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Abstract

In the following paper we present criteria for the hydrodynamical instability of internal equatorial water 
waves. We show, by way of the short-wavelength perturbation approach, that certain geophysical waves 
propagating above the equatorial thermocline are linearly unstable when the wave steepness exceeds a 
given threshold.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we analyse the stability of some recently derived exact, explicit solutions to the 
geophysical governing equations in the equatorial β-plane using the short-wavelength perturba-
tion method. The solutions we analyse prescribe steady, unidirectional, internal travelling waves 
which propagate above the thermocline, which is an interface separating two distinct vertical 
ocean layers of differing densities [9,11,17,33].

In [9] an explicit exact solution to the full geophysical governing equations was obtained 
which corresponds to the classical two-layer model describing oscillations of the thermocline in 
the equatorial region [17]. The solution in [9] is remarkable since, even in the setting where 
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Coriolis effects are ignored, there are only a handful of explicit exact solutions to the full 
governing equations for water waves. Perhaps the most celebrated of these is Gerstner’s wave 
[3,6,22,24], an exact solution that is explicit in the Lagrangian formulation [2,6]. Recently, quite 
a number of Gerstner-type exact and explicit solutions have been derived which model various 
physical and geophysical scenarios [3,4,7,9,11,25,28–31,36,38]. The formulation presented in 
[9] is quite unique in the sense that the fluid motion diminishes as one ascends from the ther-
mocline towards the surface, as opposed to the Gerstner formulation for surface waves whereby 
motion decreases as one descends beneath the surface.

Recently, in [30], it was shown that the model describing internal waves propagating above the 
thermocline in [9] could be adapted to allow for a constant underlying current. This idea extends 
back to [37] when Mollo-Christensen introduced a current-like term into Gerstner’s solution for 
gravity waves in order to describe billows between two fluids, and it was recently employed in 
the geophysical setting in [25]. The solutions presented in [9,30] represent explicit examples of 
exact equatorial waves whereby the fluid motion dies out at great depth, and we note that the 
recent papers [8,10,27] rigorously established the existence of exact equatorial surface waves 
which admit an underlying vorticity distribution.

In this paper we apply the short-wavelength perturbation method to derive instability cri-
teria for the internal wave solutions which were obtained in [9,30]. These criteria are stated in 
Propositions 4.1 and 4.2 below. From a mathematical viewpoint, establishing the hydrodynamical 
stability or instability of a flow is difficult, given that the fully nonlinear governing equations for 
fluid motion are highly intractable [15,16,19,20]. Physically, the question of hydrodynamic sta-
bility is important since, for instance, unstable flows cannot be observed in practice since they are 
rapidly destroyed by any minor perturbations or disturbances. For certain solutions which have 
an explicit Lagrangian formulation, it transpires that the short-wavelength perturbation method 
of instability analysis, which was independently developed by the authors of [1,18,35], has a 
remarkably elegant formulation and application. This was first established for Gerstner’s solu-
tion to the gravity water wave problem in [34], and for geophysical flows in [12]. Recent work 
[21,26,32] has applied the instability analysis to a variety of contexts. The current paper is, to the 
best of our knowledge, the first application of this approach to internal waves propagating above 
the equatorial thermocline.

2. Governing equations and model

We take the earth to be a perfect sphere of radius R = 6378 km with constant rotational speed 
of Ω = 73 · 10−6 rad/s, and g = 9.8 m s−2 is the gravitational acceleration at the surface of the 
earth. In a reference frame with the origin located at a point on earth’s surface and rotating with 
the earth, we take the x-axis to be the longitudinal direction (horizontally due east), the y-axis to 
be the latitudinal direction (horizontally due north) and the z-axis to be vertically upwards. The 
governing equations for geophysical ocean waves [14] are given by

ut + uux + vuy + wuz + 2Ωw cosφ − 2Ωv sinφ = − 1

ρ
Px, (2.1a)

vt + uvx + vvy + wvz + 2Ωu sinφ = − 1

ρ
Py, (2.1b)

wt + uwx + vwy + wwz − 2Ωu cosφ = − 1
Pz − g, (2.1c)
ρ
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Fig. 1. Schematic of the two-layer model.

