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A new nonlinear dispersive partial differential equation with cubic
nonlinearity, which includes the famous Novikov equation as
special case, is investigated. We first establish the local well-
posedness in a range of the Besov spaces Bs

p,r , p, r ∈ [1,∞],
s > max{ 3

2 ,1 + 1
p } but s �= 2 + 1

p (which generalize the Sobolev

spaces Hs), well-posedness in Hs with s > 3
2 , is also established

by applying Kato’s semigroup theory. Then we give the precise
blow-up scenario. Moreover, with analytic initial data, we show
that its solutions are analytic in both variables, globally in space
and locally in time. Finally, we prove that peakon solutions to the
equation are global weak solutions.
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1. Introduction

In this paper, we are concerned with the following Cauchy problem of the modified Novikov equa-
tion with peakon solutions

{
ut − utxx + (b + 1)u2ux = buuxuxx + u2uxxx, x ∈R, t > 0,

u(x,0) = u0(x), x ∈R,
(1.1)

where b is real parameter. By comparison with the Novikov equation (b = 3), it is easy to find that
(1.1) is more general.
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By comparison with the b-equation

{
ut − utxx + (b + 1)uux = buxuxx + uuxxx, x ∈R, t > 0,

u(x,0) = u0(x), x ∈R,
(1.2)

it is easy to see that (1.1) has nonlinear terms that are cubic, rather than quadratic of b-equation. The
b-equation can be derived as the family of asymptotically equivalent shallow water wave equations
that emerges at quadratic order accuracy for any b �= −1 by an appropriate Kodama transformation, cf.
[26,27]. For the case b = −1, the corresponding Kodama transformation is singular and the asymptotic
ordering is violated [26,27]. The solutions of the b-equation were studied numerically for various val-
ues of b in [44,45], where b was taken as a bifurcation parameter. The symmetry conditions necessary
for integrability of the b-equation were investigated in [50]. The KdV equation, the Camassa–Holm
equation and the Degasperis–Procesi equation are the only three integrable equations, which were
shown in [23,24] by using Painlevé analysis. The b-equation admits peakon solutions for any b ∈ R , cf.
[23,44,45]. In [28], Escher and Yin established the local well-posedness for the b-equation, gave blow-
up scenario; they also proved the uniqueness and existence of global weak solution to the equation
provided the initial data satisfy certain sign conditions. Gui et al. showed that the blow-up phe-
nomena occur in finite time for certain initial profiles and obtained a global existence result for the
b-equation [33].

For b = 2, Eq. (1.2) becomes the Camassa–Holm equation

{
ut − utxx + 3uux = 2uxuxx + uuxxx, x ∈R, t > 0,

u(x,0) = u0(x), x ∈R,
(1.3)

modeling the unidirectional propagation of shallow water waves over a flat bottom, u(t, x) stands for
the fluid velocity at time t in the spatial direction x. It is a well-known integrable equation describ-
ing the velocity dynamics of shallow water waves. This equation spontaneously exhibits emergence
of singular solutions from smooth initial conditions. It has a bi-Hamilton structure [29] and is com-
pletely integrable [5,6]. In particular, it possesses an infinity of conservation laws and is solvable by
its corresponding inverse scattering transform. After the birth of the Camassa–Holm equation, many
works have been carried out to probe its dynamic properties. Such as, Eq. (1.3) has traveling wave
solutions of the form ce−|x−ct| , called peakons, which describes an essential feature of the traveling
waves of largest amplitude (see [7,12,19,13]). It is shown in [17,8,14] that the inverse spectral or scat-
tering approach is a powerful tool to handle the Camassa–Holm equation and analyze its dynamics.
It is worthwhile to mention that Eq. (1.3) gives rise to geodesic flow of a certain invariant metric
on the Bott–Virasoro group [15,51], and this geometric illustration leads to a proof that the Least
Action Principle holds. It is shown in [10] that the blow-up occurs in the form of breaking waves,
namely, the solution remains bounded but its slope becomes unbounded in finite time. Moreover, the
Camassa–Holm equation has global conservative solutions [3,42] and dissipative solutions [4,43]. For
other methods to handle the problems relating to various dynamic properties of the Camassa–Holm
equation and other shallow water equations, the reader is referred to [2,20,16,9,35,30,36–41,11,10,18]
and the references therein.

For b = 3, Eq. (1.1) becomes the Novikov equation

{
ut − utxx + 4u2ux = 3uuxuxx + u2uxxx, x ∈R, t > 0,

u(x,0) = u0(x), x ∈R,
(1.4)

which has been recently discovered by Vladimir Novikov in a symmetry classification of nonlocal
PDEs with quadratic or cubic nonlinearity [53]. The perturbative symmetry approach yields necessary
conditions for a PDE to admit infinitely many symmetries. Using this approach, Novikov was able
to isolate Eq. (1.4) and find its first few symmetries, and he subsequently found a scalar Lax pair
for it, then proved that the equation is integrable, which can be thought as a generalization of the
Camassa–Holm equation. In [55], it is shown that the Novikov equation admits peakon solutions like
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the Camassa–Holm. Also, it has a Lax pair in matrix form and a bi-Hamiltonian structure. Further-
more, it has infinitely many conserved quantities. Like Camassa–Holm, the most important quantity
conserved by a solution u to Novikov equation is its H1-norm ‖u‖2

H1 = ∫
R(u2 + u2

x), which plays an
important role in the study of Eq. (1.4). In [34,52,59,60,62], the authors study well-posedness and
dependence on initial data for the Cauchy problem for Novikov equation. Recently, in [47], a global
existence result and conditions on the initial data were considered. Existence and uniqueness of global
weak solution to Novikov equation with initial data under some conditions were proved in [61]. The
Novikov equation with dissipative term was considered in [63]. Multipeakon solutions were studied
in [55,46,31]. The Cauchy problem of the Novikov equation on the circle was investigated in [58].

Motivated by the references cited above, the goal of the present paper is to establish qualitative
results for the initial value problem (1.1). We first study the local well-posedness for the strong solu-
tions to the Cauchy problem (1.1). The proof of the local well-posedness is inspired by the argument
of approximate solutions by Danchin [22] in the study of the local well-posedness to the Camassa–
Holm equation. However, one problematic issue is that we here deal with a higher order nonlinearity
in the Besov spaces, making the proof of several required nonlinear estimates somewhat delicate.
These difficulties are nevertheless overcome by carefully estimates for each iterative approximation of
solutions to (1.1). With the local well-posedness obtained in hand, we then present a precise blow-
up scenario and a conservative property. We also prove the analyticity of its solutions u = u(t, x) in
both variables, with x in R and t in an interval around zero, provided that the initial profile u0 is an
analytic function on the real line. Hence, this analytic result can be viewed as a Cauchy–Kowalevski
theorem for (1.1). Finally, we prove that peakon solutions to Eq. (1.1) are global weak solutions.

The rest of this paper is organized as follows. In Section 2, we prove the local well-posedness of
the initial value problem (1.1) in the Besov space Bs

p,r , p, r ∈ [1,∞], s > max{ 3
2 ,1 + 1

p } but s �= 2 + 1
p .

In Section 3, local well-posedness is established in Hs for s > 3
2 . In Section 4, blow-up scenario and

global existence result of (1.1) are derived. Section 5 is devoted to the study of the analyticity of the
Cauchy problem (1.1) based on a contraction type argument in a suitably chosen scale of the Banach
spaces. Finally, we prove that peakon solutions to Eq. (1.1) are global weak solutions.

2. Local well-posedness in the Besov spaces

In this section, we shall establish local well-posedness for the Cauchy problem (1.1) in the Besov
spaces.

