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1. Introduction and main results

The problem of the heat transfer inside viscous incompressible flows is considered in n-
dimensional exterior domains. By an exterior domain we mean a connected open set §2 whose
complement is the closure of the union of a finite number of bounded domains with smooth bound-
aries. Accordingly with the Boussinesq approximation, we neglect the variations of the density in the
continuity equation and the local heat source due to the viscous dissipation, and consider the varia-
tions of the temperature by putting an additional vertical buoyancy force term in the equation of the
fluid motion. That is,

00 —kAO+ (u-V)H=0 in 2 x (0, 00),

ol — VAU~ (u-V)u+ Vp=p60e, inf2 x (0,00),

V-u=0 in £2 x (0, 00), (1.1)
o0x,t)y=ux,t)=0 on 052 x (0, 00),
u(x,0)=a,0(x,0)=b in £2,
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where n > 3 and £2 is an exterior domain in R"; the velocity u = u(x,t) is an n-component vector
field with zero divergence, the scalar function 6 = 6(x,t) denotes the density or the temperature
and p = p(x,t) the pressure of the fluid; while u(x,0) = a(x) and 6(x,0) = b(x) are given initial
velocity vector with zero divergence in the sense of distribution, and density or the temperature field
respectively. Moreover, e, = (0,0,...,0,1), and 8 € R! is a physical constant. v > 0 and k > 0 are the
viscous and the thermal diffusion coefficient. By rescaling the unknowns, without loss of generality,
we take v=k=p8=1.

(0,00; L2(£2)) N L2

Definition. (u, 0) is called a weak solution of (1.1) if u € Lt® (0, oo; Hg)(s?)) and

loc
6 € L£2(0, 00; L?(£2)) N L (0, o0; H}(£2)) satisfy

loc

loc

loc

o0 o0 o0
—//uatq)dxdt—}-//Vu-Vd)dxdt—i—//u-Vu-(pdxdt
0 Q 0 Q 0

=[a¢(0)dx+//9€n-¢>dxdt for all ¢ € C§°([0, 00); €55, (£2)),
2

2

and

/Gatwdxdt+//ve-dexdt+//(u-V)Gwdxdt
2 0 2

0 Q2

/bg{/(O) dx forall ¥ € C§°([0, 00); C3°(£2)),
2

where (a,b) € 2 (£2) x L?(£2).

The Boussinesq system is widely used to model the dynamics of the ocean or the atmosphere,
see e.g. [23]. It arises from the density dependent incompressible Navier-Stokes equations by using
the so-called Boussinesq approximation, which consists in neglecting the density dependence in all
the terms but the one involving the gravity. This system has lately received significant attention in
mathematical fluid dynamics due to its connection to three-dimensional incompressible flows.

Note that when the initial density b is identically zero (or constant), then the system (1.1) reduces
to the classical incompressible Navier-Stokes equations. The existence of global weak solutions in the
energy space for 3D Navier-Stokes equations was established by Leray [20] and Hopf [17] respectively
for an arbitrary L?-initial velocity. The uniqueness and the regularity of 3D Leray-Hopfs weak solu-
tions are still open questions, which are only known in space dimension two. Meanwhile it is also
well known that smooth solutions are global for three and higher dimensions when the data are small
in some critical spaces, see for instance [19] for more detailed discussions.

This L? decay problem was first raised by Leray [20] in the case of the Cauchy problem in R3
and then was affirmatively solved by Kato [18] for the Cauchy problem in R" with n = 3,4. Many
interesting and important results on the decay properties have been achieved for Navier-Stokes flows,
and the readers are referred to [2-9,11,13,15,16,18,24-26] and the references therein.

In this paper we are interested in the L? asymptotic behavior of weak solutions of the exterior
problem (1.1). However, it is in general not easy to deduce the expected L2 decay property for prob-
lem (1.1) in unbounded domains. The goal of this paper is to study in which way the variations of the
temperature affect the asymptotic behavior of the velocity field. Few works are devoted to the study
of the large time behavior of solutions to (1.1). By using Fourier transform, Brandolese and Schon-
bek [12] recently considered the decay properties of weak and strong solutions of system (1.1) in the
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three-dimensional whole space, however the methods employed by them (Fourier splitting method
for example) seem not applicable to the present case. Our main results read as follows.