together with the equation of incompressibility

∇ · U = 0, (2.2)

and the equation of mass conservation

ρt + uρx + vρy + wρz = 0. (2.3)

Here U = (u, v, w) is the velocity field of the fluid, the variable φ represents the latitude, ρ is the 
density of the fluid, and P is the pressure of the fluid. In the equatorial region, where the latitude 
φ is relatively small, the full governing equations for geophysical water waves (2.1) may be 
rendered more tractable by approximating the Coriolis terms. When φ is small, but not constant, 
the β-plane approximation sinφ ≈ φ, cosφ ≈ 1 may be employed [14] which is equivalent to 
locally approximating the earth’s curved surface by a plane. Accordingly the governing equations 
reduce to the β-plane equations

ut + uux + vuy + wuz + 2Ωw − βyv = − 1

ρ
Px, (2.4a)

vt + uvx + vvy + wvz + βyu = − 1

ρ
Py, (2.4b)

wt + uwx + vwy + wwz − 2Ωu = − 1

ρ
Pz − g, (2.4c)

where β = 2Ω/R = 2.28 · 10−11 m−1 s−1. In the recent paper [9], a formulation is presented 
for an exact, explicit solution of (2.4) which prescribes steady, unidirectional, internal travel-
ling waves which propagate above the thermocline, which is an interface separating two distinct 
vertical ocean layers of differing densities. To finish this section we present an outline of the two-
layer model that these solutions adhere to. (See Fig. 1.) The uppermost fluid layer, of density ρ0, 
which lies above the thermocline is subdivided into two parts. The near-surface layer, to which 
wind effects are confined, is labelled L(t). Typical values for the mean-depth of L(t) are 80 m. 
Beneath L(t) is a layer where the fluid motion is entirely due to the propagation of equatorial 
internal waves, this layer is denoted M(t), and typical values for the mean-depth of M(t) are 
40 m, cf. [9]. Finally, the thermocline lies at the boundary of M(t) and the deeper, motionless 
layer of fluid which has density ρ+ > ρ0. The thermocline is labelled z = η(x − ct, y), while the 
interface separating L(t) and M(t) is denoted z = η+(x − ct, y), where c is the constant wave 
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phase-speed. The fluid is assumed motionless beneath the thermocline, and so u ≡ v ≡ w ≡ 0
for z < η(x − ct, y).

3. Exact internal wave solutions

Recently in [9] an exact explicit solution of the governing equations (2.4) was derived which 
prescribes equatorially-trapped waves propagating in the layer M(t). These waves travel east-
wards, and so c > 0, with a vanishing meridional velocity, and so v ≡ 0, reducing the governing 
equations to

ut + uux + wuz + 2Ωw = − 1

ρ0
Px, (3.1a)

βyu = − 1

ρ0
Py, (3.1b)

wt + uwx + wwz − 2Ωu = − 1

ρ0
Pz − g, (3.1c)

together with ux + wz = 0 in η(x − ct, y) < z < η+(x − ct, y), and the boundary condition

P = P0 − ρ+gz on z = η(x − ct, y). (3.1d)

The solution presented in [9] takes the following form, where the Eulerian coordinates of fluid 
particles (x, y, z) are expressed as functions of the time t and Lagrangian labelling variables 
(q, r, s):

x = q − 1

k
e−k(r+f (s)) sin

[
k(q − ct)

]
, (3.2a)

y = s, (3.2b)

z = r − 1

k
e−k(r+f (s)) cos

[
k(q − ct)

]
. (3.2c)