Note that if p(x) = 1
2 e−|x| , we have (1 − ∂2

x )−1 f = p ∗ f for all the f ∈ L2, and p ∗ (u − uxx) = u,
where we denote by ∗ the convolution. Then we can rewrite the Cauchy problem (1.1) as follows:

{
ut + u2ux + p ∗ (

bu2ux + (6 − b)uuxuxx + 2u3
x

) = 0, x ∈R, t > 0,

u(x,0) = u0(x), x ∈R,
(2.1)

or in the equivalent form

⎧⎨
⎩ ut + u2ux = −(

1 − ∂2
x

)−1
(

∂x

(
6 − b

2
uu2

x + b

3
u3

)
+ b − 2

2
u3

x

)
, x ∈R, t > 0,

u(x,0) = u0(x), x ∈R.

Now we are in the position to state local well-posedness result for the Cauchy problem (1.1), the
definition of Besov–Sobolev spaces Bs

p,r , Es
p,r(T ) and S ′ is given in [22,21].

Theorem 2.1. Let p, r ∈ [1,∞] and s > max{ 3
2 ,1 + 1

p } but s �= 2 + 1
p . Assume that u0 ∈ Bs

p,r . There exist a

time T > 0 and a unique solution u ∈ Es
p,r(T ) to Eq. (2.1) such that the map u0 �→ u : Bs

p,r �→ C([0, T ]; Bs′
p,r)∩

C1([0, T ]; Bs′−1
p,r ) is continuous for every s′ < s when r = ∞ and s′ = s when r < ∞.
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In the following, we denote C > 0 a generic constant only depending on p, r, s,b, which may be
different on different lines. Uniqueness and continuity with respect to the initial data are an immedi-
ate consequence of the following result.

Proposition 2.1. Assume that p, r ∈ [1,∞] and s > max{ 3
2 ,1 + 1

p } but s �= 2 + 1
p . Let u ∈ L∞([0, T ]; Bs

p,r)∩
C([0, T ];S ′) be two given solutions to Eq. (2.1) with the initial data u0 ∈ Bs

p,r . Then for every t ∈ [0, T ), we
have

∥∥u(t) − v(t)
∥∥

Bs−1
p,r

� ‖u0 − v0‖Bs−1
p,r

exp

{
C

t∫
0

(∥∥u(τ )
∥∥2

Bs
p,r

+ ∥∥v(τ )
∥∥2

Bs
p,r

)
dτ

}
. (2.2)

Proof. We firstly consider the case s �= 2 + 1
p . Let w = u − v . It is obvious that w solves the transport

equation

{
wt + u2 wx = −vx(u + v)w + f + g, x ∈R, t > 0,

u(x,0) = u0(x), x ∈R,
(2.3)

where

f = −∂x
(
1 − ∂2

x

)[6 − b

2
u(u + v)x wx + 6 − b

2
v2

x w + b

3

(
u2 + uv + v2)w

]
,

g = −b − 2

2

(
1 − ∂2

x

)−1[(
u2

x + ux vx + v2
x

)
wx

]
.

When s − 1 < 1 + 1
p , applying Lemma 2.2 in [32] to (2.3) leads to

∥∥w(t)
∥∥

Bs−1
p,r

� ‖w0‖Bs−1
p,r

e
C

∫ t
0 ‖∂x v2(τ ′)‖

B
1
p
p,r∩L∞

dτ ′

+
t∫

0

e
C

∫ t
τ ‖∂x v2(τ ′)‖

B
1
p
p,r∩L∞

dτ ′

× (∥∥ux(u + v)w
∥∥

Bs−1
p,r

+ ‖ f1‖Bs−1
p,r

+ ‖ f2‖Bs−1
p,r

)
dτ . (2.4)

From (2.4), if s − 1 < 1 + 1
p , by using Bs−1

p,r ↪→ L∞ with s − 1 > 1
p , we have

∥∥w(t)
∥∥

Bs−1
p,r

� ‖w0‖Bs−1
p,r

e
C

∫ t
0 ‖v2(τ ′)‖Bs

p,r
dτ ′

+
t∫

0

e
C

∫ t
τ ‖v2(τ ′)‖Bs

p,r
dτ ′

× (∥∥ux(u + v)w
∥∥

Bs−1
p,r

+ ‖ f1‖Bs−1
p,r

+ ‖ f2‖Bs−1
p,r

)
dτ . (2.5)

When s − 1 > 1 + 1
p , applying Lemma 2.2 in [32] to (2.3) leads to

∥∥w(t)
∥∥

Bs−1
p,r

� ‖w0‖Bs−1
p,r

e
C

∫ t
0 ‖∂x v2(τ ′)‖

Bs−2
p,r

dτ ′
+

t∫
0

e
C

∫ t
τ ‖∂x v2(τ ′)‖

Bs−2
p,r

dτ ′

× (∥∥ux(u + v)w
∥∥

Bs−1 + ‖ f1‖Bs−1 + ‖ f2‖Bs−1

)
dτ . (2.6)
p,r p,r p,r
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From (2.6), if s − 1 > 1 + 1
p , by using Bs−1

p,r ↪→ L∞ with s − 1 > 1
p , we have

∥∥w(t)
∥∥

Bs−1
p,r

� ‖w0‖Bs−1
p,r

e
C

∫ t
0 ‖v2(τ ′)‖Bs

p,r
dτ ′

+
t∫

0

e
C

∫ t
τ ‖v2(τ ′)‖Bs

p,r
dτ ′

× (∥∥ux(u + v)w
∥∥

Bs−1
p,r

+ ‖ f1‖Bs−1
p,r

+ ‖ f2‖Bs−1
p,r

)
dτ . (2.7)

By using the definition of the Besov spaces Bs
p,r , S−2 multiplier property of −(1 − ∂2

x )−1 and s >

max{1 + 1
p , 3

2 } which leads to the fact that Bs−1
p,r is an algebra, we have

∥∥∂x v2(τ ′)∥∥
Bs−1

p,r
� C

∥∥v2
∥∥

Bs
p,r

� C‖v‖2
Bs

p,r
, (2.8)

∥∥(u + v)ux w
∥∥

Bs−1
p,r

� C‖u + v‖Bs−1
p,r

‖ux‖Bs−1
p,r

‖w‖Bs−1
p,r

� C
(‖u‖2

Bs
p,r

+ ‖u‖Bs
p,r

‖v‖Bs
p,r

+ ‖v‖2
Bs

p,r

)‖w‖Bs−1
p,r

� C
(‖u‖2

Bs
p,r

+ ‖v‖2
Bs

p,r

)‖w‖Bs−1
p,r

. (2.9)

When max{1 + 1
p , 3

2 } < s � 2 + 1
p , by using the S−2 multiplier property of −(1 − ∂2

x )−1, Bs−2
p,r ↪→ Bs−3

p,r ,

Proposition 2.2 in [32], the fact that Bs−1
p,r is an algebra with s > max{1 + 1

p , 3
2 } and the definition of

the Besov spaces Bs
p,r , we have

‖ f ‖Bs−1
p,r

� C

∥∥∥∥6 − b

2
u(u + v)x wx + 6 − b

2
v2

x w + b

3

(
u2 + uv + v2)w

∥∥∥∥
Bs−2

p,r

� C
∥∥u(u + v)x

∥∥
Bs−1

p,r
‖wx‖Bs−2

p,r
+ C

∥∥v2
x

∥∥
Bs−1

p,r
‖w‖Bs−2

p,r
+ C

∥∥(
u2 + uv + v2)∥∥

Bs−1
p,r

‖w‖Bs−2
p,r

� C
(∥∥u(u + v)x

∥∥
Bs−1

p,r
+ ‖v‖Bs

p,r
+ ∥∥u2 + uv + v2

∥∥
Bs−1

p,r

)‖w‖Bs−1
p,r

� C
(‖u‖2

Bs
p,r

+ ‖u‖Bs
p,r

‖v‖Bs
p,r

+ ‖v‖2
Bs

p,r

)‖w‖Bs−1
p,r

� C
(‖u‖2

Bs
p,r

+ ‖v‖2
Bs

p,r

)‖w‖Bs−1
p,r

(2.10)

and

‖g‖Bs−1
p,r

� C
∥∥(

u2
x + ux vx + v2

x

)
wx

∥∥
Bs−2

p,r

� C
∥∥u2

x + ux vx + v2
x

∥∥
Bs−1

p,r
‖wx‖Bs−2

p,r

� C
(‖u‖2

Bs
p,r

+ ‖u‖Bs
p,r

‖v‖Bs
p,r

+ ‖v‖2
Bs

p,r

)‖w‖Bs−1
p,r

� C
(‖u‖2

Bs
p,r

+ ‖v‖2
Bs

p,r

)‖w‖Bs−1
p,r

. (2.11)

