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Abstract

In this paper, we establish the second order estimates for solutions of the first initial-boundary value prob-
lem for general Hessian type fully nonlinear parabolic equations on Riemannian manifolds. The techniques
used in this article can work for a wide range of fully nonlinear PDEs under very general conditions.
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1. Introduction

Let (M_ ", g) be a compact Riemannian manifold of dimension n > 2 with smooth boundary
oM and M := M U dM. We shall study the equation

f(A(V2u+A[u]))—ut=1//(x,t,u,Vu) (1.1

in Mr =M x (0,T] C M x R, where f is a symmetric smooth function of n variables, sz
denotes the Hessian of u(x, t) with respect to x € M, A[u] = A(x,t, Vu) is a (0, 2) tensor on M
which may depend on ¢ € [0, T] and Vu and

AVZu+ Alul) = (A1, ..o M)

denotes the eigenvalues of V2u + A[u] with respect to the metric g.
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In this work we are mainly concerned with the a priori C? estimates for solutions to (1.1)
satisfying the boundary condition

u=¢onPMr, (1.2)

where ¢ € C*®°(PM7) and PMr = BM7 U SM7 is the parabolic boundary of M7 with BMy =
M x {0} and SMyr =0M x [0, T].

The idea of this paper is mainly from Guan and Jiao [7] where the authors studied the second
order estimates for the elliptic counterpart of (1.1):

f(k(V%t—i—A(x,u,Vu)))=w(x,u,Vu). (1.3)

Comparing with the elliptic case, the main difficulty in deriving the second order estimates for the
parabolic equation (1.1) is from its degeneracy which is overcome by using the strict subsolution
in this paper. Surprisingly, thanks to the strict subsolution, we are able to relax some restrictions
to f. Again because of the degeneracy, we do not get the higher estimates and the existence of
classical solution. It is useful to consider viscosity solutions to (1.1) which will be addressed in
forthcoming papers.

The first initial-boundary value problem for equation of the form (1.1) in R"” with A =0 and
Y = (x, t) was studied by Ivochkina and Ladyzhenskaya in [9] (when f = O’n] / "yand [10]. Jiao
and Sui [11] treated the case that A = x (x) and ¥ = ¥ (x, ¢) on Riemannian manifolds using the
techniques of [5] and [7]. For the elliptic Hessian equations on manifolds, we refer the reader to
Li [12], Urbas [14], Guan [4-6], Guan and Jiao [7] and their references.

As in [2], where the authors studied the equations (1.3) with A =0 and ¥ = ¥ (x) in a
bounded domain of R”, f € CXT) N C%T) is assumed to be defined on I', where I is an
open, convex, symmetric proper subcone of R"” with vertex at the origin and

'*'={xeR": each component A; > 0} C T,

and to satisfy the following structure conditions in this paper:

a
f,-z—f>OinF, 1<i<n, (1.4)
oA
f is concavein T, (1.5)
and without loss of generality,
f>0inl", f=0o0noal. (1.6)
Typical examples are given by f = crkl/k and f = (o3 /o)/*=D 1 <1 <k <n, defined in
the cone I'y ={A e R" :0;(1) >0, j=1,...,k}, where ox(A) are the elementary symmetric
functions

or (V) = Z My, k=1,...,n.

i1<...<ig

We call a function u(x, t) admissible if A(Vzu + Afu]) e T'in M x [0, T']. It is shown in [2]
that (1.4) ensures that equation (1.1) is parabolic for admissible solutions. (1.5) means that the
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function F defined by F(A) = f(A[A]) is concave for A € S"*" with A[A] € [, where §"*" is
the set of n X n symmetric matrices.

Throughout the paper we assume that A[u] is smooth on My for u € C °°(MT) /S
C®(T*M x [0, T] x R) (for convenience we shall write ¢ = ¥ (x, t, z, p) for (x,p) € T*M,
t € [0, T] and z € R though) and that A(V2p(x,0) + Alp(x,0)]) €T forall x € M.

