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We consider the effect of Gaussian white noise on fast–slow dy-
namical systems with one fast and two slow variables, containing a
folded node singularity. In the absence of noise, these systems are
known to display mixed-mode oscillations, consisting of alternating
large- and small-amplitude oscillations. We quantify the effect of
noise and obtain critical noise intensities beyond which the small-
amplitude oscillations become hidden by fluctuations. Furthermore
we prove that the noise can cause sample paths to jump away
from so-called canard solutions with high probability before de-
terministic orbits do. This early-jump mechanism can drastically
influence the local and global dynamics of the system by chang-
ing the mixed-mode patterns.
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1. Introduction

Our main focus of study are stochastic dynamical systems with multiple time scales. In particular,
we are going to study a special bifurcation (“a folded node”) in a three-dimensional fast–slow stochas-
tic differential equation (SDE) with one fast and two slow variables. The detailed technical discussion
including all relevant definitions and precise statements and proofs of our results starts in Section 2.

* Corresponding author. Current address: Vienna University of Technology, Institute for Analysis and Scientific Computing,
1040 Vienna, Austria.

1 Supported by ANR project MANDy, Mathematical Analysis of Neuronal Dynamics, ANR-09-BLAN-0008-01.
2 Supported by CRC 701, Spectral Structures and Topological Methods in Mathematics at the University of Bielefeld.
0022-0396/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2012.01.015

http://dx.doi.org/10.1016/j.jde.2012.01.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jde
http://dx.doi.org/10.1016/j.jde.2012.01.015


N. Berglund et al. / J. Differential Equations 252 (2012) 4786–4841 4787
Fig. 1. Comparison of a deterministic (black) and stochastic (red) time trajectory. The left-half of the figure shows the time
series exhibiting a 17 MMO; see also the zoom near the SAOs. The right part shows part of the trajectory in three-dimensional
phase space and illustrates the early jumps of the stochastic sample path. (For interpretation of colors in this figure, the reader
is referred to the web version of this article.)

In this section we want to outline our motivation and state our main results in a non-technical way.
There are two main motivations for our work:

(M1) We want to develop an analogue to the intricate deterministic bifurcation theory for random
dynamical systems by linking stochastic sample path techniques and the well understood deter-
ministic theory.

(M2) A detailed analysis of noise effects in multi-scale stochastic systems is often crucial in applica-
tions; in particular, many biological systems have widely separated time scales and are influenced
by various random effects.

We are going to describe our two main motivations in more detail, starting with (M2). Complex
oscillatory patterns have been discovered in many different applications. Chemical systems [96,32,73]
and neuronal dynamics [97,55,29] provide ample examples. Recent work has shown [33,65] that fast–
slow systems can be used to model a wide variety of oscillatory patterns. A classification of local and
global fast–slow “mechanisms” can be used to analyze each pattern. Mixed-mode oscillations (MMOs)
alternate between small-amplitude oscillations (SAOs) and large-amplitude oscillations (LAOs). Fig. 1
shows a typical MMO time series where the deterministic time series has been generated by an MMO
model proposed in [30]. The time series shows alternations between L = 1 LAOs and s = 7 SAOs which
is denoted as the MMO pattern Ls = 17.

Although a deterministic model is able to explain a few experiments (see e.g. experimental results
by Hudson et al. [63]) it fails to accurately model realistic MMOs due to the presence of noise (see e.g.
the experiments by Dickson et al. [38]). Fig. 1 also shows a sample path which is a stochastic version
of the deterministic orbit perturbed by Gaussian white noise. Two important observations that can be
made about the stochastic MMO pattern are

• Part of the SAOs become indistinguishable from the random fluctuations so that counting SAOs
below a certain amplitude is impossible.

• The stochastic sample path typically jumps before the deterministic solution makes an LAO.

In this work, we are going to provide rigorous formulations and the proofs of both observations.
Our motivation (M1) is to relate deterministic and stochastic methods for fast–slow systems.

Within the last two decades substantial progress on deterministic fast–slow systems has been made.
The analysis of hyperbolic fast dynamics has been completed in a series of works by Fenichel [44]
(see also [68]) at the end of the 1970s; the theory focuses upon perturbations of normally hyper-
bolic critical manifolds to nearby slow manifolds. Near bifurcation points of the fast dynamics major
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developments in the 1980s used nonstandard analysis [31,14] and asymptotic methods [43,8,9,89]. In
the 1990s, two main geometric methods were introduced into multiple-time-scale systems. Switching
between hyperbolic fast and slow dynamics was analyzed using the exchange lemma [67,107]. The
geometry of non-hyperbolic or singular dynamics has been uncovered using the blow-up technique
[42,41]. Since then the blow-up method has been applied successfully for many singular perturbation
problems [76,77,74,75]. In particular, folded nodes [105,111,78,72] are a very interesting case since
they occur already in generic fast–slow systems with one fast and two slow variables and have a
highly nontrivial unfolding. Near a folded node the canard phenomenon occurs, i.e., orbits stay near a
repelling manifold for a long time. This effect can generate MMOs [30,33]; see also the discussion for
(M2) above and Fig. 1.

Noise acting on a system with multiple time scales can induce new phenomena such as early tran-
sitions [108,104,102,66,83], stochastic resonance [16,94,88,45,49,50] and bursting oscillations [103,84,
62]. The mathematical theory of fast–slow stochastic differential equations has been quickly devel-
oping in the last decade. Classical work on random perturbations of dynamical systems [48], which
mainly focused on large-deviation aspects, allows to describe situations with a time scale separation
exponentially large in the noise intensity [46,47,64,58,59]. A different approach, based on a detailed
description of sample-path properties, applies to situations with time scale separation and noise in-
tensity of comparable magnitude [22,23,20,19]. This method led to a general theory for the behavior
of sample paths near normally hyperbolic invariant manifolds [24,25]. Other approaches include [69],
which is based on moment estimates, and [99], which adopts the viewpoint of random dynami-
cal systems in the sense of [6]. The associated methods and results have important applications
in climate dynamics [16,94,106,21], the theory of critical transitions [98,80], classical and quantum
atomic physics [3,4,2] and neuroscience [109,86,87,85,26,17]. In particular, canards in the stochastic
FitzHugh–Nagumo system describing the action potential of neurons have been considered from the
points of view of large deviations [37,40], and of convergence of sample paths [101]. Stochastic MMOs
have also been considered in certain planar systems [91,92] and in coupled oscillators [113].

The theory of stochastic differential equations with higher-dimensional singularities and multiple
slow variables is not yet as advanced. Here we make a first step towards bridging this gap between
the generic higher-dimensional deterministic theory and stochastic sample paths analysis. The non-
technical statements of our two main results are:

(R1) Sample paths near a folded node stay inside a tubular neighborhood of an attracting determin-
istic solution. The neighborhood is explicitly defined by the covariance matrix of a linearized
process. The relation between the noise level, the time scale separation and a system parame-
ter determines when small oscillations near a folded node become indistinguishable from noisy
fluctuations. This relation can be calculated explicitly to lowest asymptotic order.

(R2) Sample paths near a folded node typically escape from a repelling deterministic solution earlier
than their deterministic counterparts. The escape time can be estimated with high probability
and depends on the same parameters as the relation in (R1).

Both results have important implications from theoretical and applied perspectives. In particu-
lar, we can show how to control stochastic sample paths near a multi-dimensional bifurcation point.
Therefore it is expected that the methods we develop have a much wider applicability beyond folded
nodes, e.g. to singular Hopf bifurcations [53] or other stochastic bifurcation problems [25,5]. The
precise quantitative estimates on the relation between noise level and a parameter controlling the
number of SAOs are immediately useful in applications. Furthermore, the effect of early jumps could
potentially regularize the complicated flow maps near a folded node [52,56] and simplify the local–
global decomposition of return maps [81].

The paper is organized as follows. In Section 2 we review the necessary theory for deterministic
fast–slow systems and fix the notation. In Section 3 we state the known results about folded nodes
and explain why they produce small-amplitude oscillations. In Section 4 we consider a variational
equation around a special canard solution, called the weak canard. The solution of the variational
equation can be transformed into a “canonical form” which allows us to prove a result on the spacing
of canard solutions up cross-sections near or including the folded node. The proof is postponed to
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Appendix A. In Section 5 we develop the main setup for stochastic fast–slow SDEs and state a re-
sult on attracting normally hyperbolic slow manifolds away from bifurcation points. Several notations
that we use throughout are introduced as well. In Section 6 we state our main results (R1)–(R2) for
stochastic folded nodes. The result (R1) on covariance tubes for the linearized process is proved in
Appendix B. The influence of nonlinear contributions is dealt with in Appendix C. The result (R2) on
early jumps is proven in Appendix D. Section 7 develops numerical simulations to visualize the ana-
lytical results. We conclude by giving a summary of parameter regimes and discussing the influence
of early jumps on the global return mechanism and LAOs in Section 8.

2. Fast–slow systems

We are only going to give a brief introduction to multiple-time-scale dynamics. A detailed refer-
ence covering many more topics is currently being written [82]; other excellent references are [90,51]
for asymptotic methods and [44,7,68] for geometric methods. Many important discoveries were first
made using nonstandard analysis [14,39]; in particular, many results we review in Section 3 were dis-
covered by Benoît [15,11,12]. However, we are not going to use any nonstandard methods and focus
on the geometric viewpoint.

A fast-slow system of ordinary differential equations (ODEs) is given by

ε
dx

ds
= ε ẋ = f (x, y,μ,ε),

dy

ds
= ẏ = g(x, y,μ,ε), (2.1)

where (x, y) ∈ R
m ×R

n are phase space coordinates, μ ∈ R
p are parameters and 0 < ε � 1 represents

the ratio of time scales. We shall assume that f , g are sufficiently smooth. By a rescaling we can
change from the slow time s to the fast time t = s/ε; this transforms (2.1) to

dx

dt
= x′ = f (x, y,μ,ε),

dy

dt
= y′ = εg(x, y,μ,ε). (2.2)

Remark. The more common notation for the slow time would be τ but we shall reserve τ for stop-
ping times of stochastic processes; see Section 5.

The first step to analyze fast–slow systems is to consider the singular limit ε → 0. From
(2.2) we obtain

x′ = f (x, y,μ,0),

y′ = 0, (2.3)

which is an ODE for the fast variables x where the slow variables y act as parameters. We call (2.3)
the fast subsystem or layer equations; the associated flow is called the fast flow. Con-
sidering ε → 0 in (2.1) we find a differential-algebraic equation for the slow y-variables

0 = f (x, y,μ,0),

ẏ = g(x, y,μ,0), (2.4)

called the slow subsystem or reduced system; the flow induced by (2.4) is called the slow
flow. The slow subsystem is defined on the critical manifold
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C0 := {(x, y) ∈R
m+n: f (x, y,μ,0) = 0

}
.

Observe that C0 can also be interpreted as a manifold of equilibria for the fast subsystem. Note also
that C0 does not have to be a manifold [75] but we only consider the manifold case in this pa-
per. If the Jacobian matrix (Dx f )(p) has maximal rank at p ∈ C0 then the implicit function theorem
describes C0 locally as a graph

h0 :Rn → R
m, f

(
h0(y), y,μ,0

)= 0

near p. This allows us to write the slow subsystem more concisely as

ẏ = g
(
h0(y), y,μ,0

)
. (2.5)

We can strengthen the assumption on (Dx f )(p) and require that it is a hyperbolic matrix, i.e.
(Dx f )(p) has no eigenvalues with zero real part. In this case we say that C0 is normally hy-
perbolic at p. If all the eigenvalues of (Dx f )(p) have negative (positive) real parts we say that
C0 is attracting (repelling) with respect to the fast variables. The following theorem shows
that normal hyperbolicity is the key regularity assumption for fast–slow systems.

Theorem 2.1 (Fenichel’s Theorem). (See [44].) Suppose M0 is a compact normally hyperbolic submanifold
(possibly with boundary) of the critical manifold C0 and that f , g ∈ Cr , 1 � r < ∞. Then for ε > 0 sufficiently
small the following holds:

(F1) There exists a locally invariant manifold Mε diffeomorphic to M0 . Local invariance means that Mε can
have boundaries through which trajectories enter or leave.

(F2) Mε has a Hausdorff distance of O(ε) from M0 .
(F3) The flow on Mε converges to the slow flow as ε → 0.
(F4) Mε is Cr -smooth and can locally be given as a graph hε :Rn →R

m.
(F5) Mε is normally hyperbolic with the same stability properties with respect to the fast variables as M0 .
(F6) Mε is usually not unique. In regions that remain at a fixed distance from the boundary of Mε , all manifolds

satisfying (F1)–(F5) lie at a Hausdorff distanceO(e−K/ε) from each other for some K > 0 with K =O(1).

We call a perturbed manifold Mε a slow manifold. Sometimes we refer to “the slow manifold”
despite the non-uniqueness (F6) as it will be often irrelevant which of the O(e−K/ε)-close manifolds
we pick. A simple example where normal hyperbolicity fails is given by

ε ẋ = y − x2,

ẏ = μ − x. (2.6)

The critical manifold C0 = {(x, y) ∈R
2: y = x2} splits into three parts C = Ca

0 ∪ {(0,0)} ∪ Cr
0 where

Ca
0 = C0 ∩ {x > 0} and Cr

0 = C0 ∩ {x < 0}.
Ca

0 is attracting and Cr
0 is repelling. At (x, y) = (0,0) the critical manifold is not normally hyperbolic

and has a generic fold singularity [76]; observe that (x, y) = (0,0) is a fold (or saddle-node)
bifurcation of the fast subsystem. Fig. 2 illustrates the dynamics near the fold point of (2.6).

To calculate the slow subsystem on C0 we could consider the two graphs x = h0(y) = ±√
y as

suggested by (2.5). For (2.6) it is more convenient to differentiate y = x2 implicitly with respect to s.
This gives

ẏ = 2xẋ ⇒ ẋ = μ − x
,

2x
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Fig. 2. Planar fold near a singular Hopf bifurcation of (2.6); for (a) and (c) we have fixed ε = 0.05. (a) μ = 0.1: The equilibrium
point (x0, y0) = (μ,μ2) is determined as the intersection of C0 (grey) and the nullcline {x = μ} (dashed black). The equilibrium
is stable and the slow manifolds Ca

ε (red) and Cr
ε (blue) do not interact. (b) μ = 0: Only the slow flow on C0 (single arrow) and

the fast flow (double arrows) are shown. C0 coincides with a maximal singular canard. (c) μ = −0.1: After the Hopf bifurcation
the slow manifolds have “exchanged sides” suggesting an intersection for some μ near 0. (For interpretation of colors in this
figure, the reader is referred to the web version of this article.)

which shows that the slow flow is undefined at (0,0) if μ �= 0. Fenichel’s Theorem provides slow
manifolds Ca

ε and Cr
ε . A major step in theory of fast–slow systems was to analyze the dynamics

of (2.6) depending on the value of μ [42,8,77]. Note that for μ = 0 the slow flow is well-defined and
there is a special trajectory that passes from Ca

0 to Cr
0 and that a singular Hopf bifurcation [77,28]

occurs for μ = 0 and 0 < ε � 1. The slow manifolds can be extended under the flow into the fold
point region. Comparing Fig. 2(a) to Fig. 2(c) we expect that there is a parameter value μ for which
the slow manifolds intersect/coincide. This intersection marks what has become known as a canard
explosion [77,79].

