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Volterra competition model with advection terms.
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1. Introduction

Mathematical modelling has long been central to the development of general invasion theory
(e.g., [14–17,19]). Systems in the forms of reaction–diffusion equations and integro-difference equa-
tions are commonly used to describe biological invasion processes. Studies on existence of traveling
waves in such systems have received considerable attention, and many noteworthy findings have come
out of this field. Weinberger, Lewis, and Li [23,5,7,24] established spreading speeds and traveling wave
solutions for cooperative recursions which include cooperative reaction–diffusion systems and coop-
erative integro-difference systems as special models. They showed that in a cooperative system with
more than two equilibria, different components can spread at different speeds, but if certain lin-
ear determinacy conditions are satisfied then all the components spread at the same spreading speed
which can be computed through linearization. They also showed that the slowest spreading speed can
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be characterized as the slowest speed of a class of traveling wave solutions. The proof of the ex-
istence of traveling wave solutions given in [7] depends critically on compactness of the recursion
operator. For a reaction–diffusion system, compactness is ensured by positivity of all diffusion coef-
ficients. However, there are many biological reaction–diffusion models where at least one diffusion
coefficient is zero; see for example Lewis and Schmitz [6], Hadeler and Lewis [3], and Capasso and
Maddalena [1].

Liang et al. [11] introduced the Kuratowski measure of noncompactness to weaken the compact-
ness assumption for (periodic) reaction–diffusion systems, and established the existence of traveling
wave solutions if the associated solution maps are α-contractions. However it is often difficult to
prove that the solution maps of a system with high nonlinearity are α-contractions. Fang and Zhao [2]
employed the iteration method involving lower and upper solutions to establish the existence of trav-
eling wave solution for a partially degenerate cooperative reaction–diffusion system and provided the
conditions that ensure the existence of traveling wave solutions. The iteration method has proven to
be useful in establishing traveling wave solutions for population models; see Weinberger [21], Wu
and Zou [25], and Volkov and Lui [20] for the development of the method and its applications in
different contexts.

In this paper we provide new results on the existence of traveling wave solutions for partially
degenerate cooperative reaction–diffusion systems. We first show that a traveling wave solution of
a partially degenerate cooperative reaction–diffusion system with an appropriate speed is a fixed
point of a compact integral operator. We prove that a traveling wave solution for a partially degen-
erate reaction–diffusion system can be obtained by taking a limit of a sequence of functions that are
the fixed points for integral operators. We show via integral systems that there exist traveling wave
solutions in a partially degenerate reaction–diffusion system with speeds above two well-defined ex-
tended real numbers. We prove that the two numbers are the same and may be characterized as the
spreading speed as well as the slowest speed of a class of traveling wave solutions provided that the
linear determinacy conditions given in Weinberger et al. [23] are satisfied. The linear determinacy
conditions simplify the conditions given in [2]. The hypothesis that there are only two constant equi-
libria in reaction–diffusion systems made in both [2] and [11] is dropped in the present paper. As
shown in Weinberger et al. [23] and Li et al. [7], the spatial dynamics of a system with three or more
equilibria can be very different from those of a system with only two equilibria.

This paper is organized as follows. In Section 2, we present the hypotheses for cooperative
reaction–diffusion systems and summarize the results on spreading speeds obtained in [23,7,24].
Section 3 shows that a traveling wave solution of a partially generate reaction–diffusion system is
equivalent to a fixed point of a compact integral operator. In Section 4, we define two extended real
numbers, and relate them to the speeds of traveling wave solutions. Section 5 is devoted to exploring
how the linear determinacy conditions can be used to determine the slowest speed of traveling wave
solutions. We demonstrate our theoretical results by examining a partially degenerate Lotka–Volterra
competition model in Section 6. Some concluding remarks are provided in Section 7.

2. Hypotheses and spreading speeds

We study the existence of traveling wave solutions for the reaction–diffusion system

∂u

∂t
= D

∂2u

∂x2
− E

∂u

∂x
+ f

(
u(t, x)

)
, (2.1)

where the vector-valued function u(t, x) = (u1(t, x), u2(t, x), . . . , uk(t, x)) represents densities of the
populations of k species or classes at the point x and the time t , D = diag(d1, . . . ,dk) and E =
diag(e1, . . . , ek) are constant diagonal matrices, D has nonnegative but not necessarily positive di-
agonal entries, and f(u) = ( f1, f2, . . . , fk) is independent of x and t .

We introduce some notation. We shall use boldface Roman symbols like u(x) to denote k-vector-
valued functions of x, and boldface Greek letters like α to stand for k-vectors, which may be thought
of as constant vector-valued functions. We define u(x) � v(x) to mean that ui(x) � vi(x) for all i
and x, and u(x) � v(x) to mean that ui(x) > vi(x) for all i and x. We also define max{u(x),v(x)}
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(min{u(x),v(x)}) to mean the vector-valued function whose ith component at x is max{ui(x), vi(x)}
(min{ui(x), vi(x)}). We use | · | to denote the Euclidean norm. We use the notation 0 for the constant
vector all of whose components are 0. We shall also use the notation

Cα := {
u: u(x) is continuous, and 0 � u(x) � α for all x

}
.

We shall make the following hypotheses about the system (2.1).

Hypotheses 2.1.

i. There is a proper subset Σ0 of {1, . . . ,k} such that di = 0 for i ∈ Σ0 and di > 0 for i /∈ Σ0 .
ii. f(0) = 0, there is a constant β � 0 such that f(β) = 0 which is minimal in the sense that there are no

constant ν other than β such that f(ν) = 0 and 0 � ν � β , and the equation f(α) = 0 has a finite number
of constant roots.

iii. The system is cooperative; i.e., f i(α) is nondecreasing in all components of α with the possible exception
of the ith one.

iv. f(α) is uniformly Lipschitz continuous in α so that there is ρ > 0 such that for any αi � 0, i = 1,2,
|f(α1) − f(α2)| � ρ|α1 − α2|.

v. f has the Jacobian f′(0) at 0 with the property that f′(0) has a positive eigenvalue whose eigenvector has
positive components.