Note that for fixed (x, 1) € MT and peTM,

Ax,t,p): TyM x TyM — R
is a symmetric bilinear map. We shall use the notations
ASN(x, -, ) = A, ) E ), §n € TeM

and, for a function v € C)%jtl (M7), A[v]:= A(x, 1, Vv), A5"[v]:= A5"(x, t, Vv) (see [7]).
In this paper we assume that there exists an admissible function u € C?(Mr7) satisfying

FONVu+ Alul) —ur = Y (x, £,u, Vi) + 8o in M x [0, T 1.7

for some positive constant 6o with u =¢ on 0M x [0, T]and u < ¢ in M x {0}.
We shall prove the following theorem.

Theorem 1.1. Let u € C*(M7) be an admissible solution of (1.1). Suppose that (1.4)—(1.7) hold.
Assume that

—¥(x,t,z, p) and A%8(x, 1, p) are concave in p, VE € TyM, (1.8)
V. <0. 1.9)

Then
n;[a;xw ul < Ci(1 +%113x 1V2ul) (1.10)

where Cy > 0 depends on |ulcyz,, and |u|c2y,- Suppose that u also satisfies the boundary
condition (1.2) and, in addition, assume that

FO(V2(x,0) + Alp(x,0)]) — ¢ (x,0) = Y[p(x,0)], Vx €M, (1.11)
and
got(xﬂt)+1;0(xvt’zvp)>0 (112)

for each (x,t) € SMr, p € T} M and z € R. Then there exists C3 > 0 depending on |u| 1z,
|Z|C2(MT) and |§0|C4(7)MT) such that

max |Vu| < C». (1.13)
PMy
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Since u is admissible, we have, by (1.8),
Au+trAp, (x,t,0)Viu +trA(x,t,0) > Au +trA(x, 1, Vu) > 0
and by the maximum principle it is easy to derive the estimates

max |u| + max |Vu| < C. (1.14)
MT PMT

Combining with the gradient estimates (Theorems 5.1-5.3), we can prove the following theo-
rem immediately.

Theorem 1.2. Let u € C*H(My) be an admissible solution of (1.1) in Mt with u > u in Mt and
u =@ onPMr. Suppose that (1.4)—(1.9) and (1.11)—(1.12) hold. Then we have

where C > 0 depends on n, M and |u| 2z, under any of the following additional assumptions:
(i) (5.1)—(5.3) hold for y| <4, y» =2 in (5.1); (ii) (M", g) has nonnegative sectional curvature
and (5.1) hold for y1, y2 < 2; (iii) (5.1), (5.16)—(5.20) hold for y1,y» <4 in (5.1)and y <2 in
(5.18)—(5.20).

The rest of this paper is organized as follows. In Section 2, we introduce some preliminaries
and present a brief review of some elementary formulas. In Section 3 and Section 4, we estab-
lish the global and boundary estimates for second order derivatives respectively. The gradient
estimates are derived in Section 5.

2. Preliminaries

Throughout the paper V denotes the Levi-Civita connection of (M", g). The curvature tensor
is defined by

R(X,Y)Z=—-VxVyZ+VyVxZ+ Vix y Z.

Letey, ..., e, be local frames on M". We denote g;; = g(e;, ¢;), {gij} = {gij}_l. Define the
Christoffel symbols Fl{‘j by Ve.ej = Fl{‘j ey and the curvature coefficients

Rijki = g(R(ek, eej, ei), R;-kl = ¢"" Runjui.-
We shall use the notations V; =V,,, V;; =V;V; — F;‘j Vi, etc.
For a differentiable function v defined on M", we usually identify Vv with the gradient of v,
and use V2v to denote the Hessian of v which is locally given by V;jv = V;(V;v) — Ffj Viv. We

recall that V;;v = V ;v and

vijkv—vﬁksz,iijvlu, 2.1
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Vijkiv — Viijv = R}’}kv,»mv + ViRZ-’kav + R;;lkvj'mv
+Rﬁkvlmv+Rj”§lemv+VkRj”j.lev. 2.2)

Let u € C*(Mr) be an admissible solution of equation (1.1). For simplicity we shall denote
U:=Vu+ A(x,t,Vu) and, under a local frame ey, ..., ¢,