More generally, suppose that γε is a trajectory of a fast–slow system (2.1)–(2.2) then we call γε

a maximal canard if it lies in the intersection of an attracting and a repelling slow manifold; for
ε = 0 we also refer to γ0 as a maximal singular canard. Canards in planar fast–slow systems
are of codimension one whereas for higher-dimensional systems we do not need an additional pa-
rameter. In the next section we are going to focus on canards in three dimensions.

3. Folded nodes

A general three-dimensional fast–slow system with one fast variable and two slow variables can
be written as

ε ẋ = f (x, y, z,μ,ε),

ẏ = g1(x, y, z,μ,ε),

ż = g2(x, y, z,μ,ε). (3.1)

We assume that the critical manifold C0 = {(x, y, z) ∈ R
3: f (x, y, z,μ,0) = 0} of (3.1) is a folded

surface near the origin; suitable non-degeneracy conditions [33,105] are

f (0,0,0,μ,0) = 0, fx(0,0,0,μ,0) = 0,

f y(0,0,0,μ,0) �= 0, fxx(0,0,0,μ,0) �= 0, (3.2)

where subscripts denote partial derivatives.
The critical manifold again decomposes into three parts

C0 = Cr
0 ∪ L ∪ Ca

0,
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Fig. 3. Singular limit ε = 0 for the normal form (3.8) with μ = 0.15. The attracting manifold Ca
0 (red), the fold line L (green)

and the repelling manifold Cr
0 (blue) partition the critical manifold. Trajectories of the slow (fast) subsystem are indicated by

single (double) arrows. (For interpretation of colors in this figure, the reader is referred to the web version of this article.)

where Cr
0 = C0 ∩ { fx > 0} is repelling, Ca

0 = C0 ∩ { fx < 0} is attracting and L = C0 ∩ { fx = 0} is the
curve of fold points; see Fig. 3. Note that the assumption f y(0,0,0,μ,0) �= 0 in (3.2) implies that the
fold curve L can be locally parametrized by z. To obtain the slow subsystem we again differentiate
f (x, y, z,μ,0) = 0 implicitly with respect to s

ẋ fx + ẏ f y + ż f z = 0.

This implies that the slow subsystem is

fxẋ = − f y g1 − f z g2,

ż = g2, (3.3)

where all functions are evaluated for p = (x, y, z) ∈ C0 and ε = 0. On L the ODE (3.3) is singular but
we can rescale time s 
→ −s/ fx to obtain the desingularized slow subsystem

(
ẋ
ż

)
=
(

f y g1 + f z g2
− fx g2

)∣∣∣∣
p∈C0

. (3.4)

Note that the time rescaling has reversed the orientation of trajectories of (3.3) on Cr
0 and that (3.4)

is a well-defined planar ODE. We define

l(z) := ( f y g1 + f z g2)|p∈L

and make the assumptions that
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l(0) = 0, (3.5)

l(z) �= 0, for z �= 0. (3.6)

Observe that (3.5) and fx(0,0,0,μ,0) = 0 imply that (x, z) = (0,0) is an equilibrium point for (3.4)
that lies on the fold curve. We say that (x, y, z) = (0,0,0) is a folded singularity. Points (x, y, z �=
0) ∈ L are called jump points as trajectories have to make a transition from the slow to the fast flow
at these points; the condition (3.6) is also called the normal switching condition. Generic
folded singularities can be classified according to their equilibrium type into folded saddles,
folded foci and folded nodes [105,11]. Folded nodes are the most interesting folded singular-
ities. Without loss of generality we may assume that the folded node is stable for (3.4) with associated
eigenvalues λ1, λ2 for the linearization of (3.4).

Proposition 3.1. (See [30,111].) Suppose that (3.1) satisfies (3.2), (3.5), (3.6) and that we are in the folded
node scenario. Then there exist a smooth coordinate change and a smooth change of time which bring (3.1)
near (x, y, z) = (0,0,0) into the form

ε ẋ = y − x2 +O
(

yx2, x3, xyz
)+ εO(x, y, z, ε),

ẏ = −(μ + 1)x − z +O
(

y, ε, (x + z)2),
ż = μ

2
, (3.7)

with λ1 = −μ and λ2 = −1.

We shall show in Section 4 that the terms in (3.7) denoted by O(·) are indeed higher order for
the analysis near the folded node. Hence we can work with the normal form

ε ẋ = y − x2,

ẏ = −(μ + 1)x − z,

ż = μ

2
. (3.8)

The critical manifold of (3.8) is

C0 = {(x, y, z) ∈R
3: y = x2}.

We also write C0 = {x = ±√
y =: h0(y, z)} if we parametrize C0 over the slow variables. The critical

manifold splits into three components

C0 = Ca
0 ∪ L ∪ Cr

0

where Ca
0 = C0 ∩ {x > 0} is attracting, Cr

0 = C0 ∩ {x < 0} is repelling and L is now a line of fold points.
The slow subsystem is

2xẋ = −(μ + 1)x − z,

ż = μ

2
. (3.9)

The desingularized slow subsystem is (see also Fig. 4(a))
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Fig. 4. (a) The desingularized slow flow (3.10) is sketched for some μ > 0 with a stable node at the origin. (b) The slow flow
(3.9) is illustrated. The strong eigendirection (solid red) defines the strong singular canard γ s

0 ; the weak eigendirection (dashed
red) defines the weak singular canard γ w

0 . (For interpretation of colors in this figure, the reader is referred to the web version
of this article.)

ẋ = −(μ + 1)x − z,

ż = μx. (3.10)

The system (3.10) is linear with an equilibrium point at (x, z) = (0,0). The eigenvalues are (λ1, λ2) :=
(−1,−μ). We assume that

μ ∈ (0,1)

so that (0,0) is a stable node for the desingularized slow subsystem (3.10). Hence we also denote the
eigenvalues as

λ1 = −1 =: λs and λ2 = −μ =: λw

to emphasize the strong and weak eigendirections. Note that μ = λw/λs precisely represents the
ratio of eigenvalues and attains all resonances μ−1 ∈ N for μ ∈ (0,1). The associated (unnormalized)
eigenvectors are

γ s
0 = (−1/μ,1)T and γ w

0 = (−1,1)T , (3.11)

which also represent directions for two maximal singular canards; see Fig. 4. Observe that the sin-
gular strong canard γ s

0 and L bound a funnel region on Ca
0 of trajectories that all flow into the

folded node; see Fig. 4. The funnel region has an opening angle cos−1(μ/
√

1 + μ2 ) which converges
to π/2 as μ → 0. The funnel on Ca

0 is located in the {x > 0, z < 0}-quadrant and the singular
weak canard γ w

0 is given by the anti-diagonal {z = −x}.

Theorem 3.2. (See [105,11,15,111].) Suppose (3.1) has a generic folded node (i.e. Proposition 3.1 applies). Then
for ε > 0 sufficiently small the following holds:

(C1) The singular strong canard γ s
0 always perturbs to a maximal canard γ s

ε . If μ−1 /∈ N then the singular
weak canard γ w

0 also perturbs to a maximal canard γ w
ε . We call γ s

ε and γ w
ε primary canards.

(C2) Suppose k > 0 is an integer such that

2k + 1 < μ−1 < 2k + 3 and μ−1 �= 2(k + 1).

Then, in addition to γ s,w
ε , there are k other maximal canards, which we call secondary canards.
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Fig. 5. Canards and slow manifolds near a folded node for (3.8) with (μ,ε) = (0.08,0.01) on the cross-section {z = 0}. The pri-
mary canard γ s

ε and the first two secondary canards γ 1,2
ε are labeled. We also show a zoom near the primary weak canard γ w

0 .
All maximal canards are indicated by black dots.

(C3) The secondary canards converge to the strong primary canard as ε → 0.
(C4) The primary weak canard of a folded node undergoes a transcritical bifurcation for odd μ−1 ∈ N and a

pitchfork bifurcation for even μ−1 ∈ N.

We emphasize the results (C1)–(C3) which will be of major importance for our stochastic analysis;
(C4) describes the behavior near resonances and will not be considered here. The next theorem pro-
vides a geometric viewpoint for the generation of maximal canards near a folded node. We say that
a twist corresponds to a half rotation (i.e. a rotation by angle π ).

Theorem 3.3. (See [105,111].) If 2k + 1 < μ−1 < 2k + 3, for some k ∈ N, and μ−1 �= 2(k + 1) then the
following holds:

(C5) The primary strong canard γ s
0 twists once around the primary weak canard γ w

ε .

(C6) The j-th secondary canard γ
j

ε , 1 � j � k, twists 2 j + 1 times around the primary weak canard γ w
ε .

(C7) The twisting/rotation occurs in an O(
√

ε ) neighborhood of the folded node for (3.1).

In particular, the slow manifolds Ca
ε and Cr

ε start to spiral near the folded node creating transversal
intersections away from resonances. For visualizations of these manifolds in several different contexts
see [34,33,35].

In Fig. 5 we show the slow manifolds for (3.8) near the folded node on the cross-section {z = 0}.
The manifolds have been computed by forward integration and using the symmetry

(x, y, z, s) 
→ (−x, y,−z,−s). (3.12)

The center of rotation is the weak canard γ w
0 . Since μ = 0.08 we know by using (C2) that there are

five secondary canards in Fig. 5. Five intersections are indeed detected numerically but γ 4,5
0 are very

close to γ w
0 on {z = 0}. All secondary canards γ

j
0 approach γ w

0 when z < 0 near the folded node
region on Ca

ε . The canards move away from each other for z > 0 (see Fig. 3). The next theorem shows
that the maximal canards organize the rotational properties of trajectories passing through a folded
node region.
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Theorem 3.4. (See [30].) Fix two sections

Σ1 := {(x, y, z) ∈R
3: y = K1

}
for some 0 < K1 = O(1),

Σ2 := {(x, y, z) ∈R
3: y = K2ε

}
for some 0 < K2 = O(1)

for the system (3.8). Consider the intersection points of maximal canards in Σ1 ∩ Ca
ε . Let k be the number of

secondary canards. Then for ε > 0 sufficiently small the following holds:

(C8) The secondary canards are O(ε(1−μ)/2) close to the primary strong canard.
(C9) There exist (k + 1) so-called sectors of rotation I j , 1 � j � k + 1, between the two primary

canards labeled in increasing order starting from the strong primary canard. The size of the sectors I j

for 1 � j � k is O(ε(1−μ)/2) while the size of the sector Ik+1 is O(1).
(C10) The Poincaré map from Σ1 to Σ2 is a contraction with rate O(ε(1−μ)/(2μ)).
(C11) All maximal canards are separated by O(

√
ε ) in their z-coordinate on Σ2 .

Remark. We note that the results from Theorems 3.2, 3.3 and 3.4 also extend to higher-dimensional
fast–slow systems with at least two slow variables and at least one fast variable [112,30] but that
they do not provide a detailed analysis of canards beyond the section Σ2.

Theorem 3.4 provides sectors of rotation that organize the twisting of trajectories near the folded
node. Once we know which sector an orbit enters we can predict the number of oscillations. Note
that the oscillations can be classified as “small oscillations” due to (C7). Global returns can induce so-
called mixed-mode oscillations (MMOs) which are found in a wide variety of applications;
see [33] for a review of MMO mechanisms in multiple-time-scale systems.

4. Canard spacing

Theorem 3.4 describes the spacing of maximal canards away from the folded node region. Since we
are also interested in their spacing on the cross-section {z = 0} depending on μ we need a refined
analysis near the folded node. The key component in the proofs of Theorems 3.2, 3.3 and 3.4 is a
rescaling of (3.8) near the folded node

(x, y, z, s) = (
√

ε x̄, ε ȳ,
√

ε z̄,
√

ε s̄) (4.1)

which can also be interpreted as a zoom-in (or “blow-up transformation”) [105,111,30]. We shall not
introduce the blow-up method here but restrict ourselves to the analysis of the rescaled system

˙̄x = ȳ − x̄2 +O(
√

ε ),

˙̄y = −(μ + 1)x̄ − z̄ +O(
√

ε ),

˙̄z = μ

2
. (4.2)

Therefore the O(·)-terms in (3.7) are indeed of higher order for the analysis near the folded node.
Neglecting the small ε-dependent terms and dropping the overbars in (4.2) for notational convenience
yields

ẋ = y − x2,

ẏ = −(μ + 1)x − z,

ż = μ
. (4.3)
2



N. Berglund et al. / J. Differential Equations 252 (2012) 4786–4841 4797
The ODEs (4.3) are our main focus of study in this section. Note that (C11) in Theorem 3.4 implies
that the maximal canards are all O(1) finitely separated for (4.3) when they are an O(1) distance
away from (x, y, z) = (0,0,0). Observe that we can always solve the last equation

z(s) = μ

2
(s − s0) + z0

where z0 = z(s0) denotes the initial z-coordinate of the trajectory at the initial time s = s0. Hence we
can view z as a time variable and re-write (4.3) if necessary as a planar non-autonomous ODE

μ
dx

dz
= 2y − 2x2,

μ
dy

dz
= −2(μ + 1)x − 2z. (4.4)

Our first goal is to quantify the intersections of canard solutions with the section {z = 0}. Therefore
we are going to focus on the analysis of orbits arising as perturbations of slow subsystem trajectories
inside the funnel on Ca

0 and assume

z0 � z � 0.

Let (x∗(z), y∗(z)) be any solution of (4.4) and set

u = (u1, u2) := (x − x∗, y − y∗)
to derive the variational equation

μ
du1

dz
= −4u1x∗ + 2u2 − 2u2

1,

μ
du2

dz
= −2(μ + 1)u1. (4.5)

A key observation by Benoît was that there are some special solutions to (4.3).

Lemma 4.1. (See [13].) The ODE (4.3) admits two polynomial solutions

(
x(s), y(s), z(s)

)=
(

λ

2
s,

λ2

4
s2 + λ

2
,
μ

2
s

)
(4.6)

with λ ∈ {−μ,−1} corresponding to the two primary singular canards.

Lemma 4.1 can be checked by direct differentiation of (4.6). We know that the weak canard is the
center of rotation. From (4.6) with λ = −μ we find the variational equation around the weak canard
is given by

μ
du

dz
=
(

4z 2

−2(μ + 1) 0

)(
u1

u2

)
+
(−2u2

1

0

)
. (4.7)

We are interested in the detailed interaction of other maximal canards with the weak canard.

Proposition 4.2. If μ > 0 is sufficiently small and z < 0 is bounded away from 0 then solutions u = u(z)
of (4.7) are attracted exponentially fast to {u1 = 0 = u2}.
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Proof. Augmenting the variational equation (4.7) by ż = 0 gives an autonomous fast–slow system
with two fast variables u = (u1, u2) and one slow variable z (since μ is sufficiently small). The critical
manifold is {

(u1, u2, z) ∈R
3: u1 = 0, u2 = 0

}
.

Computing the linearization with respect to the fast variables gives a matrix(
4z 2
−2 0

)

with eigenvalues 2(z ± √
z2 − 1 ). Hence if z < 0 both eigenvalues have negative real parts and the

result follows from Fenichel’s Theorem. �
For 0 < μ � 1, Proposition 4.2 allows us to reduce the study of the nonlinear variational equa-

tion (4.7) to a linear one by dropping the higher-order term −2u2
1. This yields the linear non-

autonomous ODE

μ
du

dz
=
(

4z 2

−2(μ + 1) 0

)
︸ ︷︷ ︸

=:A(z)

u = A(z)u. (4.8)

In particular, we must show what happens to solutions u = u(u1, u2) near the weak canard and when
z is not bounded away from 0.