Hypothesis 2.1.i assumes that there is at least one zero diffusion coefficient in (2.1). Hypothe-
ses 2.1.ii–v are essentially the same as those given in Theorem 4.1 in Li et al. [7].

We first recall the framework developed in Weinberger et al. [23] in establishing spreading speeds
for (2.1). Let Q denote the time one solution map of (2.1). A result of Szarski (Theorem 65.1 of [18])
shows that Q is order-preserving in Cβ in the sense that for u,v ∈ Cβ if u � v then Q [u] � Q [v].
Define the sequence an(c; x) by the recursion

an+1(c; x) = max
{
φ(x),

[
Q

(
an(c; ·))](x + c)

}
(2.2)

where a0(c; x) = φ(x), and φ(x) is any nonincreasing continuous function with φ(x) = 0 for x � 0
and 0 � φ(−∞) � β . By definition a0 � a1, and an induction argument shows that for all n, an �
an+1 � β , and an(c; x) is nonincreasing in c and x. Thus the sequence an increases to a limit function
a(c; x) that is again nondecreasing in c and x and bounded by β . The results from Lui [13] show that
a(c;−∞) = β , and that the constant vector a(c;∞) is a fixed point of Q , which is nondecreasing in
c and independent of the choice of φ. Define

c∗ := sup
{

c; a(c;∞) = β
}
, (2.3)

and

c∗+ := sup
{

c; a(c;∞) �= 0
}
. (2.4)

Clearly c∗+ � c∗ . It was shown in [23] that c∗ is the slowest spreading speed and c∗+ is an upper
bound for all the spreading speeds for (2.1). In the case that there are only two equilibria 0 and β ,
c∗+ = c∗ so that all the components spread at the same speed c∗ . The fastest spreading speed c∗

f was
defined in Li et al. [7]. Theorem 4.2 in [23] provides the linear determinacy conditions under which
c∗+ = c∗

f = c∗ = c̄ where c̄ is the spreading speed of the linearized system. In [23], the reflection
invariance (i.e., ei = 0 for all i) was assumed, but it was not used in Theorem 4.2. Consequently
Theorem 4.2 in [23] still works for the reaction–advection–diffusion system (2.1).

The existence of traveling wave solutions of (2.1) was studied in Li et al. [7]. The authors showed
that c∗ can be characterized as the slowest speed of a class of traveling wave solutions when all the
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di are positive. The assumption di > 0 for all i implies that the time one solution map Q is compact,
which is used in the proof of the existence of traveling wave solutions in [7]. Consequently, the results
on traveling wave solutions given in [7] do not apply to (2.1) when at least one of the di is zero.

3. Integral systems

We use w(x − ct) to denote a nonincreasing traveling wave solution of (2.1) with speed c connect-
ing two different constant equilibria ν1 and ν2 with ν1 � ν2. It satisfies

−cw′ = Dw′′ − Ew′ + f(w) (3.1)

and

w(−∞) = ν1, w(∞) = ν2.

An important observation from (3.1) is that

lim
x→∞ w′(x) = lim

x→−∞ w′(x) = 0.

This can be easily shown by using the so-called fluctuation lemma that can be found in [4].
Choose κ > ρ where ρ is given in Hypothesis 2.1.iv. Define

H(u) = (
f(u) + κu

)
/κ. (3.2)

Clearly f (α) = 0 if and only if H(α) = α. It follows from Hypothesis 2.1.iv that

H(u) − H(v) = (1/κ)
[
f(u) − f(v) + κ(u − v)

]
� κ − ρ

κ
(u − v) � 0 (3.3)

for 0 � v � u � β .
For i ∈ Σ0, if c − ei > 0, define

(mc)i(x) =
{

0 when x > 0,

κ
c−ei

e
κ

c−ei
x

when x � 0,

and if c − ei < 0, define

(mc)i(x) =
{

κ
ei−c e

κ
c−ei

x
when x � 0,

0 when x < 0.

For i /∈ Σ0, define

(mc)i(x) = κ

di(λi1 − λi2)

{
e−λi1x when x � 0,

e−λi2x when x < 0,
(3.4)

where

λi1 = (c − ei) + √
(c − ei)

2 + 4κdi
> 0, λi2 = (c − ei) − √

(c − ei)
2 + 4κdi

< 0. (3.5)

2di 2di



4846 B. Li / J. Differential Equations 252 (2012) 4842–4861
λi1 and λi2 are the two solutions of the equation

di z
2 − (c − ei)z − κ = 0.

Wu and Zou [25] used (mc)i defined above and studied traveling wave solutions for delayed
reaction–diffusion systems with di > 0 and ei = 0 for all i. Fang and Zhao [2] introduced the functions
similar to (mc)i for di = 0 and investigated the existence of traveling wave solutions for (2.1) with
ei = 0 for all i. The authors found lower and upper solutions via differential-integral inequalities, and
used the iteration method to establish the existence of traveling wave solutions.

One can further verify that each mi
c(x) defined above has the properties that mi

c(x) � 0, mi
c(x) is

bounded, and
∫ +∞
−∞ mi

c(x)dx = 1, so that mi
c represents a probability density function. Let

mc(x) = diag
(
(mc)1(x), . . . , (mc)k(x)

)
.

We have that

∞∫
−∞

mc(x)dx = I.

Define

Tc[u](x) =
∞∫

−∞
mc(x − y)H(u)(y)dy. (3.6)

We have the following important result.

Theorem 3.1. Assume that di � 0 for all i and that Hypotheses 2.1.ii–v are satisfied. Let c �= ei for all i with
di = 0. Then w(x − ct) is a nonincreasing traveling wave solution of (2.1) connecting two different constant
equilibria ν1 and ν2 if and only if w is a continuous nonincreasing function satisfying

w(x) = Tc[w](x) (3.7)

and connecting ν1 and ν2 .