Ui =Ulei,ej) = Viju+ A (x, 1, Vu),
ViU = VU ei, e, ex) = Vigju + VA (x, t, Vu)

= Viiju + A%, (v, 1, Vi) + A% (x, 1, Vi) Vi, 23)
Ui = (Uei, )y = (Viju) + AY (x, 1, V) + A% (x, 1, Vi) (Vyu),
= Viju + A (x, 1, Vu) + AY (x, 1, Vi) Viu,, (2.4)

where AV = A%¢i and A;]k denotes the partial covariant derivative of A when viewed as de-

pending on x € M only, while the meanings of Aﬁj and A;j,, etc. are obvious. Similarly we can
calculate ViyU;j = ViViU;j — T Vi Ui, ete.
Let F be the function defined by

F(h) = f((h)

for a (0, 2) tensor h on M.
Following the literature we denote throughout this paper

. 9F iy 2F
Fii = U), Fl],klzi U
8}1,']' ) ahijahkl( )
under an orthonormal local frame ey, ..., e,. The matrix {F/} has eigenvalues fi, ..., f, and

is positive definite by assumption (1.4), while (1.5) implies that F' is a concave function of Uj;
(see [2]). Moreover, when {U;;} is diagonal so is {£"/}, and the following identities hold

FiU;; =" fikio FIUxUki =Y fidf, MUY= (A1, h).
Define the linear operator £ locally by
Lv= FijVijv + (FijAl},jk —Yp) Viv — vy,
forv e Ci’tl (Mt). We can prove
Theorem 2.1. Let u be an admissible solution to (1.1) with u > u in M. Assume that (1.4),
(1.5), (1.8) and (1.9) hold. Then there exists a constant 0 > 0 depending only on 8y and u such

that

£(g—u)20<1 —i—ZF“). 2.5)
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Proof. Since u is a_dmissible satisfying (1.7), there exists a constant g9 > 0 such that {A(Vzb_t +
Alu] — e0g) : x € Mt} is a compact subset of I" and

1)
SOV + Alu] — £08)) — uy = Ylul + 50 in My.

Let6 = min{%‘), go}. For each (x, 1) € M7, we may assume {U;;} = {V;ju + AU} is diagonal at
(x,1). From (1.8), (1.9) and the concavity of F, we see, at (x, t),

. 1)
F'"(Uii —e0gii —Uii) —(u—u) =¥ (x,t,u, Vu) — ¥ (x,t,u, Vu) + EO
o
2 I/f(x, ta u, VZ) - I//(xﬂ ta u, VU) + E
8o
> Yp Vi(u —u) + > (2.6)
By (1.8) again, we have
F'"(Uji — Uii) = F"'Vij (u — u) + F"' (A" (x, 1, Vu) — A" (x, 1, Vi)
< F'Vii(u—u) + F A} Vi(w —u). 2.7
Combining (2.6) and (2.7), we get
Lw—u)ze) F'+3 29(1 +ZF”). 0
3. Global estimates for second order derivatives

In this section, we prove (1.10) in Theorem 1.1 for which we set

W= max max  (Vezu + A5 (x, 1, Vu)e?,
(x,1)eMp €T M, |§|=1

as in [7], where ¢ is a function to be determined. It suffices to estimate W. We may assume W is
achieved at (xg, t9) € M7 — P My. Choose a smooth orthonormal local frame ey, . . ., e, about x
such that V;e; =0, and U is diagonal at (xo, fp). We may assume Uy (xo, fp) > ... > Upy(x0, to).
Thus, W = Uy (xo, to)e® <010,

At the point (xq, o) where the function log U1 + ¢ attains its maximum, we have

V;U
YiZl L v =0foreachi=1,...,n, 3.1)
Un
U
Wi |y~ 0, (3.2)
Ui
and
o ViU (ViUp)?
0>S Fii - Viid). 3.3
_Z . o+ Vi) (3.3)

i 11
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Differentiating equation (1.1) twice, we find
F''NUii = Vi = Yy + Y Vi + ¥, Vigu, for all &,
and
Fi'V Uy + Fij’klleijlekl — Vi
> Vp; Virju+ Ypp VikuVyu — CUpy
>Yp; ViUn + 1ﬁp.p.Ulzl - CUyy
= —Un¥p, V¢ +¥p p Ul — CULL