Remark. The variational equation (4.8) has been analyzed [13,105] by re-writing it as a second-order
equation

d2u1

ds2
− μs

du1

ds
+ u1 = 0. (4.9)

Benoît [13] observed that using the time rescaling s = s̃/
√

μ of (4.9) one gets

d2u1

ds̃2
− s̃

du1

ds̃
+ 1

μ
u1 = 0 (4.10)

which is referred to as Weber equation or Ricatti–Hermite equation. The ODE (4.10) has
explicit solutions in terms of Hermite polynomials (see [1, p. 781]). Then the asymptotic properties of
Hermite polynomials can be used to draw conclusions about the existence of maximal canards.

We develop two alternative ways to describe the variational equation (4.8) directly. This provides
new quantitative information about canard solutions and also gives estimates for the spacing of ca-
nards on cross-sections near the folded node. Our first approach in Section 4.1 uses averaging and
provides a formal result. This result is then stated in Section 4.2 and proven in Appendix A using
coordinate changes that are motivated by the formal calculation.

4.1. Averaging

As shown in (4.9) we can consider the variational equation (4.8) as the second-order equation

ü1 + u1 = μsu̇1. (4.11)
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The form (4.11) suggests to view the problem as a damped oscillator; we assume that

− 2

μ
< s0 � s � 0. (4.12)

Note that μs = −2 is precisely critical damping and for μs ∈ (−2,0) the oscillator is underdamped.
Therefore we expect that (4.11) describes harmonic oscillations with damping/contraction that is non-
uniform in time. We make a change to polar coordinates

(u1, u̇1) = (r(s) cos
(
s + ψ(s)

)
, r(s) sin

(
s + ψ(s)

))
which yields the ODEs

ṙ = μsr sin2(s + ψ),

ψ̇ = μs cos(s + ψ) sin(s + ψ). (4.13)

To simplify the analysis, consider the time rescaling s = −√−s̃. This converts (4.13) to

dr

ds̃
= −μr

2
sin2(−

√
−s̃ + ψ),

dψ

ds̃
= −μ

2
cos(−

√
−s̃ + ψ) sin(−

√
−s̃ + ψ). (4.14)

We consider (4.14) on each time subinterval

I j := [−(( j + 2)π
)2

,−( jπ)2], for j ∈ {0,2,4,6, . . .}

by viewing (4.14) as a vector field on R
+ × (I j/ ∼) where the equivalence relation ∼ identifies the

endpoints of I j . Then the vector field is in the form for averaging [110]. The averaged equations are

dr j

ds̃
= − μr j

2|I j|
∫
I j

sin2(−
√

−s̃ + ψ j)ds̃ = − (2 j + 2)π + sin(2ψ j)

2(4 j + 4)π
μr j, (4.15)

dψ j

ds̃
= − μ

2|I j|
∫
I j

cos(−
√

−s̃ + ψ j) sin(−
√

−s̃ + ψ j)ds̃ = −μπ cos(2ψ j)

2(4 j + 4)π2
. (4.16)

In particular, we find that if we take a formal limit j → ∞ the equation for the radius is

dr∞
ds̃

= −μ

4
r∞. (4.17)

Remark. Observe that one could also view (4.15)–(4.16) as an autonomous vector field and formally
average over the angle ψ j to get

dr j

ds̃
= − ( j + 1)

(4 j + 4)
μr j,

dψ j

ds̃
= 0

and then take the limit j → ∞.
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The solution of (4.17) is given by

r∞(s̃) = r∞(s̃0)e− 1
4 μ(s̃−s̃0) = r∞(s0)e

1
4 μ(s2−s2

0) = r∞(z0)e(z2−z2
0)/μ (4.18)

which shows that the leading-order behavior of the solutions to the variational equation (4.8) for
z < 0 consists of a contraction towards the weak canard given by (4.18) combined with a rotation.
If we assume that ψ0(0) = 0, i.e. the rotation ends at angle 0 on section {z = 0}, then solving (4.16)
yields

ψ0(s̃) = − tan−1
[

tanh

[
s̃μ

8(1 + j)π

]]
.

In principle we can now calculate ψ0(−(2π)2), use this result as an initial condition for ψ1 and then
repeat the process to get a very detailed description of the rotational properties of trajectories near a
folded node.

4.2. Diagonalization

For the proof of our formal calculation we consider the variational equation in first-order form
(4.8). The matrix A(z) has eigenvalues

2z ± 2iω(z), where ω(z) =
√

1 − z2 + μ.

We assume that |z| < 1 so that ω(z) is real and bounded away from 0. Furthermore A(z) has trace 4z.
We expect that the solution u(z) for (4.8) consists of a contraction and a rotation for

1 < z0 � z < 0. (4.19)

Observe that (4.19) corresponds to the condition (4.12).

Theorem 4.3 (Canonical form). There exists a matrix

S(z) = 1√
ω(z)

(−z + ω(z) −z − ω(z)

1 1

)
+O(μ) (4.20)

such that the coordinate change u(z) = S(z)ũ(z) transforms the variational equation (4.8) into canonical form

μ
dũ

dz
=
(

a(z) 
(z)

−
(z) a(z)

)
ũ, (4.21)

where

a(z) = 2z +O
(
μ2),


(z) = 2ω(z) +O(μ). (4.22)

As a consequence, we can write the solution of (4.8) in the form

u(z) = eα(z,z0)/μS(z)U (z, z0)S(z0)
−1u(z0) (4.23)
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for |z| < 1 and |z0| < 1, where

α(z, z0) =
z∫

z0

a(s)ds = z2 − z2
0 +O

(
μ2) (4.24)

and U (z, z0) is the orthogonal matrix

U (z, z0) =
(

cos(ϕ(z, s)/μ) sin(ϕ(z, s)/μ)

− sin(ϕ(z, s)/μ) cos(ϕ(z, s)/μ)

)
, ϕ(z, z0) =

z∫
z0


(s)ds +O(μ). (4.25)

The proof is given in Appendix A. We remark that Theorem 4.3 easily extends to linearization
around solutions other than the weak canard.

4.3. The distance estimate

From the solution of the variational equation in Theorem 4.3 we can give asymptotic estimates on
the distance of the secondary canards to the weak canard on the section

Σ0 := {(x, y, z) ∈R
3: z = 0

}
.

Theorem 4.4 (Canard spacing). The distance of the k-th secondary canard γ k to γ w on Σ0 is given by

O(e−c(2k+1)2μ) as μ → 0 where 0 < c =O(1) is a constant.

Proof. By Theorem 3.3, part (C5), the k-th secondary canard makes (2k+1)/2 twists around the weak
canard between z0 � z � 0. Using this fact together with the rotational part (4.25) of the solution
(4.23) in Theorem 4.3 we find the condition

ϕ(0, z0)

μ
= 1

μ

0∫
z0


(s)ds
!= π

2k + 1

2
(4.26)

to leading order. Using concavity of z 
→ ω(z) for z ∈ (−1,0) a direct approximation of the integral in
(4.26) is given by

−π

4
z0(1 + μ) +O

(
μ2)� 0∫

z0

ω(s)ds � −z0

(
1 + μ

2

)
+O

(
μ2). (4.27)

Hence as μ → 0 we get that

z0 ∈
[
−(2k + 1)μ,−π

4
(2k + 1)μ

]
=: [z(1)

0 , z(2)
0

]
(4.28)

where z(1)
0 is the start point estimate for maximal canards that start to spiral around γ w near z � −1

and z(2)
0 the estimate for maximal canards that start to spiral around γ w near z � 0. In particular, we

find that z0 =O((2k + 1)μ). Note that the contraction term towards γ w in (4.23) for −1 < z0 � z < 0
has order

O
(
e(z2−z2

0)/μ
)
. (4.29)

The result follows upon evaluating (4.29) on Σ0 and by substituting (4.28). �
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5. Stochastic fast–slow systems

As for deterministic fast–slow systems we only give a brief introduction to stochastic fast–slow
systems. For a detailed introduction to stochastic multiple-time-scale dynamics consider [25,82]; we
are also going to assume standard result on stochastic differential equations (SDEs) [95,70]. All SDEs
and stochastic integrals in this paper are considered in the Itô interpretation.

We associate to the deterministic fast–slow system (2.1) a stochastic fast-slow system
given by

dxs = 1

ε
f (x, y,μ,ε)ds + σ√

ε
F (xs, ys)dW s,

dys = g(x, y,μ,ε)ds + σ ′G(xs, ys)dW s, (5.1)

where F : Rm+n → R
m×k , G : Rm+n → R

n×k , {W s}s�0 is a standard k-dimensional Brownian motion
on some probability space (Ω,F ,P) and σ ,σ ′ > 0 are parameters controlling the noise level

√
σ 2 + (σ ′)2.

We also define ρ := σ ′/σ . The initial conditions (x0, y0) := (xs0 , ys0) are chosen to be either deter-
ministic or independent of {W s}s�0. Furthermore we assume that f , g, F , G are sufficiently smooth
so that solutions (xs, ys) to the SDE (5.1) exist which are continuous and unique. The law of the pro-
cess (xs, ys) is denoted by P

s0,(x0,y0) and the corresponding expectation by E
s0,(x0,y0) . Our approach

to understand the dynamics of (5.1) is to analyze the time a sample path spends in a given Borel-
measurable set A⊂ R

m+n . Suppose (x0, y0) ∈A and define the first-exit time from A as

τA := inf
{

s ∈ [s0,∞): (xs, ys) /∈ A
}
.

In this paper we are always going to choose sets A so that τA is a stopping time with respect to the
filtration generated by {(xs, ys)}s�s0 .

Our first goal is to state an analog of Fenichel’s Theorem. This theorem is going to describe the
approach of sample paths near an attracting critical manifold bounded away from folded singulari-
ties. Suppose the deterministic version of (5.1) with σ = 0 = σ ′ has a compact attracting normally
hyperbolic critical manifold

C0 = {(x, y) ∈R
m+n: x = h0(y), y ∈ D0

}
.

Let Cε be the slow manifold obtained from Fenichel’s Theorem 2.1. Our strategy is to construct a
neighborhood B(r) for Cε that contains sample paths with high probability [24,25]. Define

ξs = xs − hε(ys). (5.2)

Observe that ξs measures the deviation of the fast components from Cε . Applying Itô’s formula to (5.2)
gives:

dξs = dxs − D yhε(ys)dys + O
((

σ ′)2)ds

= 1

ε

[
f
(
hε(ys) + ξs, ys,μ,ε

)− εD yhε(ys)g
(
hε(ys) + ξs, ys,μ,ε

)+O
(
ε
(
σ ′)2)]ds

+ σ√
ε

[
F
(
hε(ys) + ξs, ys

)− ρ
√

εD yhε(ys)G
(
hε(ys) + ξs, ys

)]
dW s. (5.3)
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From now on, we suppress the arguments μ and ε for brevity. Consider the linear approximation
of (5.2) in ξs , neglect the Itô term O(ε(σ ′)2) and replace ys by its deterministic version ydet

s to
obtain

dξ0
s = 1

ε
Aε

(
ydet

s

)
ξ0

s ds + σ√
ε

F 0
ε

(
ydet

s

)
dW s,

dydet
s = g

(
hε

(
ydet

s

)
, ydet

s

)
ds, (5.4)

where the two matrices Aε and F 0
ε are defined as

Aε(y) = Dx f
(
hε(y), y

)− εD yhε(y)Dx g
(
hε(y), y

)
,

F 0
ε (y) = F

(
hε(y), y

)− ρ
√

εD yhε(y)G
(
hε(y), y

)
.

Observe that A0(y) = Dx f (h0(y), y) and F 0
0(y) = F (h0(y), y). To solve (5.4) we pick an initial condi-

tion on the slow manifold (ξ0
0 , ydet

0 ) = (0, ydet
0 ). Then the solution of (5.4) is the Itô integral

ξ0
s = σ√

ε

s∫
0

U (s, r)F 0
ε

(
ydet

r

)
dWr

where U (s, r) denotes the principal solution of the homogeneous linear system εν̇ = Aε(ydet
s )ν . If we

fix a time s then ξ0
s is a Gaussian random variable of mean zero and covariance matrix

Cov
(
ξ0

s

)= σ 2

ε

s∫
0

U (s, r)F 0
ε

(
ydet

s

)
F 0
ε

(
ydet

s

)T
U (s, r)T dr.

Note carefully that Xs := σ−2 Cov(ξ0
s ) does satisfy a fast–slow ODE given by

ε Ẋ = Aε(y)X + X Aε(y)T + F 0
ε (y)F 0

ε (y)T ,

ẏ = g
(
hε(y), y

)
. (5.5)

The system (5.5) has a critical manifold Sξ
0 given by solving the equation:

A0(y)X + X A0(y)T + F 0
0(y)F 0

0(y)T = 0.

By the remarks above we see that this is equivalent to solving:

(Dx f )
(
h0(y), y

)
X + X(Dx f )

(
h0(y), y

)T + F
(
h0(y), y

)
F
(
h0(y), y

)T = 0. (5.6)

Again this manifold can be locally described as a graph

Sξ
0 = {(X, y) ∈R

m+n: X = H0(y)
}
.

The next lemma shows that Sξ
0 is normally hyperbolic and attracting.
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Lemma 5.1. (See [10].) Let M1 and M2 be square matrices of dimensions m with eigenvalues λ1,1, . . . , λ1,m
and λ2,1, . . . , λ2,m respectively. Then the linear map L : Rm×m → R

m×m defined by

L(X) = M1 X + X M2

has m2 eigenvalues given by {λ1,i + λ2, j} for i, j ∈ {1,2, . . . ,m}.

Therefore Fenichel’s Theorem 2.1 provides us with a slow manifold

Sξ
ε = {(X, y) ∈ D ⊂ R

m+n: X = Hε(y) = H0(y) +O(ε)
}
.

Theorem 5.2. (See [24,25].) Suppose the norms ‖Hε(y)‖ and ‖H−1
ε (y)‖ are uniformly bounded. Define the

neighborhood B(r) around the deterministic slow manifold as

B(r) := {(x, y) ∈ D:
∣∣[x − hε(y)

] · [H−1
ε (y)

(
x − hε(y)

)]∣∣< r2}.
Then, for ε > 0 sufficiently small, sample paths starting on Cε remain in B(r) with high probability; in partic-
ular, we have

P
s0,(x0,y0){τB(r) < s ∧ τD0} < K1(s, ε)e−K2r2/2σ 2

(5.7)

with K1,2 > 0.

Detailed discussions of the factors K1(s, ε) and K2 can be found in [24,25]. In particular, K1(s, ε)

grows at most like s2, while K2 does not depend on time and can be taken close to 1. The probability
in (5.7) thus remains small on long time spans as soon as we choose r � σ . This implies that sample
paths stay for exponentially long times near an attracting slow manifold before they jump away or
come close to the boundary of C0, i.e. the y-coordinates leave the set D0.