When s > 2 + 1
p , by using Bs−2

p,r ↪→ Bs−3
p,r , the fact that Bs−2

p,r is an algebra and the definition of the

Besov spaces Bs−1
p,r as well as Bs−1

p,r ↪→ Bs−2
p,r ↪→ Bs−3

p,r , we also can obtain the estimate of (2.10) and
(2.11). Inserting (2.8)–(2.11) into (2.5) or (2.7) and applying Gronwall’s inequality yields (2.2). �
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Now let us start the proof of Theorem 2.1, which is motivated by the proof of local existence
theorem about the Camassa–Holm equation in [21]. Firstly, we shall use the classical Friedrichs regu-
larization method to construct the approximate solutions to the Cauchy problem (2.1).

Lemma 2.1. Assume that u0 = 0. Let 1 � p, r � +∞, s > max{ 3
2 ,1 + 1

p } but s �= 2 + 1
p and u0 ∈ Bs

p,r .

Then there exists a sequence of smooth functions {un}n∈N ∈ C(R+; B∞
p,r) solving the following linear transport

equation by induction:

⎧⎪⎨
⎪⎩

(
∂t + (

un)2
∂x

)
un+1 = −(

1 − ∂2
x

)−1
(

∂x

(
6 − b

2
un(un)2

x + b

3

(
un)3

)
+ b − 2

2

(
un)3

x

)
,

un+1(x,0) = un+1
0 (x) = Sn+1u0.

(2.12)

Moreover, there is a maximal existence time T > 0 such that the solutions un satisfy the following conditions:

(i) {u(n)}n∈N is uniformly bounded in Es
p,r(T ).

(ii) {u(n)}n∈N is a Cauchy sequence in C([0, T ); Bs−1
p,r ).

Proof. Since all data Sn+1u0 ∈ B∞
p,r , Theorem 3.3.1 in [22] enables us to show by induction that for all

n ∈ N , Eq. (2.1) has a global solution which belongs to C(R+; B∞
p,r). Since Bs

p,r is an algebra with s >

max{1 + 1
p , 3

2 }, when max{1 + 1
p , 3

2 } < s � 2 + 1
p , by using the S−2 multiplier property of (1 − ∂2

x )−1,

the definition of the Besov spaces Bs
p,r , Lemma 2.2 in [32] and the fact that Bs−1

p,r with s > max{1 +
1
p , 3

2 } is an algebra, we have

∥∥∥∥−(
1 − ∂2

x

)−1
(

∂x

(
6 − b

2
un(un)2

x + b

3

(
un)3

)
+ b − 2

2

(
un)3

x

)∥∥∥∥
Bs

p,r

� C
∥∥un(un)2

x + (
un)3∥∥

Bs−1
p,r

+ C
∥∥(

un)
x

∥∥3
Bs

p,r

� C
∥∥un

∥∥3
Bs

p,r
. (2.13)

When s > 2 + 1
p , by using the fact that Bs−1

p,r is an algebra and the standard algebra properties of the
Besov spaces used in the previous paragraphs, we also can obtain the estimate of (2.13).

For s > max{ 3
2 ,1 + 1

p } but s �= 2 + 1
p , by virtue of Lemma 2.2 in [32], we deduce

e
−C

∫ t
0 ‖∂x(un)2(τ )‖

Bs−1
p,r

dτ ∥∥u(n+1)(t)
∥∥

Bs
p,r

� ‖Sn+1u0‖Bs
p,r

+ C

t∫
0

e
−C

∫ τ
0 ‖∂x(un)2(τ ′)‖Bs

p,r
dτ ′∥∥un(τ )

∥∥3
Bs

p,r
dτ . (2.14)

Hence, we get

∥∥u(n+1)(t)
∥∥

Bs−1
p,r

� e
C

∫ t
0 ‖∂x(un)m+1(τ ′)‖

Bs−1
p,r

dτ ′
‖u0‖Bs

p,r

+ C

t∫
e

C
∫ t
τ ‖∂x(un)2(τ )‖

Bs−1
p,r

dτ ∥∥un(τ )
∥∥3

Bs
p,r

dτ . (2.15)
0
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Let us choose a T > 0 such that 4C‖u0‖2
Bs

p,r
< 1, and suppose by induction that for all t ∈ [0, T ],

∥∥u(n)(t)
∥∥

Bs
p,r

�
‖u0‖Bs

p,r

(1 − 4C‖u0‖2
Bs

p,r
t)

1
2

. (2.16)

Indeed, since Bs−1
p,r is an algebra, one obtains from (2.16) that

C

t∫
τ

∥∥∂xun(τ ′)∥∥2
Bs−1

p,r
dτ ′ � C

t∫
τ

∥∥un(τ ′)∥∥2
Bs

p,r
dτ ′

� C

t∫
τ

‖u0‖2
Bs

p,r

1 − 4C‖u0‖2
Bs

p,r
t

dτ

= 1

4
ln

(
1 − 4C‖u0‖2

Bs
p,r

τ
) − 1

4
ln

(
1 − 4C‖u0‖2

Bs
p,r

t
)
. (2.17)

And then inserting the above inequalities (2.16), (2.17) into (2.15) leads to

∥∥u(n+1)(t)
∥∥

Bs
p,r

�
‖u0‖Bs

p,r

(1 − 4C‖u0‖2
Bs

p,r
t)

1
4

+ C

(1 − 4c‖u0‖2
Bs

p,r
t)

1
4

×
t∫

0

(
1 − 4C‖u0‖2

Bs
p,r

τ
) 1

4
‖u0‖3

Bs
p,r

(1 − 4C‖u0‖2
Bs

p,r
τ )

3
2

dτ

�
‖u0‖Bs

p,r

(1 − 4C‖u0‖2
Bs

p,r
t)

1
4

(
1 + C

t∫
0

‖u0‖2
Bs

p,r

(1 − 4C‖u0‖2
Bs

p,r
t)

5
4

dτ

)

= ‖u0‖Bs
p,r

(1 − 4C‖u0‖2
Bs

p,r
t)

1
2

. (2.18)

Thus {u(n)}∈N is uniformly bounded in C([0, T ]; Bs
p,r). In view of Lemmas 2.1 and 2.3 in [32], we have

∥∥(
u(n)

)2
∂xu(n+1)

∥∥
Bs−1

p,r
� C

∥∥u(n)
∥∥2

Bs
p,r

∥∥∂xu(n+1)u0
∥∥

Bs−1
p,r

� C
∥∥u(n)

∥∥2
Bs

p,r

∥∥u(n+1)u0
∥∥

Bs
p,r

. (2.19)

Combining (2.19) and (2.13) with Eq. (2.1) we deduce that ∂t u(n+1) ∈ C([0, T ]; Bs−1
p,r ) is uniformly

bounded. Thus we get (i).
Next we show (ii). By Eq. (2.1), for all m,n ∈ N , we obtain

∂t + (
u(n+m)

)2
∂x

(
u(n+m+1) − u(n+m)

) = −((
u(n+m)

)2 − (
u(n)

)2)
u(n+1)

x + f ′, (2.20)

where
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f ′ = −∂x
(
1 − ∂2

x

)−1
[

6 − b

2

(
u(m+n)

(
u(m+n)

)2
x − u(n)

(
u(n)

)2
x

) + b

3

((
u(m+n)

)3 − (
u(n)

)3)]

− b − 2

2

(
1 − ∂2

x

)−1[(
u(m+n)

)3
x − (

u(n)
)3

x

]
.