Next, by (3.1) and (3.4),
FU (Vi AN = V1 AT) = FU (A Vijju — A} Viju)

+ Fii(A}’}Pi Ul% - Aglpl Ulzl) —CUn Z F

> Ui F" Ay Vg + Ay Viu —CUn Y F' —CUn

—CY_FUUG = U} Y FTAY .

i>2 i>2
Note that
ViUt = Vi1 Ui + Vi A" = Vi AT — CUyy.
Thus, by (3.5), (3.6) and (3.2), we have, at (xo, ?p),
FiViUn = FIVL Ui = CUN(L+ ) F) + AL Vu,

—CY F'U;—U}y Y FUAY  +UnF" Ay V¢
i>2 i>2

> UL — U FiVigp — FIRY UGV Uy + Yy, p, U

—CUN(I+ )Y _F—=CF'U, - U} Y FUAL
i>2

It follows that, by (3.3),

Lo =Un ) FUAL = Vpip U+ CA+ Y P 4+ o FUUL + E,

i>2

where

1 . 1 ..
E= U—ZF”(V,UU)Z - U—“F’f”"leijlek,.
11

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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Let

_ 8|Vul?

="

+ by,

where 0 < § <« 1 « b are undetermined constants and 7 is a C? function which may depend on
u but not on its derivatives. We calculate, at (xg, fp),

Vig =8V,uViju +bVin = 8ViuU;; — §VjuAY + bV, (3.10)
¢ =6Viju(Vju), + b, (3.11

and
Viid > guﬁi — C8+8VjuVijju+bVin. (3.12)

From (2.1) and (3.4), we derive
FiINjuViiju > FNVu(V;Uy — V; A — C|Vul* Y F'
> (Yp — FP AV uVju+ ViuVi) — C(1+ Y F).  (3.13)
Therefore,
C(ﬁzbﬁn—l—%F“Uﬁ —CY Fi-c. (3.14)
Let n = u — u. We get from (3.10) that
(Vig)? < C82(1 + U2) +2b*(Vin)? < C8*UZ + Cb>. (3.15)
For fixed 0 <s < 1/3 let
J={i:U; <—sUn}, K={i:U;>—-sUpn}
Using a result of Andrews [1] and Gerhardt [3] as in [5] and [7] (see [14] also), we have

E<CPY F'+C8* Y FiU;+CY F'+C@Uf +bHF'". (3.16)
ieJ
Therefore, by (3.9), (3.14) and (3.16), we have
bLn < (C8? - 2y L)F“Uﬁ +CB Y Fi Y F
2 Un ieJ
+C@O* U +VHF 4 C

5 CN } )
§(C82—§+U—)F”U,%+Cb2§ Fiycy Fi
11 X
ieJ

+Ch*F'' +C. (3.17)
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Choose § sufficiently small such that C§> — % is negative and let

1 8
cl:= ——(C52 — —) > 0.
2 2

We may assume

C
Co?— -+ — <—
2+U11_ “l

for otherwise we have Uj; < % and we are done. Thus, by (2.5), choosing b sufficiently large,
we derive from (3.17) that

clF'U; — Ch?F'" - cb* Y F' <0.
ieJ

Then we can get a bound Uy (xo, t9) < C since |U;;| > sUj; for i € J. The proof of (1.10) is
completed.

4. Boundary estimates for second order derivatives

In this section, we consider the estimates for second order derivatives on the parabolic bound-
ary PMr. We may assume ¢ € C4(MT).

Fix a point (xg, #p) € SM7. We shall choose smooth orthonormal local frames ey, ...,e,

around xg such that when restricted to dM, e, is normal to oM. Since u —u =0 on SMr
we have

Vapu —u) =—V,(u—u)ll(eq,eg), Y1 <a,f <nonSMr, “4.1)
where IT denotes the second fundamental form of 0 M. Therefore,
[Vopu| <C, Y1 <a,B <nonSMry. “4.2)
Let p(x) denote the distance from x € M to xo,
p(x) =distyn (x, x0),
and set
Ms={X=(x,)eM x (0, T]: p(x) <éb,t <to+38}.

