and t � 0.

Definition 6.2 (Almost sure Markov property). Let x → P x be a measurable map from H to Pr(Ω) such
that

P x
[

D
([0,∞); Hσ

)∩ Ω
]= 1 for all x ∈ H.

The family (Px)x∈H has the almost sure Markov property if for each x ∈ H there is a set T ⊂ (0,∞)

with null Lebesgue measure, such that

P x|ωBt
= Φt Pω(t), for t /∈ T , ω ∈ Ω, P x-a.s.

Denote by Comp(Pr(Ω)) the family of all compact subsets of Pr(Ω).

Definition 6.3 (Almost sure pre-Markov family). Consider a measurable map C : H → Comp(Pr(Ω)) such
that Px[D([0,∞); Hσ ) ∩ Ω] = 1 for all x ∈ H and P ∈ C(x).

The family (C(x))x∈H is almost surely pre-Markov if for each x ∈ H and P ∈ C(x), there is a set
T ⊂ (0,∞) with null Lebesgue measure, such that for all t /∈ T , the following properties hold:
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1. (Disintegration) there exists N ∈ Bt with P (N) = 0 such that for all ω /∈ N ,

ω ∈ H and P |ωBt
∈ Φt C

(
ω(t)

);
2. (Reconstruction) for each Bt -measurable map ω → Q ω : Ω → Pr(Ωt) such that there is N ∈ Bt

with P (N) = 0 and for all ω /∈ N ,

ω(t) ∈ H and Q ω ∈ Φt C
(
ω(t)

);
then P ⊗t Q ∈ C(x).

Remark 6.2. If every C(x) is a singleton, the a.s. pre-Markov family is indeed an a.s. Markov family of
probability measures, as stated in Definition 6.2.

For each f ∈ Cb(V ′, R), λ > 0, P ∈ Pr(Ω), x ∈ H, let

Jλ, f (P ) = E P

[ ∞∫
0

e−λt f
(
ξ(t)

)
dt

]
,

R+
λ f (x) = sup

P∈C(x)
Jλ, f (P ),

Cλ, f (x) = {
P ∈ C(x)

∣∣ Jλ, f (P ) = R+
λ f (x)

}
.

Lemma 6.7. (See [7].) Let (C(x))x∈H be an a.s. pre-Markov family with non-empty convex values, λ > 0 and
f ∈ Cb(V ′, R). Then R+

λ f (x) is well defined and (Cλ, f (x))x∈H is again an a.s. pre-Markov family with non-
empty convex values.

Theorem 6.1. (See [7].) Let (C(x))x∈H be an a.s. pre-Markov family with non-empty convex values. Then there
is a measurable map x → Px on H with values in Pr(Ω) such that Px ∈ C(x) for all x ∈ H and (Px)x∈H has
the a.s. Markov property.

If in Definition 6.3 each set T of exceptional times is empty, call it a pre-Markov family.

Theorem 6.2. (See [7].) Let (C(x))x∈H be a pre-Markov family with non-empty convex values. Then there is
a measurable map x → Px from H to Pr(Ω) such that Px ∈ C(x) for all x ∈ H and (Px)x∈H has the Markov
property.

7. Markov selection for the Navier–Stokes equations

The Markov selection for the 3D Navier–Stokes equations with Wiener process has been considered
in [5,7,8] recently. Using their argument, we extended the results to the Lévy Noise.

Let T = [0,1]3 be the 3D torus and let D∞ be the space of infinitely differentiable divergence-free
periodic vector fields on R3 with zero mean, H be the closure of D∞ in the norm of L2(T , R3), and
D(A) = {u ∈ H | �u ∈ H}. Let A : D(A) → H be the stokes operator

Au = −�u, u ∈ D(A).

It is a positive linear self-adjoint operator on H and we can define the powers Aα , α ∈ R , with
domain D(Aα). By proper identifications of dual spaces, V ⊂ H ⊂ V ′ ⊂ D(A)′ . The bi-linear operator
B : V × V → V ′ is defined as
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B(u, v) = Pdiv(u · �)v

where Pdiv is the projection onto divergence-free vector fields.
Let (ei)i∈N be a complete orthonormal system of eigenvectors and denote σ 2 =∑∞

i=1 σ 2
i , σi ∈ R .