Here k is the wavenumber and c > 0 is the constant speed of propagation of the waves. The 
parameters q , r , s vary as follows: q ∈ R and s ∈ [−s0, s0], where s0 = √

c0/β ≈ 250 km is 
the equatorial radius of deformation [14]. For each fixed latitude s, we have r ∈ [r0(s), r+(s)], 
where r0(s) determines the thermocline η and r+(s) determines the interface η+ separating M(t)

and L(t). It is shown in [9] that r+(s) > r0(s) > 0 and furthermore the wave profiles η and 
η+ determined by r0, r+ respectively are trochoids, which are characteristically nonlinear and 
display a crest-trough asymmetry in the wave profile. The solutions in (3.2) represent equatorially 
trapped waves, and the function f (s) which determines the exponential decay of the motion away 
from the equator is given by

f (s) = cβ

2g̃
s2, (3.3)

where g̃ is the reduced gravity, defined by
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g̃ = g
ρ+ − ρ0

ρ0
,

and the wave phase-speed is defined by the dispersion relation

c =
√

Ω2 + kg̃ + Ω

k
> 0, (3.4)

which we note is equivalent to the relation

g̃ = kc2 − 2Ωc.

A typical value for the reduced gravity is g̃ = 6 · 10−3 m s−2 [17]. The waves described by (3.2)
are symmetric about the equator, and the motion they induce diminishes the further one ascends 
above the thermocline. An additional feature of the form of the solution (3.2) is that the particle 
trajectories for the underlying flow are closed circles in a fixed latitudinal plane. The existence 
of closed particle paths is typical of Gerstner-type waves, and it is a phenomenon which does not 
apply to most irrotational water waves. In the case of Stokes waves of both finite depth [5,13], 
and infinite depth [23], the particle trajectories are in fact not closed. If we define

χ = k
(
r + f (s)

)
, θ = k(q − ct),

the determinant of the Jacobian of the transformation (3.2) is given by 1 − e−2χ , which is time 
independent [9]. Hence the flow defined by (3.2) is volume preserving, and so (2.2) holds in the 
Eulerian framework [2]. In order for the transformation (3.2) to be well-defined it is necessary 
that

r + f (s) ≥ r∗ > 0.

The velocity gradient tensor can be calculated to give

∇U =
⎛
⎝

∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

⎞
⎠ = cke−χ

1 − e−2χ

⎛
⎝ − sin θ 0 − cos θ − e−χ

βs(e−χ−cos θ)
kc−2Ω

0 βs sin θ
kc−2Ω

e−χ − cos θ 0 sin θ

⎞
⎠ , (3.5)

and so the vorticity of the flow prescribed by (3.2) is ω = (wy − vz, uz − wx, vx − uy)

=
(

s
kc2β

g̃

e−χ sin θ

1 − e−2χ
,

2kce−2χ

1 − e−2χ
, s

kc2β

g̃

e−χ cos θ − e−2χ

1 − e−2χ

)
. (3.6)

Also, the steepness of the wave-profile of the thermocline, defined to be half the amplitude of the 
wave multiplied by the wavenumber, is given by

τ(s) = e−χ , (3.7)

which is maximum τ0 = e−kr0 at the equator.
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4. Instability analysis

We now present the main result of this paper, which we prove below using the short-
wavelength instability method to analyse the flow in the M(t) layer as determined by the solution 
(3.2) of the governing equations (2.4).

Proposition 4.1. The internal equatorial waves propagating eastward above the thermocline, 
prescribed by (3.2), are unstable to short wavelength perturbations if the steepness of the wave-
profile at the thermocline exceeds the threshold

e−kr0 >

√
Ω2 + kg̃ − 3Ω

3
√

Ω2 + kg̃ − Ω

(
� 1

3

)
. (4.1)

To prove this instability result we examine the evolution of a localised and rapidly-varying 
infinitesimal perturbation of the flow, as represented at time t by the wave packet

u(X, t) = εb(X, ξ0,b0, t)e
iΦ(X,ξ0,b0,t)/δ. (4.2)

Here X = (x, y, z), Φ is a scalar function, and at t = 0 we have

Φ(X, ξ0,b0,0) = X · ξ0, b(X, ξ0,b0,0) = b0(X, ξ0).