For the mixed tangential-normal and pure normal second derivatives at (xo, fp), we shall use
the following barrier function as in [5],

W= A+ Asp® — Ay Y [Vitu — ) 43)

l<n
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where v = u — u. By differentiating the equation (1.1) and straightforward calculation, we obtain

L@ =) =C(1+ Y filkl+ Y fi), Y1sk=n, (4.4)

Similar to [5] (see [7] also), using Proposition 2.19 and Corollary 2.21 of [5] and Theorem 2.1,
we can prove that there exist uniform positive constants § sufficiently small, and Ay, Az, A3
sufficiently large such that

LW £ Vy(u—9) <0in M; 4.5)

and ¥ £+ V,(u — ¢) > 0 on PM;. Thus, by the maximum principle, we see ¥ £ V, (1 — ¢) >0
in Ms. Then we get

[Vaau(xo, t0)| < Va¥ (x0,10) <C, Ya <n. (4.6)

Remark 4.1. We remark that in the proof of Corollary 2.21 in [5], the following condition is
needed

Z fi()A; >0, Vael 4.7
which can be derived from (1.4)—(1.6).
It remains to derive
Vunut(xo,10) < C (4.8)

since Au > —C. We shall use an idea of Trudinger [13] as [5] and [7] to prove that there exist
uniform positive constants cg, Ry such that for all R > Ry, (A'[U], R) € T and

FO/IUL, R) —uy = ¢[ul + co on SMy 4.9)
which implies (4.8) by Lemma 1.2 in [2], where A'[U] = (A}, ..., A/,_,) denote the eigenvalues

of the (n — 1) x (n — 1) matrix {Uyg}i<a,p<(—1) and ¥[u] =y (-, -,u, Vu). For R > 0 and a
symmetric (n — 1)? matrix {rop} with (A’({ra/g}), R) € T, define

Glrapl = f(V [{rag}], R)
and consider

mrp= min__ G[Uug(x,t)] —u,(x,t) — Y[ul.
(x,t)eSMt

Note that G is concave and mp is increasing in R by (1.4), and that

cg = Inf (G[Uwpl —u; — ¥[u]) >0
SMr

when R is sufficiently large.
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We wish to show mp > 0 for R sufficiently large. Without loss of generality we assume
mpg < cr/2 (otherwise we are done) and suppose mp is achieved at a point (xg, f9) € SMr.
Choose local orthonormal frames around xg as before and assume V,,,u(xo, o) = Vu,u(xg, to).
Let o4 = (Vaep, e,) and

6% = 25 (s 0, 10)]
0 _8701/3 ap (X0, 10)1.

Note that 045 = IT(ey, eg) on M and that
Ggﬁ(raﬁ — Uqp(x0,10)) = Glrog]l — G[Uyp(x0, 10)] (4.10)

for any symmetric matrix {rog} with (A'[{rog}], R) € I by the concavity of G.
In particular, since u; = u; = ¢; on SMr, we have

G Unp — Wlul — ur — GEP Usp (x0, 10) + ¥ lul(x0, 10) + 1t (x0, 0)
> GlUggl = Ylu]l —uy —mpg 20 4.11)

on SMr.
From (4.1) we see that

Up = Uap — Vo — u)ogg + A%’ [u] — A%P[u] on SMr. (4.12)
Note that at (xq, #y), we have
Vot — G 00p = Gof (Uup — Uap) + o’ (A [u] — A [u])
> G[Uap] — GlUqpl + GEP (A% [u] — A%P[u))
= G[Ugpl — V[l — u, —mp + Go¥ (A%P[u] — A%P[u))

>cr—mgp+Ylul+u — ylul —u;
+ G (AP u] — AP [u])

> 5L+ Hlu) - Hlu) (4.13)

where H[u] = GgﬂAaﬁ[M] — ¥lul.
Define

P =-nVp(u—uw+Hlul—u; + Q
where 1 = Ggﬂ oqp and
=G Vapu — G U,
0=G| Vypu o Uap(x0, 10) + ¥[ul(xo, 10) + u; (x0, 10)-