We shall consider the 3D Navier–Stokes equations in its abstract form

du + (
ν Au + B(u, u)

)
dt =

∞∑
i

σiei dLi(t) (7.1)

where {Li(t) = ∫ t+
0

∫
|x|�1 xÑi(ds,dx)}i∈N are independent Lévy processes on a complete probability

space (Ω, F , (Ft)t�0, P ), Ñi(dt,dx) = Ni(dt,dx) − dtλ(dx), {Ni(dt,dx)}i∈N are independent Poisson
random measure with the characteristic measure λ(dx) satisfying:

∫
|x|�1 x2λ(dx) < ∞.

7.1. The solutions to the martingale problem

In view of the results of previous, we consider the particular case where V = V , H = H and
V ′ = D(A)′ . We set

ΩN S = D
([0,∞); D(A)′

)
.

This space will play the role of state space for the solutions to (7.1). By Lemma 6.1, we denote by
BN S the σ -field of Borel sets of ΩN S , and, for each t � 0, by B N S

t = σ(ω|[0,t]: ω ∈ ΩN S ) and Bt
N S =

σ(ω|[t,∞): ω ∈ ΩN S ) the σ -fields of past and future, with respect to time t , events. For Markov
selection, we define the solutions to the martingale problem (7.1) as follows

Definition 7.1. Given x ∈ H , a probability P x on (ΩN S , BN S ) is a solution starting at x to the martingale
problem associated to the Navier–Stokes equation (7.1) if

[MP1] Px[L∞
loc([0,∞); H) ∩ L2

loc([0,∞); V )] = 1.

[MP2] For each {ei}i∈N the process Mei
t , defined Px-a.s. on (ΩN S , BN S ) as

Mei
t = 〈ξt − ξ0, ei〉 + ν

t∫
0

〈ξs, Aei〉ds −
t∫

0

〈
B(ξs, ei), ξs

〉
ds

is square integrable. Furthermore, {Mei
t }i∈N are independent Lévy process on (ΩN S , BN S ,

(B N S
t )t�0, Px), and the characteristic function is

E Px
[
e

iu(
M

ei
t2

−M
ei
t1

σi
)]= exp{(t2−t1)

∫
|x|�1(eiux−1−iux)λ(dx)}

for t2 � t1 � 0.
[MP3] δx is the marginal of Px at time t = 0.
[MP4] There exists a constant C > 0 and a Lebesgue null set T Px ⊂ (0,∞) such that for all 0 � s /∈ T Px

and all t � s,

E Px

(
sup

r∈[s,t]
∣∣ξ(r)

∣∣2
H +

t∫
s

∥∥ξ(r)
∥∥2

V dr
∣∣∣ B N S

s

)
� C

[∣∣ξ(s)
∣∣2

H + σ 2
∫

|x|�1

x2λ(dx)(t − s)

]
, P x-a.s.
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Theorem 7.1. Assume σ 2 < ∞. For each x ∈ H, there exists at least one martingale solution P x ∈ Pr(ΩN S ) to
Eq. (7.1) in the sense of Definition 7.1; and there exists a Markov selection (P x)x∈H .

To prove Theorem 7.1, we need the following three lemmas about regular probabilities. The con-
tinuous version refer to [8] and the proof is similar to [8]. The symbol used in the following three
lemmas refer to Section 6.

Lemma 7.1. (See [8].) Let P be a probability measure on (Ω, B), and for s � 0, denote Q s
x := P (. | Bs)(x) be

an RCPD of P with respect to Bs . Then for any ζ ∈ L1(Ω, B, P ) and t � s there exists a P -null set Λt,ζ ∈ Bs ,
satisfying for all x ∈ Λc

t,ζ ,

E P (ζ | Bt) = E Q s
x (ζ | Bt) = E Q s

x
(
ζ
∣∣ Bt

s

)
, Q s

x-a.s.