6. Stochastic folded nodes

6.1. Zoom-in

Proposition 3.1 shows that Eq. (3.8) is a normal form for deterministic fast–slow systems with a
folded node. We study the associated SDE

dxs = 1

ε

(
ys − x2

s

)
ds + σ√

ε
dW (1)

s ,

dys = [−(μ + 1)xs − zs
]

ds + σ ′ dW (2)
s ,

dzs = μ

2
ds, (6.1)

where W (1)
s , W (2)

s are independent standard Brownian motions; to simplify the notation we also
define W s := (W (1)

s , W (2)
s )T . Since z plays the role of a time variable we do not add noise to the

z-component. We will always assume that the noise terms are of equal order, i.e., that ρ = σ ′/σ is
bounded above and below by positive constants. Note that (6.1) fits into the framework of a general
fast–slow SDE (5.1) with

F (x, y) = (1 0 ) and G(x, y) = (0 1 ) .

We apply the zoom-in (or blow-up transformation) given by (4.1) to (6.1) to get
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ε1/2 dx̄s̄ = ε1/2( ȳs̄ − x̄2
s̄

)
ds̄ + σ√

ε
dW (1)

ε1/2 s̄
,

ε d ȳs̄ = ε
[−(μ + 1)x̄s̄ − z̄s̄

]
ds̄ + σ ′ dW (2)

ε1/2 s̄
,

dz̄s̄ = μ

2
ds̄.

We use the scaling law of Brownian motion, divide the first equation by
√

ε and the second one by ε
and drop the overbars for notational convenience

dxs = (ys − x2
s

)
ds + σ

ε3/4
dW (1)

s ,

dys = [−(μ + 1)xs − zs
]

ds + σ ′

ε3/4
dW (2)

s ,

dzs = μ

2
ds. (6.2)

Therefore rescaling the noise intensities as

(
σ ,σ ′)= (ε3/4σ̄ , ε3/4σ̄ ′) (6.3)

removes ε from the equations and yields

dxs = (ys − x2
s

)
ds + σ dW (1)

s ,

dys = [−(μ + 1)xs − zs
]

ds + σ ′ dW (2)
s ,

dzs = μ

2
ds, (6.4)

where the overbars from (6.3) have again been dropped. To study (6.4) we consider the variational
equation around a deterministic solution (which may be the weak primary canard, a secondary
canard, or even any other solution with initial condition (x0, y0, z0) sufficiently close to Ca

0). This
approach is a generalization of Section 5 where we considered the variation around the slow mani-
fold. Viewing (6.2) as a planar non-autonomous system with time z = (μ/2)s and setting

(xz, yz) = (xdet
z + ξz, ydet

z + ηz
)

we get the SDE

dξz = 2

μ

(
ηz − ξ2

z − 2xdet
z ξz

)
dz + σ

√
2

μ
dW (1)

z ,

dηz = − 2

μ
(μ + 1)ξz dz + σ ′

√
2

μ
dW (2)

z . (6.5)
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6.2. Covariance tubes

We linearize (6.5) and denote the solution by ζ 0
z = (ξ0

z , η0
z )

T which satisfies the SDE

dζ 0
z = 1

μ

( −4xdet
z 2

−2(μ + 1) 0

)
︸ ︷︷ ︸

=:A(xdet
z )

ζ 0
z dz + σ√

μ

(√
2 0

0
√

2ρ

)
︸ ︷︷ ︸

=:F 0

dW z. (6.6)

Then (6.6) is solved by the following Gaussian process

ζ 0
z = U (z, z0)ζ

0
z0

+ σ√
μ

z∫
z0

U (z, r)F 0 dWr

where U (z, r) is the principal solution to the deterministic homogeneous non-autonomous linear sys-
tem μζ̇ = A(xdet

z )ζ . The two-by-two covariance matrix Cov(ζ 0
z ) =: Cov(z) is given by

Cov(z) = σ 2

μ

z∫
z0

U (z, r)
(

F 0)(F 0)T
U (z, r)T dr. (6.7)

Differentiating V (z) := σ−2 Cov(z) we find that it satisfies the ODE

μ
dV

dz
= A

(
xdet

z

)
V + V A

(
xdet

z

)T + (F 0)(F 0)T
(6.8)

with initial condition V (z0) = 0. The following result describes the behavior of the solutions of (6.8),
in particular as zs approaches 0.

Theorem 6.1 (Behavior of the covariance matrix). Fix an initial time z0 < 0. There exist constants c+ > c− > 0
such that the solution of (6.8) with initial condition V (z0) = 0 satisfies

c−
|z| � V 11(z), V 22(z) � c+

|z| for z0 +O
(
μ| logμ|)� z � −√

μ, (6.9)

c−√
μ

� V 11(z), V 22(z) � c−√
μ

for −√
μ � z � √

μ, (6.10)

and

∣∣V 12(z)
∣∣= ∣∣V 21(z)

∣∣� c+ for z0 � z � √
μ,∣∣V 22(z) − V 11(z)

∣∣� c+ for z0 � z � √
μ. (6.11)

Furthermore, let V̄ (z) be any solution of (6.8) with positive definite initial condition V̄ (z0). More precisely,
we require both V̄ (z0) and V̄ (z0)

−1 to have all elements uniformly bounded in μ. Then its matrix elements
satisfy (6.10) and (6.11), and (6.9) holds for all z ∈ [z0,−√

μ ].

The proof is given in Appendix B, where we also give some additional information on how the
covariance can be approximated by asymptotic expansions.

Eqs. (6.9) and (6.10) show that the variances of ξ0
z and η0

z grow like σ 2/|z| up to time −√
μ, and

then stay of order σ 2/
√

μ up to time
√

μ. Thus we expect the fluctuations of stochastic sample paths
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around the deterministic solution to increase when the fold at z = 0 is approached. The restriction
z � z0 + O(μ| logμ|) is due to the fact that the variances are initially equal to zero, and need some
time to build up.

Eqs. (6.11) show that the covariance of ξ0
z and η0

z remains bounded, of order σ 2, up to time√
μ, and the same holds true for the difference between the variances. This implies that fluctuations

become more isotropic as z approaches 0.
We now turn to the analysis of the full nonlinear SDE (6.5) satisfied by the difference ζz = (ξz, ηz)

between stochastic sample paths and deterministic solutions. This SDE can be written in vectorial
form as

dζz = 1

μ

[
A
(
xdet

z

)
ζz + b(ζz)

]
dz + σ√

μ
F 0 dW z, (6.12)

where A and F 0 have been defined in (6.6), and b(ζ )T = (−ξ2,0) denotes the nonlinear term. We
expect the covariance matrix of ζz to be close to Cov(ζ 0

z ) = σ 2 V (z), where V (z) is the solution of (6.8)
with initial condition V (z0) = 0. Thus sample paths should be concentrated in a tube surrounding the
deterministic solution, with elliptical cross-section determined by V (z). Note that the elliptical cross-
section becomes close to circular as z approaches 0, since the variances V 11, V 22 are then of larger
order than the covariance V 12 and the difference V 22 − V 11.

The fact that V (z0) is not invertible causes some technical complications. Therefore, in the fol-
lowing we let V̄ (z) be the solution of (6.8) with an initial condition V̄ (z0) which is positive definite.
Observe that the difference between V̄ (z) and V (z) decreases exponentially fast. We fix a z0 < 0 and
define the covariance tube as

B(r) = {(x, y, z): z0 � z � √
μ,
〈
(x, y) − (xdet

z , ydet
z

)
, V̄ (z)−1[(x, y) − (xdet

z , ydet
z

)]〉
< r2}.

(6.13)

The cross-section of B(r) at any plane {z = const} is an ellipsoid whose axes are determined by
V̄ (z)−1, while the scaling parameter r controls the size of the tube.

Theorem 6.2 (Concentration of sample paths in the covariance tube). There exist constants �0, r0,μ0 > 0
such that for all 0 < � < �0 , all σ < r < r0μ

3/4 and all μ � μ0 ,

P{τB(r) < z} � C+(z, z0)e−κ0r2/2σ 2
(6.14)

holds for all z � √
μ, where the exponent κ0 satisfies

κ0 = 1 −O(�) −O
(
rμ−3/4)−O

(
σ 2/r2), (6.15)

and the prefactor is given by

C+(z, z0) = const

�μ

(
r

σ

)2 z∫
z0

xdet
s ds. (6.16)

The proof is given in Appendix C. This result shows that the probability that sample paths leave
the covariance tube before time z is small provided we take r � σ log(C+(z, z0)). Indeed, for these
values of r, the exponential term dominates the polynomial prefactor. We thus say that sample paths
are concentrated in the covariance tube B(r) for r slightly larger than σ , or that the typical spreading
of sample paths is given by B(σ ).
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Fig. 6. (μ,σ )-parameter plane. (a) The curves σk(μ) are shown for c0 = 1. Above the k-th curve we cannot distinguish the
oscillation induced by the k-th canard from noisy fluctuations. The regions of different numbers of SAOs are delimited by the
curves σk(μ) and the existence requirements for the k-th canard. The number of canard orbits that induce oscillations that can
be distinguished from noise is indicated in rectangular boxes. (b) A zoom of (a) is shown that illustrates the structure of thin
regions as μ → 0 and σ → 0.

The condition σ < r < r0μ
3/4 implies that the theorem only applies to noise intensities smaller

than O(μ3/4). What happens for σ � μ3/4 is that fluctuations become large already some time before
the fold line is reached, which completely smears out the small oscillations present in the determinis-
tic case. In fact, it is possible to show that if σ � μ3/4, the bound (6.14) still holds true for r � r0|z|3/2,
and thus sample paths are localized up to times z � −σ 2/3.

6.3. Small-amplitude oscillations and noise

Depending on the size of the covariance tubes we can determine when they start to overlap;
from this we can deduce consequences for the existence of small-amplitude oscillations (SAOs) in
the presence of noise. Recall from Theorem 3.2 that there are two primary canards γ s,w

ε and K − 1
secondary canards γ k

ε for 2K − 1 < μ−1 < 2K + 1. We want to consider the rotations around γ w
ε

and denote the strong canard by γ 0
ε , i.e. k = 0. By Theorem 4.4 the distance from the weak canard is

given by O(exp(−c0(2k + 1)2μ)) for some positive constant c0 ∈ [π/4,1]. Theorem 6.1 implies that
the width of the covariance tubes is given on z = 0 by O(μ−1/4σ). Therefore sample paths starting
on the k-th canard start to overlap with the weak canard for σ ≈ μexp(−c0(2k + 1)2μ). We define
the functions

σk(μ) := μ1/4e−c0(2k+1)2μ.

The previous considerations yield the following result.

Corollary 6.3 (Noisy SAOs). On the section {z = 0} the covariance tubes of the k-th canard overlap if

σ > σk(μ), (6.17)

i.e. depending on the noise level σ , the canard number and the parameter μ, deterministic SAOs with 2k + 1
twists become indistinguishable from noisy fluctuations if (6.17) holds.

In Fig. 6 we show the curves σk(μ) and indicate in which regions of the (μ,σ )-parameter plane
one can distinguish which number of canards. The curves σk(μ) and the existence conditions of
canards enclose bounded regions where precisely k + 1 canards can be distinguished which yields
(2k +1)/2 twists up to the section {z = 0}; see also Theorem 3.3. We can also study Fig. 6 for fixed σ .
In this case decreasing μ first increases the number of visible SAOs and then decreases it again.
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6.4. Early jumps

We now turn to the behavior for times z >
√

μ. For definiteness, we let (xdet
z , ydet

z ) = (−z, z2 −
μ/2) be the weak canard solution, and define the set

D(η) = {(x, y, z): z � √
μ,
(
x − xdet

z

)2 + (y − ydet
z

)2
< η2z

}
. (6.18)

D(η) is a tube centered in the weak canard, whose width grows like
√

z. The following result, which
is proved in Appendix D, shows that sample paths are unlikely to stay very long in D(η).

Theorem 6.4 (Escape of sample paths from the primary canard). There exist constants κ = κ(η) > 0, C0 > 0
and γ1, γ2 > 0 such that, whenever σ | logσ |γ1 � μ3/4 ,

P{τD(η) > z} � C0| logσ |γ2 e−κ(z2−μ)/(μ| logσ |). (6.19)

The probability that a sample path stays in D(η) thus becomes small as soon as

z �√
μ| logσ |/κ. (6.20)

Unless the noise intensity σ is exponentially small in μ, the typical time at which sample paths jump
away from the canard is slightly (that is, logarithmically) larger than

√
μ.

7. Numerics and visualization

In this section we briefly discuss how to compute canard solutions and their associated covariance
tubes. Furthermore we visualize the early jumps after passage near a folded node in phase space for
a model system with global returns. We also compute the probability density of escaping trajectories
on a cross-section for this example. SDEs have been integrated numerically by a standard Euler–
Maruyama scheme [60,71]. Deterministic solutions have been computed using a stiff ODE solver [100,
57].

7.1. Covariance tubes

The maximal canards and their associated covariance tubes can be computed. Fig. 7 shows an
example for these computations where we used the normal form (6.4) with μ = 0.08.

We compute the deterministic attracting slow manifold Ca
ε by forward integration and the deter-

ministic repelling slow manifold Cr
ε by backward integration (see [33]) up to the section

Σ0 = {(x, y, z) ∈R
3: z = 0

}
.

The primary and secondary maximal canards have been computed as intersections of the slow mani-
folds Ca

ε ∩ Cr
ε ; see also Section 3 and [54,36]. The resulting maximal canards (thick green curves) are

shown in Fig. 7. We also computed a sample path (thin red curves) for each maximal canard starting
at the same point as the maximal canard with z0 = −1; the noise values were fixed at σ = 0.008 = σ ′ .
The tubes defined by the covariance are shown in grey and have been computed using integration of
the covariance differential equation (6.8); the section Σ0 is drawn in yellow for better orientation.

Fig. 7(a) shows a side view that illustrates how the different primary canards γ ε
s,w and secondary

canards γ
j

ε are organized with respect to z. We have only started to draw the covariance tubes B(r)
with r2 = 0.02 a bit beyond the initial values at x0 = 1. It is clearly visible how the canards and the
tubes are attracted towards the weak canard and then start to rotate around it. Fig. 7(b) shows a front
view towards the section Σ0. This view shows nicely how the tubes grow with increasing z-values
and that the ellipses defined by the covariance matrix are indeed close to circular. Furthermore we can



4810 N. Berglund et al. / J. Differential Equations 252 (2012) 4786–4841
Fig. 7. Computation of the canards and covariance tubes near a folded node in system (6.4). A detailed description of the figure
can be found in Section 7.1. (For interpretation of colors in this figure, the reader is referred to the web version of this article.)
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see how the canards are organized on Σ0; the maximal canard tubes for γ s,1,2
ε do not interact while

all other tubes interact near the weak canard. Fig. 7(c) shows a zoom that illustrates the twisting and
also shows how the sample paths are indeed “trapped” inside the covariance tubes with very high
probability.

