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Abstract

In this paper, we establish the second order estimates for solutions of the first initial–boundary value prob-
lem for general Hessian type fully nonlinear parabolic equations on Riemannian manifolds. The techniques 
used in this article can work for a wide range of fully nonlinear PDEs under very general conditions.
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1. Introduction

Let (Mn, g) be a compact Riemannian manifold of dimension n ≥ 2 with smooth boundary 
∂M and M̄ := M ∪ ∂M . We shall study the equation

f (λ(∇2u + A[u])) − ut = ψ(x, t, u,∇u) (1.1)

in MT = M × (0, T ] ⊂ M × R, where f is a symmetric smooth function of n variables, ∇2u

denotes the Hessian of u(x, t) with respect to x ∈ M , A[u] = A(x, t, ∇u) is a (0, 2) tensor on M̄
which may depend on t ∈ [0, T ] and ∇u and

λ(∇2u + A[u]) = (λ1, . . . , λn)

denotes the eigenvalues of ∇2u + A[u] with respect to the metric g.
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In this work we are mainly concerned with the a priori C2 estimates for solutions to (1.1)
satisfying the boundary condition

u = ϕ on PMT , (1.2)

where ϕ ∈ C∞(PMT ) and PMT = BMT ∪ SMT is the parabolic boundary of MT with BMT =
M × {0} and SMT = ∂M × [0, T ].

The idea of this paper is mainly from Guan and Jiao [7] where the authors studied the second 
order estimates for the elliptic counterpart of (1.1):

f (λ(∇2u + A(x,u,∇u))) = ψ(x,u,∇u). (1.3)

Comparing with the elliptic case, the main difficulty in deriving the second order estimates for the 
parabolic equation (1.1) is from its degeneracy which is overcome by using the strict subsolution 
in this paper. Surprisingly, thanks to the strict subsolution, we are able to relax some restrictions 
to f . Again because of the degeneracy, we do not get the higher estimates and the existence of 
classical solution. It is useful to consider viscosity solutions to (1.1) which will be addressed in 
forthcoming papers.

The first initial–boundary value problem for equation of the form (1.1) in Rn with A ≡ 0 and 
ψ = ψ(x, t) was studied by Ivochkina and Ladyzhenskaya in [9] (when f = σ

1/n
n ) and [10]. Jiao 

and Sui [11] treated the case that A ≡ χ(x) and ψ = ψ(x, t) on Riemannian manifolds using the 
techniques of [5] and [7]. For the elliptic Hessian equations on manifolds, we refer the reader to 
Li [12], Urbas [14], Guan [4–6], Guan and Jiao [7] and their references.

As in [2], where the authors studied the equations (1.3) with A ≡ 0 and ψ = ψ(x) in a 
bounded domain of Rn, f ∈ C2(�) ∩ C0(�) is assumed to be defined on �, where � is an 
open, convex, symmetric proper subcone of Rn with vertex at the origin and

�+ ≡ {λ ∈R
n : each component λi > 0} ⊆ �,

and to satisfy the following structure conditions in this paper:

fi ≡ ∂f

∂λi

> 0 in �, 1 ≤ i ≤ n, (1.4)

f is concave in �, (1.5)

and without loss of generality,

f > 0 in �, f = 0 on ∂�. (1.6)

Typical examples are given by f = σ
1/k
k and f = (σk/σl)

1/(k−l), 1 ≤ l < k ≤ n, defined in 
the cone �k = {λ ∈ R

n : σj (λ) > 0, j = 1, . . . , k}, where σk(λ) are the elementary symmetric 
functions

σk(λ) =
∑

i1<...<ik

λi1 . . . λik , k = 1, . . . , n.

We call a function u(x, t) admissible if λ(∇2u + A[u]) ∈ � in M × [0, T ]. It is shown in [2]
that (1.4) ensures that equation (1.1) is parabolic for admissible solutions. (1.5) means that the 
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function F defined by F(A) = f (λ[A]) is concave for A ∈ Sn×n with λ[A] ∈ �, where Sn×n is 
the set of n × n symmetric matrices.

Throughout the paper we assume that A[u] is smooth on M̄T for u ∈ C∞(M̄T ), ψ ∈
C∞(T ∗M̄ × [0, T ] × R) (for convenience we shall write ψ = ψ(x, t, z, p) for (x, p) ∈ T ∗M̄ , 
t ∈ [0, T ] and z ∈ R though) and that λ(∇2ϕ(x, 0) + A[ϕ(x, 0)]) ∈ � for all x ∈ M̄ .

Note that for fixed (x, t) ∈ M̄T and p ∈ T ∗
x M ,

A(x, t,p) : TxM × TxM →R

is a symmetric bilinear map. We shall use the notations

Aξη(x, ·, ·) := A(x, ·, ·)(ξ, η), ξ, η ∈ TxM

and, for a function v ∈ C
2,1
x,t (MT ), A[v] := A(x, t, ∇v), Aξη[v] := Aξη(x, t, ∇v) (see [7]).

In this paper we assume that there exists an admissible function u ∈ C2(M̄T ) satisfying

f (λ(∇2u + A[u])) − ut ≥ ψ(x, t, u,∇u) + δ0 in M × [0, T ] (1.7)

for some positive constant δ0 with u = ϕ on ∂M × [0, T ] and u ≤ ϕ in M × {0}.
We shall prove the following theorem.