Similar to the proof of Proposition 2.1, s > max{ 3
2 ,1 + 1

p } but s �= 2 + 1
p , noting that

∥∥u(n+m+1)
0 − u(n+1)

0

∥∥
Bs−1

p,r
= ‖Sn+m+1u0 − Sn+1u0‖Bs

p,r

=
∥∥∥∥∥

m+n∑
k=n+1

�ku0

∥∥∥∥∥
Bs

p,r

� C2−n‖u0‖Bs
p,r

, (2.21)

we obtain

∥∥(
u(n+m+1) − u(n+1)

)
(t)

∥∥
Bs−1

p,r

� e
C

∫ t
0 ‖u(n+m)(τ )‖2

Bs
p,r

dτ
(∥∥u(n+m+1)

0 − u(n+1)
0

∥∥
Bs−1

p,r
+

t∫
0

e
−C

∫ τ
0 ‖u(n+m)(τ ′)‖2

Bs−1
p,r

dτ ′

× (∥∥u(m+n)
∥∥2

Bs
p,r

+ ∥∥u(n)
∥∥2

Bs
p,r

+ ∥∥u(n+1)
∥∥2

Bs
p,r

)∥∥(
u(m+n) − u(m)

)
(τ )

∥∥
Bs−1

p,r

)
dτ

� C

(
2−n +

t∫
0

∥∥(
u(n+m) − u(n+1)

)
(τ )

∥∥
Bs−1

p,r
dτ

)
. (2.22)

As ‖u(m)‖Bs
p,r

and C are bounded independently of m,n, there exists constant C1 independent of m, n
such that ∥∥(

u(n+m+1) − u(n+1)
)
(t)

∥∥
L∞([0,T );Bs−1

p,r )
� C12−n.

Thus {u(n)}n∈N is a Cauchy sequence in C([0, T ]; Bs−1
p,r ). This completes the proof of Lemma 2.1. �

Proof of Theorem 2.1. Thanks to Lemma 2.1, we obtain that {u(n)}n∈N is a Cauchy sequence in
C([0, T ]; Bs−1

p,r ), so it converges to some function u ∈ C([0, T ]; C([0, T ]; Bs−1
p,r )). We now have to check

that u belongs to Es
p,r(T ) and solves the Cauchy problem (2.1). Since {un}n∈N is uniformly bounded

in L∞([0, T ]; C([0, T ]; Bs
p,r)) according to Lemma 2.1, the Fatou property for Besov spaces guarantees

that u also belongs to L∞([0, T ]; C([0, T ]; Bs
p,r)).

On the other hand, as {u(n)}n∈N converges to u in C([0, T ]; Bs−1
p,r ), Proposition 2.1 combined with an

obvious interpolation argument ensures that the convergence holds in C([0, T ]; Bs′
p,r), for any s′ < s. It

is then easy to pass to the limit in Eq. (2.1) and to conclude that u is indeed a solution to the Cauchy
problem (2.1). Thanks to the fact that u belongs to L∞([0, T ]; C([0, T ]; Bs

p,r)), the right-hand side of
the equation

ut + u2ux = P (D)
(
bu2ux + (6 − b)uuxuxx + 2u3

x

)
belongs to L∞([0, T ]; C([0, T ]; Bs−2

p,r )). In particular, for the case r < ∞, Theorem 3.3.1 in [22] enables

us to conclude that u ∈ C([0, T ]; Bs−1
p,r ) for any s′ < s. Finally, using the equation again, we see that
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∂t u ∈ C([0, T ]; Bs′
p,r) if r < ∞, and in L∞([0, T ]; C([0, T ]; Bs−1

p,r )) otherwise. Moreover, a standard use of
a sequence of viscosity approximate solutions (uε)ε > 0 for the Cauchy problem (2.1) which converges
uniformly in C([0, T ]; Bs

p,r) ∩ C1([0, T ]; Bs−1
p,r ) gives the continuity of the solution u in Es

p,r . �
3. Local well-posedness in H s with s > 3

2

In this section, by applying Kato’s semigroup theory [49], we can obtain the local well-posedness
in Sobolev spaces Hs with s > 3

2 .

Theorem 3.1. Given u(x,0) = u0 ∈ Hs(R), s > 3
2 , then there exist a maximal T = T (‖u0‖s) > 0 and a unique

solution u to Eq. (2.1) such that

u(·, u0) ∈ C
([0, T ); Hs(R)

) ∩ C1([0, T ); Hs−1(R)
)
.

Moreover, the solution depends continuously on the initial data, i.e. the mapping u0 → u(·, u0) : Hs →
C([0, T ]; Hs(R)) ∩ C1([0, T ]; Hs−1(R)) is continuous.

Remark 3.1. When p = r = 2, the Besov space Bs
p,r(R) coincides with the Sobolev space Hs(R), so

Theorem 2.1 implies Theorem 3.1. But we still want to give a proof for Theorem 3.1 by a theorem due
to Kato [49], since the estimates themselves are very interesting.

Set A(u) = u2∂x, f (u) = −G ∗ (bu2ux + (6 − b)umuxuxx + 2u3
x), Y = Hs , X = Hs−1 and Q = Λ =

(1 − ∂2
x )

1
2 . Obviously, Q is an isomorphism of Hs onto Hs−1. In order to prove Theorem 3.1 by apply-

ing Kato’s theorem [49], we only need to verify A(u) and f (u) which satisfy the conditions of Kato’s
theorem.

Lemma 3.1. The operator A(u) = u2∂x with u ∈ Hs, s > 3
2 , belongs to G(L2,1, β).

Lemma 3.2. The operator A(u) = u2∂x with u ∈ Hs, s > 3
2 , belongs to G(Hs−1,1, β).

Lemma 3.3. Let the operator A(u) = u2∂x with u ∈ Hs, s > 3
2 . The operator A(u) ∈ L(Hs, Hs−1). Moreover,

∥∥(
A(y) − A(z)

)
w

∥∥
s−1 � μ1‖y − z‖s−1‖w‖s, y, z, w ∈ Hs.

Lemma 3.4. The operator B(u) = [Λ, u2]∂xΛ
−1 ∈ L(Hs−1) for u ∈ Hs with s > 3

2 . Moreover,

∥∥(
B(y) − B(z)

)
w

∥∥
s−1 � μ2‖y − z‖s‖w‖s−1, y, z ∈ Hs, w ∈ Hs−1.

Proofs of the above Lemmas 3.1–3.4 can be found in [52].

Lemma 3.5. Let f (u) = −(1 − ∂2
x )−1(∂x(

6−b
2 uu2

x + b
3 u3) + b−2

2 u3
x), then f (u) is bounded on bounded sets

in Hs, and satisfies

∥∥ f (y) − f (z)
∥∥

s � μ3‖y − z‖s, y, z ∈ Hs,∥∥ f (y) − f (z)
∥∥

s−1 � μ4‖y − z‖s−1, y, z ∈ Hs.

Proof. Let y, z ∈ Hs−1, s > 3
2 . Since Hs is a Banach algebra, it follows that
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∥∥ f (y) − f (z)
∥∥

s �
∥∥∥∥−∂x

(
1 − ∂2

x

)−1
(

6 − b

2
yy2

x + b

3
y3 − 6 − b

2
zz2

x − b

3
z3

)∥∥∥∥
s

+
∥∥∥∥−(

1 − ∂2
x

)−1
(

b − 2

2
y3

x − z3
x

)∥∥∥∥
s

� |6 − b|
2

∥∥yy2
x − zz2

x

∥∥
s−1 + |b|

3

∥∥y3 − z3
∥∥

s−1 + |b − 2|
2

∥∥y3
x − z3

x

∥∥
s−1. (3.1)

In view of Lemma 2.4 in [65], u → g(u) − g(0) is a C∞-map from Hs−1 to Hs−1, where g(u) = u or
g(u) = u2. From the mean value theorem [25], we infer that there is some M > 0, depending only on
max{‖y‖s,‖z‖s}, such that

∥∥g(y) − g(z)
∥∥

s−1 � M‖y − z‖s−1.