Theorem 1.1. Let a € L2 (£2) and b € L1(£2) N L?(£2), n > 3. Then problem (1.1) admits a weak solution (u, 6)
satisfying for any t > 0

[6@) 200 <CA+D75, (12)

and

CaA+ni  ifn=3,
[u® 20y < § Clog.(1+1) ifn=4, (13)
C ifn>5.

Moreover, if there is a small number n > 0 such that

_1
bl <n and HeIAbHLl(Q) <CA+6)72 Vte(0,00) (1.4)
hold, then the weak solution (u, 0) satisfies for any t > 0

_nt2
lo®]po <Ca+07"4 and [|u®],g —0 ast— +oo. (15)

Furtherifa e = (£2) holds, then for any t > 0,

_n—2

[u® |20, < Cc1+ D3 (1.6)

with any small € > 0.

Remark. (1) The above estimate (1.2) for the temperature looks optimal, since the decay agrees with
that of the heat kernel. On the other hand, the optimality of the estimate (1.3) for the velocity field
is not so clear. Theorem 1.1 shows that the estimates (1.2), (1.3) of weak solutions of (1.1) can be
improved to (1.5) and (1.6) if the initial fields satisfy additionally suitable assumptions.

(2) The assumption (1.4) is technical, however, from which, we cannot conclude the regular-
ity on the weak solution of (1.1). In addition, it is not difficult to verify that if £ =R", b,x,b €
LI(RL'r), then the solution e!®b of the linear parabolic equation satisfies the estimate ||etAb|\L1(R1) <

CA+6)3 I%abll 1 for any ¢ > 0.
(3) It is not clear whether the decay estimate (1.6) remains true for € =0, and the main difficulty
arises from the effect of the boundary 9£2.

To conclude this introduction, we explain some notations used in what follows: Let Cgf’o (£2) denote
the set of all C* real vector-valued functions ¢ = (¢1, ¢2, ..., ¢n) with compact support in £2, such
that V-¢ =0 in 2. LI (£2) (1 <q < o) is the closure of CS?G(SZ) with respect to || - ||La(2), Where
L9(£2) represents the usual Lebesgue space of real-valued functions. In addition, the norm of L>®°(£2)
is denoted by |[u|l () = esssupycq [u(x)|. By symbol C, we denote a generic constant whose value
may change from line to line.
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2. Decay rates for the weak solutions of problem (1.1)

Let A=—PA:D(A) — L2 (£2) be the Stokes operator, where P : L?(£2) — L2 (£2) is the Helmholtz
projection operator. Then A is positive self-adjoint operator with dense domain D(A) C L(ZT(.Q), and
there exists a uniquely determined resolution {E; | A > 0} of identity in Lf, (£2) such that the positive
self-adjoint operator A% (0 <« < 1) is defined as follows (see [27]):

oo oo
A% =//\“ dE; with domain D(A%) = {v el2 () ’ /Az"‘d||E)\v||f2(m < oo].
0 0
Similarly, we can define the fractional powers of the positive self-adjoint operator —A with dense

domain D(—A) = W22(£2) N H}(£2) € L?(£2). There exists a uniquely determined resolution {F; | >
0} of identity in L%(£2) such that for any 0 <« < 1

o0 o0
(—A)* =/A“dF,\ with domain D((—A)%) = [v eL?(2) ’ /Azadnnvnfz(m <oo].
0 0

Lemma 2.1. (See [10].) For any h € LL (£2). Then for any t > 0

1

_nl_1
le™h| s o) < Cart 2@ h|la), Yl<q<r<oo or 1<q<r<oo.

Lemma 2.2. (See [10].) Let 0 < € < }l and p1 + p2 = 1 + 2€ with p1, p2 > 0. Then there is a constant
C =C(e, p1, p2,n, £2) such that

BP9V 2y < O A% U 2 g 1A% V2

)
forall»>0,ueD(A?)andveDAF).

Lemma 2.3. It holds true for all A > 0

ne2
”F)\(U ° V)VHLZ(Q) < C)" 4 ”u”Lz(Q) ”v”LZ(Q)
forany u € Hj ,(£2) and any scalar function v € H}(£2).