Theorem 1.1. Let u ∈ C4(M̄T ) be an admissible solution of (1.1). Suppose that (1.4)–(1.7) hold. 
Assume that

−ψ(x, t, z,p) and Aξξ (x, t,p) are concave in p, ∀ ξ ∈ TxM, (1.8)

ψz ≤ 0. (1.9)

Then

max
M̄T

|∇2u| ≤ C1
(
1 + max

PMT

|∇2u|) (1.10)

where C1 > 0 depends on |u|C1
x (M̄T ) and |u|C2(M̄T ). Suppose that u also satisfies the boundary 

condition (1.2) and, in addition, assume that

f (λ(∇2ϕ(x,0) + A[ϕ(x,0)])) − ϕt (x,0) = ψ[ϕ(x,0)], ∀x ∈ ∂M, (1.11)

and

ϕt (x, t) + ψ(x, t, z,p) > 0 (1.12)

for each (x, t) ∈ SMT , p ∈ T ∗
x M̄ and z ∈ R. Then there exists C2 > 0 depending on |u|C1

x (M̄T ), |u|C2(M̄T ) and |ϕ|C4(PMT ) such that

max
PMT

|∇2u| ≤ C2. (1.13)
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Since u is admissible, we have, by (1.8),

�u + trApk
(x, t,0)∇ku + trA(x, t,0) ≥ �u + trA(x, t,∇u) > 0

and by the maximum principle it is easy to derive the estimates

max
M̄T

|u| + max
PMT

|∇u| ≤ C. (1.14)

Combining with the gradient estimates (Theorems 5.1–5.3), we can prove the following theo-
rem immediately.

Theorem 1.2. Let u ∈ C4(M̄T ) be an admissible solution of (1.1) in MT with u ≥ u in MT and 
u = ϕ on PMT . Suppose that (1.4)–(1.9) and (1.11)–(1.12) hold. Then we have

|u|
C

2,1
x,t (M̄T )

≤ C, (1.15)

where C > 0 depends on n, M and |u|C2(M̄T ) under any of the following additional assumptions: 
(i) (5.1)–(5.3) hold for γ1 < 4, γ2 = 2 in (5.1); (ii) (Mn, g) has nonnegative sectional curvature 
and (5.1) hold for γ1, γ2 < 2; (iii) (5.1), (5.16)–(5.20) hold for γ1, γ2 < 4 in (5.1) and γ < 2 in
(5.18)–(5.20).

The rest of this paper is organized as follows. In Section 2, we introduce some preliminaries 
and present a brief review of some elementary formulas. In Section 3 and Section 4, we estab-
lish the global and boundary estimates for second order derivatives respectively. The gradient 
estimates are derived in Section 5.

2. Preliminaries

Throughout the paper ∇ denotes the Levi-Civita connection of (Mn, g). The curvature tensor 
is defined by

R(X,Y )Z = −∇X∇Y Z + ∇Y ∇XZ + ∇[X,Y ]Z.

Let e1, . . . , en be local frames on Mn. We denote gij = g(ei, ej ), {gij } = {gij }−1. Define the 
Christoffel symbols �k

ij by ∇ei
ej = �k

ij ek and the curvature coefficients

Rijkl = g(R(ek, el)ej , ei), Ri
jkl = gimRmjkl .

We shall use the notations ∇i = ∇ei
, ∇ij = ∇i∇j − �k

ij∇k , etc.
For a differentiable function v defined on Mn, we usually identify ∇v with the gradient of v, 

and use ∇2v to denote the Hessian of v which is locally given by ∇ij v = ∇i (∇j v) −�k
ij∇kv. We 

recall that ∇ij v = ∇jiv and

∇ijkv − ∇jikv = Rl ∇lv, (2.1)
kij



7666 H. Jiao / J. Differential Equations 259 (2015) 7662–7680
∇ijklv − ∇klij v = Rm
ljk∇imv + ∇iR

m
ljk∇mv + Rm

lik∇jmv

+ Rm
jik∇lmv + Rm

jil∇kmv + ∇kR
m
jil∇mv. (2.2)

Let u ∈ C4(M̄T ) be an admissible solution of equation (1.1). For simplicity we shall denote 
U := ∇2u + A(x, t, ∇u) and, under a local frame e1, . . . , en,

Uij ≡ U(ei, ej ) = ∇ij u + Aij (x, t,∇u),

∇kUij ≡ ∇U(ei, ej , ek) = ∇kij u + ∇kA
ij (x, t,∇u)

≡ ∇kij u + A
ij
xk

(x, t,∇u) + A
ij
pl

(x, t,∇u)∇klu, (2.3)

(Uij )t ≡ (U(ei, ej ))t = (∇ij u)t + A
ij
t (x, t,∇u) + A

ij
pl

(x, t,∇u)(∇lu)t

≡ ∇ij ut + A
ij
t (x, t,∇u) + A

ij
pl

(x, t,∇u)∇lut , (2.4)

where Aij = Aeiej and Aij
xk

denotes the partial covariant derivative of A when viewed as de-

pending on x ∈ M only, while the meanings of Aij
t and Aij

pl
, etc. are obvious. Similarly we can 

calculate ∇klUij = ∇k∇lUij − �m
kl∇mUij , etc.

Let F be the function defined by

F(h) = f (λ(h))

for a (0, 2) tensor h on M .
Following the literature we denote throughout this paper

F ij = ∂F

∂hij

(U), F ij,kl = ∂2F

∂hij ∂hkl

(U)

under an orthonormal local frame e1, . . . , en. The matrix {F ij } has eigenvalues f1, . . . , fn and 
is positive definite by assumption (1.4), while (1.5) implies that F is a concave function of Uij

(see [2]). Moreover, when {Uij } is diagonal so is {F ij }, and the following identities hold

F ijUij =
∑

fiλi, F ijUikUkj =
∑

fiλ
2
i , λ(U) = (λ1, . . . , λn).