By virtue of (4.11) and (4.12) we see that @ > 0 on SM7 and @ (xg, 79) = 0.
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Next, by (4.4) and (1.8),
LH < H[ulLu + Hp [ulLVu + FV Hy, p [u]ViiuViju
+C(2F” +Zfilki|+1)
<C(XF 43 fill+1) + HolulLu.
Since H,[u] > 0, by Theorem 2.1, we have
Lu:/ﬁ(u—g)—i—ﬁng(l +ZF”).
It follows that

LH=C(YF 4+ Y fill+1).
Therefore,

E¢§C(ZF“+Z]‘,~|A,~|+1). (4.14)
By the compatibility condition (1.11), we find

ck = inf G(Vapy + AlpD(x.0) = ¥lg](x.0) — ¢ (x.0) > 0

when R is sufficiently large. We may assume mpg < % (otherwise we are done). For x € M, by
the concavity of G again, we have
 (x0,0) = G§ (Uap (x0, 0) — U (x0, 10))
— Yul(xo, 0) — us(x0, 0) + ¥ [ul(xo, to) + u: (xo, to)
= Gl (Yupp + Alpl(x0. 0) — Uagp (x0, 10))
— @1 (x0, 0) + u; (x0, 10) + ¥ [ul(xo, t0) — ¥@l(xo, 0)
> G(Vepo + Alp]) (x0, 0) — G (Uag (x0, o))
— ¢1(x0, 0) +u; (xo, o) + ¥ [u](x0, 10) — ¥ [@l(xo, 0)
¢

>ch—mp>— .

2
Note that on BMr,
& =-—nVulp—u)+ Hlp]l —us+ Q0

is a known function independent of the solution u. It follows that @ > 0 on BM; provided § is
sufficiently small. Thus, we get @ > 0 on P Mj.
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Consider the function ¥ defined in (4.3) as before. Similarly, there exist another group of
constants A1 > Az > A3 > 1 such that

{E(lll+d>)§0inM5, 4.15)

Y +@>0 onPMsy.
By the maximum principle we find ¥ + @ > 0 in M. It follows that V,®(xg, ) >
—Vu¥(xq, fo) = —C.
Following [7], we write u® = su 4+ (1 — s)u and

HIu'] = GSF AP [u*] — ylu’].

‘We have

1 1
=(u—u) / H,[u’lds + ZVk(u —u) / Hpk[us]ds.
0 0
Therefore, at (xg, fp),
1
Hlu) = Hlu) = Vo= w [ Hy, 0 )ds (4.16)
0
and
1
VuH[ul =V, H[u]+ kan(u —u) / Hpk[us]ds
0
1
+ Vu(u —u) /(HZ[MS] + Hx,,p,, (] + Hzp,, [ 1V,u®)ds
0
1
+ Vi(u —u) Z/ Hp,,pl [u*1Vinu'ds
0
1

< Vun(u —u) f(Hp,l [MS] +SHpnpn [”s]vn(u —u))ds +C
0

1
< Vun(u — u) / Hp, [u'lds +C 4.17)
0
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since Hy, p, <0, Vy,(u —u) > 0 and V, (u — u) > 0. It follows that

V@ (x0, t0) < —1(x0, 10) Van (x0, t0) + V, H[u](x0, t9) + C
1

< (— n(x0, 10) + / H,, [u*](x0, to)ds)V,mu(xo, to) +C. (4.18)
0
By (4.13) and (4.16),
1
n(xo, t0) — / Hp, [u*](xo, 10)ds > AT —CZ)(xo, o >e€icg >0 4.19)
0

for some uniform €; > 0 independent of R. This gives

C
Vontt (xg, fo) < ——. (4.20)
€1CR

So we obtain an a priori upper bound for all eigenvalues of {U;; (xo, 70)}. Now by (1.12), there
exists a constant vy > 0 such that

inf (Pt(xJ)‘i‘K[’(x,t,u,vu)z‘)o

(x,1)eSMy
It follows that A[{U;; (xo, fo)}] is contained in a compact subset of I" by (1.6), and therefore
mpg = G[Uqp(x0, 10)] — s (x0, o) — ¥ [ul(x0, 0) > 0
when R is sufficiently large. Then (4.9) is valid and the proof of (1.13) is completed.
5. Gradient estimates