Proof. Note that

| Fatu- Vv, sup |(Fo(u-Vyv,w)l. (2.1)

.Q =
() wel2(R2)

Since u € Ha_a (£2), we have for any scalar function v € H(l)(Q)

|(Fo.(u- Vv, w)|=|(v,u- VF,w)]|
SClluviip IVEAw| o)

1
2

SCllullzyvilizg) ||VFAW||LG(Q)

1
[V2Ew| )
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1 1
< Cllullz IVllzi@) | (AT FBw | 2 o (-8 Faw] 2

_ 1 _ 1
< Cllullg IVl [ (27T Faw| 4 o [T Fw|? )

ne2
SCA T lullze ey Vi) IWll2 o). (2.2)

where we have used the fact: [[(=A)*Fywllj2(q) < CA™¥||W]|j2(p) for A,a > 0 (see [22]); and the

Sobolev inequality (see [10]): Let g € D((—A)?), 1 <r <00, 0 < B <1 and if 0 < % =1_28 _q

r n
then g € L9(£2) and the estimate holds | g|la(e) < C”(—A)’Bg”LT(Q): and the Gagliardo-Nirenberg
inequality:

1 1

Indeed the Gagliardo-Nirenberg inequality still remains valid for functions f on the exterior do-
main £2. To see this, set 25 g = {x € §2; dist(x, 92) > §} N {x € R"; |x| < R}, where R > 0 is sufficiently
large and § > 0 sufficiently small. Take @5 g € CSO(Q%,ZR), @sr=1o0n 25r, 0< s g <1onR" Ex-

tending f@s g to be 0 from 9%,21{ to R", Use the Gagliardo-Nirenberg inequality on the whole space
R™: Let n < s < oo. It holds for any g € WS(R")

1-1 n
||g||L°°(R”) < C”g”LS(HSQn) ||Vg||LSS(Rn)

We have for any sufficiently large number R > 0 and small number § > 0

I fllzoocs.p) < IF@s.RllLo2; 0
3.
<N f @s Rl @)

1 1
< C”f(PS,R ”LZZ”(R") || V(f‘ﬂS,R) ||L22”(R")

1

< CUS Wan g (105,85 F gzn ey + 1L V05, R 20 )

(ST

1

< CI W fanggy (19 gy + R llny) (2.4)

where the constant C = C(n) > 0 is independent of §, R.
Letting (8, R) — (0, 00) in (2.4), we get the desired inequality (2.3). O

Proof of Theorem 1.1. Let a € L2 (£2) and b € L1(£2) N L?(£2), n > 3, and consider the successive ap-
proximation for 0 <t < oo:

ug(t) = e a, 6yt) =e'b,
t
0j4+1(6) = 6o(t) — / e9%uj(s) - VOjy1(s)ds,
0 (2.5)
t
Ujr(t) =ug(t) — / e AP (u(s) - Vuji1(s) — jen) ds
0

for j=0,1,2,....
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Problem (2.5) admits a unique strong solution (041, uj11) (see [21] for example). It is not difficult
to verify that for j=0,1,2,...and t >0

0041 — ABjy1 + (uj-V)hj;11 =0 in £2 x (0, 00),

Oltjy1 + Aujp1 + P(uj-Viuj =POjep in 2 x (0, 00),

V-uj1=0 in £2 x (0, ), (2.6)
Oir1 (X, ) =uji1(x,t) =0 on 42 x (0, 00),

Ujr1(x,0)=a, 6j11(x,0)=>b in £2.

Moreover, if b € L1(£2) with 1 <q < oo, it holds for each j=0,1,2,...and t >0

_nnq-1
||9j+1 (t) ”Lq((_)) < “b“Ll(_Q)(CO +C]t) 2( q)’ (27)

where

2q 4
{(”bnl_l(g) ) n@=1 < 1111 (02 ) n } { SSn 450 }
co=maxy | ——— | — and ¢ =max ;
IbllLa(2) 1511120 ng’ n
Sp is the Sobolev best constant, which is defined by (see [1])

||VV||
Sn=inf{7(9) ‘ vecy (9)}.

2
vl an
-2

(£2)
The proof of (2.7) is similar to that of Lemma 3.2 in [12], which is proved to be true on the three-
dimensional whole space. Here for the readers’ convenience, we give a sketch of the proof of (2.7).