7.2. Early jumps

To visualize the effect of early jumps we consider a folded node with global returns given by

dx = 1

ε

(
y − x2 − x3)ds + σ√

ε
dW (1)

s ,

dy = [−(μ + 1)x − z
]

ds + σ ′ dW (2)
s ,

dz =
[
μ

2
+ ax + bx2

]
ds, (7.1)

which is a slight modification of a model system for folded node MMOs [30]. The critical manifold is
cubic-shaped (or S-shaped) and given by

C0 = {(x, y, z) ∈ R
3: y = x2 + x3}= Ca,−

0 ∪ L− ∪ Cr ∪ L+ ∪ Ca,+

where Ca,+
0 = C0 ∩ {x < −2/3}, Cr

0 = C0 ∩ {−2/3 < x < 0}, Ca,+
0 = C0 ∩ {x > 0}, L− = C0 ∩ {x = −2/3}

and L+ = C0 ∩ {x = 0}. The parameters (a,b) ∈ R
2 help to adjust the global return mechanism. If

a,b are O(1) then they do not influence the local behavior of a folded node at the origin (x, y, z) =
(0,0,0). Fig. 8 shows the effect of early jumps after passage through a folded node region. Parameters
for the simulation are:

ε = 0.01, μ = 0.143, a = 0.2, b = −1.1, σ = 0.005, σ ′ = 0. (7.2)

In Fig. 8(a) a deterministic trajectory (thick blue curve) has been computed for σ = 0. Then an SDE
sample path for (7.1) has been started on a point (green dot) of the deterministic solution and inte-
grated forward. We define a cross-section

Σ J := {(x, y, z) ∈ R
3: x = −0.3

}
.

Escapes of sample paths from the folded node region are recorded on Σ J . The next two returns
are also shown as points (violet and red) on the cross-section Σ J . It is clearly visible from Fig. 8(a)
that the SDE sample path jumps before the deterministic solution. Note that this causes the path
to get re-injected into the folded node region after a large excursion at a point slightly different
from the deterministic solution. Hence the global return mechanism can potentially act as a control
mechanism for the noise. To investigate the early jumps further we show in Fig. 8(b) a probability
density

p(y, z) on Σ J .

The density has been computed by recording the intersections with Σ J after passage through
the folded node for 4000 sample paths that have been integrated for a time s ∈ [0,20]. The
corresponding deterministic point measure pdet has been indicated as well. The density p(y, z)
clearly shows that paths are expected to jump before the deterministic solution if we consider
the z-coordinate distance from the folded node. We also see that the density p(y, z) is quite
confined and shows a multi-modal structure. This structure can be explained from the fact that
sample paths exit early but between different exit points they can make additional deterministic
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Fig. 8. (a) Phase space plot of simulations for (7.1). The deterministic solution (blue) and a stochastic sample path (black) are
shown; parameters are given by (7.2) and for the deterministic solution we have σ = 0 = σ ′ . Intersections with the cross-
section Σ J (yellow) are shown as thick dots; the SDE sample path is started on the deterministic solution and on Σ J (green
dot). The next two intersections are shown as well (violet and red dots). (b) Probability density p(y, z) for 4000 sample paths
on Σ J of sample path escapes from the folded node. The deterministic point-mass density is indicated as a bar pdet (black).
(For interpretation of colors in this figure, the reader is referred to the web version of this article.)

small oscillations. A different number of these oscillations corresponds to the different maxima of
p(y, z).

8. Final remarks

In Section 6 we stated our results on the relation between the noise level, the parameter μ and
the location of paths measured along the z-coordinate. Note that we proved and stated our results in
zoomed-in (or re-scaled/blown-up) coordinates removing the ε-dependence. In particular, we worked
in a neighborhood of the folded node that is of size O(

√
ε ) in original coordinates. To obtain the

results in original coordinates one has to apply a zoom-out (or blow-down) transformation. First, we
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Fig. 9. Simulation for the model system (7.1) with parameter values (8.1). The upper plot shows a projection of a deterministic
solution (black) and a stochastic sample path (red) into the (x, z)-plane. The lower two plots show the associated time series.
(For interpretation of colors in this figure, the reader is referred to the web version of this article.)

replace (x, y, z, σ ,σ ′) by (x̄, ȳ, z̄, σ̄ , σ̄ ′) (recall: we dropped the overbars for notational convenience).
Then the identity

(
x̄, ȳ, z̄, σ̄ , σ̄ ′,μ

)= (ε−1/2x, ε−1 y, ε−1/2z, ε−3/4σ ,ε−3/4σ ′,μ
)

provides the required zoom-out transformation. This implies e.g. that the interaction of canards in
Corollary 6.3 is given, in original coordinates, by relations of the form

σ ≈ ε3/4μ1/4e−c0(2k+1)2μ

or that sample paths are likely to escape for

z � ε1/2

√
μ

κ

∣∣∣∣logσ − 3

4
logε

∣∣∣∣
as shown in Theorem 6.4. Obviously one also has to translate the assumptions in a similar way e.g.
σ̄ � μ3/4 becomes σ � (με)3/4.

Another important point is that we focused on the detailed analysis near the folded node and did
not consider different types of global return mechanisms. In Fig. 9 we show the interaction between
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global returns and noise-induced early jumps on oscillatory patterns. The simulation in Fig. 9 has
been carried out using the model system (7.1) with parameter values

ε = 0.01, μ = 0.029, a = −0.1, b = −0.5, σ = 0.005, σ ′ = 0.005. (8.1)

The deterministic solution in Fig. 9 is an MMO with pattern 2s where the number of small oscillations
is difficult to count from the numerical results as μ is already extremely small. The SDE sample
paths jump significantly earlier to Ca,−

ε than the deterministic solution as expected from our results.
However, we see that the deterministic solution makes an additional large-amplitude oscillation (LAO)
given by the passage

Ca,−
ε → jump near L− → Ca,+

ε → jump near L+ → Ca,−
ε .

In particular, the early jumps change the number of LAOs in the MMO pattern from L = 2 to L = 1.
The noise also influences the number of SAOs but the crucial point is that it can also have a global
effect. Hence we end up with a stochastic-resonance-type mechanism for MMO patterns.

Furthermore, one could think about extending our results to capture the effect of a global return
map on the escape density after the passage through a folded node region; see also the brief dis-
cussion in Section 7.2. Let Σ J denote a cross-section on which we record the escape from the folded
node region and let Σ R denote a cross-section to the deterministic flow slightly before the re-entry to
the folded node region; see also [81]. Then we have a global return map induced by the deterministic
flow

M : Σ J → Σ R . (8.2)

If we are given a probability density p on Σ J , we can then consider the induced density p ◦
M−1/|det DM ◦ M−1| on Σ R . This should allow us to calculate a distribution for different MMO pat-
terns, i.e. we can hope to assign a probability to each combination Ls after one return from Σ J

to Σ J . Although this approach seems possible it is beyond the local analysis we focused on here.
A solution of this problem crucially depends on the form of the global returns which are described
by the map M .
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Appendix A. Proof of Theorem 4.3 (canonical form)

We are going to need the following lemma for the proof of Theorem 4.3.

Lemma A.1. Consider two non-autonomous vector fields F , G : R×R
N → R

N for (z, X) ∈ R×R
N . Suppose

both are continuous in z, C1 in X and defined on an open set D containing (0, X0). Suppose for all (z, X) in D
we have ∥∥F (z, X) − G(z, X)

∥∥< μ.

Let K be a Lipschitz constant for F in X, which is uniform in z. Suppose X(z) and Y (z) solve dX
dz = F (z, X) and

dY
dz = G(z, Y ) with X(0) = X0 = Y (0), then

∥∥X(z) − Y (z)
∥∥� μ

K

(
eK |z| − 1

)
. (A.1)
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Proof. A direct Gronwall lemma argument suffices; for details see [61, pp. 399–400]. �
The proof of Theorem 4.3 proceeds in several steps that aim to bring Eq. (4.8) into diagonal

form [18,27].

Proof of Theorem 4.3. As a first step we apply a rescaling

u = exp

[
1

2μ

z∫
0

Tr
(

A(s)
)

ds

]
u(0) = ez2/μu(0)

where u(0) = (u(0)
1 , u(0)

2 ) are new coordinates. This yields

μ
du(0)

dz
= A0(z)u(0), with A0(z) =

(
2z 2

−2(μ + 1) −2z

)
(A.2)

where now Tr(A0(z)) = 0. Therefore the principal solution has determinant 1 and is area preserving.
We are going to show that the solution of (A.2) is a rotation up to a small error using a sequence of
z-dependent coordinate transformations S j(z). We set

u(0) = S0(z)u(1), where S0(z) =
( −z−iω(z)

1+μ
−z+iω(z)

1+μ

1 1

)
.

Then S−1
0 A0 S0 is diagonal with entries ±2iω(z). We get

μ
du(1)

dz
= A1(z)u(1),

where the new matrix A1 is given by

A1(z) = S−1
0 A0 S0 − μS−1

0
dS0

dz
=
(

2iω(z) + μ i−ω′(z)
2ω(z) μ i+ω′(z)

2ω(z)

μ−i+ω′(z)
2ω(z) −2iω(z) + μ−i−ω′(z)

2ω(z)

)
.

As above we want to have a zero trace so we compute

1

2μ

z∫
0

Tr
(

A1(s)
)

ds = −1

2

z∫
0

ω′(s)

ω(s)
ds = −1

2
logω(z) + const.

Hence we consider the scaling

u(1) = S1(z)u(2) = 1√
ω(z)

u(2)

which yields the equation

μ
du(2)

dz
= A2(z)u(2), with A2(z) =

(
iω2(z) μρ̄2(z)

μρ (z) −iω (z)

)

2 2
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where overbar denotes complex conjugate and

ω2(z) = 2ω(z) + μ

2ω(z)
, ρ2(z) = −i + ω′(z)

2ω(z)
. (A.3)

The next transformation

u(2) = S2(z)u(3)

yields

μ
du(3)

dz
= A3(z)u(3), A3(z) = S−1

2

[
A2 S2 − μ

dS2

dz

]
. (A.4)

Instead of a given transformation we now impose the form of the matrices

S2(z) =
(

1 μv̄(z)

μv(z) 1

)
, A3(z) =

(
ρ1(z) 0

0 ρ̄1(z)

)
(A.5)

so that S2 = Id+O(μ) and A3 is diagonal. Substituting (A.5) into (A.4) leads to the equations

0 = iω2(z) + μ2ρ̄2(z)v − ρ1(z),

μ
dv

dz
= ρ2(z) − iω2(z)v − vρ1(z)

and their complex conjugates. The first equation determines ρ1(z), and thus the second one becomes

μ
dv

dz
= −2iω2(z)v − μ2ρ̄2(z)v2 + ρ2(z). (A.6)

If we can show that (A.6) has a bounded solution for times |z| < 1 then our prescribed coordinate
change S2 exists. Now let a(z) = 2z + Reρ1(z) = 2z + O(μ2) and define α(z, z0) by (4.24). A last
transformation

u(3) = S3(z)ũ = e−α(z,0)/μ 1

1 + i

(
i 1
1 i

)
ũ (A.7)

brings the equation into canonical form (4.21), with 
(z) = Imρ1(z) = 2ω(z) + O(μ). Compos-
ing all transformations, we get u = S(z)ũ, where S(z) = ez2/μS0(z)S1(z)S2(z)S3(z) is indeed of the
form (4.20).

To prove the existence of bounded solutions for (A.6) note that ρ2(z) and ω2(z) are bounded away
from zero and that they also have bounded norms for |z| < 1. Now set

F (z, v) := −2iω2(z)

μ
v + ρ2(z)

μ
, G(z, v) := −2iω2(z)

μ
v − μρ̄2(z)v2 + ρ2(z)

μ
.

Note that F is a vector field with bounded solutions on an O(1) time scale. Considering F , G as real
planar vector fields on R

2 we can apply Lemma A.1 to conclude that (A.6) admits bounded solutions
on time intervals of length 1. �
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Appendix B. Proof of Theorem 6.1 (covariance matrix)

In this appendix, we discuss the equation

μ
dV

dz
= A

(
xdet

z

)
V + V A

(
xdet

z

)T + (F 0)(F 0)T
(B.1)

describing the evolution of V (z) = {V ij(z)}i, j∈{1,2} := σ−2 Cov(z), the covariance matrix of the lin-
earized variational equation around a deterministic solution of (6.4). Before proving Theorem 6.1 on
the small-μ asymptotics of the solutions, we provide different approaches yielding information on
the behavior of V (z). A formal method based on iterative computations of a slow manifold is devel-
oped in Section B.1 to understand the asymptotics of (B.1). In Section B.2 we provide rigorous bounds
using a Lyapunov function. In Section B.3 we refine the previous results by a transformation to real
canonical form and results about delayed Hopf bifurcation, thereby proving the main theorem.

Proposition B.1. Let

v(z) =
⎛
⎝ v1(z)

v2(z)

v3(z)

⎞
⎠ , where

⎧⎨
⎩

v1(z) = V 11(z),

v2(z) = V 22(z),

v3(z) = V 12(z) = V 21(z)

(B.2)

denote the two variances and the covariance. Then v(z) satisfies the ODE

μ
dv

dz
=
⎛
⎝ −8x(z) 0 4

0 0 −4(μ + 1)

−2(μ + 1) 2 −4x(z)

⎞
⎠

︸ ︷︷ ︸
=:B(z)

v +
⎛
⎝ 2

2ρ2

0

⎞
⎠

︸ ︷︷ ︸
=:E

(B.3)

where we have abbreviated xdet(z) =: x(z).

Proof. Using the definitions from (6.6) and Eq. (B.1) we get

μ
dV

dz
= A

(
xdet

z

)
V + V A

(
xdet

z

)T + (F 0)(F 0)T

=
( −4xdet

z 2

−2(μ + 1) 0

)
V + V

(−4xdet
z −2(μ + 1)

2 0

)
+
(√

2 0

0
√

2ρ

)(√
2 0

0
√

2ρ

)

=
(

4V 12 − 8V 11xdet
z + 2 2V 22 − 4V 12xdet

z − 2V 11(1 + μ)

2V 22 − 4V 12xdet
z − 2V 11(1 + μ) −4V 12(1 + μ) + 2ρ2

)
.

Therefore the result follows. �
Our goal is to analyze (B.3) for a given maximal canard solution x(z). Observe that B(z) has eigen-

values

−4x(z), −4x(z) ± i
√

1 − x(z)2 + μ = −4x(z) ± iω0
(−x(z)

)
.

We assume that z0, z1 are chosen so that

−1 < z0 < 0 < z1 < 1 and 1 − x(z)2 + μ > 0 ∀z ∈ [z0, z1]. (B.4)



4818 N. Berglund et al. / J. Differential Equations 252 (2012) 4786–4841
In particular, the assumptions (B.4) are satisfied for any maximal canard solution approaching the
folded node region from the slow manifold Ca

ε for some z0 < 0 < z1 of order 1 and μ sufficiently
small.

B.1. Iteration and asymptotics

Notation B.2. Henceforth, we write x(z,μ) � y(z,μ) if

c− y(z,μ) � x(z,μ) � c+ y(z,μ) (B.5)

holds for all z, where c± are positive constants independent of z and μ.

A formal derivation for the asymptotics as μ → 0 for (B.3) can be carried out using an iterative
scheme [93,18]. We set v(z) = V ∗

0 (z) + V 1(z) where

V ∗
0 (z) := −B(z)−1 E = − 1

4(1 + μ)x(z)

⎛
⎝ 1 + μ + ρ2

(1 + μ)2 + (1 + 4x(z)2 + μ)ρ2

2ρ2x(z)

⎞
⎠ (B.6)

defines the critical manifold for (B.3) when viewed as a slowly time-dependent system. We get

μ
dV 1

dz
= B(z)V 1 + μE1(z), E1(z) = − d

dz
V ∗

0 (z).

The same change procedure also works for any n � 1 by setting

v(z) =
n∑

j=0

μn V ∗
j (z) + Vn+1(z). (B.7)

Then Vn+1(z) satisfies the equation

μ
dVn+1

dz
= B(z)Vn+1 + μn+1 En+1 (B.8)

where V ∗
n and En are given inductively by

V ∗
n+1(z) = B(z)−1 d

dz
V ∗

n (z), En+1(z) = d

dz

[
B(z)−1 En(z)

]
.