In this section we establish the gradient estimates to prove Theorems 5.1-5.3 below. Through-
out the section, we assume (1.4)—(1.5), (1.8) and the following growth conditions

{p Ve ASS(xot, p) < (e, 1, D) EP (L ) 5.0)

P Vi b,z p) + 1pP(x. 1.2, p) = —n(x. 1. 2) (1 + | p|™?)
for some functions /1, ¥» > 0 and constants y;, y» > 0.
Since the proofs of Theorems 5.1-5.3 are similar to those in the elliptic case (see [8]), we only
provide a sketch here.

Theorem 5.1. Let u € C3(M7) be an admissible solution of (1.1). Assume, in addition, that

lim f(o1) =+c0 (5.2)
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where 1 = (1, ..., 1) € R" and there exists a constant co > 0 such that
ASe Gt ke < —col&PInl> + colg (€, I, VE, ne T M. (5.3)
Suppose that y <4, y» =2 in (5.1), and that there is an admissible function u € C>(Mr). Then

max |Vu| < C3(1 + max [Vul) (5.4)
Mt PMT

where C3 is a positive constant depending on |u|co g,y and [u|c1 g, )-
X

Proof. Let w = |Vu| and ¢ be a positive function to be determined. Suppose the function we¢ ~¢
achieves a positive maximum at an interior point (xg, fo) € M7 — P Mt where a < 1 is a positive

constant. Choose a smooth orthonormal local frame ey, ..., e, about xq such that V,e; =0 at
xo and {U;;(xo, tp)} is diagonal.
The function log w — alog ¢ attains its maximum at (xg, #p) where fori =1, ...,n,
Vi Vi
w _avié _, (5.5)
w ®
Wi _ 4 (5.6)
w ¢
and
Viiw n (a—a*)|V¢|? _aVii¢ <o0. .7
w ¢? ¢
Note that
wV;w = ViuViu, ww; = Viu(Viu);.
By (2.1), (5.5) and (3.4),
wV;;w=VuV;jju+ VyuVju — ViwV;w
X ViuViu
= (Vi + Ry Vaa) Vi + (8 =~ ) Vi Vi
> (ViUsi — A% Vigu — AL)Viu — C|Vul?
ViU — Al Ve — VAT — Cu? 5.8
—lultl_¢ Pkk¢_ Ay, —Lw-. (5.8)
By (3.4), (5.5) and (5.6),
F'NuNUsi = Viur + Yu | Vul® + ¥, Vit Vigu + ViuViu,
2 aw2 awz
> Viuvry, + ¥y |[Vul” + Ti/fpkvk‘f’ + 7@- (5.9

Let¢ = (u —u) +b >0, where b =1+ supy, (u — u).
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By the condition (5.3) we have
— A Vid = A (.1, Vu) Vi — )
ii ii <o 2 2
Z AT 1, Vi) — AT, 1 Vi) + (VLT = Vi),
We may assume that cg is sufficiently small and that

2a —2a% — cpap
_— >

0
202

by choosing a sufficiently small.
Thus, by (5.7), (5.8), (5.9) and (5.10), we find

a .. aco|Ve|? . 2a—12a*—coagp . 5
0> EF”(Q,-i — Ui+ = Y FT+ TF”IVNSI
L pit it g Ly v Vo + L —C S Fi
— o P+ S VitV S Vid 4 S >

iy Vol|? . .
> 2P —Uii)—i-MZF” —CY F
¢ 2¢
+ %(w(x,t,u,vu) —y(x,tu, Vu))
— L Fi A+ Ly Vit v+ L —w
w2 X7 u w2 X7 u u ¢ u U
Choose B > 0 sufficiently large such that
F(2Bg+U) > F(Bg) in Mr.
Therefore, by the concavity of F,
F''(Uji — Ui;) > FQBg +U) — F(U) — ZBZF”
> F(Bg)—2BY F" —y(x.t.u,Vu) — u.
It follows from (5.1), (5.2), (5.11) and (5.12) that
a - aco|Vo|? -
0>—F(Bg)—C—(C+2B) F'+ — F"
’ > T
Ui i 1
_EF AXIVIM+W1,0X[V[M+¢M
aco| Vol