Let 2 < q < oco. Multiplying the first equation in (2.6) by q|0;11 (t)|q*29j+1 (t) and integrating by parts
we get forallt>0and j=0,1,2,...

4(q

d -1 q 2
dat [6j+1(®) ”iq(g) + T q |V (16111 g)(t) ||L2(.Q) =0.

The interpolation inequality and the Sobolev embedding theorem yield for each j=0,1,2,... and
t>0

q=1
||9j+1 (3] ”,_q(_Q) ”91-&-1 (®) ||L21+('}(g) 7 ”91+1 (t) ” 2+n(q D)

2)
2n<q )
T 2+n<q 1)
= 6107787 1674112 ) [,
ng-1) 2 (2n<q—1> )
q(2+n(q n) 2+n(g=1) T q(2+n(g-1)
< Sp bl g, V1854112 © ] 2 )

which implies that

. , 2 q(2+n@-1)
[V(1654112) O] 2 = Sullbll i) 16541 O [0l "

where we have used a basic estimate (see [14]): [|0j11(t)[l1a(2) < [IbllLace) for all 1 <q <
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Therefore for each j=0,1,2,... and t > 0,

a(2+n@-1)

1 — s R
”91+1(f)||m(9) 45”( _ﬁ)HbHLln((sqnl) |61 ®] iz "

and then

n@g-1
2

8§ 2
n(q 1) n ng-T)
||9]+1(t)||Lq(_(2) (”b”]_q(g) ”b”U(.Q) )

_29 _n@g=1
<[] ((llbllle))”(q” 4 85nt> z
AN, nq ’

which implies that (2.7) holds for 2 < g < co. Furthermore the interpolation inequality yields that for
1<g<?2,

4
bl " 4Spt\ 2"~ @)
||9]+1 (t) || L9(2) X ||9]+1 (t)”L] (2) ||9]+1 (t) ”LZ(Q) X ”bllLl(Q)((m> + nn ) .

From the above arguments on 2 < g < oo and 1< q < 2, we conclude that (2.7) holds true for
1<q<oo.

Now we continue the proof of Theorem 1.1. 641 =0;11(x,t) and ujq =uj11(x,t) satisfy for all
t>0and j=0,1,2,...

d
m ujs1 (0 ||32<:z> +2|Vujg (0) ||§2(9) = 2/9,-(x, t)en - Ujp1(x, ) dx (2.8)
ko)
and
Dol 2| V011 () |22y =0 29
1001 O[22y +2[ V01 O 120, = 0. (29)

Observe that for any p,t >0 and j=0,1,2,...

IV ”i%m =[A2uz0)] iZ(Q)
o

_ / rd]| Exttjr 02
0

oo

>0 [dlEua0 g,
P

= p(”uj_H ) ”iZ(Q) - HEpuj-H(t) H iz(rz))' (210)
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Inserting (2.10) into (2.8), we get for all p,t >0 and j=0,1,2,...

Sl O gy + 20|41 0 g
< 20| Epttis1 iy + 20551012 1650 | 2y @)
Similar to the proof of (2.11), one has for all p,t>0and j=0,1,2,...
d 2 2 2
o310y + 2008510 B gy < 20| Fabyn O] g @212)

Let 0 <48 < 4. Then for any t > 0 and u, v € H} ,(2)

t
J LG P VTR S
0

fo 1 142 12
</(HAZ”(S)”LZ(Q)HAZV(S)||L2(.Q)) ’ (”“(S)”LZ(Q)”V(S)“LZ(Q)) s ds
0

t t 1428
< ( [19u0i [19v00
0 0
t t =2
x ( / u(s)[% 0, ds / VO o, ds) , (2.13)
0 0

where we have used the interpolation inequality for fractional powers (see [27]): Let 0< o < 1

HA%u”LZ(Q) < C||A u||L2(m||u||L2(m < C||Vu||L2(Q)||u||L2(Q), Vu € Hj ,(82).