Hence

∥∥ f (y) − f (z)
∥∥

s � |6 − b|
2

(∥∥(y − z)y2
x

∥∥
s−1 + ∥∥z

(
y2

x − z2
x

)∥∥
s−1

) + C M‖y − z‖s

� C‖y − z‖s−1 + c‖y − z‖s + C M‖y − z‖s

� C‖y − z‖s.

Taking z = 0 in the above inequality, we obtain that f is bounded on bounded set in Hs .
Next, let y, z ∈ Hs , s > 3

2 . Since Hs−1 is a Banach algebra, we have

∥∥ f (y) − f (z)
∥∥

s �
∥∥∥∥−∂x

(
1 − ∂2

x

)−1
( |6 − b|

2
yy2

x + |b|
3

y3 − 6 − b

2
zz2

x − |b|
3

z3
)∥∥∥∥

s−1

+
∥∥∥∥−(

1 − ∂2
x

)−1
(

b − 2

2

(
y3

x − z3
x

))∥∥∥∥
s−1

� |6 − b|
2

∥∥yy2
x − zz2

x

∥∥
s−2 + |b|

3

∥∥y3 − z3
∥∥

s−1 + b − 2

2

∥∥y3
x − z3

x

∥∥
s−2

� |6 − b|
2

(∥∥(y − z)y2
x

∥∥
s−2 + ∥∥z

(
y2

x − z2
x

)∥∥
s−2

) + C M‖y − z‖s−1

� C‖y − z‖s−1 + c‖y − z‖s + C M‖y − z‖s−1

� C‖y − z‖s−1.

This completes the proof of Lemma 3.5. �
Proof of Theorem 3.1. Combining Kato’s theory and Lemmas 3.1–3.5, we can get the statement of
Theorem 3.1. �
Theorem 3.2. Assume that u0 ∈ Hs, s > 3

2 . Then T in Theorem 3.1 may be chosen independent of s in the
following sense. If u = u(·, u0) ∈ C([0, T ); Hs) ∩ C1([0, T ); Hs−1) solves Eq. (1.2) (or Eq. (2.1)), and if u0 ∈
Hs1 for some s1 �= s, s1 > 3

2 , then u ∈ C([0, T ); Hs1 ) ∩ C1([0, T ); Hs1−1) and with the same T . In particular,
if u0 ∈ H∞ = ⋂

s�0 Hs, then u ∈ C([0, T ); H∞).

Proof. It suffices to consider the case s1 > s, since the case s1 < s is obvious from uniqueness which
is guaranteed by Theorem 3.1. In order to prove Theorem 3.2 for s1 > s, let us return to Eq. (1.2). Set
y(t) = Λ2u(t). Then we have
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dy

dt
+ A(t)y + B(t)y = 0, y(0) = Λ2u(0), (3.2)

where A(t)y = ∂x(u2 y), B(t)y = (b − 2)uux y.

Because u ∈ C([0, T ); Hs) and u0 ∈ Hs1 , we have y ∈ C([0, T ); Hs−2) and y(0) = Λ2u(0) ∈
C([0, T ); Hs1−2). It is our purpose to deduce y ∈ C([0, T ); Hs1−2), which implies u ∈ C([0, T ); Hs1 ).
This will complete the proof of Theorem 3.2. �

Since u ∈ C([0, T ); Hs), ux ∈ Hs−1, and Hs−1 is a Banach algebra, we obtain B(t) ∈ L(Hs−1).
Following the arguments in Lemmas 3.1–3.3 in [48], we first need to prove that the family A(t)

has a unique evolution operator {U (t, τ )} associated with the spaces X = Hh and Y = Hk , where
−s � h � s − 2, 1 − s � k � s − 1, and k � h + 1. Therefore, according to the proof of Lemma 3.1
in [48], we need to verify the following three conditions.

(i) A(t) ∈ G(Hh,1, β), ∀y ∈ Hs .
(ii) Λh∂x[Λk−h, um+1]Λ−k is uniformly bounded on L2.

(iii) A(t) ∈ L(Hk, Hh) is strongly continuous in t .

Let us begin to verify (i). Due to Hh being a Hilbert space, A(t) ∈ G(Hh,1, β) if and only if there
is a real number β such that [49]

(a) (A(t)y, y)h � −β‖y‖2
h ,

(b) −A(t) is the infinitesimal generator of a C0-semigroup on Hh .

First, we prove (a). Take y ∈ Hh . Note that

Λh∂x
(
u2 y

) = Λh∂x
(−[

Λ−h, u2]Λh y + Λ−h(u2Λh y
))

− Λh∂x
[
Λ−h, u2]Λh y + ∂x

(
uΛh y

)
.

Then we have

(
A(t)y, y

)
h = −(

Λh∂x
[
Λ−h, u2]Λh y,Λh y

)
0 + (

∂x
(
u2Λh y

)
,Λh y

)
0

= (
Λh+1[Λ−h, u2]Λh y,Λh−1 y

)
0 + (

uuxΛ
h y,Λh y

)
0

�
∥∥Λh+1[Λ−h, u2]∥∥

L(L2)

∥∥Λh y
∥∥2

0 + ‖uux‖L∞
∥∥Λh y

∥∥2
0

�
(
c‖u‖s + c‖u‖2

s

)‖y‖2
h,

where we applied Lemma 5.1 in [64] with r = −(h + 1),k = 0. Setting β = c‖u‖s + c‖u‖2
s , we have

(A(t)y, y)h � −β‖y‖2
h .

Secondly, we prove (b). Let S = Λs−1−h . Note that S is an isomorphism of Hs−1 onto Hh and Hs−1

is continuously and densely embedded in Hh as −s � h � s − 2. Define

A1(t) := S A(t)S−1 = Λs−1−h A(t)Λh+1−s,

B1(t) := A1(t) − A(t) = [
S, A(t)

]
S−1.

Let y ∈ Hh and u ∈ Hs , s > 3
2 . Then we have
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∥∥B1(t)y
∥∥

h = ∥∥Λh∂x
[
Λs−1−h, u2]Λh+1−s y

∥∥
0

�
∥∥Λh∂x

[
Λs−1−h, u2]Λ1−s

∥∥
L(L2)

∥∥Λh y
∥∥

0

� ‖u‖s‖u‖0,

where we applied Lemma 5.1 in [64] with r = −(h + 1), k = s − 1. Therefore, we obtain B1(t) ∈ L(Hh).
Note that

A(t)u = ∂x
(
u2 y

) = 2u2ux + u2∂x y and ux ∈ L
(

Hs−1).
Applying Lemma 3.2 and a perturbation theorem for semigroups, we have Hs−1 is −A(t)-

admissible. Then by applying Lemma 5.3 in [64] with Y = Hs−1, X = Hh and S = Λs−1−h , we obtain
that −A1(t) is the infinitesimal generator of a C0-semigroup on Hh . Due to A1(t) = A(t) + B1(t) and
B1(t) ∈ L(Hh), by a perturbation theorem for semigroups, we have that −A(t) is the infinitesimal
generator of a C0-semigroup on Hh . This proves (b).

Next, we verify (ii). Take y ∈ L2. Then we have

∥∥Λh∂x
[
Λk−h, u2]Λ−k y

∥∥ � C‖u‖s‖y‖0,

where we applied Lemma 5.1 in [64] with r = −(h + 1), k = k.
Finally, we verify (iii). Take y ∈ Hk . Then

∥∥∂x
(
u2(t + τ ) − u2(t)

)
y
∥∥ �

∥∥(
u2(t + τ ) − u2(t)

)
y
∥∥

h+1

� C
∥∥u2(t + τ ) − u2(t)

∥∥
s−1‖y‖h+1

� C‖u‖s
∥∥u(t + τ ) − u(t)

∥∥
s‖y‖k,

where we applied Lemma 5.1 in [64] with r = s − 1, t = h + 1. By the continuity of u, we prove (iii).
Thus the above three conditions imply the existence and uniqueness of evolution operator U (t, τ ) for
the family A(t). In particular U (t, τ ) maps Hr into itself for −s � r � s − 1.