Proof. Assume that w(x−ct) is a nonincreasing traveling wave solution of (2.1) connecting ν1 and ν2.
w satisfies the wave equation (3.1). If di = 0, the ith equation in (3.1) is given by

(c − ei)w ′
i − κ wi = −(

f i(w) + κ wi
)
. (3.8)

We first consider the case of c −ei > 0. We view the right-hand side of Eq. (3.8) as a nonhomogeneous
term and solve the differential equation to obtain

wi(x) = wi(x0)e
κ

c−ei
(x−x0) + κ

(c − ei)

x0∫
x

e
κ

c−ei
(x−y)

Hi(w)(y)dy (3.9)

where x0 is any real number. Using the fact that
∫ ∞

x e
− κ

c−ei
y

Hi(w)(y)dy is convergent, wi(x) is

bounded and limx0→∞ e
−κ

c−ei
x0 = 0, we take the limit x0 → ∞ in (3.9) to obtain
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wi(x) = κ

c − ei

∞∫
x

e(c−ei)(x−y)Hi(w)(y)dy

which is equivalent to

wi(x) =
∞∫

−∞
(mc)i(x − y)Hi(w)(y)dy.

Similarly we can show that this equation holds in the case of c − ei < 0.
If di > 0, the ith equation in (3.1) is given by

di w ′′
i + (c − ei)w ′

i − κ wi = −(
f i(w) + κ wi

)
. (3.10)

Again we view the right-hand side of (3.10) as a nonhomogeneous term. Then wi is given by

wi(x) = −λi2 wi(x0) + w ′
i(x0)

λi1 − λi2
eλi1(x0−x) + λi1 wi(x0) + w ′

i(x0)

λi1 − λi2
eλi2(x0−x)

+ κ

di(λi1 − λi2)

x∫
x0

e−λi1(x−y)Hi(w)(y)dy

+ κ

di(λi1 − λi2)

x0∫
x

e−λi2(x−y)Hi(w)(y)dy (3.11)

where x0 is any real number.
We multiply Eq. (3.10) by the factor eλi1x and then use integration by parts to obtain that

[
di w ′

i(x0) + (c − ei − diλi1)wi(x0)
]
eλi1x0 − [

di w ′
i(−x0) + (c − ei − diλi1)w(−x0)

]
e−λi1x0

+
x0∫

−x0

[
diλ

2
1 − (c − ei)λ1 − κ

]
wi(y)eλi1 y dy + κ

x0∫
−x0

eλi1 y Hi(w)(y)dy = 0. (3.12)

Since c − ei − diλi1 = diλi2 and dλ2
i1 − (c − ei)λi1 − κ = 0, it follows from (3.12) that

[
di w ′

i(x0) + diλi2 wi(x0)
]
eλi1x0 − [

di w ′
i(−x0) + diλi2 wi(−x0)

]
e−λi1x0

+ κ

x0∫
−x0

eλi1 y Hi(w)(y)dy = 0. (3.13)

Since λi1 > 0 the second term in (3.13) approaches zero as x0 → ∞. Note that both wi(x0) and
w ′

i(x0) are bounded. We therefore have that

lim
x0→∞

{[
di w ′

i(x0) + diλ2i wi(x0)
]
eλi1x0 + κ

x0∫
−x

eλi1 y Hi(w)(y)dy

}
= 0. (3.14)
0
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We rewrite (3.11) as

wi(x) = λi1 wi(x0) + w ′
i(x0)

λi1 − λi2
eλi2(x0−x)

− 1

(λi1 − λi2)

{[
w ′

i(x0) + λ2i wi(x0)
]
eλi1x0 + κ

di

x0∫
−x0

eλi1 y Hi(w)(y)dy

}
e−λi1x

+ k

di(λi1 − λi2)

[ x∫
−x0

e−λi1(x−y)Hi(w)(y)dy +
x0∫

x

e−λi2(x−y)Hi(w)(y)dy

]
. (3.15)

Note that the first term on the right-hand side of (3.15) approaches 0 as x0 → ∞. Letting x0 → ∞
in (3.15) and using (3.14), we obtain that

wi(x) = κ

di(λi1 − λi2)

[ ∞∫
x

e−λi2(x−y)Hi(w)(y)dy +
x∫

−∞
e−λi1(x−y)Hi(w)(y)dy

]

=
∞∫

−∞
(mc)i(x − y)Hi(w)(y)dy.

We have shown that w satisfies (3.7).
We now show that if a nonincreasing continuous function w satisfies (3.7) and connects two

different equilibria ν1 and ν2 then it is a traveling wave solution of (2.1). The definition of Tc and
continuity of w show that w is differentiable. Direct calculations show that for di = 0 and c − ei > 0

(
wi(x)

)′ = d

dx

∞∫
x

(
κ/(c − ei)

)
e(κ/(c−ei))(x−y)Hi

(
w(y)

)
dy = (

κ/(c − ei)
)[

wi(x) − Hi
(
w(x)

)]
,

so that

−c(wi)
′ = −ei(wi)

′ + f i(w). (3.16)

Similarly one can show that (3.16) holds for di = 0 and c − ei < 0.
If di > 0

(
wi(x)

)′ = κ

di(λi1 − λi2)

d

dx

( ∞∫
x

e−λi2(x−y)Hi(w)(y)dy +
x∫

−∞
e−λi1(x−y)Hi(w)(y)dy

)

= κ

di(λi1 − λi2)

(
−λi2

∞∫
x

e−λi2(x−y)Hi(w)(y)dy − λi1

x∫
−∞

e−λi1(x−y)Hi(w)(y)dy

)
.

(3.17)

From this we find that
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(
wi(x)

)′′ = κ

di(λi1 − λi2)

[
(λi2 − λi1)Hi(w)(y) + λ2

i2

∞∫
x

e−λi2(x−y)Hi(w)(y)dy

+ λ2
i1

x∫
−∞

e−λi1(x−y)Hi(w)(y)dy

]
.

Using this, (3.2), (3.17), and (3.5), we obtain that for any i with di > 0,

−c(wi)
′ = di(wi)

′′ − ei(wi)
′ + f i(w).