The normalised wave vector ξ0 is subject to the transversality condition ξ0 · b0 = 0, and b0 is 
the normalised amplitude of the short-wavelength perturbation of the flow which has the velocity 
field U(X) ≡ (u v w)T (x, y, z). Then the evolution in time of X, of the perturbation amplitude b, 
and of the wave vector ξ = ∇Φ , is governed at the leading order in the small parameters ε and δ
by the system of ODEs

⎧⎪⎪⎨
⎪⎪⎩

Ẋ = U(X, t),

ξ̇ = −(∇U)T ξ ,

ḃ = −Lb − b · (∇U) + ([
Lb + 2b · (∇U)

] · ξ) ξ

|ξ |2 ,

(4.3)

with initial conditions

X(0) = X0, ξ(0) = ξ0, b(0) = b0.

Here (∇U)T is the transpose of the velocity gradient tensor (3.5) and, for the system defined by 
(2.4), L = L(X) is given by

L =
( 0 −βy 2Ω

βy 0 0
−2Ω 0 0

)
,

cf. [12,21,26] for details. We note that systems of ODEs along the lines of (4.3), which describe 
the evolution of a rapidly-varying short-wavelength perturbation, were first derived indepen-
dently by a number of authors [1,18,35].
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To prove the instability of the internal waves prescribed by (3.2), it suffices to demonstrate by 
way of (4.3) an exponential growth-rate in amplitude b for some particular initial disturbance. 
While in (4.3) the second and third equations are linear, the first equation is usually nonlinear 
but decouples from the other two. The first equation in (4.3) provides the particle trajectory of 
the basic (undisturbed) flow, while the second and third equations govern to leading order the 
evolution along this trajectory of the local wave vector and of the amplitude of the perturbation, 
respectively. Choosing the latitudinal wave vector ξ0 = (0 1 0)T , and it follows immediately 
from (3.5) and the second equation in (4.3) that ξ(t) = (0 1 0)T for all t ≥ 0. The third equation 
in (4.3) then implies that b = (b1, b2, b3) is governed by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ḃ1 = βsb2 − 2Ωb3 + kce−χ sin θ

1 − e−2χ
b1 − kcβse−χ (e−χ − cos θ)

(kc − 2Ω)(1 − e−2χ )
b2 − kce−χ (e−χ − cos θ)

1 − e−2χ
b3,

ḃ2 = 0,

ḃ3 = 2Ωb1 + kce−χ (e−χ + cos θ)

1 − e−2χ
b1 − kcβse−χ sin θ

(kc − 2Ω)(1 − e−2χ )
b2 − kce−χ sin θ

1 − e−2χ
b3.

(4.4)

Noting that the choice b2(0) = 0 implies b2(t) = 0 for all t ≥ 0, and accordingly ξ(t) · b(t) = 0, 
the system (4.4) reduces to the two-dimensional system

Ḃ =
(

kce−χ sin θ

1−e−2χ −2Ω − kce−χ (e−χ−cos θ)

1−e−2χ

2Ω + kce−χ (e−χ+cos θ)

1−e−2χ − kce−χ sin θ

1−e−2χ

)
B, (4.5)

where B = ( b1
b3

)
. This system is nonautonomous, however the change of variables

P =
(

cos(kct/2) − sin(kct/2)

sin(kct/2) cos(kct/2)

)

transforms the planar system (4.5) to an autonomous system for Q = P −1B ,

d

dt
Q(t) = DQ(t),

where

D =
(

kce−χ

1−e−2χ sin(kq) kce−χ

1−e−2χ cos(kq) − 2Ω − kce−2χ

1−e−2χ + kc
2

kce−χ

1−e−2χ cos(kq) + 2Ω + kce−2χ

1−e−2χ − kc
2 − kce−χ

1−e−2χ sin(kq)

)
.