Lemma 7.2. (See [8].) Let D := {(t, s): 0 � s � t < ∞}, let ξ,η : D → R+ be two measurable processes on
(Ω, B). Given P ∈ Pr(Ω) and r � 0, suppose that

(i) for each s � 0, the map t → ξ(t, s) is a.s. increasing, and t → η(t, s) is a.s. right continuous, η(t, s) is
Bs-measurable for any t � s;

(ii) for each (t, s) ∈ D,

ξ(t, s),η(t, s) ∈ L1(Ω, B, P )

and

ξ(t, .), η(t, .) ∈ L1(0, t; L1(Ω, B, P )
);

(iii) for any x ∈ Ω , and t � s � r,

ξ(t, s,Φr x) = ξ(t − r, s − r, x)

and

η(t, s,Φr x) = η(t − r, s − r, x).

Then the following three statements are equivalent:

(1) There is a Lebesgue null set Tr ⊂ (r,∞) such that for any r � s /∈ Tr and t � s,

E P (ξ(t, s)
∣∣ Bs

)
� η(t, s), P -a.s.

(2) For some P -null set N ∈ Br and each x ∈ Nc, there is a Lebesgue null set Tr,x ⊂ (r,∞) such that for any
r � s /∈ Tr,x and any t � s,

E Q r
x
(
ξ(t, s)

∣∣ Br
s

)
� η(t, s), Q r

x-a.s.

(3) For some P -null set N ∈ Br and each x ∈ Nc, there is a Lebesgue null set Tr,x ⊂ (0,∞) such that for any
0 � s /∈ Tr,x and any t � s,

E Q r
x◦Φr

(
ξ(t, s)

∣∣ Bs
)
� η(t, s), Q r

x ◦ Φr-a.s.

Moreover Tr = ∅ ⇔ Tr,x = ∅.
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Lemma 7.3. (See [8].) Let (M(t))t�0 and (K (t))t�0 be Bt -adapted real valued process on (Ω, B) which satisfy
for x ∈ Ω , t � r � 0,

M(t,Φr x) = M(t − r, x), K (t,Φr x) = K (t − r, x). (7.2)

Given P ∈ Pr(Ω) and r � 0, assume that for each t � 0, E P (K (t)) < ∞. Then the following statements are
equivalent:

(1) (Mt , Bt , P )t�r is a càdlàg martingale with square variation process (K (t))t�r .
(2) There exists a P -null set N ∈ Br such that for all x /∈ N, (Mt , Bt , Q r

x)t�s is a càdlàg martingale with square
variation process (K (t))t�r and E P [E Q r· [K (t)]] < ∞.

(3) There exists a P -null set N ∈ Br such that for all x /∈ N, (Mt , Bt , Q r
x ◦ Φr)t�0 is a càdlàg martingale with

square variation process (K (t))t�0 .

Proof. (1) ⇒ (2) First, we prove that if r � t1 � t2, then there is a P -null set Nt1,t2 ∈ Br , such that for
all x /∈ Nt1,t2 ,

E Q r
x [Mt2 | Bt1 ] = Mt1 , Q r

x-a.s. (7.3)

Indeed, let A ∈ Bt1 , then for each B ∈ Br we have that A ∩ B ∈ Bt1 and

E P [I B · E Q r
. [Mt2 I A]]= E P [Mt2 I A∩B ]

= E P [Mt1 I A∩B ]
= E P [I B · E Q r

. [Mt1 I A]]
so that E Q r

x [Mt2 I A] = E Q r
x [Mt1 I A] out of a P -null set in Br . Since Br is countably generated, the

P -null set can be chosen independently of A.
Next, let D be a dense set in [r,∞), then by the previous argument we can find a P -null set

N ∈ Br such that (7.3) is true for x /∈ N and t1, t2 ∈ D . By Lemma 1.29 in [15], (7.3) is true for all t � r.
One can proceed similarly to prove that Mt is Q r

x -square integrable with quadratic variation
(Kt)t�r , since M2

t is a sub-martingale and M2
t − Kt is a martingale. Finally, E P [E Q r

. [Kt]] = E P [Kt].
(2) ⇒ (1) Since x → Q r

. [Kt] is P-integrable, Mt is P-square integrable and it is easy to see that Mt
is a martingale with quadratic variation Kt .