Next, we choose Y = Hs−2 and X = Hs−3. Note that

y ∈ C
([0, T ); Hs−2) ∩ C1([0, T ); Hs−3).

By the properties of evolution operator U (t, τ ), we can obtain

d

dτ

(
U (t, τ )

)
y(τ ) = U (t, τ )

(−B(τ )y(τ )
)
.

Integrating the above equality in τ ∈ [0, t], we obtain

y(t) = U (t,0)y(0) −
t∫

0

U (t, τ )B(τ )y(τ )dτ . (3.3)

If s < s1 � s+1, then we have B(t) ∈ L(Hs1−2) is strongly continuous in [0, t), and Hs−1 Hs1−2 ⊂ Hs1−2

as s − 1 > 1
2 . Due to −s < s − 2 < s1 − 2 � s − 1, the family {U (t, τ )} is strongly continuous on Hs1−2

to itself. Note that y(0) ∈ Hs1−2. We regard Eq. (3.3) as an integral equation of Volterra type which
can be solved for y by successive approximation. Then the result of Theorem 3.2 is obtained.

If s1 > s + 1, we obtain the result of Theorem 3.2 by repeated application of the above argument.
This completes the proof of Theorem 3.2. �
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4. Blow-up scenario and global conservative property

After establishing local well-posedness theory, a natural question is whether the corresponding
solution exists globally or not. We establish criteria for the blow-up of solutions to Eq. (2.1).

Theorem 4.1. Let u0 ∈ Hr , r > 3
2 . If T is the maximal existence time of corresponding solution of the initial

data u0 , then the Hr -norm of u(t, x) to Eq. (1.2) (or (2.1)) blows up on [0, T ) if and only if

lim
t↑T

∥∥ux(t, x)
∥∥

L∞ = ∞.

Proof. Let u(t, x) be the solution of Eq. (2.1) with the initial data u0 ∈ Hr , r > 3
2 , which is guaranteed

by Theorem 3.1.
If limt↑T ‖ux(t, x)‖L∞ = ∞, by Sobolev’s embedding theorem, we obtain the solution u(t, x) will

blow up in finite time.
Next, applying the operator Λr to Eq. (2.1), multiplying by Λru, and integrating by parts on R, we

have

d

dt
(u, u)r = −2

(
u2ux, u

)
r + 2

(
f (u), u

)
r, (4.1)

where f = −(1 − ∂2
x )−1(∂x(

6−b
2 uu2

x + b
3 u3) + b−2

2 u3
x). Assume there exists an M > 0, such that

limt↑T ‖ux(t, x)‖L∞ � M . Then we have

∣∣(u2ux, u
)

r

∣∣ = ∣∣(Λr(u2ux
)
,Λru

)
0

∣∣ = ∣∣([Λr, u2]ux,Λ
ru

)
0 + (

u2Λrux,Λ
ru

)
0

∣∣
� C‖u‖r

(‖u‖L∞‖ux‖L∞‖u‖r + ‖ux‖L∞‖u‖L∞‖u‖r
) + ‖u‖L∞‖ux‖L∞

∥∥Λru
∥∥2

L2

� C‖u‖2
r ‖u‖L∞‖ux‖L∞ � C‖u‖2

r , (4.2)

where we applied Lemma 3.1 in [28] with s = r, Lemma 3.2 in [28] with F (u) = u2 and s = r. Simi-
larly,

∥∥uu2
x

∥∥
r−1 = ∥∥[

Λr−1, u
]
u2

x + uΛr−1u2
x

∥∥
L2

� C
(‖∂xu‖L∞

∥∥Λr−1u2
x

∥∥
L2 + ∥∥Λr−1u

∥∥
L2

∥∥u2
x

∥∥
L∞

)
� C

(
M

∥∥u2
x

∥∥
r−1 + M2‖u‖r−1

)
� C‖u‖r .

On the other hand, we estimate the second term of the right-hand side of Eq. (2.1):

(
f (u), u

)
r =

(
−(

1 − ∂2
x

)−1
(

∂x

(
6 − b

2
uu2

x + b

3
u3

)
+ b − 2

2
u3

x

)
, u

)

� C‖u‖r

( |6 − b|
2

∥∥uu2
x

∥∥
r−1 + |b|

3

∥∥u3
∥∥

r−1 + |b − 2|
2

∥∥u3
x

∥∥
r−2

)

� C‖u‖2
r . (4.3)

From (4.1)–(4.3), we obtain

d ‖u‖2
r � C‖u‖2

r .

dt
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Thus using Gronwall’s inequality, we get

∥∥u(t)
∥∥2

r � ‖u0‖2
r exp(Ct).

This completes the proof of Theorem 4.1. �
Theorem 4.2. Assume that u0 ∈ Hr(R), r > 3

2 . If b = 1, then every solution will exist globally in time. If b > 1,
then the solution blows up in finite time if and only if the slope of uux becomes unbounded from below in finite
time. If b < 1, then the solution blows up in finite time if and only if the slope of uux becomes unbounded from
above in finite time.

Proof. Applying Theorem 3.1 and a simple density argument, it suffices to consider the case r = 3.
Let T > 0 be the maximal time of existence of the solution u to Eq. (2.1) with initial data u0 ∈ H3(R).
From Theorem 3.1 we know that u ∈ C([0, T ); H3(R)) ∩ C1([0, T ); H2(R)).

Set y = u − uxx; by direct computation, one has

‖y‖2
L2 =

∫
R

(u − uxx)
2 dx =

∫
R

(
u2 + 2u2

x + u2
xx

)
dx. (4.4)

Hence,

‖u‖2
H2 � ‖y‖2

L2 � 2‖u‖2
H2 . (4.5)

Multiplying Eq. (1.2) by u − uxx , after integrating by parts, we get

d

dt

∫
R

y2 dx = 2
∫
R

yyt dx = −2
∫
R

u2 yyx dx − 2b

∫
R

uux y2 dx = 2(b − 1)

∫
R

uux y2 dx. (4.6)

From (4.6), we see that if b = 1, then we have

∥∥ux(t, ·)
∥∥

L∞ �
∥∥u(t, ·)∥∥2 �

∥∥y(t, ·)∥∥L2 �
∥∥y0(t, ·)

∥∥
L2 < ∞.

This implies, in view of Theorem 4.1, that every solution exists globally in time.
If b > 1 and the slope of the solution is bounded from below or if b < 1 and the slope of uux is

bounded from above on [0, T ) ×R, from (4.6), one gets that

∫
R

y2 dx = 2(b − 1)

t∫
0

∫
R

uux y2 dx ds +
∫
R

y2
0 dx � C1

t∫
0

∫
R

y2 dx ds + C2, (4.7)

where C1, C2 > 0. Due to Gronwall’s inequality, it is clear that

∫
R

y2 dx � C2
(
1 + C2teC1t), a.e. t ∈ [0, T ).

So combining with (4.6), we obtain that when uux is bounded from below on [0, T ), then so does the
H2-norm of the solution.
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On the other hand, because of u = G ∗ y, we can get

u = G ∗ y =
∫
R

G(x − ξ)y(ξ)dξ and ux = G ∗ y =
∫
R

Gx(x − ξ)y(ξ)dξ.

Therefore

‖uux‖L∞ � ‖u‖L∞‖ux‖L∞ � ‖G‖L2‖Gx‖L2‖y‖2
L2 � 2‖G‖L2‖Gx‖L2‖y‖2

H2 , (4.8)

where we used (4.6). Hence, (4.8) tells us if H2-norm of the solution is bounded then the L∞-norm
of uux is bounded. This completes the proof of Theorem 4.1. �

In order to demonstrate a conservative property, consider the following differential equation

{ dq(t, x)

dt
= u2(q(t, x), t

)
, t ∈ [0, t),

q(0, t) = x, x ∈ R.