Using (2.5), (2.13) and Lemmata 2.1, 2.2, one has for any p >0 and t >0
—tA
|Epujs1(® ||L2(.Q) |Epe a|| 12(92)

+

0

0o p

L2(2)

t

/ |Epe= 9P (e,0;(9)|| 2@
0

t
g ||e_tAa”L2(Q) +/ _(t s)p“E P ](S) V)u]+1(5)||1_2(9)
0



6314 P. Han /]. Differential Equations 252 (2012) 6306-6323

t 0
+/(f—5){ /ei(tim |E5.P(uj(s) - V)ujsa(s) HLZ(Q)d)‘] ds
0 0

t

1

2 t
+c/(t_s)*%(;*%)||9]~(s)||Lr(_Q)ds+C/||9j(s)||Lz(Q)ds
0 t
2

t

< ”eitAaH 2@t Cpi~? / HA#uj(s) ”L2(9) ”Alt‘zg”jﬂ(s) ”Lz(m ds
0

3 t
€ =7 E D06 oy s+ € [ 1656)] 3 5
0 L
2

t

1

2 t
< ”eftAaHLZ(.Q)—|—C/(f—s)fg(Ff%)”Qj(S)HLr(Q)dS—i—C/HQj(S)”LZ(Q)dS
0 t
2

t 1428

t
+Cp%_‘3<f||Vuj(S) [ dS/HV“Hl ©2(0) ds)
0

0

1-25

t t 2
><(/||uj(s)||i2(9)ds/||uj+1(s)||i2(mds> withany 1 <r<2. (2.14)
0 0

From (2.11) and (2.14), we obtain for any p,t >0 and j=0,1,...

d 2 2
i lujsr® ”LZ(.Q) +2p[uja () ||L2(.Q)

1428
v

¢ t
< C,o{ ”e_ma“Lz(Q) +p%_8</”v”j(5) ”iZ(fz) dS/HV“jH (s) ”il(fz) ds)
0 0

1-28

t t Y
2 2
([l [ 1000, 2)
0 0

t
2 t 2
n 2_ _1
+c/(t—s)—z<%—%>||ej(s)||[1<:2)||ej(s)||i§:mr)ds+/||9j(s)||L2(mds>
0

L
2

1
+2\|uj+1(t)HL2(mHej(t)HLz(Q) withany 0 < § < 7 1<r<2. (2.15)
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Using Lemma 2.3, we get for any p,t>0and j=0,1,...

t
IFo0ir1®] 120 < ||60(t)||L2(.Q)+/e_(t VO Fp(uj(s) - V)0jr19)] o, ds

t

0
o)
+ / <t_s>{/ A LATOR URIC A L
0 0

t
< ||90(t)HL2(S2) +C,o% /””J‘w “LZ(.Q) 1611 (s) ”LZ(Q) ds. (2.16)
0

From (2.12) and (2.16), one has for any p,t >0 and j=0,1,...

d 2 2
i 1610 12) + P01 O] 120
¢ 2
gCIO{||00(U||L2(Q)"'p%/“uj(s)”ﬂ(m HGJH(S)HLZ(Q) ds} : (2.17)
0

It follows from (2.7) that for any t > 0

?;13”9]'“ Ol 22y < ClbllL1 @)A1+ i

In addition, since b € L1(£2), we infer for any t > 0

||90(t)HL2(9) = “etAb”Lz(.Q) = C”b”Ll(S?)(1 +6° 4

Whence it holds true for all t > 0
sup[6,(0) 12 g, < CIbli1 ) (1 +074. (218)
.l/
It follows from (2.8) that for any t >0 and j=0,1,...
4 2 2| Vu, 2 <2 0
i uja (t) ||L2<_rz) +2[ Vi) ||L2(.(z) <2|uj® ||L2(.Q) l6;® “LZ(.Q)’
which implies that

dt ”“J+1 (t)HLZ(.Q) l6;© HLZ(.Q) (2.19)

and

t t
Jujr1® “il(m +2/’|V”j+1(5) ”i%m ds < ”a”%Z(Q) +2/””J’+1 (S)HLZ(Q) l6;(s) ”LZ(Q) ds. (2.20)
0 0
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Note that
[[uo(®) ||L2<9> = [e | 2 SAollallzg) with Ag > 1. (2.21)

From (2.18), (2.19) and (2.21), we derive for any t > 0

CA+bi  ifn=3,
sup [0 2 < | Clog, (1 4+0) ifn=4, (222)
z C ifn>5.