(2) ⇔ (3) is direct from (7.2). Indeed, for any A ∈ Bs−r ,

E Q r
x◦Φr (I A · Ms−r) = E Q r

x
(

IΦr A · M
(
s − r,Φ−1

r (.)
))

= E Q r
x
(

IΦr A · M(s)
)

= E Q r
x
(

IΦr A · M(t)
)

= E Q r
x◦Φr (I A · Mt−r),

this completes the proof. �
As a consequence, we have the following BDG’s inequality.

Corollary 7.1. Let (Mt , Bt , P )t�r be a càdlàg square integrable martingale with Mr = 0, then P -a.s.

E P
(

sup
s∈[r,t]

|Ms|
∣∣ Br

)
� C E P ([Mt]1/2

∣∣ Br
)
.



2774 Z. Dong, J. Zhai / J. Differential Equations 250 (2011) 2737–2778
Proof of Theorem 7.1. The proof will be developed in the following lemmas.

Lemma 7.4. Assume σ 2 < ∞. For each x ∈ H, there exists at least one martingale solution P x ∈ Pr(ΩN S ) to
Eq. (7.1) in the sense of Definition 7.1.

Proof. Refer to Section 3, we only prove [MP4]. From Theorem 3.3 we have Pn-a.e.

∣∣ξ(t)
∣∣2

H + 2ν

t∫
s

∥∥ξ(r)
∥∥2

V dr = ∣∣ξ(s)
∣∣2

H + 2

t∫
s

〈
ξ(r),

n∑
i=1

σiei dLn
i (r)

〉
H

+
n∑

i=1

t∫
s

∫
|x|�1

σ 2
i x2 dNn

i (dr,dx).

Let

y(t, s, ξ) = sup
s′∈[s,t]

∣∣ξ(s′)∣∣2
H + 2ν

t∫
s

∥∥ξ(s′)∥∥2
V ds′,

yn(t, s, ξ) = sup
s′∈[s,t]

∣∣ξ(s′)∣∣2
Hn

+ 2ν

t∫
s

∥∥ξ(s′)∥∥2
Vn

ds′.

Then

E Pn
[

y(t, r, ξ)
∣∣ B N S

r

]
�
∣∣ξ(r)

∣∣2
H + 2E Pn

[
sup

s′∈[r,t]

s′∫
r

〈
ξ
(
t′), n∑

i=1

σiei dLn
i

(
t′)〉 ∣∣∣ B N S

r

]

+ E Pn

[
n∑

i=1

t∫
r

∫
|x|�1

σ 2
i x2 dNn

i (dr,dx)

]

by Corollary 7.1 �
∣∣ξ(r)

∣∣2
H + C1 E Pn

{[ t∫
r

〈
ξ
(
t′), n∑

i=1

σieix

〉2

dNn
i

(
dt′,dx

)]1/2 ∣∣∣ B N S
r

}

+ (t − r)σ 2
∫

|x|�1

x2λ(dx)

�
∣∣ξ(r)

∣∣2
H + C1 E Pn

{
sup

s′∈[r,t]
∣∣ξ(s′)∣∣

H

[ t∫
r

n∑
i=1

σ 2
i x2 dNn

i

(
dt′,dx

)]1/2 ∣∣∣ B N S
r

}

+ (t − r)σ 2
∫

|x|�1

x2λ(dx)

�
∣∣ξ(r)

∣∣2
H + 1/2E Pn

[
sup

s′∈[r,t]
∣∣ξ(s′)∣∣2

H

∣∣∣ B N S
r

]
+ C2(t − r)σ 2

∫
|x|�1

x2λ(dx).