Remark. Observe that (B.7) is the asymptotic expansion for the slow manifold of (B.3). The iterative
scheme we use here is very convenient for slowly time-dependent systems. Many other methods
to calculate slow manifolds for general fast–slow systems have been explored; see [114,115] and
references therein.

Proposition B.3. Assume that the deterministic maximal canard solution x(z) satisfies (B.4). Then the asymp-
totic expansion (B.7) of v(z) for n � 0 has components of order

μn V ∗
n,1(z) � μn V ∗

n,2(z) � μn

|z|2n+1
, μn V ∗

n,3(z) � μn

|z|2n
. (B.9)
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Proof. First observe that the symmetry (3.12) implies that x(0) = 0 for any maximal canard. Using
this fact and the slow flow (3.10) we find that x(z) must have a Taylor expansion with non-vanishing
linear term, i.e.

x(z) = x1z + x2z2 + · · · (B.10)

with x1 < 0. The proof of (B.9) then proceeds by induction as follows: The base step n = 0 holds by
formulas (B.6) and (B.10). The induction step from n − 1 to n follows from direct differentiation

d

dz

(
1

z2n−1

)
= 1 − 2n

z2n
,

and the calculation of B(z)−1

B(z)−1 = −
⎛
⎜⎝

1
8x(z)

1
8(1+μ)x(z) 0

1+μ
8x(z)

1+μ
8x(z) − x(z)

2(1+μ)
1
2

0 1
4(1+μ)

0

⎞
⎟⎠

almost immediately; we just have to observe the block structure of B(z)−1. �
Proposition B.3 is a formal asymptotic result. The asymptotic series (B.7) becomes “disordered” for

|z| = O(
√

μ) because in this case all the terms for the coordinates v1 and v2 are of order 1/
√

μ
while all terms for v3 are of order 1. Therefore we conjecture that

v1 = O
(

1√
μ

)
, v2 = O

(
1√
μ

)
, v3 = O(1), (B.11)

for −√
μ < z0 � z � √

μ.

B.2. Lyapunov function

The results in this section are not as sharp as the results obtained by coordinate changes in Sec-
tion B.3 but they are obtained by a completely different technique which is of interest on its own in
the context of folded nodes. We are going to require an auxiliary result to analyze that will be used
below in the proof of Proposition B.5.

Lemma B.4. Consider the linear non-autonomous differential equation on R given by

μ
dX

dz
= k1zX + k2

μn

(−z)2n
(B.12)

where k1,2 = O(1) are two positive constants, μ > 0, and either n = 0 and z � z0 or n � 1 and z0 � z < 0.
Then

X(z) �

⎧⎪⎨
⎪⎩

μn|z|−(2n+1) for z0 +O(μ| logμ|) � z � −√
μ,

μn−1|z|−(2n−1) for −√
μ � z < 0 if n � 1,

μ−1/2 for −√
μ � z � √

μ if n = 0.
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Proof. The solution of (B.12) can be written as

X(z) = X(z0)ek1(z2−z2
0)/2μ + k2 In(z) (B.13)

where

In(z) = μn−1

z∫
z0

ek1(z2−t2)/2μ 1

(−t)2n
dt.

For z ∈ [z0,−√
μ ] the leading-order asymptotics of (B.13) is given by In(z). Using integration by parts

we get an upper bound

k1 In(z) = k1μ
n−1

z∫
z0

(
− μ

k1t

1

(−t)2n

)(
−k1t

μ
ek1(z2−t2)/2μ

)
dt

= μn 1

(−t)2n+1
ek1(z2−t2)/2μ

∣∣∣∣z
z0

− μn

z∫
z0

d

dt

[
1

(−t)2n+1

]
ek1(z2−t2)/2μ dt

= μn

(−z)2n+1
− μn

(−z0)2n+1
ek1(z2−z2

0)/2μ − (2n + 1)In+1(z)

� μn

(−z)2n+1
. (B.14)

The lower bound follows by inserting the upper bound for In+1(z) in (B.14). Here the condition

z � z0 + O(μ| logμ|) is needed to make the term ek1(z2−z2
0)/2μ small. This implies in particular that

X(−√
μ) � 1/

√
μ.

Finally, to describe the behavior for −√
μ < z < 0, we replace z0 by −√

μ in (B.13). Then all
exponential terms are of order 1, and the integral can be estimated directly. �
Proposition B.5. Suppose (B.4) holds and let x(z) be a maximal canard solution. Then solutions to the varia-
tional equation (B.3) remain bounded by O(1/(|z| + √

μ)) for z0 � z � √
μ.

Proof. Throughout the proof we are going to introduce several positive constants c j =O(1) for j ∈ N

whose actual value does not influence the asymptotic result. As a first step we want to find a sym-
metric matrix M(z) such that

B(z)T M(z) + M(z)B(z) = −x(z) Id . (B.15)

This can simply be accomplished by solving the six algebraic equations (B.15). We find that

M(z)|μ=0 = 1

64(1 + 3x2)

⎛
⎝7 + 12x2 1 + 12x2 −12x

1 + 12x2 7 + 64x2 + 48x4 −16x(1 + 3x2)

−12x −16x(1 + 3x2) 4(3 + 18x2)

⎞
⎠

where we have abbreviated x = x(z). Since (B.10) holds for maximal canards it is straightforward to
check that the matrix M(z) is positive definite, uniformly in μ and z. Therefore it defines a family of
quadratic forms

Yn := V T
n M(z)Vn (B.16)
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where Vn is defined by (B.7). The quadratic form (B.16) satisfies

c1‖Vn‖2 � Yn(z) � c2‖Vn‖2

for some constants c1, c2 > 0. Essentially Yn will act as a Lyapunov function to bound ‖Vn‖. To show
this we compute the derivative. Using (B.15) and (B.8), we get

μ
dYn

dz
= μ

dV T
n

dz
M(z)Vn + μV T

n M(z)
dVn

dz
+ μV T

n
dM

dz
Vn

= −x(z)V T
n Vn + μV T

n
dM

dz
Vn + μn[En(z)T M(z)Vn + V T

n M(z)En(z)
]
. (B.17)

Since ‖En‖ =O(|z|−2n) and ‖ dM
dz ‖ is bounded we can find constants c3, c4 > 0 such that (B.17) implies

μ
dYn

dz
� c3

(−x(z) + μ
)
Yn + c4

μn

(−z)2n

√
Yn.

Setting Yn = Z 2
n , we find that the last inequality is equivalent to

μ
dZn

dz
� c5

(−x(z) + μ
)

Zn + c6
μn

(−z)2n
. (B.18)

Using (B.10) and Lemma B.4 we obtain that for z0 of order −1,

Zn(z) � c7
μn

|z|2n+1
for z0 � z < 0. (B.19)

Since Zn is equivalent to ‖Vn(z)‖, this shows that (B.8) is indeed an asymptotic expansion in powers
of μ/z2 for z � −√

μ, and in particular all components of v(−√
μ) are of order 1/

√
μ. To complete

the proof up to time z = √
μ, we simply apply (B.19) in the particular case n = 0 (that is, for V 0 = v

and E0 = E). �
In view of our conjecture (B.11) the bound on the covariance provided by Proposition B.5 is prob-

ably not sharp since we have not shown that v3 =O(1).

B.3. Delayed Hopf bifurcation

To obtain a sharp bound on the covariance we consider a similar coordinate change idea as in
Section 4.2. This procedure will give a variational equation for the covariance that has desirable sym-
metry properties.

Lemma B.6. There exists a linear coordinate change ζ 0 = S(z)ζ̃ 0 transforming the linearized SDE (6.6) into

dζ̃ 0
z = 1

μ
Ã(z)ζ̃ 0

z dz + σ√
μ

F̃ (z)dW z, (B.20)

where Ã(z) is in canonical form

Ã(z) =
(

a(z) 
(z)

−
(z) a(z)

)
, (B.21)
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with a(z) = −2x(z)+O(μ) and 
(z) = 2ω(z)+O(μ). The matrix F̃ (z) is positive definite, with eigenvalues
bounded below and above uniformly in z.

Proof. It suffices to apply the coordinate change ζ 0
z = S(z)ζ̃ 0

z constructed in the proof of Theorem 4.3
(with an obvious modification due to the fact that x(z) is not necessarily given by the weak canard).
The new diffusion coefficient is then given by F̃ (z) = S(z)−1 F 0. �

A computation analogous to the one in the proof of Proposition B.1 then yields

Lemma B.7. The covariance matrix of ζ 0
z is given by σ 2 Ṽ (z), where the matrix elements of Ṽ (z) satisfy the

system

μ
dṽ

dz
=
⎛
⎝ 2a(z) 0 2
(z)

0 2a(z) −2
(z)

−
(z) 
(z) 2a(z)

⎞
⎠

︸ ︷︷ ︸
=:B̃(z)

ṽ + Ẽ (B.22)

where Ẽ ∈R
3 with O(1)-components.

It is already apparent from the form of (B.22) that the analysis of the variational equation simpli-
fies. We can now prove Theorem 6.1, which we restate as follows for convenience.

Theorem B.8 (Theorem 6.1). Suppose (B.4) holds. Then the solution v = (v1, v2, v3) for (B.3) satisfies the
following asymptotics as μ → 0

v1 � 1

|z| + √
μ

, v2 � 1

|z| + √
μ

, v3 = O(1), (v1 − v2) = O(1) (B.23)

for z0 +O(μ| logμ|) � z � √
μ.

Proof. We work in the coordinates provided by Lemma B.7. Summing the first two equations of (B.22)
we get

μ
d

dz
(ṽ1 + ṽ2) = 2a(z)(ṽ1 + ṽ2) + ẽ1 + ẽ2 (B.24)

and we already know from Proposition B.5 (resp. Lemma B.4) that this yields

(ṽ1 + ṽ2)(z) � 1

|z| + √
μ

for z0 + O(μ| logμ|) � z � √
μ. The difference of the first two equations in (B.22) and the third

equation can be combined as

μ
d

dz

(
ṽ1 − ṽ2

ṽ3

)
=
(

2a(z) 4
(z)

−
(z) 2a(z)

)(
ṽ1 − ṽ2

ṽ3

)
+
(

ẽ1 − ẽ2

ẽ3

)
. (B.25)

Considering (B.25) as a fast–slow system with slow variable z we find that the critical manifold is
given by the equation

(
(ṽ1 − ṽ2)

∗
ṽ∗

)
= −

(
2a(z) 4
(z)

−
(z) 2a(z)

)−1( ẽ1 − ẽ2

ẽ

)
,

3 3
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which is order 1. Observe that (B.25) undergoes a delayed (or dynamic) Hopf bifurcation at z = 0.
Thus Neishtadt’s theorem on delayed Hopf bifurcations [93] applies, and shows that solutions of the
variational equation satisfy

(ṽ1 − ṽ2)(z) = (ṽ1 − ṽ2)
∗(z) +O(μ), ṽ3(z) = v∗

3(z) +O(μ)

for z0 +O(μ| logμ|) � z �O(1). Now the result (B.23) follows from V (z) = S(z)Ṽ (z)S(z)T , by writing
Ṽ (z) as the sum of a leading term proportional to the identity matrix and a remainder of order 1. �
Appendix C. Proof of Theorem 6.2 (staying in covariance tubes)

Applying the transformation of Lemma B.6 to the nonlinear equation (6.12) and dropping the tildes
yields the system

dζz = 1

μ

[
A(z)ζz + b(ζz, z)

]
dz + σ√

μ
F (z)dW z, (C.1)

where

A(z) =
(

a(z) 
(z)

−
(z) a(z)

)
, (C.2)

and b(ζ, z) =O(‖ζ‖2). The solution of (C.1) with initial condition ζz0 = 0 can be written as

ζz = σ√
μ

z∫
z0

U (z, s)F (s)dW s + 1

μ

z∫
z0

U (z, s)b(ζs, s)ds =: ζ 0
z + ζ 1

z , (C.3)

where U (z, s) denotes the principal solution of the linear time-dependent system μζ̇ = A(z)ζ . Owing
to the particular form of A(z), we have the explicit expression

U (z, s) = e−α(z,s)/μ
(

cos(ϕ(z, s)/μ) sin(ϕ(z, s)/μ)

− sin(ϕ(z, s)/μ) cos(ϕ(z, s)/μ)

)
, (C.4)

where

α(z, s) =
z∫

s

−a(u)du, ϕ(z, s) =
z∫

s


(u)du. (C.5)

Note in particular that since −a(z) � x(z) � −z near z = 0, we have α(z, s) � s2 − z2.
For a two-by-two matrix M , let ‖M‖ denote its L2-operator norm, i.e., ‖M‖2 is the largest eigen-

value of MMT .

Lemma C.1. Let

Θ(z) = 1

μ

z∫
z0

∥∥U (z, s)
∥∥ds. (C.6)

Then
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Θ(z) = O
(

1

|z| + √
μ

)
(C.7)

for all z0 � z � √
μ.

Proof. Since U (z, s)U (z, s)T = e−2α(z,s)/μ Id, we have

Θ(z) = 1

μ

z∫
z0

e−2α(z,s)/μ ds, (C.8)

and the result follows as in the proof of Lemma B.4. �
The next lemma provides bounds on the norms of V̄ (z) and V̄ (z)−1.

Lemma C.2. Let

K+(z)2 = ∥∥V̄ (z)
∥∥, K−(z)2 = ∥∥V̄ (z)−1

∥∥. (C.9)

Then

K+(z)2 = O
(

1

|z| + √
μ

)
, K−(z)2 = O

(|z| + √
μ
)

(C.10)

for all z0 � z � √
μ.

Proof. Note that

V̄ (z)V̄ (z)T =
(

v̄1 v̄3

v̄3 v̄2

)2

=
(

v̄2
1 + v̄2

3 (v̄1 + v̄2)v̄3

(v̄1 + v̄2)v̄3 v̄2
2 + v̄2

3

)
(C.11)

has eigenvalues given by

1

2

[
v̄2

1 + v̄2
2 + 2v̄2

3 ± (v̄1 + v̄2)

√
(v̄1 − v̄2)2 + 4v̄2

3

]
. (C.12)

The larger eigenvalue is equal to K+(z)4, while the smaller one is equal to K−(z)−4. The result thus
follows from the bounds obtained in Theorem B.8. �

We can now prove a local version of Theorem 6.2, on a small interval [s, t] ⊂ [z0, z].