It follows from this and (3.16) that w satisfies (3.1) so that w is a traveling wave solution of (2.1). The
proof of the theorem is complete. �

Theorem 3.1 shows that w(x − ct) with c �= ei for i ∈ Σ0 is a traveling wave solution of (2.1) if and
only if it is a fixed point of Tc .

4. Existence of traveling wave solutions

Define

D(�) = D + (1/�)I

with � � 1 and I the identity matrix. Clearly, as � → ∞, D(�) approaches D . D(�) is a diagonal matrix
with positive diagonal entries. Consequently, the solution map operators for

∂u

∂t
= D(�) ∂

2u

∂x2
− E

∂u

∂x
+ f

(
u(t, x)

)
(4.1)

are compact, and the results on the existence of traveling wave solutions given in [7] apply to (4.1).

Lemma 4.1. Assume that w(�)(x − ct) is a nonincreasing traveling wave solution of (4.1) with speed c �= ei for
i ∈ Σ0 . Then the family w(�) is an equicontinuous family of functions.

Proof. D(�) can be written as D(�) = diag(d(�)
1 ,d(�)

2 , . . . ,d(�)

k ) where d(�)
i = di + 1/�. Theorem 3.1 shows

that

w(�)(x) =
∞∫

−∞
m(�)

c (x − y)H
(
w(�)

)
(y)dy (4.2)

where

(
m(�)

c
)

i(x) = κ

d(�)
i (λ

(�)
i1 − λ

(�)
i2 )

{
e−λ

(�)
i1 x when x � 0,

e−λ
(�)
i2 x when x < 0,

with

λ
(�)
i1 = (c − ei) +

√
(c − ei)

2 + 4κd(�)
i

2d(�)
> 0, λ

(�)
i2 = (c − ei) −

√
(c − ei)

2 + 4κd(�)
i

2d(�)
< 0.
i i
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Define

	
(�)
i (M) :=

−M∫
−∞

(
m(�)

c
)

i(x)dx +
∞∫

M

(
m(�)

c
)

i(x)dx.

Direct calculations show that

	
(�)
i (M) = d(�)

i√
(c − ei)

2 + 4κd(�)
i

[
λ

(�)
i1 eλ

(�)
i2 M − λ

(�)
i2 e−λ

(�)
i1 M]

. (4.3)

Let

λ
(�)
i+ =

√
(c − ei)

2 + 4κd(�)
i + |c − ei|

2d(�)
i

and

λ
(�)
i− = −

√
(c − ei)

2 + 4κd(�)
i − |c − ei|

2d(�)
i

.

Then λ
(�)
i+ > 0, λ

(�)
i− < 0, and furthermore

∣∣λ(�)
i−

∣∣ � λ
(�)
i1 ,

∣∣λ(�)
i−

∣∣ �
∣∣λ(�)

i2

∣∣,
and

λ
(�)
i+ � λ

(�)
i1 , λ

(�)
i+ �

∣∣λ(�)
i2

∣∣.
It follows from this and (4.3) that

	
(�)
i (M) � 2

d(�)
i√

(c − ei)
2 + 4κd(�)

i

λ
(�)
i+ eλ

(�)
i− M

=
√

(c − ei)
2 + 4κd(�)

i + |c − ei|√
(c − ei)

2 + 4κd(�)
i

eλ
(�)
i− M . (4.4)

Let dmin = inf{d(�)
i , i /∈ Σ0}. Then dmin > 0. It follows from (4.4) that for i /∈ Σ0,

	
(�)
i (M) �

√
(c − e)2 + 4κd(�)

i + |c − e|√
(c − ei)

2 + 4κdmin

eλ
(�)
i− M . (4.5)

For i ∈ Σ0, (4.4) shows that
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(�)
i (M) �

√
(c − ei)

2 + 4κd(�)
i + |c − ei |

|c − ei| eλ
(�)
i− M . (4.6)

Note that

lim
d(�)

i →0
λ

(�)
i− = −κ/|c − ei| < 0.

It follows from this, (4.5), (4.6), the convergence of d(�)
i to di , the continuity of λ

(�)
− in d(�)

i , and the
assumption that c �= ei for i ∈ Σ0 that there exist δ1 > 0, δ2 > 0 independent on � � 1 and i such that

	
(�)
i (M) � δ1e−δ2 M .

We therefore have that for any positive ε > 0 there exists Mε > 0 independent on � � 1 such that for
all � � 1 and i

−Mε∫
−∞

(
m(�)

c
)

i(x)dx +
∞∫

Mε

(
m(�)

c
)

i(x)dx < ε.

An argument similar to what is given on page 331 in Li et al. [8] shows that w(�) forms an equicon-
tinuous family of functions. The proof is complete. �

As for (2.1), one can define a function sequence a(�)
n (c; x) by (2.2) with Q replaced by Q (�) where

Q (�) is the time one solution map of (4.1). Let a(�) denote the limit of a(�)
n (c; x) as n → ∞. Define

c(�)∗ := sup
{

c; a(�)(c;∞) = β
}
,

and

c(�)∗+ := sup
{

c; a(�)(c;∞) �= 0
}
.

Let

c̃∗ = lim inf
�→∞ c(�)∗ (4.7)

and

c̃∗+ = lim inf
�→∞ c(�)∗+. (4.8)

Clearly, both c̃∗ and c̃∗+ are well-defined extended real numbers with c̃∗+ � c̃∗ . They can be related to
the speeds of traveling wave solutions.

We first show that the slowest speed of a class of traveling wave solutions in (2.1) connecting β
with an equilibrium other than β cannot be bigger than c̃∗ and smaller than c∗ .

Theorem 4.1. Assume that Hypotheses 2.1 are satisfied. Then the following statements are true for the sys-
tem (2.1):
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i. for c � c̃∗ and c �= ei for all i ∈ Σ0 , there is a nonincreasing traveling wave solution w(x − ct) with
w(−∞) = β and w(∞) an equilibrium other than β; and

ii. if there is a nonincreasing traveling wave w(x − ct) with w(−∞) = β and w(∞) an equilibrium other
than β , then c � c∗ .