So E Pn [y(t, r, ξ)|B N S
r ] � C(|ξ(r)|2H + (t − r)σ 2

∫
|x|�1 x2λ(dx)).
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By Theorem 3.3, Remark 3.1 and Skorokhod embedding theorem, there exists a stochastic basis
(Ω ′, F ′, P ′) and ΩN S ∩ L2

loc([0,∞); H)-valued random variables x̃, x̃n n � 1 such that x̃n , x̃ have the
law of Pn , P on ΩN S ∩ L2

loc([0,∞); H) respectively, and x̃n → x̃ in ΩN S ∩ L2
loc([0,∞); H), P ′-a.s. (by

choosing a sub-sequence if necessary). So, for any T > 0, we have limn→∞
∫ T

0 E P ′ [|̃xn(s) − x̃(s)|2H ]ds =
0. Thus there exists a Lebesgue null set T ⊂ (0,∞) such that for all s /∈ T , limn→∞ E P ′ [|̃xn(s) −
x̃(s)|2H ] = 0.

For any r /∈ T and t � r, we want to prove P -a.s.

E P [y(t, r, ξ)
∣∣ B N S

r

]
� C

(∣∣ξ(r)
∣∣2

H + (t − r)σ 2
∫

|x|�1

x2λ(dx)

)

which is equivalent to prove that for any B N S
r -measurable and bounded continuous function g

on ΩN S ,

E P [y(t, r, ξ)g(ξ)
]
� C E P

[(∣∣ξ(r)
∣∣2

H + (t − r)σ 2
∫

|x|�1

x2λ(dx)

)
g(ξ)

]
.

By Fatou’s lemma

E P [yn(t, r, ξ)g(ξ)
]= E P ′[

yn(t, r, x̃ )g( x̃ )
]

� lim inf
m→∞ E P ′[

yn(t, r, x̃m)g( x̃m)
]

= lim inf
m→∞ E Pm

[
yn(t, r, ξ)g(ξ)

]
� C lim inf

m→∞ E Pm

[(∣∣ξ(r)
∣∣2

H + (t − r)σ 2
∫

|x|�1

x2λ(dx)

)
g(ξ)

]

= C lim inf
m→∞ E P ′

[(∣∣̃xm(r)
∣∣2

H + (t − r)σ 2
∫

|x|�1

x2λ(dx)

)
g( x̃m)

]

= C E P ′
[(∣∣̃x(r)∣∣2H + (t − r)σ 2

∫
|x|�1

x2λ(dx)

)
g( x̃ )

]

= C E P
[(∣∣ξ(r)

∣∣2
H + (t − r)σ 2

∫
|x|�1

x2λ(dx)

)
g(ξ)

]

which means that [MP4] in Definition 7.1 holds for P by taking limitation in n. �
Define for each x ∈ H the subset of Pr(ΩN S ) as

CN S(x) = {
P ∈ Pr(ΩN S)

∣∣ P solves the martingale problem (7.1) starting at δx
}
. (7.4)

Lemma 7.5. Given x ∈ H, the set CN S (x) is non-empty, convex and compact, and satisfies

(1) for every P ∈ CN S (x), P [D([0,∞); Hσ )] = 1,
(2) the map CN S : H → Comp(Pr(ΩN S )) is Borel measurable.
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Proof. Due to Lemma 7.4, the set CN S (x) is non-empty. And, from [MP1] of Definition 7.1 and Lemma
6.2, it follows that P [D([0,∞); Hσ )] = 1 for every P ∈ CN S (x). And it is easy to check each CN S (x) is
convex.

Refer to [7], compactness and measurability follow from the following claim:
For each sequence {xn}n∈N ⊂ H and Pn ∈ CN S (xn), if xn → x in H , then there exists nk ↑ ∞ and

P ∈ CN S (x), such that Pnk → P with respect to weak convergence in Pr(ΩN S ).
In order to prove the claim, let xn → x in H and Pn ∈ CN S (xn), we first show that (Pn)n∈N is tight

on ΩN S ∩ L2
loc([0,∞); H).

By [MP4] of Definition 7.1, we have that for all T > 0,

E Pn

[
sup

t∈[0,T ]
|ξt |2H +

T∫
0

‖ξs‖2
V ds

]
� C

(
σ 2, T , |xn|2H ,

∫
|x|�1

x2λ(dx)

)
.