Proposition C.3. Fix times z0 � s < t � z such that α(t, s) �O(μ). Then for any 0 < γ < 1,

P

{
sup

s�u�t

〈
ζu, V̄ (u)−1ζu

〉
� r2

}

� 1

1 − γ
exp

{
− γ r2

2σ 2

[
1 −O

((|s| + √
μ
) t − s

μ

)
−O

(
r

(|t| + √
μ)3/2

)]}
. (C.13)
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Proof. The proof is adapted from [25, Section 5.2], and we use almost the same notations as there.
Let Υu = U (s, u)ζu . Then

〈
ζu, V̄ (u)−1ζu

〉= 〈Υu, U (u, s)T V̄ (u)−1U (u, s)︸ ︷︷ ︸
=:Q s(u)2

Υu
〉= ∥∥Q s(u)Υu

∥∥2
. (C.14)

We can again decompose Υu = Υ 0
u + Υ 1

u , where

Υ 0
u = σ√

μ

u∫
z0

U (s, v)F (v)dW v ,

Υ 1
u = 1

μ

u∫
z0

U (s, v)b(ζv , v)dv. (C.15)

The process Υ 0
u is a Gaussian martingale. Lemma 5.1.8 in [25] can thus be applied and provides the

bound

P

{
sup

s�u�t

∥∥Q s(t)Υ
0

t

∥∥� R0

}
� 1

1 − γ
exp

{
−γ

R2
0

2σ 2

}
. (C.16)

For this bound to be useful, we need to show that Q s(u) and Q s(t) are close to each other. Observe
that

μ
d

du
Q s(u)−2 = U (s, u)F (u)F (u)T U (s, u)T , (C.17)

as a consequence of the definition of U (s, u) and the differential equation satisfied by V̄ (u). Integrat-
ing from u to t and multiplying on the left by Q s(u)2, we get

Q s(u)2 Q s(t)
−2 − Id = Q s(u)2 1

μ

t∫
u

U (s, v)F (v)F (v)T U (s, v)T dv. (C.18)

Now ‖U (s, v)‖ � O(1) owing to the assumption α(t, s) = O(μ). Thus the integral has order t − u �
t − s. Furthermore,

∥∥Q s(u)2
∥∥�

∥∥U (u, s)
∥∥2

K−(u)2 = O
(

K−(u)2). (C.19)

As a consequence, we get

Q s(u)2 = Q s(t)
2
[

Id +O
(

K−(s)2 t − s

μ

)]
. (C.20)

Thus there exists an R = r[1 −O(K−(s)2(t − s)/μ)] such that

P

{
sup

s�u�t

〈
ζu, V̄ (u)−1ζu

〉
� r2

}
� P

{
sup

s�u�t∧τB(r)

∥∥Q s(t)Υu
∥∥� R

}
. (C.21)
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For any decomposition R = R0 + R1 with R0, R1 > 0, we can bound the above probability by P0 + P1,
where

Pi = P

{
sup

s�u�t∧τB(r)

∥∥Q s(t)Υ
i

u

∥∥� Ri

}
, i = 0,1. (C.22)

P0 has already been estimated in (C.16). We want to choose R1 in such a way that P1 = 0. For any
u � t ∧B(r), we have

∥∥Q s(t)Υ
1

u

∥∥� const sup
u∈[s,t]

K−(u)
1

μ

u∫
z0

∥∥U (s, v)b(ζv)
∥∥dv

� const sup
u∈[s,t]

K−(u)Θ(u) sup
v∈[z0,t∧τB(r)]

‖ζv‖2

� const sup
u∈[s,t]

K−(u)Θ(u) sup
v∈[z0,t]

K+(v)2r2

� const
(√

μ + |t|)−3/2
r2. (C.23)

We can thus achieve P1 = 0 by setting R1 to be a sufficiently large constant times (
√

μ + |t|)−3/2r2.
This determines R0, and the result then follows from (C.16). �

We can now complete the proof of Theorem 6.2, which will follow directly from

Theorem C.4. There exist constants �0, r0,μ0 > 0 such that for all 0 < � < �0 , all 0 < σ < r < r0μ
3/4 ,

0 < μ < μ0 and all 0 < γ < 1,

P{τB(r) < z} � C+(z, z0)exp

{
−γ

r2

2σ 2

[
1 −O(�) −O

(
rμ−3/4)]} (C.24)

holds for all z � √
μ, where

C+(z, z0) = const

(1 − γ )�μ

z∫
z0

xdet
s ds. (C.25)

Proof. Let z0 = s0 < s1 < · · · < sN = z be a partition of [z0, z]. Then

P{τB(r) < s} �
N∑

k=1

Pk, (C.26)

where

Pk = P

{
sup

sk−1�u�sk

〈
ζu, V̄ (u)−1ζu

〉
� r2

}
(C.27)

can be estimated by Proposition C.3. We want to choose the partition in such a way that the error
terms in Pk are bounded uniformly in k. A convenient choice is to define the sk by
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{
α(sk+1, sk) = �μ when sk+1 < −√

μ,

sk+1 − sk = �
√

μ when |sk+1| � √
μ.

(C.28)

Using the fact that α(t, s) � |s + t|(t − s) and applying Proposition C.3, one indeed checks that

Pk � 1

1 − γ
exp

{
− γ r2

2σ 2

[
1 −O(�) −O

(
rμ−3/4)]} ∀k = 1, . . . , N, (C.29)

where the error terms are uniform in k. It remains to estimate the number N of elements of the
partition, which will give the prefactor C+ . In the case z � −√

μ, we simply have

α(z, z0) = N�μ ⇒ N =
⌈

α(z, z0)

�μ

⌉
. (C.30)

In the case −√
μ � z � √

μ, we have

N =
⌈

α(z, z0)

�μ

⌉
+
⌈

z − (−√
μ)

�
√

μ

⌉
, (C.31)

and the result follows from the fact that α(z,−√
μ) � √

μ(z − (−√
μ)). �

Theorem 6.2 is just a reformulation of this result, in which we have chosen γ = 1 − σ 2/r2.

Appendix D. Proof of Theorem 6.4 (early jumps)

We consider again the equation for the difference ζz between stochastic sample paths and a de-
terministic reference solution, this time given by the weak canard. In canonical form, we have

dζz = 1

μ

[
A(z)ζz + b(ζz, z)

]
dz + σ√

μ
F (z)dW z, (D.1)

where

A(z) =
(

a(z) 
(z)

−
(z) a(z)

)
, a(z) = 2z +O

(
μ2), (D.2)

and b(ζ, z) = O(‖ζ‖2). The proof is split into several parts. In Section D.1, we show that sample
paths are likely to leave a neighborhood of order slightly (that is, logarithmically) larger than σ/z
of the weak canard in a time z of order

√
μ| logμ|. Section D.2 analyzes the dynamics in a larger

neighborhood of the weak canard, in which the drift term dominates. Section D.3 combines the two
results to prove the main theorem.

D.1. Diffusion-dominated escape

We assume from now on that σ � μ3/4, because otherwise stochastic sample paths are no longer
localized near deterministic solutions when z = √

μ. We define the set

S(h) = {(ζ, z): z � √
μ, ‖ζ‖ < hρ̂(z)

}
, (D.3)

where
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ρ̂(z)2 = Tr(F (z)F (z)T )

4z
. (D.4)

The following result is an adaptation of [22, Proposition 4.7] to the two-dimensional case.

Proposition D.1. Let h, ν > 0, with ν of order 1, satisfy the conditions

σ

h
� c0 and

(
h

σ

)2+ν[
log

(
1 + ν + h2

σ 2

)]1/2

� c1
μ3/4

σ
(D.5)

for some c0, c1 > 0. If c0 and c1 are small enough, then there exist T > 0 and C(ν) > 0 such that for any
(z0, ζ0) ∈ S(h) with z0 < T ,

P
(ζ0,z0){τS(h) � z} � C(ν)

(
h

σ

)2ν

exp

{
−κ(ν)

z2 − z2
0

μ

}
(D.6)

holds for all
√

μ � z0 � z � T , where

κ(ν) = 2ν

1 + ν

[
1 −O

(
1

ν log(h/σ )

)]
. (D.7)

We shall choose the value of the parameter ν later on, while h will be taken of the form h =
cσ | logσ |. Then condition (D.5) reduces to

σ | logσ |2+ν
√

log | logσ | � O
(
μ3/4), (D.8)

which is slightly stronger than σ � μ3/4. The exponent κ(ν) in (D.7) becomes optimal in the limit
ν → ∞, but condition (D.8) becomes more stringent as ν grows large. But we have to choose a
finite ν anyway.

Proof of Proposition D.1. Let α(t, s) = ∫ t
s a(u)du. We define a partition z0 = s0 < s1 < · · · < sN = z of

[z0, z] by

α(sk, sk−1) = �μ, k = 1, . . . , N − 1, (D.9)

where � > 0 will be chosen later. The Markov property implies that

P{τS(h) � z} �
N−1∏
k=1

Pk, (D.10)

where

Pk = sup
ζ : ‖ζ‖�hρ̂(sk−1)

P
ζ,sk−1

{
sup

sk−1�s�sk

‖ζs‖
ρ̂(s)

< h

}
. (D.11)

We shall derive a uniform bound q(�) for all Pk , 1 � k � N − 1. Then (D.10) and the definition (D.9)
of the partition imply

P{τS(h) � z} � q(�)−1 exp

{
−α(z, z0)

μ

log q(�)−1

�

}
, (D.12)

and the result will follow from an appropriate choice of �.
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The process ζs starting at time sk−1 in ζ can be decomposed as ζs = ζ
k,0
s + ζ

k,1
s , with

ζ k,0
s = U (s, sk−1)ζ + σ√

μ

s∫
sk−1

U (s, u)F (u)dWu,

ζ k,1
s = 1

μ

s∫
sk−1

U (s, u)b(ζu, u)du, (D.13)

where U (s, u) is the principal solution of the linear system, given in (C.4). For any decomposition
h = H0 − H1, we have

Pk � sup
ζ : ‖ζ‖�hρ̂(sk−1)

[
Pk,0(ζ, H0) + Pk,1(ζ, H1)

]
, (D.14)

where

Pk,0(ζ, H0) = P
ζ,sk−1

{
sup

sk−1�s�sk

‖ζ k,0
s ‖

ρ̂(s)
< H0

}
,

Pk,1(ζ, H1) = P
ζ,sk−1

{
sup

sk−1�s�sk

‖ζ k,1
s ‖

ρ̂(s)
� H1, sup

sk−1�s�sk

‖ζs‖
ρ̂(s)

< h

}
. (D.15)

We start by bounding Pk,0(ζ, H0), using the endpoint estimate

Pk,0(ζ, H0) � P
ζ,sk−1

{∥∥ζ k,0
sk

∥∥< H0ρ̂(sk)
}

�
π H2

0ρ̂(sk)
2√

(2π)2 det Cov(ζ
k,0
sk

)

. (D.16)

The last inequality follows from the fact that the random variable ζ
k,0
sk

is Gaussian, and we have
bounded its density by the normalizing constant. We denote the diagonal matrix elements of V =
σ−2 Cov(ζ

k,0
sk

) by v1 and v2, and the off-diagonal element by v3. Then

det Cov
(
ζ k,0

sk

)= σ 4(v1 v2 − v2
3

)= σ 4
[

1

4

(
(Tr V )2 − (v1 − v2)

2)− v2
3

]
. (D.17)

As already remarked in the proof of Theorem B.8, the quantities v1 − v2 and v3 remain of order 1
up to some z = T of order 1, as a consequence of Neishtadt’s result on delayed Hopf bifurcations. In
order to estimate the trace Tr V , we use the fact that ρ̂(z) is decreasing in (0, T ] for T small enough,
owing to the fact that Tr(F (z)F (z)T ) is bounded below by a positive constant, and has a derivative
bounded in absolute value. Thus we have (cf. (B.24))

Tr V = 1

μ

sk∫
sk−1

e2α(sk,u)/μ Tr
(

F (u)F (u)T )du

= e2�

sk∫
sk−1

4u

μ
e−2α(u,sk−1)/μρ̂(u)2 du

� ρ̂(sk)
2[e2� − 1

]
. (D.18)
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Substituting (D.18) in (D.17) and then in (D.16) yields

Pk,0(ζ, H0) �
H2

0

σ 2

1

e2� − 1

[
1 +O

(
1

e4�ρ̂(sk)
4

)]
. (D.19)

Next we estimate Pk,1. We first obtain the bound

∥∥ζ k,1
s∧τS(h)

∥∥� 1

μ

s∧τS(h)∫
sk−1

∥∥U (s, u)
∥∥∥∥b(ζu, u)

∥∥du

� const
1

μ

s∧τS(h)∫
sk−1

eα(s,u)/μh2ρ̂(u)2 du

� const h2 ρ̂(sk−1)
2

2sk−1
e�, (D.20)

where we have used the fact that the function u 
→ ρ̂(u)2/2u is decreasing, and bounded the integral
of (2u/μ)eα(s,u)/μ by e� . Using a Taylor expansion of ρ̂(s)2 and the definitions of ρ̂ and of the
partition, one finds

ρ̂(sk−1)
2

ρ̂(s)2
� 1 + s − sk−1

ρ̂(s)2
sup

u∈[sk−1,s]
∣∣(ρ̂(u)2)′∣∣� 1 +O(�) (D.21)

for all s ∈ [sk−1, sk]. Together with (D.20), this implies

‖ζ k,1
s∧τS(h)

‖
ρ̂(s)

� const h2 ρ̂(sk−1)

sk−1

√
�e� � const

h2
√

�e�

μ3/4
=: H1

2
, (D.22)

which yields Pk,1(ζ, H1) = 0. Substituting H0 = h + H1 in (D.19) thus yields

Pk � q(�) := h2

σ 2

1

e2� − 1

[
1 +O

(
1

e4�

)
+O

(
h
√

�e�

μ3/4

)]
(D.23)

for k = 1, . . . , N − 1. Finally, we make the choice

� = 1 + ν

2
log

(
1 + ν + h2

σ 2

)
. (D.24)

Bounding Pk above amounts to bounding q(�)−1 below. For this we write

q(�)−1 = σ 2

h2
e2�

[
1 −O

(
e−2�

)−O
(
e−4�

)−O
(

h
√

�e�

μ3/4

)]

�
(

1 + ν + h2

σ 2

)ν[
1 −O

((
σ 2

h2

)1+ν)

−O
(

h

μ3/4

(
h

σ

)1+ν

log

(
1 + ν + h2

σ 2

)1/2)]
. (D.25)
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Note that the error term O(e−4�) is negligible and no longer appears in the last line. Now by as-
sumption (D.5), for c0 and c1 small enough we get

q(�)−1 � 1

2

(
1 + ν + h2

σ 2

)ν

(D.26)

and

log q(�)−1

�
� 2ν

1 + ν
− 2 log 2

(1 + ν) log(1 + ν + h2/σ 2)
=: κ(ν). (D.27)

Note that κ(ν) is indeed of the form (D.7). The result thus follows from (D.12). �
D.2. Averaging and drift-dominated escape

We consider again Eq. (D.1), but this time for slightly larger values of ‖ζ‖. We start by transforming
the system to polar coordinates.

Lemma D.2. Consider a system of the form

dξ = 1

μ
fξ (ξ,η, z)dz + σ√

μ
Fξ (z)dW z,

dη = 1

μ
fη(ξ,η, z)dz + σ√

μ
Fη(z)dW z, (D.28)

where W z denotes a two-dimensional Wiener process, and Fξ and Fη are row vectors of dimension 2. Then in
polar coordinates (ξ = r cosϕ,η = r sinϕ) the system becomes

dr = 1

μ
fr(r,ϕ, z)dz + σ√

μ
Fr(ϕ, z)dW z,

dϕ = 1

μ

1

r
fϕ(r,ϕ, z)dz + σ√

μ

1

r
Fϕ(ϕ, z)dW z, (D.29)

where the new and old diffusion coefficients are related by

Fr = Fξ cosϕ + Fη sinϕ,

Fϕ = Fη cosϕ − Fξ sinϕ, (D.30)

while the drift coefficients are given by

fr = fξ cosϕ + fη sinϕ + σ 2

2r
Fϕ F T

ϕ ,

fϕ = fη cosϕ − fξ sinϕ − σ 2

r
Fr F T

ϕ . (D.31)
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Proof. The formulas can be checked directly by applying Itô’s formula to (D.29). �
Applying this result to (D.1), we obtain a system of the form

dr = 1

μ

[
a(z)r + r2br(ϕ, z) +O

(
σ 2

r

)]
dz + σ√

μ
Fr(ϕ, z)dW z,

dϕ = 1

μ

[
−
(z) + rbϕ(ϕ, z) +O

(
σ 2

r2

)]
dz + σ√

μ

1

r
Fϕ(ϕ, z)dW z. (D.32)

Note that the functions br and bϕ do not depend on r, owing to the fact that the nonlinearity in the
original equation is homogeneous of degree 2. Another important observation is that the average of br

(and bϕ ) over ϕ is zero. This follows again from homogeneity, combined with (D.31). This observation
suggests to simplify (D.32) by an averaging transformation.