Proof. The proof of the statement ii is similar to the second part of the proof of Theorem 3.1 in [7]
and is omitted here.

The definition of c̃∗ shows that there exists a subsequence of {�} still denoted by {�} such that

lim
�→∞ c(�)∗+ = c̃∗.

Then for c > c̃∗ , there exists Nc > 0 such that c > c(�)∗+ for � � Nc . It follows from Theorem 4.1 of [7]
that for c > c̃∗ and � � Nc the system (4.1) has a nonincreasing traveling wave solution w(�)(x − ct)
with w(�)(−∞) = β and w(�)(−∞) an equilibrium other than β . Since β is the only equilibrium in
the interior of Cβ , we can choose η > 0 so small that there is no constant equilibrium other than β
in the set {w ∈ Cβ : |β − w| � η}.

Since the continuous function |β − w(�)(x)| increases from 0 to a positive number as x increases
from −∞ to ∞, the intermediate value theorem states that there is a real number at which |β −
w(�)| = η. We can assume that the real number is 0 by translating if necessary. We therefore have
that

∣∣β − w(�)(0)
∣∣ = η.

Lemma 4.1 shows that w(�) is an equicontinuous family of functions. Then Ascoli’s theorem implies
that w(�) has a subsequence w(� j) such that w(� j)(x) converges to w(x) uniformly on every bounded
interval. Clearly

∣∣β − w(0)
∣∣ = η. (4.9)

We now show that

lim
�→∞

∞∫
−∞

∣∣m(�)
c (x) − mc(x)

∣∣dx = 0. (4.10)

For i ∈ Σ0 and c − ei > 0,

∞∫
−∞

∣∣(m(�)
c

)
i(x) − (mc)i(x)

∣∣dx

=
∞∫

0

∣∣(m(�)
c

)
i(x) − (mc)i(x)

∣∣dx +
0∫

−∞

∣∣(m(�)
c

)
i(x) − (mc)i(x)

∣∣dx

� κ

d(�)
i (λ

(�)
i1 − λ

(�)
i2 )

∞∫
e−λ

(�)
i1 x dx + κ

d(�)
i (λ

(�)
i1 − λ

(�)
i2 )

∣∣∣∣∣
0∫ (

e−λ
(�)
i2 x − eκ/(c−ei)x)dx

∣∣∣∣∣

0 −∞
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+
∣∣∣∣ κ

d(�)
i (λ

(�)
i1 − λ

(�)
i2 )

− κ/(c − ei)

∣∣∣∣
0∫

−∞
eκ/(c−ei)x dx

= κ

d(�)
i (λ

(�)
i1 − λ

(�)
i2 )

1

λ
(�)
i1

+ κ

d(�)
i (λ

(�)
i1 − λ

(�)
i2 )

∣∣∣∣ 1

−λ
(�)
i2

− (c − ei)/κ

∣∣∣∣
+ (c − ei)/κ

∣∣∣∣ κ

d(�)
i (λ

(�)
i1 − λ

(�)
i2 )

− κ/(c − ei)

∣∣∣∣. (4.11)

Here we have used the simple fact that two exponential functions eax and ebx with a and b positive
and different coincide only at x = 0 so that

∫ 0
−∞ |eax − ebx|dx = | ∫ 0

−∞(eax − ebx)dx|.
Simple calculations show that as d(�)

i → 0,

κ

d(�)
i (λ

(�)
i1 − λ

(�)
i2 )

→ κ/(c − ei),
1

λ
(�)
i1

→ 0,
1

−λ
(�)
i2

→ (c − ei)/κ.

It follows from this and (4.11) that for i ∈ Σ0 and c − ei > 0

lim
�→∞

∞∫
−∞

∣∣(m(�)
c

)
i(x) − (mc)i(x)

∣∣dx = 0.

Similarly we can show that this is true for i ∈ Σ0 and c − ei < 0 and for i /∈ Σ0, i.e., di > 0. We shall
omit the proofs for these two cases. We conclude that (4.10) holds.

Observe that w(� j) satisfies

w(� j)(x) =
∞∫

−∞
m(� j)(x − y)H

(
w(� j)

)
(y)dy (4.12)

which can be written as

w(� j)(x) =
∞∫

−∞
mc(x − y)H

(
w(� j)

)
(y)dy +

∞∫
−∞

(
m

(� j)
c (y) − mc(y)

)
H

(
w(� j)

)
(x − y)dy. (4.13)

Since
∫ ∞
−∞ mc(x − y)H(u)(y)dy is continuous in u and w(� j)(x) converges to w(x) uniformly on every

bounded interval as j → ∞,
∫ ∞
−∞ mc(x − y)H(w(� j))(y)dy converges to

∫ ∞
−∞ m(x − y)H(w)(y)dy. On

the other hand since H(w(� j))(x− y) is bounded, (4.10) shows that the second term on the right-hand
side of (4.13) converges to zero. We then take limits in (4.13) to obtain

w(x) =
∞∫

−∞
mc(x − y)H(w)(y)dy (4.14)

so that w is a traveling wave solution of (2.1). w(� j)(x) are nonincreasing functions so is w(x). The
condition (4.9) and the definition of η shows that w(−∞) = β and w(x) is not a constant function.
By taking x → ∞ in (4.14), we see that w(∞) is a constant equilibrium other than β .
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We now show that the existence of a traveling wave solution with speed c̃∗ in the case that c̃∗ �= ei
for all i ∈ Σ0. In this case, there is a number r > 0 such that |c̃∗ − ei| > r for all i ∈ Σ0. We choose
a sequence of numbers cn such that c̃∗ + r/2 > cn > c̃∗ and cn → c̃∗ as n → ∞. Then there exists a
sequence of nonincreasing traveling wave solutions for (2.1) which satisfy

wcn(x) =
∞∫

−∞
mcn(x − y)H

(
wcn(y)

)
dy, (4.15)

with wcn (−∞) = β and wcn (−∞) �= β . Eq. (4.15) shows that for δ > 0

∣∣wcn(x + δ) − wcn(x)
∣∣ �

∞∫
−∞

∣∣mcn (x + δ − y) − mcn(x − y)
∣∣H(

wcn(y)
)

dy

� |β|
∞∫

−∞

∣∣mcn (x + δ) − mcn (x)
∣∣dx. (4.16)

In view of (4.16), the choice of cn , and the definition of mc(x), we have that for any ε > 0 there
exists δ0 > 0 such that |wcn (x + δ) − wcn (x)| < ε whenever δ < δ0. This shows that the sequence
wcn (x) forms an equicontinuous family of functions. We choose a small positive number η such that
the system (2.1) does not have a constant equilibrium other than β in the set {u ∈ Cβ : |β − u| � η}.
Without loss of generality, we may assume that

∣∣β − wcn(0)
∣∣ = η.