Next, let (Σ, F , (Ft)t�0, P ) be a filtered probability space, {u(t)}t�0 be a process on Σ whose law
is Pn and such that {u(t)}t�0 is a weak martingale solution to (3.1). In particular,

u(t) = xn −
t∫

0

(
Au(s) + B

(
u(s), u(s)

))
ds +

∞∑
i=0

σi Li(t)ei, P -a.s.

in D(A)′ .
Using the same method in Theorem 3.3 and Remark 3.1, we have that (Pn)n∈N is tight on ΩN S ∩

L2
loc([0,∞); H), denote P = limk→∞ Pnk and we also have P satisfy [MP1], [MP2], [MP3]. By using the

method as in Lemma 7.4, [MP4] follows. �
Lemma 7.6. The disintegration property of Definition 6.3 holds for the family (CN S (x))x∈H .

Proof. Fix x0 ∈ H and P ∈ CN S (x0). Let Q r
x := P (· | B N S

r )(x) be an RCPD of P with respect to Br . We
want to show that there is a P -null set N ∈ Br such that for all x /∈ N ,

Q r
x ◦ Φr ∈ CN S

(
x(r)

)
.

That is, we need to check Q r
x ◦ Φr satisfies [MP1]–[MP4].

[MP1] Set

At = {
ξ ∈ ΩN S : ξ |[0,t] ∈ L∞(0, t; H) ∩ L2(0, t; V )

} ∈ B N S
t ,

At = {
ξ ∈ ΩN S : ξ |[t,∞) ∈ L∞

loc

([t,∞); H) ∩ L2
loc

([t,∞); V
)} ∈ Bt

N S .

Notice that P (At ∩ At) = 0 by property [MP1]. Hence,

1 = P
[

At ∩ At]=
∫
At

Q r
x

[
At]P (dx),

and thus there is a P -null set N1 ∈ B N S
t such that Q r

x[St] = 1 for all x /∈ N1.
[MP2] By (3) of Lemma 7.3 there exists a P -null set N2 ∈ B N S

r such that for all x /∈ N2, Q r
x ◦ Φr

satisfies [MP2].
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[MP3] We choose ξ and η in Lemma 7.2 as follows

ξ(t, s) := sup
s′∈[s,t]

∣∣x(s′)∣∣2
H +

t∫
s

∥∥x
(
s′)∥∥2

V ds′, η(t, s) = C

[∣∣x(s)
∣∣2

H + σ 2
∫

|x|�1

x2λ(dx)(t − s)

]
.

It’s clear that for each s ∈ [0, t], η(t, s) is B N S
s -measurable, t → η(t, s) is continuous, t → ξ(t, s) is

increasing, and (iii) in Lemma 7.2 holds. The integrability conditions on ξ and η in Lemma 7.2 follow
from [MP4], i.e.

E P (ξ(t,0)
)
� C

[
|x0|2H + σ 2

∫
|x|�1

x2λ(dx)t

]
.

Thus, by (2) of Lemma 7.2, there exists a P -null set N3 ∈ B N S
r such that for all x /∈ N3, Q r

x ◦Φr satisfies
[MP4].

Finally, letting N := N1 ∪ N2 ∪ N3, we obtain the desired result. �
Lemma 7.7. The reconstruction property of Definition 6.3 holds for the family (CN S (x))x∈H .

Proof. Fix x0 ∈ H , and P ∈ CN S (x0), let Q r
x ∈ Pr(Ωr) satisfying the assumptions in Definition 6.3. Our

aim is to show P ⊗r Q r ∈ CN S (x0).
[MP1] P ⊗r Q r[At ∩ At] = ∫

At
Q r

x[At]P (dx) = P (At) = 1, since Q r
x[At] = 1 holds due to [MP1] for

Q r
x ∈ Φt CN S (x(t)).

[MP3] Since P agrees with P ⊗r Q r on B N S
r , P ⊗r Q r(y : y(0) = x0) = 1.

[MP2] and [MP4] can be obtained directly from Lemmas 7.2 and 7.3 and the fact that P agrees
with P ⊗r Q r on B N S

r . �
So Theorem 7.1 is proved. �
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