Define the linear operator L locally by

Lv = F ij∇ij v + (F ijA
ij
pk

− ψpk
)∇kv − vt ,

for v ∈ C
2,1
x,t (MT ). We can prove

Theorem 2.1. Let u be an admissible solution to (1.1) with u ≥ u in MT . Assume that (1.4), 
(1.5), (1.8) and (1.9) hold. Then there exists a constant θ > 0 depending only on δ0 and u such 
that

L(u − u) ≥ θ
(

1 +
∑

F ii
)
. (2.5)
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Proof. Since u is admissible satisfying (1.7), there exists a constant ε0 > 0 such that {λ(∇2u +
A[u] − ε0g) : x ∈ M̄T } is a compact subset of � and

f (λ(∇2u + A[u] − ε0g)) − ut ≥ ψ[u] + δ0

2
in MT .

Let θ = min{ δ0
2 , ε0}. For each (x, t) ∈ MT , we may assume {Uij } = {∇ij u + Aij } is diagonal at 

(x, t). From (1.8), (1.9) and the concavity of F , we see, at (x, t),

F ii(Uii − ε0gii − Uii) − (u − u)t ≥ ψ(x, t, u,∇u) − ψ(x, t, u,∇u) + δ0

2

≥ ψ(x, t, u,∇u) − ψ(x, t, u,∇u) + δ0

2

≥ ψpk
∇k(u − u) + δ0

2
. (2.6)

By (1.8) again, we have

F ii(Uii − Uii) = F ii∇ii (u − u) + F ii(Aii(x, t,∇u) − Aii(x, t,∇u))

≤ F ii∇ii (u − u) + F iiAii
pk

∇k(u − u). (2.7)

Combining (2.6) and (2.7), we get

L(u − u) ≥ ε0

∑
F ii + δ0

2
≥ θ

(
1 +

∑
F ii

)
. �

3. Global estimates for second order derivatives

In this section, we prove (1.10) in Theorem 1.1 for which we set

W = max
(x,t)∈M̄T

max
ξ∈TxM,|ξ |=1

(∇ξξ u + Aξξ (x, t,∇u)eφ,

as in [7], where φ is a function to be determined. It suffices to estimate W . We may assume W is 
achieved at (x0, t0) ∈ M̄T −PMT . Choose a smooth orthonormal local frame e1, . . . , en about x0
such that ∇iej = 0, and U is diagonal at (x0, t0). We may assume U11(x0, t0) ≥ . . . ≥ Unn(x0, t0). 
Thus, W = U11(x0, t0)eφ(x0,t0).

At the point (x0, t0) where the function logU11 + φ attains its maximum, we have

∇iU11

U11
+ ∇iφ = 0 for each i = 1, . . . , n, (3.1)

(U11)t

U11
+ φt ≥ 0, (3.2)

and

0 ≥
∑

F ii{∇iiU11

U11
− (∇iU11)

2

U2
+ ∇iiφ}. (3.3)
i 11
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Differentiating equation (1.1) twice, we find

F ii∇kUii − ∇kut = ψxk
+ ψu∇ku + ψpj

∇kju, for all k, (3.4)

and

F ii∇11Uii + F ij,kl∇1Uij∇1Ukl − ∇11ut

≥ ψpj
∇11j u + ψplpk

∇1ku∇1lu − CU11

≥ ψpj
∇jU11 + ψp1p1U

2
11 − CU11

= −U11ψpj
∇jφ + ψp1p1U

2
11 − CU11. (3.5)

Next, by (3.1) and (3.4),

F ii(∇iiA
11 − ∇11A

ii) ≥ F ii(A11
pj

∇iij u − Aii
pj

∇11j u)

+ F ii(A11
pipi

U2
ii − Aii

p1p1
U2

11) − CU11

∑
F ii

≥ U11F
iiAii

pj
∇jφ + A11

pj
∇j ut − CU11

∑
F ii − CU11

− C
∑
i≥2

F iiU2
ii − U2

11

∑
i≥2

F iiAii
p1p1

. (3.6)

Note that

∇iiU11 ≥ ∇11Uii + ∇iiA
11 − ∇11A

ii − CU11. (3.7)

Thus, by (3.5), (3.6) and (3.2), we have, at (x0, t0),

F ii∇iiU11 ≥ F ii∇11Uii − CU11(1 +
∑

F ii) + A11
pj

∇j ut

− C
∑
i≥2

F iiU2
ii − U2

11

∑
i≥2

F iiAii
p1p1

+ U11F
iiAii

pj
∇jφ

≥ U11Lφ − U11F
ii∇iiφ − F ij,kl∇1Uij∇1Ukl + ψp1p1U

2
11

− CU11(1 +
∑

F ii) − CF iiU2
ii − U2

11

∑
i≥2

F iiAii
p1p1

. (3.8)

It follows that, by (3.3),

Lφ ≤ U11

∑
i≥2

F iiAii
p1p1

− ψp1p1U11 + C(1 +
∑

F ii) + C

U11
F iiU2

ii + E, (3.9)

where

E = 1

U2
F ii(∇iU11)

2 + 1

U
F ij,kl∇1Uij∇1Ukl.
11 11
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Let

φ = δ|∇u|2
2

+ bη,

where 0 < δ � 1 � b are undetermined constants and η is a C2 function which may depend on 
u but not on its derivatives. We calculate, at (x0, t0),