Since wcn (x) is an equicontinuous family of nonincreasing functions, there exists a subsequence of
wcn (x) still denoted by wcn (x) such that wcn (x) converges to a nondecreasing continuous function
w(x) uniformly on every bounded interval. We can then take limits in (4.15) to see that

w(x) =
∞∫

−∞
mc̃∗(x − y)H

(
w(y)

)
dy,

and |β − w(0)| = η. It follows that w is a traveling wave solution of (2.1) with speed c̃∗ , w(−∞) = β ,
and w(∞) an equilibrium of (2.1) other than β . This completes the proof of the theorem. �

We next show that the slowest speed of a class of traveling wave solutions connecting 0 with an
equilibrium other than 0 cannot be bigger than c̃∗+ , and the slowest speed of a subclass of traveling
wave solutions connecting 0 with β cannot be smaller than c∗+ .

Theorem 4.2. Assume that Hypotheses 2.1 are satisfied. Then the following statements are true for the sys-
tem (2.1):

i. for c � c̃∗+ and c �= ei for i ∈ Σ0 , there is a nonincreasing traveling wave solution w(x − ct) with
w(∞) = 0 and w(−∞) an equilibrium other than 0; and

ii. if there is a nonincreasing traveling wave w(x − ct) with w(∞) = 0 and w(−∞) = β , then c � c∗+ .

Proof. We can modify the proof of Theorem 3.1 in [7] by replacing

∣∣β − a
(
c;κ;�(κ)

)∣∣ = η
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by

∣∣a(
c;κ;�(κ)

)∣∣ = η

and by assuming that there is no constant equilibrium other than 0 in the set {w ∈ Cβ : |w| � η}.
One can then use the arguments similar to what in the proofs of Theorem 3.1, Theorem 4.1 and
Theorem 4.2 in [7] and in Theorem 4.1 to show that the statement i holds. We shall omit the details
here.

The proof of the statement ii is similar to the second part of the proof of Theorem 3.1 in [7] and
is omitted. The proof is complete. �

Theorem 4.1 and Theorem 4.2 show that in general there exist traveling wave solutions with
speeds above certain numbers in a partially degenerate cooperative reaction–diffusion system.

5. Linear determinacy

An interesting question is how c̃∗ is related to c∗ , and how c̃∗+ is related to c∗+ . In this section, we
shall show that when the linear determinacy conditions given in Weinberger et al. [23] are satisfied
by (2.1), c̃∗ = c̃∗+ = c∗ = c∗+ and they are all equal to the unique spreading speed of (2.1) for which a
formula can be found.

We need the following hypotheses.

Hypotheses 5.1.

i. The matrix f′(0) is in Frobenius normal form, so that the same is true of

Cμ = μ2 D + μE + f′(0).

There is a positive entry to the left of each of the irreducible diagonal blocks other than the first (uppermost)
one. The blocks are ordered starting at the uppermost block.

ii. Let γσ (μ) be the principal eigenvalue of the σ th irreducible diagonal block of Cμ such that
a. γ1(0) > 1; and
b. γ1(0) > γσ (0) for all σ > 0.

iii. Let ξ(μ) be the eigenvector of Cμ which corresponds to λ1(μ). The infimum

c̄ := inf
μ>0

(1/μ)γ1(μ) (5.1)

is attained at an extended positive value μ̄ of μ. Either
(a) μ̄ is finite

γ1(μ̄) > γσ (μ̄), (5.2)

and

f
(
min

{
τ ξ(μ̄),β

}) − f′(0)τ ξ(μ̄) � 0 (5.3)

for all positive τ ;
or

(b) there is a sequence μν ↗ μ̄ such that for each ν the inequalities (5.2) and (5.3) with μ̄ replaced by
μν are valid.
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These hypotheses are a proper subset of a variant of Hypotheses 4.1 given in Weinberger et al. [23].
As shown in [23], Hypotheses 5.1 provide the linear determinacy conditions, which together with
Hypotheses 2.1 guarantee that c∗ and c∗+ are the same and equal to the spreading speed of the
linearized system of (2.1). Here we have dropped the hypothesis in [23] that ei = 0 for all i, i.e., the
time one solution operator Q is reflection invariant. In [23] the reflection invariance was assumed, but
it was not used in the proof of Theorem 4.2. Consequently Theorem 4.2 in [23] is still valid without
the reflection invariance assumption.

Lemma 5.1. Assume that Hypotheses 2.1 and Hypotheses 5.1 are satisfied. Then

c∗ = c∗+ = c̃∗ = c̃∗+ = c̄

where c̄ is given by (5.1), and c̄ represents the unique spreading speed of (2.1).

Proof. It follows immediately from Theorem 4.2 in [23] that

c∗ = c∗+ = c̄

and c̄ represents the unique spreading speed of (2.1).
For system (4.1)

C (�)
μ = μ2 D(�) + μE + f′(0)

which can be written as

C (�)
μ = Cμ + (

μ2/�
)
I.

Let γ
(�)

1 (μ) be the principal eigenvalue of C (�)
μ . Clearly

γ
(�)

1 (μ) = γ1(μ) + μ2/�.