. )
> (T —3B —C|Vu" )ZF”

7677

(5.10)

.11

(5.12)

(5.13)
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provided B is chosen sufficiently large. Thus, we get a bound |Vu(xo, #p)| < C and so the proof
of Theorem 5.1 is completed. O

Theorem 5.2. Let u € C3(M7) be an admissible solution of (1.1) with u > u in Mt. Assume, in
addition, that (1.7), (1.9) and (5.1) hold for y1, y» <2 in (5.1) and that (M", g) has nonnegative
sectional curvature. Then (5.4) holds.

Proof. Since (M", g) has nonnegative sectional curvature, in an orthonormal local frame,

Rﬁ-lvkuvlu > 0.
In the proof of Theorem 5.1, similar to (5.8), we have
aw? . -
wViiw > ViuV,U;; — TAZI( Vi — V]MA?I. (5.14)

It follows from (2.5), (5.1), (5.7), (5.9) and (5.14) that

a—a2
¢2

2
> %9(1 + S FD —Cvu 2 S F | vu %F”Widﬂz (5.15)

Fii|V;¢|?

0=%r 1y Vi i yii
> S L) oy Vi v~ AT

provided |Vu| is sufficiently large. Choosing a sufficiently small, we can obtain a bound
|Vu(xg, to)| < C and (5.4) holds. O

Theorem 5.3. Ler u € C3 (MT) be an admissible solution of (1.1) in M. Assume, in addition,
that (5.1) hold for y1, y» < 4,

f is homogeneous of degree one, (5.16)

fj(x)zv1(1+2ﬁ(m)foranyxerwizh 2 <0, (5.17)

where vy is a uniform positive constant and there exist a continuous function ¥ > 0 and a positive
constant y < 2 such that when | p| is sufficiently large,

p-Dpy(x,t,2,p), —p-Dp A (x,t, p)/IEI* <V (x,1,2)(1+ |p|"), (5.18)
—Y(x, 1,2, p) <P (x,1,2)(1 +|pl"), (5.19)
|AS(x, 1, p)| <V (x,1,2)IElNI(1+|plY), YE, neTM;€ L. (5.20)

Then (5.4) holds.

Proof. In the proof of Theorem 5.1, we take ¢ = —u + sup,, u + 1. By the concavity of A"
with respect to p,

AT =A"(x,1,Vu) < A" (x,1,0) + A” (x,1,0)Viu (5.21)
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Thus, from (5.16), (5.19) and (5.21), we find
_FiV, = FliViu=FiU,; — Fil Al =y, 4 — Fii ATl
>+ 9 — C(1L+|Vul) Yy F"
>u — C(1+|Vu) Y F' = C|Vul”. (5.22)

By virtue of (5.7), (5.8), (5.9), (5.1), (5.18) and (5.22), we see that for a < 1,

(a—az) - Viuy a a
0> TF”|V1‘M|2+ wz)” +1/fu—$1/fpkvku—aut
a .. .. .4VluAfri a
+ _FllAll V u— Fll 1 + “u
¢ pk vk w2 ¢ t

— C|Vul” = C(1 + |Vul) Z F'i
> e F' |\ Viul* = C(IVul™ ™2 + |Vul?)
= CU+|Vul + [Vul" =2 + [Vul?) ) | F" (5.23)

provided |Vu| is sufficiently large.
Without loss of generality we assume Vyu(xg, fo) > %qu(xo, to)| > 0. Recall that U;; (xo, to)
is diagonal. By (5.5), (5.21) and (5.20), we have

a 1
Ui =——|Vul> + A" + — Y " viua'*
¢ Viu ;

s—%|W|2+C(1+|Vu|+|Vu|V—2><o (5.24)

provided |Vu| is sufficiently large. Therefore, by (5.16),

n
fizw (1 + Z fi)
i=1
and a bound |Vu(xg, t9)| < C follows from (5.23). O
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