∇iφ = δ∇j u∇ij u + b∇iη = δ∇iuUii − δ∇j uAij + b∇iη, (3.10)

φt = δ∇j u(∇j u)t + bηt (3.11)

and

∇iiφ ≥ δ

2
U2

ii − Cδ + δ∇j u∇iij u + b∇iiη. (3.12)

From (2.1) and (3.4), we derive

F ii∇j u∇iij u ≥ F ii∇j u(∇jUii − ∇jA
ii) − C|∇u|2

∑
F ii

≥ (ψpl
− F iiAii

pl
)∇j u∇j lu + ∇j u∇j (ut ) − C(1 +

∑
F ii). (3.13)

Therefore,

Lφ ≥ bLη + δ

2
F iiU2

ii − C
∑

F ii − C. (3.14)

Let η = u − u. We get from (3.10) that

(∇iφ)2 ≤ Cδ2(1 + U2
ii ) + 2b2(∇iη)2 ≤ Cδ2U2

ii + Cb2. (3.15)

For fixed 0 < s ≤ 1/3 let

J = {i : Uii ≤ −sU11}, K = {i : Uii > −sU11}.
Using a result of Andrews [1] and Gerhardt [3] as in [5] and [7] (see [14] also), we have

E ≤ Cb2
∑
i∈J

F ii + Cδ2
∑

F iiU2
ii + C

∑
F ii + C(δ2U2

11 + b2)F 11. (3.16)

Therefore, by (3.9), (3.14) and (3.16), we have

bLη ≤
(
Cδ2 − δ

2
+ C

U11

)
F iiU2

ii + Cb2
∑
i∈J

F ii + C
∑

F ii

+ C(δ2U2
11 + b2)F 11 + C

≤
(
Cδ2 − δ

2
+ C

U11

)
F iiU2

ii + Cb2
∑
i∈J

F ii + C
∑

F ii

+ Cb2F 11 + C. (3.17)
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Choose δ sufficiently small such that Cδ2 − δ
2 is negative and let

c1 := −1

2

(
Cδ2 − δ

2

)
> 0.

We may assume

Cδ2 − δ

2
+ C

U11
≤ −c1

for otherwise we have U11 ≤ C
c1

and we are done. Thus, by (2.5), choosing b sufficiently large, 
we derive from (3.17) that

c1F
iiU2

ii − Cb2F 11 − Cb2
∑
i∈J

F ii ≤ 0.

Then we can get a bound U11(x0, t0) ≤ C since |Uii | ≥ sU11 for i ∈ J . The proof of (1.10) is 
completed.

4. Boundary estimates for second order derivatives

In this section, we consider the estimates for second order derivatives on the parabolic bound-
ary PMT . We may assume ϕ ∈ C4(M̄T ).

Fix a point (x0, t0) ∈ SMT . We shall choose smooth orthonormal local frames e1, . . . , en

around x0 such that when restricted to ∂M , en is normal to ∂M . Since u − u = 0 on SMT

we have

∇αβ(u − u) = −∇n(u − u)Π(eα, eβ), ∀ 1 ≤ α,β < n on SMT , (4.1)

where Π denotes the second fundamental form of ∂M . Therefore,

|∇αβu| ≤ C, ∀ 1 ≤ α,β < n on SMT . (4.2)

Let ρ(x) denote the distance from x ∈ M to x0,

ρ(x) ≡ distMn(x, x0),

and set

Mδ = {X = (x, t) ∈ M × (0, T ] : ρ(x) < δ, t ≤ t0 + δ}.

For the mixed tangential–normal and pure normal second derivatives at (x0, t0), we shall use 
the following barrier function as in [5],

Ψ = A1v + A2ρ
2 − A3

∑
|∇l(u − ϕ)|2 (4.3)
l<n
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where v = u −u. By differentiating the equation (1.1) and straightforward calculation, we obtain

L(∇k(u − ϕ)) ≤ C
(

1 +
∑

fi |λi | +
∑

fi

)
, ∀ 1 ≤ k ≤ n. (4.4)

Similar to [5] (see [7] also), using Proposition 2.19 and Corollary 2.21 of [5] and Theorem 2.1, 
we can prove that there exist uniform positive constants δ sufficiently small, and A1, A2, A3
sufficiently large such that

L(Ψ ± ∇α(u − ϕ)) ≤ 0 in Mδ (4.5)

and Ψ ± ∇α(u − ϕ) ≥ 0 on PMδ . Thus, by the maximum principle, we see Ψ ± ∇α(u − ϕ) ≥ 0
in Mδ . Then we get

|∇nαu(x0, t0)| ≤ ∇nΨ (x0, t0) ≤ C, ∀ α < n. (4.6)

Remark 4.1. We remark that in the proof of Corollary 2.21 in [5], the following condition is 
needed

∑
fi(λ)λi ≥ 0, ∀λ ∈ � (4.7)

which can be derived from (1.4)–(1.6).

It remains to derive

∇nnu(x0, t0) ≤ C (4.8)

since �u ≥ −C. We shall use an idea of Trudinger [13] as [5] and [7] to prove that there exist 
uniform positive constants c0, R0 such that for all R > R0, (λ′[U ], R) ∈ � and

f (λ′[U ],R) − ut ≥ ψ[u] + c0 on SMT (4.9)

which implies (4.8) by Lemma 1.2 in [2], where λ′[U ] = (λ′
1, . . . , λ

′
n−1) denote the eigenvalues 

of the (n − 1) × (n − 1) matrix {Uαβ}1≤α,β≤(n−1) and ψ[u] = ψ(·, ·, u, ∇u). For R > 0 and a 
symmetric (n − 1)2 matrix {rαβ} with (λ′({rαβ}), R) ∈ �, define

G[rαβ ] ≡ f (λ′[{rαβ}],R)

and consider

mR ≡ min
(x,t)∈SMT

G[Uαβ(x, t)] − ut (x, t) − ψ[u].