Assume that (1.4) holds, that is ||e‘Ab||,_1(Rn+) <Ca+ t)_% with ¢t > 0, and ||b|1(o) < n for some
small number 7 > 0. We first show that for n=3 and any t > 0

1
]/

where M > 0 is some constant independent of j to be determined.
From (2.21), we suppose that there exists a j > 0 such that it holds for any i € [0, j] and t > 0

1 .
[[ui(6) ||L2(m < Allall2g)+ M1 +16)3  withn=3. (2.24)
By the assumption (1.4) and Lemma 2.1, we get for n >3 and any t > 0
IAtA -y LA _n42
“90(0 “LZ(.Q) - He b||L2(.Q) SCr2 2 ||€2 b”Ll(sz) <SCa+n- 4. (2.25)

Setting p = k(t + 1)~! with some large positive integer k, and multiplying both sides of (2.17) by
(t + DX, together with (2.18), (2.24), (2.25), we conclude for n =3, any i € [0, j] with given j, and
t>0

d
(D011 O )

t 2
<CE+1k! <||eo(t> 2 +CE+ D /IIw(s) |22 16141 [ 2, ds)
0

t

2
<Ct+ k! ((1 +07 7 4 bl gy (E+ D7 /(||a||Lz(_Q) + M1 +5)8)(1+5)"4 ds)
0

7
<CE+ DT+ bl o) (lallzg) + M)A +0)74. (2.26)

By taking k > 0 suitably large in (2.26), we infer for n =3, any i € [0, j] with given j, and t >0

|6i41(t) ”LZ(Q) S+ 1)_§ b1l 20y + (1+ ||b||L1(_Q)(||a||L2(Q) +M))(1+ f)_%

_1
< C(Ibll2@) + 1+ 1Dl @) (lall 2oy + M)A +1)78. (2.27)
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It follows from (2.19) and (2.27) that for n =3, any i € [0, j] with given j, and t >0

1
() ||Lz(9) < Allallizeg) + C(IIbll22) + 1+ 1Bl o) (lall 2@y + M) (1 4 )3
1
< Allallzey) + M1 +1)8, (2.28)
by taking M > 0 is suitably large and § > 0 suitably small with ||b]| 1) < 4.

Therefore (2.23) is verified to be true by (2.21), (2.24) and (2.28). It follows from (2.22) and (2.23)
that for any t > 0

C(1+bslog,(1+1) ifn=3,4,

p ) 229
?;‘3””’()“”(9) {C ifn > 5. o

Setting p = k(t + 1)1 with some large positive integer k, multiplying both sides of (2.17) by (t + 1)¥,
together with (2.18), (2.25), (2.29), we conclude forn=3,4,t >0 and any j=0,1,2,...

d K
i (€+D¥651 0] il(m)

t 2
<CE+1kT ((1 O L+ )T /(1 +5)"i+8 log,(1+5) ds)
0

n+!

SCE+ D (A+07"F 4+ 1) "F i+ 5 log,(1+ 1),

which implies that forn=3,4 and any t > 0

_n.s
sggllej+1(r) |22y S CE+ 17248 log,(1+0). (2:30)
J/

Setting p = k(t + 1)~! with some large positive integer k, and multiplying both sides of (2.17) by
(t + DX, together with (2.25), (2.29), (2.30), we conclude for n=3,4, t >0 and any j=0,1,2,...

d 2
E((t + 146110 Ii22))
t 2
<Ct+ k! ((1 T NI e o /(1 +5)7 285 (log, (1 +s))2ds>
0

<CE+D A+ + A +0"FLD)’, (2.31)

where

L) = { (1+0%(log,(1+6)? ifn=3,
1 ifn=4.

Whence, from (2.31) we derive that for any t >0 and j=0,1,...

CA+6Ylog,(1+1t)2 ifn=3
1+t 3( 0g.(1+1t))* ifn=3, (2.32)
CA+t)"2 ifn=4.