(4.9)

Applying classical results in the theory of ordinary differential equations, one can obtain the following
useful result on the above initial value problem.

Theorem 4.3. Let u0 ∈ Hs, s � 3, and T be the maximal existence time of the corresponding solution u(t, x) to
Eq. (2.1). Then Eq. (4.9) has a unique solution q ∈ C1([0, T )×R,R). Moreover, the map q(t, ·) is an increasing
diffeomorphism of R with

qx(t, x) = exp

( t∫
0

2uux
(
q(s, x), s

)
ds

)
, qx(0, x) = 1, x ∈R, 0 � t < T .

Furthermore, setting y = u − uxx, we obtain

y
(
q(x, t), t

)
q

b
2
x (t, x) = y0(x) = u0(x) − u0xx(x), x ∈R, 0 � t < T .

Proof. First, for fixed x ∈R we deal with an ordinary differential equation. By the Sobolev embedding
theorem we have that u ∈ C1([0, T ) × R,R). Differentiating the first equation in (4.9) with respect
to x, one has

d

dx
qt = qxt = 2uuxqx, t ∈ [0, T ).

Hence

qx(t, x) = exp

( t∫
0

2uux
(
q(s, x), s

)
ds

)
, qx(0, x) = 1,

which is always positive before the blow-up time. Therefore, the function q(x, t) is an increasing
diffeomorphism of the line before blow-up.

For all t > 0, a simple computation shows that
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d

dt

(
y(q)q

b
2
x
) = (

yt + yx(q)qt
)
q

b
2
x + b

2
y(q)qxtq

b−2
2

x

= (
yt(q) + u2(q)yx(q) + buux(q)y(q)

)
q

b
2
x

= 0.

Therefore, y(q)q
b
2
x is independent of the time variable t . That is

y
(
q(t, x), t

)
q

b
2
x (x, t) = y0(x) = u0(x) − u0xx(x). �

5. Analyticity of solutions

In this section, we shall study the analyticity of the Cauchy problem (1.1) based on a contraction
type argument in a suitably chosen scale of the Banach spaces. Such an approach to analytic regularity
of solutions to Cauchy problem (1.1) was initiated by Ovsjannikov [56,57] as an abstract Cauchy–
Kowalevski theorem and later further developed by Nirenberg [54], Baouendi et al. [65] among others
and subsequently applied to the Euler and Navier–Stokes equations.

In order to state the main result, we will need a suitable scale of Banach spaces as follows. For
any s > 0, we set

Es =
{

u ∈ C∞(R): |||u|||s = sup
k∈N0

sk‖∂ku‖H2

k!/(k + 1)2
< ∞

}
,

where H2(R) is the Sobolev space of order two on the real line and N0 is the set of nonnegative
integers. One can easily verify that Es equipped with the norm ||| · |||s is a Banach space and that, for
any 0 < s′ < s, Es is continuously embedded in Es′ with

|||u|||s′ � |||u|||s.

Another simple consequence of the definition is that any u in Es is a real analytic function on R.
Crucial for our purposes is the fact that each Es forms an algebra under pointwise multiplication of
functions.

Our main theorem is stated as follows.

Theorem 5.1. If the initial data u0 is analytic and belongs to a space Es0 , for some 0 < s0 � 1, then there exist
an ε > 0 and a unique solution u(t, x) to the Cauchy problem (2.1) that is analytic on (−ε, ε) ×R.

For the proof of Theorem 5.1, we need the following theorem.

Theorem 5.2. (See [1].) Let {Xs}0<s<1 be a scale of decreasing Banach spaces, namely for any s′ < s we have
Xs ⊂ Xs′ and ||| · |||s′ � ||| · |||s . Consider the Cauchy problem

{ du

dt
= F

(
t, u(t)

)
,

u(0) = 0.

(5.1)

Let T , R and C be positive constants and assume that F satisfies the following conditions
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(1) If for 0 < s′ < s < 1 the function t �→ u(t) is holomorphic in |t| < T and continuous on |t| � T with values
in Xs and

sup
|t|�T

∣∣∣∣∣∣u(t)
∣∣∣∣∣∣

s < R,

then t �→ F (t, u(t)) is a holomorphic function on |t| < T with values in Xs′ .

(2) For any 0 < s′ < s < 1 and any u, v ∈ Xs with |||u|||s < R, |||v|||s < R,

sup
|t|�T

∣∣∣∣∣∣F (t, u) − F (t, v)
∣∣∣∣∣∣

s′ � C

s − s′ |||u − v|||s.

(3) There exists M > 0 such that for any 0 < s < 1,

sup
|t|�T

∣∣∣∣∣∣F (t,0)
∣∣∣∣∣∣

s � M

1 − s
.

Then there exist a T0 ∈ (0, T ) and a unique function u(t), which for every s ∈ (0,1) is holomorphic in |t| <

(1 − s)T0 with values in Xs, and is a solution to the Cauchy problem (5.1).

We restate the Cauchy problem (2.1) in a more convenient form. Let v = ux , then the problem (2.1)
can be written as a system for u and v

⎧⎪⎨
⎪⎩

ut = −u2 v − (
1 − ∂2

x

)−1(
bu2 v + (6 − b)uv vx + 2v3) = F (u, v),

vt = −2uv2 − u2 vx − (
1 − ∂2

x

)−1
∂x

(
bu2 v + (6 − b)uv vx + 2v3) = G(u, v),

u(x,0) = u0(x), v(x,0) = u′
0(x).

(5.2)

Proof of Theorem 5.1. Theorem 5.1 is a straightforward consequence of the abstract Cauchy–
Kowalevski theorem [1]. We only need verify the conditions (1)–(3) in the statement of the abstract
Cauchy–Kowalevski theorem (5.2) for both F (u, v) and G(u, v) in the system (5.2) since neither F
nor G depend on t explicitly. We observe that, for 0 < s′ < s < 1, the estimates in Lemma 2.4 and
Theorem 2.1 in [40] imply the following bounds

∣∣∣∣∣∣F (u, v)
∣∣∣∣∣∣

s′ � |b + 1||||u|||2s |||v|||s + 2|||v|||3s + C

s − s′ |||u|||s|||v|||2s

and

∣∣∣∣∣∣G(u, v)
∣∣∣∣∣∣

s′ � 2|||u|||s|||v|||2s + C

s − s′ |||u|||2s |||v|||s

+ |b||||u|||2s |||v|||s + C

s − s′ |||u|||s|||v|||2s + 2|||v|||3s ,

where the constant C depends only on R , hence condition (1) holds.
Note that to verify the second condition it suffices to estimate∣∣∣∣∣∣F (u1, v) − F (u2, v)

∣∣∣∣∣∣
s′ ,

∣∣∣∣∣∣F (u, v1) − F (u, v2)
∣∣∣∣∣∣

s′ ,

and ∣∣∣∣∣∣G(u1, v) − G(u2, v)
∣∣∣∣∣∣ ′ ,

∣∣∣∣∣∣G(u, v1) − G(u, v2)
∣∣∣∣∣∣ ′ .
s s
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Since ∣∣∣∣∣∣F (u1, v1) − F (u2, v2)
∣∣∣∣∣∣

s′ �
∣∣∣∣∣∣F (u1, v1) − F (u1, v2)

∣∣∣∣∣∣
s′ +

∣∣∣∣∣∣F (u1, v2) − F (u2, v2)
∣∣∣∣∣∣

s′

and ∣∣∣∣∣∣G(u1, v1) − G(u2, v2)
∣∣∣∣∣∣

s′ �
∣∣∣∣∣∣G(u1, v1) − G(u1, v2)

∣∣∣∣∣∣
s′ +

∣∣∣∣∣∣G(u1, v2) − G(u2, v2)
∣∣∣∣∣∣

s′ ,

using this together with Lemma 2.4 and Theorem 2.1 in [40], we get the following estimates