Note that G is concave and mR is increasing in R by (1.4), and that

cR ≡ inf
SMT

(G[Uαβ ] − ut − ψ[u]) > 0

when R is sufficiently large.
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We wish to show mR > 0 for R sufficiently large. Without loss of generality we assume 
mR < cR/2 (otherwise we are done) and suppose mR is achieved at a point (x0, t0) ∈ SMT . 
Choose local orthonormal frames around x0 as before and assume ∇nnu(x0, t0) ≥ ∇nnu(x0, t0). 
Let σαβ = 〈∇αeβ, en〉 and

G
αβ

0 = ∂G

∂rαβ

[Uαβ(x0, t0)].

Note that σαβ = Π(eα, eβ) on ∂M and that

G
αβ

0 (rαβ − Uαβ(x0, t0)) ≥ G[rαβ ] − G[Uαβ(x0, t0)] (4.10)

for any symmetric matrix {rαβ} with (λ′[{rαβ}], R) ∈ � by the concavity of G.
In particular, since ut = ut = ϕt on SMT , we have

G
αβ

0 Uαβ − ψ[u] − ut − G
αβ

0 Uαβ(x0, t0) + ψ[u](x0, t0) + ut (x0, t0)

≥ G[Uαβ ] − ψ[u] − ut − mR ≥ 0 (4.11)

on SMT .
From (4.1) we see that

Uαβ = Uαβ − ∇n(u − u)σαβ + Aαβ [u] − Aαβ [u] on SMT . (4.12)

Note that at (x0, t0), we have

∇n(u − u)G
αβ

0 σαβ = G
αβ

0 (Uαβ − Uαβ) + G
αβ

0 (Aαβ [u] − Aαβ [u])
≥ G[Uαβ ] − G[Uαβ ] + G

αβ

0 (Aαβ [u] − Aαβ [u])
= G[Uαβ ] − ψ[u] − ut − mR + G

αβ

0 (Aαβ [u] − Aαβ [u])
≥ cR − mR + ψ[u] + ut − ψ[u] − ut

+ G
αβ

0 (Aαβ [u] − Aαβ [u])
≥ cR

2
+ H [u] − H [u] (4.13)

where H [u] = G
αβ

0 Aαβ [u] − ψ[u].
Define

Φ = −η∇n(u − u) + H [u] − ut + Q

where η = G
αβ

0 σαβ and

Q ≡ G
αβ

0 ∇αβu − G
αβ

0 Uαβ(x0, t0) + ψ[u](x0, t0) + ut (x0, t0).

By virtue of (4.11) and (4.12) we see that Φ ≥ 0 on SMT and Φ(x0, t0) = 0.
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Next, by (4.4) and (1.8),

LH ≤ Hz[u]Lu + Hpk
[u]L∇ku + F ijHpkpl

[u]∇kiu∇lj u

+ C
(∑

F ii +
∑

fi |λi | + 1
)

≤ C
(∑

F ii +
∑

fi |λi | + 1
)

+ Hz[u]Lu.

Since Hz[u] ≥ 0, by Theorem 2.1, we have

Lu = L(u − u) +Lu ≤ C
(

1 +
∑

F ii
)
.

It follows that

LH ≤ C
(∑

F ii +
∑

fi |λi | + 1
)
.

Therefore,

LΦ ≤ C
(∑

F ii +
∑

fi |λi | + 1
)
. (4.14)

By the compatibility condition (1.11), we find

c′
R ≡ inf

x∈∂M
G(∇αβϕ + A[ϕ])(x,0) − ψ[ϕ](x,0) − ϕt (x,0) > 0

when R is sufficiently large. We may assume mR <
c′
R

2 (otherwise we are done). For x ∈ M̄ , by 
the concavity of G again, we have

Φ(x0,0) = G
αβ

0 (Uαβ(x0,0) − Uαβ(x0, t0))

− ψ[u](x0,0) − ut (x0,0) + ψ[u](x0, t0) + ut (x0, t0)

= G
αβ

0 (∇αβϕ + A[ϕ](x0,0) − Uαβ(x0, t0))

− ϕt (x0,0) + ut (x0, t0) + ψ[u](x0, t0) − ψ[ϕ](x0,0)

≥ G(∇αβϕ + A[ϕ])(x0,0) − G(Uαβ(x0, t0))

− ϕt (x0,0) + ut (x0, t0) + ψ[u](x0, t0) − ψ[ϕ](x0,0)

≥ c′
R − mR >

c′
R

2
.

Note that on BMT ,

Φ = −η∇n(ϕ − u) + H [ϕ] − ut + Q

is a known function independent of the solution u. It follows that Φ ≥ 0 on BMδ provided δ is 
sufficiently small. Thus, we get Φ ≥ 0 on PMδ .
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Consider the function Ψ defined in (4.3) as before. Similarly, there exist another group of 
constants A1 � A2 � A3 � 1 such that

{L(Ψ + Φ) ≤ 0 in Mδ,

Ψ + Φ ≥ 0 on PMδ.
(4.15)

By the maximum principle we find Ψ + Φ ≥ 0 in Mδ . It follows that ∇nΦ(x0, t0) ≥
−∇nΨ (x0, t0) ≥ −C.