?;18”91'-4-1 O 20 < [
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Setting o = k(t + 1)~! with some large positive integer k, and multiplying both sides of (2.17) by
(t + DX, together with (2.25), (2.29), (2.32), we conclude for n=3, t >0 and any j=0,1,2,...

d
E((t + D010 ||i2(9>)
t 2
< C(t+1)"‘1<(1 +D i+ (14074 /(1 +s)‘1+%(loge(1 +s))3ds)
0

SCE+D((A+07F +(1+07348 (loge (1+1)°)°,

which implies that for n=3 and any t > 0
- 3
;gg\yej+1(t) [ 2y SCA+10) 18 (log,(1+1))". (2.33)
]/
Like the proof of (2.33), we get forn=3,t>0and any j=0,1,2,...

d
E((t + 1 65410 ||§2(.Q))

t 2
<Ct+ k! ((1 N e /(1 +5)" 4575 (log, (1 +s))4ds)
0

<CE+ DA+ + 1+ (log(1+0)°),

from which, it holds forn=3 and t > 0
_3 5
;ggHOJH(Q |12y S CA+D)74(log,(1+1))". (2.34)
]z
Repeating the proof of (2.34) yields forn=3,t >0 and any j=0,1,2,...
d k 2
a((t + D610 ”LZ(Q))
t 2
k-1 _5 _5 541 6
<CEt+1) A+ 24+04+t) 4 [(1+s) 4 8(10ge(l+s)) ds
0

<CE+D173,
which implies that forn=3 and t > 0
_s5
sup[[0j+1(®) [ 2o, <CA+D77, (235)
j=0
Combining (2.25), (2.32) and (2.35), we conclude that for n >3 and any t > 0

_n42
§;13||9j(t)||L2(9)<C(1+t) T, (2.36)
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It follows from (2.19), (2.20), (2.21) and (2.36) that for any ¢t > 0

t
2
3;%”“1‘(0 12y <€ and ggofﬂvw(S) iz ds <C. (2.37)

Inserting (2.36) and (2.37) into (2.15) with % <r <2, taking p = k(t+1)~! with some large positive
integer k in (2.15), and integrating from 0 to t, we derive for any t > 0

2
sggl!uf+1 O] 2

=

t
<C+ t)"‘||a||§2(9) +Cc1+07k /(1 T+ k" ds
0

n-r)

t
+C(1+t)_k/(l—I—S)k_l(He_SAaHiz(m+(1+s)_ (14577 ) ds
0

—0 ast— oo. (2.38)

—tA

Here we used the fact: [le™""al|;2(p) — 0 as t — oo for any a € Lf,(.Q).

In the following arguments, we further assume a € Lﬁ(s’?). Using (2.5), (2.36) and (2.37), we
conclude that for j=0,1,...and t >0

t
10741110y < €Dl 13 ) + C/”e(t_sm(uj V019 1) ds
0

t

<CA+D77+ C/(t — )72 |uj(s) |2 16516 [ 2, d
0

t

2 t
<C(1+f)5+C</+f>(t—s)%(1+s)”ﬁzds
0 t

<CA+b2. (2.39)

Using (2.36) and (2.39), one has for any t >0 and j=0,1,...

t
¢ t

n 2 -1
/(t—S)’f(%f%)”91(5)H[1(;3)||91(5)Hi29§)ds+/H@j(s)”ﬂm)ds
, 3

2

t
2 t
<Ct 3G /(1 +5) 2 GV g C/(l +5)7 ds
0 ;

n n
<CA+6H72G"D bytaking1 <r < — (2.40)
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Note that by Lemma 2.1, it holds true for a € Lf,(s?) ALt (2) and t >0

”Uo(t) “LZ(Q) = ”e_tAa”LZ(Q) g C(l + t)_%(%_l)”a” (24])

n .
Ln-1(2)
Inserting (2.40) into (2.15) with 1 <r < -2, using (2.36), (2.37) and (2.41), we deduce for any t >0
and j=0,1,...

d
i ujza0) ”izm) +pujs (f)HiZ(rz)
1-28

t t 2\ 2
<Cp<(1 +072G (14 IIGIILﬁ(Q))—i—,Oz5(/Huj(s)Hfz(Q)ds/"uj_,_](s)"Lz(Q)dS) )
0 0

_n+2 . 1
+C||uj+1(t)||L2(m(1+t) 1 w1thany86<0, Z)' (2.42)

Setting p = k(t + 1)~! with large positive integer k, and multiplying both sides of (2.42) by (t + 1)k,
using (2.37), we obtain for any t >0 and j=0,1,...