Proposition D.3. There exists a function w(ϕ, z), which is bounded, smooth, and 2π -periodic in ϕ , such that
r̄ = r + r2 w(ϕ, z) satisfies the SDE

dr̄ = 1

μ

[
a(z)r̄ + β(r̄,ϕ, z)

]
dz + σ√

μ
F̃r(r̄,ϕ, z)dW z, (D.33)

where

β(r̄,ϕ, z) = O
(
r̄3)+O

(
μr̄2)+O

(
σ 2

r̄

)
,

F̃r(r̄,ϕ, z) = Fr(ϕ, z) +O(r̄). (D.34)

Proof. Using Itô’s formula and the fact that r = r̄ − r̄2 w(ϕ, z) +O(r̄3), we obtain

dr̄ = 1

μ

[
a(z)r̄ + r̄2

(
2zw(ϕ, z) + br(ϕ, z) − 
(z)

∂ w

∂ϕ
+ μ

∂ w

∂z

)
+O

(
r̄3)+O

(
σ 2

r̄

)]
dz

+ σ√
μ

[
Fr(ϕ, z) + r̄

(
2w(ϕ, z)Fr(ϕ, z) + ∂ w

∂ϕ
Fϕ(ϕ, z)

)
+O

(
r̄2)]dW z. (D.35)

It is thus sufficient to show that the equation

∂ w

∂ϕ
(ϕ, z) = a(z)


(z)
w(ϕ, z) + br(ϕ, z)


(z)
(D.36)

admits a bounded, 2π -periodic solution. Letting c = c(z) = a(z)/
(z), the general solution of (D.36)
can be written

w(ϕ, z) = w(0, z)ecϕ +
ϕ∫

0

ec(ϕ−ϕ′) br(ϕ
′, z)


(z)
dϕ′. (D.37)

Thus choosing
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w(0, z) = e2πc

1 − e2πc

2π∫
0

e−cϕ br(ϕ, z)


(z)
dϕ, (D.38)

the resulting w(ϕ, z) is indeed 2π -periodic. Finally note that

lim
z→0

w(0, z) = 1

2π

2π∫
0

ϕ
br(ϕ,0)


(0)
dϕ, (D.39)

showing that w(ϕ, z) is also bounded as z → 0. �
We now define the set

D(η) = {(r̄,ϕ, z): z � √
μ, r̄ < η

√
z
}
. (D.40)

Then the nonlinear term β satisfies, on the set R=D(η) \ S(h),

|β(r̄,ϕ, z)|
r̄z

� M

(
r̄2

z
+ μr̄

z
+ σ 2

r̄2z

)
� M ′

(
η2 + ημ3/4 + 1

| logσ |2
)

(D.41)

for some constants M , M ′ . We can thus find, for any 0 < κ < 2, an η = η(κ) such that (for sufficiently
small σ and μ)

a(z)r̄ + β(r̄,ϕ, z) � κzr̄ (D.42)

holds in R. Thus we have

dr̄ = 1

μ

[
κzr̄ + β̃(r̄,ϕ, z)

]
dz + σ√

μ
F̃r(r̄,ϕ, z)dW z, (D.43)

where β̃(r̄,ϕ, z) � 0 in R, implying

r̄z � r̄z0 eκ(z2−z2
0)/2μ + σ√

μ

z∫
z0

eκ(z2−s2)/2μ F̃r(r̄s,ϕs, s)dW s (D.44)

holds as long as the process stays in R.

Proposition D.4. There exists a constant κ2 > 0 such that for any initial condition (r̄0,ϕ0, z0) ∈R,

P
(r̄0,ϕ0,z0){τR > z} � 2 exp

{
−κ2

z2 − z2
0

μ| logσ |
}
. (D.45)

Proof. We introduce a partition z0 < z1 < · · · < zN = z of [z0, z], given by

z2
k+1 − z2

k = γμ| logσ | for 0 � k < N =
⌈

z2 − z2
0

γμ| logσ |
⌉
. (D.46)

The Markov property implies that
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P
(r̄0,ϕ0,z0){τR > z} �

N−1∏
k=1

Pk, (D.47)

where

Pk = sup
r̄,ϕ: (r̄,ϕ,zk)∈R

Pk(r̄,ϕ),

Pk(r̄,ϕ) = P
(r̄,ϕ,zk){τR > zk+1}. (D.48)

Inequality (D.44) (with z0 replaced by zk) shows that

r̄z � eκ(z2−z2
k )/2μ

[
r̄zk + σ√

μ
Mk

z

]
(D.49)

holds for zk � z � τR , where Mk
z is the martingale

Mk
z =

z∫
zk

e−κ(s2−z2
k )/2μ F̃r(r̄s,ϕs, s)dW s. (D.50)

It follows that

Pk(r̄,ϕ) � P

{
r̄ + σ√

μ
Mk

zk+1
< η

√
zk+1e−κ(z2

k+1−z2
k )/2μ

}

� P
{

Mk
zk+1

< −c| logσ |√μρ̂(zk) + η
√

μσγκ/2−1√zk+1
}
, (D.51)

where we have used r̄ � hρ̂(zk) = cσ | logσ |ρ̂(zk) and e−κ(z2
k+1−z2

k )/2μ = σκγ /2. Choosing γ > 2/κ , we
can guarantee that the term c| logσ |√μρ̂(zk) dominates.

Since the noise acting on the system is non-degenerate, we may assume the existence of constants
D+ � D− > 0 such that

D− � F̃r(r̄,ϕ, z) F̃r(r̄,ϕ, z)T � D+. (D.52)

Thus the variance of Mk
zk+1

is bounded above by

V+ =
zk+1∫
zk

D+e−κ(s2−z2
k )/μ ds � D+

(
− μ

2κzk

)
e−κ(s2−z2

k )/μ

∣∣∣∣zk+1

zk

� D+μ

2κzk
. (D.53)

A Bernstein-type estimate (cf. Lemma D.8 in Appendix D.4) provides the bound

P
{

Mk
zk+1

< −x
}

� e−x2/2V+ . (D.54)

Using (D.53) and (D.54) in (D.51) shows that we may assume Pk < 1/2, and the result follows
from (D.47) and the definition of N . Note that κ2 = log 2/γ < (log 2/2)κ . �



N. Berglund et al. / J. Differential Equations 252 (2012) 4786–4841 4835
D.3. Laplace transforms

In order to combine the results from the two previous subsections, we will use a lemma based
on Laplace transforms. In the following we let {xt}t�0 be a time-homogeneous R

d-valued Markov
process with continuous sample paths. All subsets A ⊂ R

d considered below are assumed to have
smooth boundary, and to be such that the first-exit time τA = inf{t � 0: xt /∈ A} is almost surely
finite. The Laplace transform of τA is the non-decreasing function

R � λ 
→ E
x[eλτA

]= 1 + λ

∞∫
0

P
x{τA > t}eλt dt ∈ [0,∞]. (D.55)

Note that E
x[eλτA ] � 1 for all λ � 0. Thus there exists a λ0 � 0 such that E

x[eλτA ] < ∞ for all λ < λ0.

Lemma D.5. Choose nested bounded open sets S1 ⊂ S2 ⊂ D ⊂ R
d. Let R = D \ S1 and consider the Laplace

transforms

GD(λ) = sup
x∈S1

E
x[eλτD

]
,

GS(λ) = sup
x∈S1

E
x[eλτS2

]
,

GR(λ) = sup
x∈∂S2

E
x[eλτR

]
,

Q (λ) = sup
x∈∂S2

E
x[1{τSc

1
<τD}eλτR

]
. (D.56)

Let λ be such that GS (λ) and GR(λ) are finite, and assume that Q (λ)GS (λ) < 1. Then GD(λ) is also finite
and satisfies

GD(λ) � GS(λ)GR(λ)

1 − Q (λ)GS(λ)
. (D.57)

Proof. For x0 ∈ S1, one necessarily has τS2 � τD , and thus the strong Markov property implies

E
x0
[
eλτD

]= E
x0
[
eλτS2E

xτS2
[
eλτD

]]
� E

x0
[
eλτS2

]
sup

x∈∂S2

E
x[eλτD

]
. (D.58)

Similarly, for x ∈ ∂S2, since τR = τSc
1
∧ τD we have

E
x[eλτD

]= E
x[1{τSc

1
<τD}e

λτSc
1E

xτSc
1
[
eλτD

]]+E
x[1{τD<τSc

1
}eλτD

]
� E

x[1{τSc
1
<τD}eλτRE

xτSc
1
[
eλτD

]]+E
x[1{τD<τSc

1
}eλτR

]
� Q (λ)GD(λ) + GR(λ). (D.59)

(D.58) and (D.59) imply

GD(λ) � GS(λ)
[

Q (λ)GD(λ) + GR(λ)
]
, (D.60)

which yields the result. �



4836 N. Berglund et al. / J. Differential Equations 252 (2012) 4786–4841
We will apply this lemma to sets S1 = S(h1), S2 = S(h2) and D = D(κ), where hi = ciσ | logσ |,
i = 1,2, with 0 < c1 < c2. We introduce a new time t = z2, and let xt be the time-homogeneous
Markov process (

√
t, ζ√

t).
Proposition D.1 yields a control of GS (λ) in the following way. The bound (D.6) translates in terms

of the new process xt as

P
x0{τS2 � t} � C1e−λ1t, x0 = (z0, ζz0), (D.61)

where C1 = C(ν)(h2/σ )2ν and λ1 = κ(ν)/μ. It follows that

GS(λ) � 1 + λ

∞∫
0

eλt sup
x0∈S1

P
x0{τS2 � t}dt � 1 + C1λ

λ1 − λ
(D.62)

holds for all λ < λ1 = κ(ν)/μ. In a similar way, Proposition D.4 yields

GR(λ) � 1 + C2λ

λ2 − λ
(D.63)

for all λ < λ2 = κ2/μ| logσ |, where C2 = 2. It remains to estimate Q (λ). Let us first show that Q (λ)

can be bounded in terms of Q (0).

Lemma D.6. For all λ < λ2 , one has

Q (λ) �
Cλ/λ2

2

1 − λ/λ2
Q (0)1−λ/λ2 . (D.64)

Proof. First note that for all T � 0,

eλτR � eλT + λ

∞∫
T

1{τR>t}eλt dt. (D.65)

Plugging this into the definition of Q (λ) yields

Q (λ) � sup
x∈∂S2

[
P

x{τSc
1
< τD}eλT + λ

∞∫
T

P
x{τR > t}eλt dt

]
. (D.66)

The first term on the right-hand side is bounded by Q (0)eλT . The second one can be estimated with
Proposition D.4, yielding

Q (λ) � Q (0)eλT + C2λ

λ2 − λ
e−(λ2−λ)T . (D.67)

Optimizing over T , we find that the optimal bound is obtained when eλ2 T = C2/Q (0), which
yields (D.64). �

Finally, Q (0) can be estimated in a similar way as in the proof of Proposition D.4.
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Proposition D.7. We have

Q (0) = sup
x∈∂S2

P
x{τSc

1
< τD} � σκ(c2−c1)2| logσ |z0ρ̂(z0)2/D+ . (D.68)

Proof. Inequality (D.44) and the fact that eκz2/2μ/ρ̂(z) is increasing for sufficiently small z imply

r̄z − h1ρ̂(z) � eκ(z2−z2
0)/2μ

[
(h2 − h1)ρ̂(z0) + σ√

μ
M0

z

]
(D.69)

for z � τR , where M0
z is the martingale introduced in (D.50). The variance of M0

z being bounded by
D+μ/2κz0 (cf. (D.53)), the Bernstein-type inequality of Lemma D.8 allows to write

P{τSc
1
< z ∧ τR} = P

{
inf

z0�s�z∧τR

(
r̄s − h1ρ̂(z)

)
� 0
}

� exp

{
−κ

(c2 − c1)
2

D+
| logσ |2

}
= σκ(c2−c1)2| logσ |z0ρ̂(z0)2/D+ . (D.70)

Note that the right-hand side of (D.70) does not depend on z. The result thus follows from taking the
limit z → ∞. �
Proof of Theorem 6.4. Since λ2 < λ1 for sufficiently small σ , we set λ = (1 − θ)λ2 for a fixed
0 < θ < 1. For this λ we have

GR(λ) � 1 + C2

θ
, GS(λ) � 1 + C1λ2

λ1 − λ2
= 1 +O

(
1

| logσ |
)

. (D.71)

Furthermore Lemma D.6 and Proposition D.7 yield

Q (λ) � C2

θ
σ cθ | logσ | (D.72)

for some constant c > 0. Thus Lemma D.5 can be applied to show that GD(λ) is finite. Finally, by
Markov’s inequality,

P
x{τD � t} = P

x{eλτD � eλt}� e−λt GD(λ), (D.73)

which gives the theorem when translated back to the process ζz . �
D.4. A Gaussian tail estimate for martingales

Let W z be the two-dimensional Brownian motion, and consider the martingale

Mz =
z∫

0

g(Xs, s)dW s =
n∑

i=1

z∫
0

gi(Xs, s)dW (i)
s , (D.74)

where g = (g1, . . . , gn) takes values in R
n and the process Xz is assumed to be adapted to the filtra-

tion generated by W z . We will assume that the integrand satisfies
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G−(z)2 � g(Xz, z)g(Xz, z)T � G+(z)2 (D.75)

almost surely, for deterministic functions G±(z), and that the integrals

V±(z) =
z∫

0

G±(s)2 ds (D.76)

are finite.

Lemma D.8. For any x > 0,

P

{
sup

0�s�z
Ms > x

}
� e−x2/2V+(z). (D.77)

Proof. Let

[M]z =
z∫

0

g(Xs, s)g(Xs, s)T ds (D.78)

be the increasing process associated with Mz . Then for any γ ∈R the Doléans exponential

eγ Mz−γ 2[M]z/2 (D.79)

is a martingale. It follows that

P

{
sup

0�s�z
Ms > x

}
= P

{
sup

0�s�z
eγ Ms > eγ x

}

� P

{
sup

0�s�z
eγ Ms−γ 2[M]s/2 > eγ x−γ 2[M]z/2

}

� P

{
sup

0�s�z
eγ Ms−γ 2[M]s/2 > eγ x−γ 2 V+(z)/2

}
� e−γ x+γ 2 V+(z)/2

E
[
eγ Mz−γ 2[M]z/2] (D.80)

by Doob’s submartingale inequality. Now the expectation in the last line is equal to 1, and the result
follows by optimizing over γ , that is, choosing γ = x/V+(z). �
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