Following [7], we write us = su + (1 − s)u and

H [us] = G
αβ

0 Aαβ [us] − ψ[us].
We have

H [u] − H [u] =
1∫

0

dH [us]
dt

ds

= (u − u)

1∫
0

Hz[us]ds +
∑

∇k(u − u)

1∫
0

Hpk
[us]ds.

Therefore, at (x0, t0),

H [u] − H [u] = ∇n(u − u)

1∫
0

Hpn[us]ds (4.16)

and

∇nH [u] = ∇nH [u] +
∑

∇kn(u − u)

1∫
0

Hpk
[us]ds

+ ∇n(u − u)

1∫
0

(Hz[us] + Hxnpn [us] + Hzpn[us]∇nu
s)ds

+ ∇n(u − u)
∑ 1∫

0

Hpnpl
[us]∇lnu

sds

≤ ∇nn(u − u)

1∫
0

(Hpn [us] + sHpnpn [us]∇n(u − u))ds + C

≤ ∇nn(u − u)

1∫
Hpn[us]ds + C (4.17)
0
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since Hpnpn ≤ 0, ∇nn(u − u) ≥ 0 and ∇n(u − u) ≥ 0. It follows that

∇nΦ(x0, t0) ≤ −η(x0, t0)∇nn(x0, t0) + ∇nH [u](x0, t0) + C

≤
(

− η(x0, t0) +
1∫

0

Hpn [us](x0, t0)ds
)
∇nnu(x0, t0) + C. (4.18)

By (4.13) and (4.16),

η(x0, t0) −
1∫

0

Hpn [us](x0, t0)ds ≥ cR

2∇n(u − u)(x0, t0)
≥ ε1cR > 0 (4.19)

for some uniform ε1 > 0 independent of R. This gives

∇nnu(x0, t0) ≤ C

ε1cR

. (4.20)

So we obtain an a priori upper bound for all eigenvalues of {Uij (x0, t0)}. Now by (1.12), there 
exists a constant ν0 > 0 such that

inf
(x,t)∈SMT

ϕt (x, t) + ψ(x, t, u,∇u) ≥ ν0.

It follows that λ[{Uij (x0, t0)}] is contained in a compact subset of � by (1.6), and therefore

mR = G[Uαβ(x0, t0)] − ut (x0, t0) − ψ[u](x0, t0) > 0

when R is sufficiently large. Then (4.9) is valid and the proof of (1.13) is completed.

5. Gradient estimates

In this section we establish the gradient estimates to prove Theorems 5.1–5.3 below. Through-
out the section, we assume (1.4)–(1.5), (1.8) and the following growth conditions

{
p · ∇xA

ξξ (x, t,p) ≤ ψ̄1(x, t, z)|ξ |2(1 + |p|γ1)

p · ∇xψ(x, t, z,p) + |p|2ψz(x, t, z,p) ≥ −ψ̄2(x, t, z)(1 + |p|γ2)
(5.1)

for some functions ψ̄1, ψ̄2 ≥ 0 and constants γ1, γ2 > 0.
Since the proofs of Theorems 5.1–5.3 are similar to those in the elliptic case (see [8]), we only 

provide a sketch here.

Theorem 5.1. Let u ∈ C3(M̄T ) be an admissible solution of (1.1). Assume, in addition, that

lim f (σ1) = +∞ (5.2)

σ→∞
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where 1 = (1, . . . , 1) ∈ R
n and there exists a constant c0 > 0 such that

Aξξ
pkpl

(x, t,p)ηkηl ≤ −c0|ξ |2|η|2 + c0|g(ξ, η)|2, ∀ ξ, η ∈ TxM. (5.3)

Suppose that γ1 < 4, γ2 = 2 in (5.1), and that there is an admissible function u ∈ C2(M̄T ). Then

max
M̄T

|∇u| ≤ C3
(
1 + max

PMT

|∇u|) (5.4)

where C3 is a positive constant depending on |u|C0(M̄T ) and |u|C1
x (M̄T ).

Proof. Let w = |∇u| and φ be a positive function to be determined. Suppose the function wφ−a

achieves a positive maximum at an interior point (x0, t0) ∈ MT −PMT where a < 1 is a positive 
constant. Choose a smooth orthonormal local frame e1, . . . , en about x0 such that ∇ei

ej = 0 at 
x0 and {Uij (x0, t0)} is diagonal.

The function logw − a logφ attains its maximum at (x0, t0) where for i = 1, . . . , n,

∇iw

w
− a∇iφ

φ
= 0, (5.5)

wt

w
− aφt

φ
≥ 0 (5.6)

and

∇iiw

w
+ (a − a2)|∇iφ|2

φ2
− a∇iiφ

φ
≤ 0. (5.7)

Note that

w∇iw = ∇lu∇ilu, wwt = ∇lu(∇lu)t .

By (2.1), (5.5) and (3.4),

w∇iiw = ∇lu∇iilu + ∇ilu∇ilu − ∇iw∇iw

= (∇liiu + Rk
iil∇ku)∇lu +

(
δkl − ∇ku∇lu

w2

)
∇iku∇ilu

≥ (∇lUii − Aii
pk

∇lku − Aii
xl

)∇lu − C|∇u|2

= ∇lu∇lUii − aw2

φ
Aii

pk
∇kφ − ∇luAii

xl
− Cw2. (5.8)

By (3.4), (5.5) and (5.6),

F ii∇lu∇lUii = ∇luψxl
+ ψu|∇u|2 + ψpk

∇lu∇lku + ∇lu∇lut

≥ ∇luψxl
+ ψu|∇u|2 + aw2

φ
ψpk

∇kφ + aw2

φ
φt . (5.9)

Let φ = (u − u) + b > 0, where b = 1 + supM (u − u).