It is easily seen that the principal eigenvector ξ(μ) of the matrix Cμ is also the principal eigenvector

of the matrix C (�)
μ . We apply Theorem 4.2 in [23] to (4.1) and find that

c∗(�) = c∗(�)+ = inf
μ>0

(1/μ)
(
γ1(μ) + μ2/�

)
.

As � → ∞, (1/μ)(γ1(μ)+μ2/�) decreases to (1/μ)γ1(μ) uniformly on every bounded interval in the
form [a,b] with 0 < a < b. It follows that

c̃∗+ = c̃∗ = lim inf
�→∞ inf

μ>0
(1/μ)

(
γ1(μ) + μ2/�

) = inf
μ>0

(1/μ)γ1(μ) = c̄.

The proof is complete. �
By using Theorem 4.1 and Lemma 5.1, we obtain the following results.

Theorem 5.1. Assume that Hypotheses 2.1 and Hypotheses 5.1 are satisfied. Then the following statements are
true for the system (2.1):
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i. for c � c̄ and c �= ei for i ∈ Σ0 , there is a nonincreasing traveling wave solution w(x − ct) with
w(−∞) = β and w(∞) an equilibrium other than β; and

ii. if there is a nonincreasing traveling wave w(x − ct) with w(−∞) = β and w(∞) an equilibrium other
than β , then c � c̄.

This theorem characterizes c̄ as the slowest speed of a class of traveling wave solutions under
appropriate assumptions.

The following theorem, obtained from Theorem 4.2 and Lemma 5.1, shows that the slowest speed
of a class of traveling wave solutions with 0 at ∞ cannot be bigger than c̄, and the slowest speed of
a subclass of traveling wave solutions connecting 0 with β cannot be smaller than c̄.

Theorem 5.2. Assume that Hypotheses 2.1 and Hypotheses 5.1 are satisfied. Then the following statements are
true for the system (2.1):

i. for c � c̄ and c �= ei for i ∈ Σ0 , there is a nonincreasing traveling wave solution w(x − ct) with w(∞) = 0
and w(−∞) an equilibrium other than 0; and

ii. if there is a nonincreasing traveling wave w(x − ct) with w(∞) = 0 and w(−∞) = β , then c � c̄.

Hypotheses 5.1 represent a simplification over the hypotheses made in [2] where (5.3) is required
to hold with μ̄ replaced by μ for all 0 < μ � μ̄ if μ̄ is finite. Note that we have dropped the hy-
potheses made in [2] that the system (2.1) has only two equilibria, that C0 is irreducible, and that
ei = 0 for all i.

6. Applications to a Lotka–Volterra competition model

We consider the Lotka–Volterra two-species competition model system

∂ p

∂t
= d1

∂2 p

∂x2
− e1

∂ p

∂x
+ r1 p(1 − p − a1q),

∂q

∂t
= −e2

∂q

∂x
+ r2q(1 − q − a2 p), (6.1)

where p(t, x) and q(t, x) are densities of two competing species, e1 and e2 are real numbers, and
other parameters are positive numbers. Note that the diffusion coefficient of the species q is 0. This
system has, in general, four constant equilibria: The unpopulated state (0,0); the p species mono-
culture state (1,0); the q species mono-culture state (0,1); and the coexistence state (p∗,q∗) where

p∗ = 1 − a1

1 − a1a2
, q∗ = 1 − a2

1 − a1a2
.

The last state is in the first quadrant if and only if (1 − a1)(1 − a2) > 0, and is otherwise irrelevant.
The stability of the equilibria can be easily determined through the standard linearization analysis.

We assume that

a1 < 1

so that the mono-culture equilibrium (0,1) is invadable. As is well known, the change of variables
u = p, v = 1 − q converts the system (6.1) into the cooperative system

∂u

∂t
= d1

∂2u

∂x2
− e1

∂u

∂x
+ r1u(1 − a1 − u + a1 v),

∂v = −e2
∂v + r2(1 − v)(a2u − v). (6.2)
∂t ∂x
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For this system, β = ((1 − a1)/(1 − a1a2),a2(1 − a1)/(1 − a1a2)) if a2 � 1, and β = (1,1) if a2 > 1.
Note that if a2 � 1, then 0 and β are the only equilibria in Cβ , and if a2 > 1 then there is an extra
equilibrium (0,1) in Cβ . It is easily seen that the model (6.2) satisfies Hypotheses 2.1.

Theorem 4.1 and Theorem 4.2 show that (6.2) always has nonincreasing traveling wave solutions
with speeds above certain numbers connecting β (or 0) with an equilibrium other than β (or 0).
Observe that a nonincreasing traveling wave solution of (6.2) connecting (0,0) with (0,1) has a zero
component, and a nonincreasing traveling wave solution of (6.2) connecting (1,0) with β = (1,1) has
a constant component with value 1. Such a traveling wave solution is equivalent to a traveling wave
solution for a scalar equation. We shall show, by using Theorem 5.2, the existence of nonincreasing
traveling wave solutions in (6.2) that connect 0 with β .

The matrix Cμ for (6.2) is given by

Cμ =
(

d1μ
2 + e1μ + r1(1 − a1) 0

r2a2 e2μ − r2

)
.

Clearly

γ1(μ) = d1μ
2 + e1μ + r1(1 − a1), γ2(μ) = e2μ − r2.

It is easily seen that c̄ defined by (5.1) is given by

c̄ = inf
μ>0

γ1(μ)/μ = e1 + 2
√

d1(1 − a1) (6.3)

and the infimum is attained at μ̄ = √
(r1(1 − a1))/d1.

One can follow the proof of Theorem 3.1 in Lewis et al. [5] to show that the linear determinacy
hypotheses, i.e., Hypotheses 5.1, are satisfied by (6.2) if

e1 + 2
√

d1(1 − a1) � e2 + r2 max{a1a2 − 1,0}
√

d1/
(
r1(1 − a1)

)
. (6.4)

Lemma 5.1 shows that under this condition

c̃∗ = c̃∗+ = c∗ = c∗+ = c̄.