∣∣∣∣∣∣F (u1, v) − F (u2, v)
∣∣∣∣∣∣

s′ � C
∣∣∣∣∣∣u2

1 − u2
2

∣∣∣∣∣∣
s|||v|||s + C

s − s′ |||u1 − u2|||s|||v|||2s

� C |||u1 − u2|||s + C

s − s′ |||u1 − u2|||s,

∣∣∣∣∣∣F (u, v1) − F (u, v2)
∣∣∣∣∣∣

s′ � C |||v1 − v2|||s|||u|||2s + C

s − s′
∣∣∣∣∣∣v2

1 − v2
2

∣∣∣∣∣∣
s|||u|||s + 2

∣∣∣∣∣∣v3
1 − v3

2

∣∣∣∣∣∣
s

� C |||v1 − v2|||s + C

s − s′ |||v1 − v2|||s,

∣∣∣∣∣∣G(u1, v) − G(u2, v)
∣∣∣∣∣∣

s′ � C |||u1 − u2|||s|||v|||2s + C

s − s′
∣∣∣∣∣∣u2

1 − u2
2

∣∣∣∣∣∣
s|||v|||s

+ |b|∣∣∣∣∣∣u2
1 − u2

2

∣∣∣∣∣∣
s|||v|||s + C

s − s′ |||u1 − u2|||s|||v|||2s

� C |||u1 − u2|||s + C

s − s′ |||u1 − u2|||s,

∣∣∣∣∣∣G(u, v1) − G(u, v2)
∣∣∣∣∣∣

s′ � C
∣∣∣∣∣∣v2

1 − v2
2

∣∣∣∣∣∣
s|||u|||s + C

s − s′ |||v1 − v2|||s|||u|||2s + C |||v1 − v2|||s|||u|||2s

+ C

s − s′
∣∣∣∣∣∣v2

1 − v2
2

∣∣∣∣∣∣
s|||u|||s + C

∣∣∣∣∣∣v3
1 − v3

2

∣∣∣∣∣∣
s

� C |||v1 − v2|||s + C

s − s′ |||v1 − v2|||s, (5.3)

where the constant C depends only on R , b.
Now, we verify the third condition. Note that u0 is analytic by the assumption of Theorem 5.1.

We can deduce that both |||u0|||s and |||u′
0|||s are bounded. For 0 < s′ < s < 1, by Lemma 2.4 and

Theorem 2.1 in [40], we have

∣∣∣∣∣∣F (u0, v0)
∣∣∣∣∣∣

s′ � |b + 1||||u0|||2s |||v0|||s + 2|||v0|||3s + C

s − s′ |||u0|||s|||v0|||2s

and

∣∣∣∣∣∣G(u0, v0)
∣∣∣∣∣∣

s′ � 2|||u0|||s|||v0|||2s + C

s − s′ |||u0|||2s |||v0|||s

+ |b||||u0|||2s |||v0|||s + C

s − s′ |||u0|||s|||v0|||2s + 2|||v0|||3s ,

where the constant C depends only on R , hence condition (3) holds. The conditions (1) through (3)
above are now easily verified once our system (5.2) is transformed into a new system with zero initial
data as in (5.1). The proof of Theorem 5.1 is complete. �
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6. Peakon solutions

In this section we define strong solutions and weak solutions for Eq. (1.1). We also prove that its
peakon solutions are weak solutions.

Note that Eq. (1.2) has the soliton waves with corner at its peak. Obviously, such solitons are not
strong solutions to Eq. (2.1). In order to provide a mathematical framework for the study of solitons,
we define the notion of weak solutions to Eq. (2.1). Let

F (u) = u2ux + p ∗ (
bu2ux + (6 − b)uuxuxx + 2u3

x

)
.

Then Eq. (2.1) can be written as

ut + F (u) = 0, u(0, x) = u0. (6.1)

Definition 6.1. Assume u0 ∈ Hs , s ∈ [0, 3
2 ]. If u(x, t) ∈ L∞

loc([0, T ); Hs) and satisfies the following iden-
tity

T∫
0

∫
R

(
uϕt − F (u)ϕ

)
dx dt +

∫
R

u0ϕ(0, x)dx = 0,

for all ϕ ∈ C
∞
c ([0, T ) ×R). Let C

∞
c ([0, T ) ×R) denote the space of all functions on [0, T ) ×R, which

is restricted to [0, T )× R is a smooth function on R
2 with compact support contained in (−T , T )×R.

Then u(t, x) is called a weak solution to Eq. (2.1). If u(t, x) is a weak solution on [0, T ) for every
T > 0, then it is called a global weak solution to Eq. (2.1) (or (1.1)).

Theorem 6.1. The peakon solitary

u(t, x) = ±c
1
2 e−|x−ct−x0|, c > 0, x0 = constant,

is a global weak solution to Eq. (2.1). Moreover, ∀c > 0, u(t, x) ∈ L∞
loc([0, T ); H1).

Proof. Since x0 is constant, it is only to consider u(t, x) = c
1
2 e−|x−ct| . Note that

T∫
0

∫
R

(
uϕt − F (u)ϕ

)
dx dt +

∫
R

u0ϕ(0, x)dx

=
T∫

0

∫
R

(
ut + F (u)

)
ϕ dx dt

=
T∫

0

∫
R

(
ut + um+1ux + p ∗ (

bum+1ux + (6 − b)umuxuxx + 2u3
x

))
. (6.2)

Since {
ut = c

3
2 e−|x−ct| sgn(x − ct) = (cu) sgn(x − ct),

u = −c
1
2 e−|x−ct| sgn(x − ct) = −(u) sgn(x − ct),

(6.3)

x
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it follows that

ut + u2ux = (
cu − u3) sgn(x − ct). (6.4)

On the other hand, in view of (6.2), we have

p ∗ (
bu2ux + (6 − b)uuxuxx + 2u3

x

)
= ∂x p ∗

(
6 − b

2
umu2

x + b

3
u3

)
+ b − 2

2
p ∗ (

u3
x

)

=
∫
R

∂x

(
1

2
e−|x−y|

)(
6 − b

2
uu2

x + b

3
u3

)
(t, y)dy +

∫
R

b − 2

4
e−|x−y|u3

x dx

=
x∫

−∞
−1

2
e y−x

(
6 − b

2
+ b

3
+ b − 2

2
sgn(y − ct)

)
u3(t, y)dy

+
∞∫

x

1

2
e y−x

(
6 − b

2
+ b

3
− b − 2

2
sgn(y − ct)

)
u3(t, y)dy. (6.5)

If x < ct , using u(t, x) = c
1
2 e−|x−ct| , we deduce from (6.5) that

p ∗ (
bu2ux + (6 − b)uuxuxx + 2u3

x

)

=
x∫

−∞
−

(
6 − b

2
+ b

3
− b − 2

2

)
e y−xu3(t, y)dy +

ct∫
x

(
6 − b

2
+ b

3
+ b − 2

2

)
ex−yu3(x, y)dy

+
∞∫

ct

(
6 − b

2
+ b

3
− b − 2

2

)
ex−yu3 dy

= −1

4

(
6 − b

2
+ b

3
− b − 2

2

)
c

3
2 e3(x−ct) + 1

2

(
6 − b

2
+ b

3
+ b − 2

2

)
c

3
2
(
ex−ct − e3(x−ct))

+ 1

4

(
6 − b

2
+ b

3
− b − 2

2

)
c

3
2 ex−ct

= −c
3
2 e3(x−ct) + c

3
2 ex−ct

= cu − u3. (6.6)

Similarly, if x � ct , we have

p ∗ (
bu2ux + (6 − b)uuxuxx + 2u3

x

) = −cu + u3. (6.7)

In view of (6.6) and (6.7), we obtain

p ∗ (
bu2ux + (6 − b)uuxuxx + 2u3

x

) = (
cu − u3) sgn(x − ct). (6.8)
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Combining (6.1), (6.4), (6.8) with Definition 6.1, we deduce the desired result. This completes the proof
of Theorem 6.1. �
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