d 2

(0 u©] )
<CA+0F 1A+ 26D 4 A4+~ L ca + k126D
<CA+0 (A +072G D 4 (1 4074GD)?, (2.43)

It follows from (2.41) and (2.43) that for any t > 0

_1en_
o050 < C1 07 HED, n

Inserting (2.44) into (2.42), setting p = k(t + 1)1 with large positive integer k, and multiplying both
sides of (2.42) by (t + 1). Then for any t >0 and j=0,1,...

d
i (A +0"uja @ ”iZ(Q))
1-28

t 152, )
<+ ((1 +o G-V 4 (g +t)2+5</(1 +s)5<31>ds> )
0
n n 1
+CA+ 0k 13G"D=3G-D  \ithany s e (o, Z)' (2.45)

It follows from (2.45) that for any t > 0

S_ggHujH(r) |22

=

1-25
2

t
< C<<1 +072 3 473D 4 +t>—7‘1+5</(1 +9 26 s
0
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1 ifn>7,
<C(A+072E V4 A+ 3G D)y 1 +074  (og.(1+6)27  ifn=6,
A+02"DED if3<n<s,

<CA+0)73GD, (2.46)

Setting o = k(t + 1)~! with some large positive integer k, and multiplying both sides of (2.42) by
(t + 1¥. From (2.41) and (2.46), we conclude for any t >0 and j=0,1, ...

d 2
E((l +0 uja©® ||L2(.Q))

1
1-s

t
<CA+pk! ((1 +72GD 4 +t)3+5</(1 +s)%<%”ds>
0

2
+a H)—%(g—l)—%(;—l—l)) ) (2.47)
Taking k > O suitably large in (2.47). Then for any t > 0

sup||ttj1(0)] 12, < C(A+072ED 4 (1416 ED)
i>0

>

+C(A+t)at? ! ifn 25,
A+0HE"HG=D jfn—3 4,
— (-1
<CA+0)~wGED, (2.48)

Inserting (2.41), (2.48) into (2.42), setting p = k(t+1)~! with large positive integer k, and multiplying
both sides of (2.42) by (t + 1)%. Then for any t >0 and j=0,1, ...

d
a((l + t)kHujH(t) ”iZ(Q))
t 7—8 2
<C 4 pk! ((1 +072G 4 (1 +t)‘%+‘3</(1 +s)‘%<%—”ds) )
0

+CA+ Dk HGD-3GD)
from which, it holds true for any t > 0
?glg”uj-&-l(t) Iy <CA+072E D 4 (140" 5ED)
+C(1+r)—%+é{l ifn =5,

A+0F-G ifn=3, 4,

<CA+n 8ED,
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Repeating the above proof steps, we find a sequence {«} with the properties: form=1,2,...
1 1/n 1) + 1/n 1
o =—\—=(=z— om ), ar=—|=—-1).
m+1 2 2\ 2 m 1 2\
Moreover, for any t > 0
sup|u; -3G-1 om ithm =
plujr1® 20 < Cn(A+07227V+ A +0%) withm=1,2,.... (2.49)
j=0

After a direct calculation, the sequence {&;,} can be rewritten as follows:

m ‘! Z !HH>] !
Wltll tlle proper ties:

. 1/n 1/n
lim ap=—=(=-1 and ap>——=|=—-1), m=1,2,....
m— o0 2\ 2 2\ 2

For any small € > 0, there exists a large number mg = mg(¢) > 0 such that oy, < —%(% —1) +e.
Whence from (2.49), one has for any t > 0

_Llm_
SUP[uj1(0)] 2y < Cmo (140722707, (250)
]/

In addition, it follows from (2.9) and (2.37) that any t >0 and j=0,1,...

(|Vuj® ”iZ(Q) + [ Vo ”iZ(Q)) dt < C. (2.51)

From (2.18), (2.22), (2.36), (2.38), (2.50) and (2.51), and after a standard weak converging argu-
ment, we can find two functions u € L>(0, 00; L2 (£2)) N L?(0, 00; H}(£2)), 6 € L*°(0, 00; L(£2)) N
L2(0, 00; H)(£2)), and (u,0) is a weak solution of (1.1) satisfying the estimates (1.2), (13), (15),
(1.6). O
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