Since B = PQ, and P is periodic with time, we deduce that the short-wavelength rapidly-varying 
perturbation u, defined in (4.2), grows exponentially with time if D has a positive eigenvalue. 
The eigenvalues λ for D are given by the quadratic equation

λ2 = −a2(e−2χ )2 + be−2χ − c2

4(1 − e−2χ )2
,

where a = (4Ω − 3kc), b = 10k2c2 + 32Ω(Ω − kc), c = (4Ω − kc). Using the relation b =
a2 + c2, we find that the quadratic equation involving a, b, c which appears in the numerator 
above has roots precisely for
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e−2χ = c2

a2
,1,

and consequently we deduce that exponential growth occurs for Q(t) if and only if

e−χ >
kc − 4Ω

3kc − 4Ω
. (4.6)

Together with the dispersion relation (3.4), and (3.7), this proves Proposition 4.1.

4.1. Constant underlying current

Recently, one of the authors showed in [30] that the solution (3.2) could be modified to account 
for a constant underlying zonal current of strength U . The resulting solution is given by

x = q − Ut − 1

k
e−k(r+f (s)) sin

[
k(q − ct)

]
, (4.7a)

y = s, (4.7b)

z = r − 1

k
e−k(r+f (s)) cos

[
k(q − ct)

]
. (4.7c)

Considerations similar to those carried out above apply to the instability analysis of the solution 
with an underlying current, with the proviso that g̃ is replaced with g = g̃ − 2ΩU throughout. 
This leads us to the following result.

Proposition 4.2. The internal equatorial waves propagating eastward above the thermocline 
in the presence of a constant underlying current, as prescribed by (4.7), are unstable to short 
wavelength perturbations if the steepness of the wave-profile at the thermocline exceeds the 
threshold

e−kr0 >

√
Ω2 + k(g̃ − 2ΩU) − 3Ω

3
√

Ω2 + k(g̃ − 2ΩU) − Ω

(
� 1

3

)
. (4.8)

It follows immediately from relation (4.8) that the presence of an underlying current can either 
(slightly) increase, or diminish, the threshold for instability, depending on whether the current is 
adverse or following.

5. Final remarks

We note that the instability thresholds obtained in Propositions 4.1 and 4.2 are both (slightly) 
less than 1/3. This is of note since it contrasts with the situation that holds for eastward-
propagating equatorial surface water waves in the β-plane [12,21], where the threshold is slightly 
greater than 1/3. This is presumably an artefact of the waves considered in this paper being in-
ternal waves. Interestingly, the threshold in relation (4.1) has strong similarities to that which 
pertains for westward propagating surface waves in the f -plane, cf. [26], with the obvious 
difference of reduced gravity g̃ appearing in relations for internal waves. Of course, when we 
ignore geophysical effects and omit Coriolis terms, the thresholds on the right-hand side of (4.1)
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and (4.8) (and those derived in [12,21,26]) become precisely 1/3, which matches the instability 
threshold first derived for Gerstner’s gravity water wave in [34].

Quantitatively, the thresholds we derive in Propositions 4.1 and 4.2 differ considerably from 
those of surface water waves, since the Coriolis terms involving Ω are quite a bit closer, in 
terms of order of magnitude, to the reduced gravity g̃ than to the gravitational constant g. One 
consequence of this is that Coriolis effects play a greater role in the instability thresholds for 
internal waves, that we have derived here in Propositions 4.1 and 4.2, than they do for surface 
water waves in [12,21,26]. From the physical viewpoint of applying the instability thresholds 
we have derived, the reader should consult qualitative data pertaining to equatorial water waves 
which can be found in the papers [7,9,11] and the references cited therein.
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