Observe that the condition (6.4) is equivalent to

c̄ � e2 + r2 max{a1a2 − 1,0}
√

d1/
(
r1(1 − a1)

)
,

so that c̄ � e2. It is possible that c̄ = e2 when a1a2 � 1.

Theorem 6.1. Assume that (6.4) holds and a1 < 1. Let c̄ be given by (6.3). Then the following statements hold
for the system (6.2).

i. If c̄ > e2 , or if c̄ = e2 and a2 � 1, then for c � c̄ the system (6.2) has a nonincreasing traveling wave
solution with speed c connecting 0 with β;

ii. If c̄ = e2 and a2 > 1, then (6.2) has no classical nonincreasing traveling wave solution with speed c̄ = e2
connecting 0 with β; and

iii. (6.2) has no nonincreasing traveling wave solution with speed c connecting 0 with β if c < c̄.
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Proof. If c̄ > e2, Theorem 5.2 shows that for c � c̄, the system (6.2) has a nonincreasing traveling
wave solution (u(x − ct), v(x − ct)) which connect 0 with β or with (0,1). If it connects 0 with (0,1),
then u ≡ 0 so that v(x − ct) connects 0 with 1 and is a nonincreasing function satisfying

(c − e2)v ′ = r2 v(1 − v). (6.5)

Since c > e2, (6.5) implies that v is a nondecreasing function, a contradiction. Therefore the traveling
wave must connect 0 with β . The second equation of (6.2) shows that a traveling wave solution
(u(x − e2t), v(x − e2t)) of (6.2) with speed e2 satisfies that for −∞ < z < ∞

(
1 − v(z)

)(
a2u(z) − v(z)

) = 0. (6.6)

This equation shows that v(z) is either a2u(z) or 1 for any real number z. Assume that c̄ = e2 and
a2 � 1. We substitute v = a2u into the second equation of (6.2) to obtain

∂u

∂t
= d1

∂2u

∂x2
− e1

∂u

∂x
+ r1u

(
1 − a1 − (1 − a1a2)u

)
. (6.7)

This is the Fisher equation with an advection term, which has the minimal traveling wave speed
c̄ = e2. Eq. (6.7) has a nonincreasing traveling wave solution u(x−e2t) connecting 0 with (1−a1)/(1−
a1a2). Then (u(x − e2t), v(x − e2t)) with v(x − e2t) = a2u(x − e2t) is a nonincreasing traveling wave
solution of (6.2) connecting 0 with β = ((1 − a1)/(1 − a1a2),a2(1 − a1)/(1 − a1a2)). This completes
the proof of the statement i.

We next consider the case of c̄ = e2 and a2 > 1. In this case β = (1,1). If (u(x − e2t), v(x − e2t))
is a classical nonincreasing traveling wave solution of (6.2) connecting 0 with β = (1,1), we derive
a contradiction as follows. Since u(z) and v(z) are continuous and both decrease from 1 to 0 as z
increases from −∞ to ∞, (6.6) and the assumption a2 > 1 imply

v(z) = min
{

1,a2u(z)
}
. (6.8)

Substituting this to the second equation of (6.2), we obtain that

d1u′′ + (e2 − e1)u′ + r1u
(
1 − a1 − u + a1 min{1,a2u}) = 0. (6.9)

Assume that a2u(z0) = 1 for some real number z0. (6.9) shows that

d1u′′(z0) + (e2 − e1)u′(z0) + r1u(z0)
(
1 − u(z0)

) = 0.

This shows that u′′(z0) < 0 if u′(z0) = 0. It follows that if u′(z0) = 0 then u′(z) > 0 for z < z0 and z
sufficiently close to z0. This is impossible as u(z) is a nonincreasing function. We therefore have that
u′(z0) < 0. It follows from this and (6.8) that v(z) is not differentiable at z0, which contradicts that
(u(x − e2t), v(x − e2t)) is a classical nonincreasing traveling solution. This completes the proof of the
statement ii.

The statement iii follows from Theorem 5.2.ii. The proof is complete. �
The conditions given in [2] require that (5.3) holds with ū replaced by all 0 � μ � μ̄ and ei = 0

for all i, which leads to

√
d1r1(1 − a1) � r2 max{a1a2 − 1,0}

√
d1/

(
r1(1 − a1)

)
for (6.2). This condition is much stronger than (6.4) in the case of e1 = e2 = 0.
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7. Discussion

We studied the existence of traveling wave solutions for a large class of partially degenerate coop-
erative reaction–diffusion systems. We showed that a traveling wave solution of a partially degenerate
cooperative reaction–diffusion system with an appropriate speed is a fixed point of a compact integral
operator. We proved that a partially degenerate cooperative reaction–diffusion system has traveling
wave solutions with speeds above two extended real numbers. We also demonstrated that the two
numbers are the same and may be characterized as the spreading speed as well as the slowest speed
of a class of traveling wave solutions provided that the linear determinacy conditions given in Wein-
berger et al. [23] are satisfied.

The framework developed in this paper might be used to establish the existence of traveling wave
solutions for other different kinds of spatial-temporal systems. There have been extensive studies re-
garding traveling solutions in delayed reaction–diffusion systems with positive diffusion coefficients;
see for example Wu and Zou [25], Li et al. [10], Liang and Zhao [12], and Li and Zhang [9]. To establish
existence of traveling wave solutions for a partially degenerate delayed cooperative reaction–diffusion
systems, one might first show that a traveling wave solution of such a system is equivalent to a fixed
point of a compact integral operator and then show that a traveling wave solution can be obtained by
taking a limit of a sequence of functions that are fixed points of related integral systems. A similar ap-
proach might be used to show existence of traveling wave solutions in cooperative integral-differential
systems.

The present paper only treated reaction–diffusion systems for a one-dimension habitat. However,
it is known (see, e.g., [22,13,23]) how to use the one-dimensional results to determine the spreading
speeds and traveling waves in higher-dimensional habitats by looking at one direction at a time. One
chooses each unit direction vector ξ , and uses the framework developed in this paper to study the
existence of traveling waves in the direction ξ of a homogeneous habitat, which are functions of the
single variable ξ · x.
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