T
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By the condition (5.3) we have

−Aii
pk

∇kφ = Aii
pk

(x, t,∇u)∇k(u − u)

≥ Aii(x, t,∇u) − Aii(x, t,∇u) + c0

2
(|∇φ|2 − |∇iφ|2). (5.10)

We may assume that c0 is sufficiently small and that

2a − 2a2 − c0aφ

2φ2
> 0

by choosing a sufficiently small.
Thus, by (5.7), (5.8), (5.9) and (5.10), we find

0 ≥ a

φ
F ii(Uii − Uii) + ac0|∇φ|2

2φ

∑
F ii + 2a − 2a2 − c0aφ

2φ2
F ii |∇iφ|2

− 1

w2
F iiAii

xl
∇lu + 1

w2
ψxl

∇lu + ψu + a

φ
ψpk

∇kφ + a

φ
φt − C

∑
F ii

≥ a

φ
F ii(Uii − Uii) + ac0|∇φ|2

2φ

∑
F ii − C

∑
F ii

+ a

φ
(ψ(x, t, u,∇u) − ψ(x, t, u,∇u))

− 1

w2
F iiAii

xl
∇lu + 1

w2
ψxl

∇lu + ψu + a

φ
(u − u)t . (5.11)

Choose B > 0 sufficiently large such that

F(2Bg + U) ≥ F(Bg) in M̄T .

Therefore, by the concavity of F ,

F ii(Uii − Uii) ≥ F(2Bg + U) − F(U) − 2B
∑

F ii

≥ F(Bg) − 2B
∑

F ii − ψ(x, t, u,∇u) − ut . (5.12)

It follows from (5.1), (5.2), (5.11) and (5.12) that

0 ≥ a

φ
F(Bg) − C − (C + 2B)

∑
F ii + ac0|∇φ|2

2φ

∑
F ii

− 1

w2
F iiAii

xl
∇lu + 1

w2
ψxl

∇lu + ψu

≥ (
ac0|∇φ|2 − 3B − C|∇u|γ1−2)

∑
F ii (5.13)
2φ



7678 H. Jiao / J. Differential Equations 259 (2015) 7662–7680
provided B is chosen sufficiently large. Thus, we get a bound |∇u(x0, t0)| ≤ C and so the proof 
of Theorem 5.1 is completed. �
Theorem 5.2. Let u ∈ C3(M̄T ) be an admissible solution of (1.1) with u ≥ u in MT . Assume, in 
addition, that (1.7), (1.9) and (5.1) hold for γ1, γ2 < 2 in (5.1) and that (Mn, g) has nonnegative 
sectional curvature. Then (5.4) holds.

Proof. Since (Mn, g) has nonnegative sectional curvature, in an orthonormal local frame,

Rk
iil∇ku∇lu ≥ 0.

In the proof of Theorem 5.1, similar to (5.8), we have

w∇iiw ≥ ∇lu∇lUii − aw2

φ
Aii

pk
∇kφ − ∇luAii

xl
. (5.14)

It follows from (2.5), (5.1), (5.7), (5.9) and (5.14) that

0 ≥ a

φ
L(u − u) + 1

w2
∇luψxl

+ ψu − ∇lu

w2
F iiAii

xl
+ a − a2

φ2
F ii |∇iφ|2

≥ a

φ
θ(1 +

∑
F ii) − C|∇u|γ1−2

∑
F ii − C|∇u|γ2−2 + a − a2

φ2
F ii |∇iφ|2 (5.15)

provided |∇u| is sufficiently large. Choosing a sufficiently small, we can obtain a bound 
|∇u(x0, t0)| ≤ C and (5.4) holds. �
Theorem 5.3. Let u ∈ C3(M̄T ) be an admissible solution of (1.1) in MT . Assume, in addition, 
that (5.1) hold for γ1, γ2 < 4,

f is homogeneous of degree one, (5.16)

fj (λ) ≥ ν1

(
1 +

∑
fi(λ)

)
for any λ ∈ � with λj < 0, (5.17)

where ν1 is a uniform positive constant and there exist a continuous function ψ̄ ≥ 0 and a positive 
constant γ < 2 such that when |p| is sufficiently large,

p · Dpψ(x, t, z,p), −p · DpAξξ (x, t,p)/|ξ |2 ≤ ψ̄(x, t, z)(1 + |p|γ ), (5.18)

−ψ(x, t, z,p) ≤ ψ̄(x, t, z)(1 + |p|γ ), (5.19)

|Aξη(x, t,p)| ≤ ψ̄(x, t, z)|ξ ||η|(1 + |p|γ ), ∀ ξ, η ∈ TxM̄; ξ ⊥ η. (5.20)

Then (5.4) holds.

Proof. In the proof of Theorem 5.1, we take φ = −u + supMT
u + 1. By the concavity of Aii

with respect to p,

Aii = Aii(x, t,∇u) ≤ Aii(x, t,0) + Aii (x, t,0)∇ku (5.21)
pk
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Thus, from (5.16), (5.19) and (5.21), we find

−F ii∇iiφ = F ii∇iiu = F iiUii − F iiAii = ut + ψ − F iiAii

≥ ut + ψ − C(1 + |∇u|)
∑

F ii

≥ ut − C(1 + |∇u|)
∑

F ii − C|∇u|γ . (5.22)

By virtue of (5.7), (5.8), (5.9), (5.1), (5.18) and (5.22), we see that for a < 1,

0 ≥ (a − a2)

φ2
F ii |∇iu|2 + ∇luψxl

w2
+ ψu − a

φ
ψpk

∇ku − a

φ
ut

+ a

φ
F iiAii

pk
∇ku − F ii

∇luAii
xl

w2
+ a

φ
ut

− C|∇u|γ − C(1 + |∇u|)
∑

F ii

≥ c1F
ii |∇iu|2 − C(|∇u|γ2−2 + |∇u|γ )

− C(1 + |∇u| + |∇u|γ1−2 + |∇u|γ )
∑

F ii (5.23)

provided |∇u| is sufficiently large.
Without loss of generality we assume ∇1u(x0, t0) ≥ 1

n
|∇u(x0, t0)| > 0. Recall that Uij (x0, t0)

is diagonal. By (5.5), (5.21) and (5.20), we have

U11 = − a

φ
|∇u|2 + A11 + 1

∇1u

∑
k≥2

∇kuA1k

≤ − a

φ
|∇u|2 + C(1 + |∇u| + |∇u|γ−2) < 0 (5.24)

provided |∇u| is sufficiently large. Therefore, by (5.16),

f1 ≥ ν1

(
1 +

n∑
i=1

fi

)

and a bound |∇u(x0, t0)| ≤ C follows from (5.23). �
Acknowledgment

This is an improvement of part of my thesis. I wish to thank my adviser Professor Bo Guan 
for leading me to this problem and many useful suggestions and comments.

References

[1] B. Andrews, Contraction of convex hypersurfaces in Euclidean space, Calc. Var. Partial Differential Equations 2 
(1994) 151–171.

[2] L. Caffarelli, L. Nirenberg, J. Spruck, Dirichlet problem for nonlinear second order elliptic equations III: functions 
of the eigenvalues of the Hessian, Acta Math. 155 (1985) 261–301.

http://refhub.elsevier.com/S0022-0396(15)00434-9/bib41s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib41s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib434E53s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib434E53s1


7680 H. Jiao / J. Differential Equations 259 (2015) 7662–7680
[3] C. Gerhardt, Closed Weingarten hypersurfaces in Riemannian manifolds, J. Differential Geom. 43 (1999) 612–641.
[4] B. Guan, The Dirichlet problem for Hessian equations on Riemannian manifolds, Calc. Var. Partial Differential 

Equations 8 (1999) 45–69.
[5] B. Guan, Second order estimates and regularity for fully nonlinear elliptic equations on Riemannian manifolds, 

Duke Math. J. 163 (2014) 1491–1524.
[6] B. Guan, The Dirichlet problem for fully nonlinear elliptic equations on Riemannian manifolds, arXiv:1403.2133.
[7] B. Guan, H.-M. Jiao, Second order estimates for Hessian type fully nonlinear elliptic equations on Riemannian 

manifolds, Calc. Var. Partial Differential Equations (2015), http://dx.doi.org/10.1007/s00526-015-0880-8.
[8] B. Guan, H.-M. Jiao, The Dirichlet problem for Hessian type fully nonlinear elliptic equations on Riemannian 

manifolds, Discrete Contin. Dyn. Syst. Ser. A 36 (2016) 701–714.
[9] N.M. Ivochkina, O.A. Ladyzhenskaya, On parabolic equations generated by symmetric functions of the principal 

curvatures of the evolving surface or of the eigenvalues of the Hessian. Part I: Monge–Ampère equations, St. Pe-
tersburg Math. J. 6 (1995) 575–594.

[10] N.M. Ivochkina, O.A. Ladyzhenskaya, Flows generated by symmetric functions of the eigenvalues of the Hessian, 
Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 221 (1995) 127–144 (in Russian); English transl. 
in: J. Math. Sci. 87 (1997) 3353–3365.

[11] H.-M. Jiao, Z.-N. Sui, The first initial–boundary value problem for a class of fully nonlinear parabolic equations on 
Riemannian manifolds, Int. Math. Res. Not. IMRN 2015 (9) (2015) 2576–2595.

[12] Y.-Y. Li, Some existence results of fully nonlinear elliptic equations of Monge–Ampère type, Comm. Pure Appl. 
Math. 43 (1990) 233–271.

[13] N.S. Trudinger, On the Dirichlet problem for Hessian equations, Acta Math. 175 (1995) 151–164.
[14] J.I.E. Urbas, Hessian equations on compact Riemannian manifolds, in: Nonlinear Problems in Mathematical Physics 

and Related Topics, II, Kluwer/Plenum, New York, 2002, pp. 367–377.

http://refhub.elsevier.com/S0022-0396(15)00434-9/bib4743s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib4731s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib4731s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib47s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib47s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib473134s1
http://dx.doi.org/10.1007/s00526-015-0880-8
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib474A32s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib474A32s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib494C31s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib494C31s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib494C31s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib494C32s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib494C32s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib494C32s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib4A53s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib4A53s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib4C6959593930s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib4C6959593930s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib54s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib55s1
http://refhub.elsevier.com/S0022-0396(15)00434-9/bib55s1

	Second order estimates for Hessian equations of parabolic type on Riemannian manifolds
	1 Introduction
	2 Preliminaries
	3 Global estimates for second order derivatives
	4 Boundary estimates for second order derivatives
	5 Gradient estimates
	Acknowledgment
	References


