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Abstract

In this paper, we develop a unified framework that can be used to establish the well-posedness of kinetic
Cucker—Smale model with or without noise, for general initial data regardless of the supports; meanwhile
we rigorously justify the vanishing noise limit. Our proof is based on weighted energy estimates and the
velocity averaging lemma in kinetic theory.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we study the well-posedness of weak and strong solutions to the following
kinetic Cucker—Smale model with or without noise:

fi+v-Vif+Vy - (LIf1f)=0Ayf,
f|t=0:f0(x1v)v

(1.1)

where L[ f] is given by
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L{f1(t, %, v) = / p(lx —yDf(t, y,v) (" —v)dydv*.

R2d

Here f(t,x, v) is the density distribution function in RT x R (d = 1). ¢(-) is a positive non-
increasing function denoting the interaction kernel, and o represents the noise strength. For
convenience, we suppose ¢ € C*. If not, we mollify it by convolution. In fact, we only need
@ € C2. Without loss of generality, we postulate that

max{|¢|, |¢'[,l¢"} <1 and 0<o <1

in the sequel.

Recently, the Cucker—Smale model and related models have attracted much attention from
researchers in diverse fields, including biology, physics and mathematics. People wish to under-
stand the mechanisms that lead to the collective behaviors, such as flocking of birds, schooling of
fish and swarming of bacteria, by modeling, simulation and mathematical analysis. Among them,
the Cucker—Smale model is a basic one used to describe flocking, which was put forward in 2007.
Motivated by their pioneer work [5], Ha—Liu [11] presented a complete analysis for flocking of
the Cucker—Smale model by using the Lyapunov functional approach. Then they rigorously jus-
tified the mean-field limit from the particle model to the kinetic Cucker—Smale model. Later,
Carrillo et al. [2] give an elegant proof for the mean-field limit by employing the modern theory
of optimal transport. In [3], they further refined the results in [11] and proved the unconditional
flocking theorem for the measure-valued solutions to the kinetic Cucker—Smale model. Nowa-
days, studies of the Cucker—Smale model from particle to kinetic and hydrodynamic description
have been launched. We refer the interested readers to [8—10,14] and the references therein for
the results related to hydrodynamic Cucker—Smale models and the review paper [4] for the state
of the art in this research topic.

However, most mathematical models in this territory are just derived formally. The rigorous
limits and stabilities of many models are still unknown. Even though the stability for the ki-
netic Cucker—Smale model has been established in measure space in [2] and [11], however the
general results in regular function space are still lacking. As far as we know, there is only exis-
tence theory for weak solutions in function space; see [15]. The proofs of [2] and [11] are both
based on the analysis to the characteristics, under the condition that the initial data have compact
support. In fact, this method can only deal with the kinetic Cucker—Smale model without noise.
Now in the present paper, we will provide a unified framework that can be used to establish the
well-posedness of solutions to the kinetic Cucker—Smale model with or without noise, no matter
whether the initial data have compact support or not; see Section 3 and 4.

It is well-known that we can construct the admissible weak solutions to the hyperbolic con-
servation laws by using the vanishing viscosity approach; see [1,13]. Similarly, can we recover
weak and strong solutions to the kinetic Cucker—Smale model by the vanishing noise limit? This
is another problem we are concerned with. By using the velocity averaging lemma and subtle
mathematical analysis, we give a positive answer to this question. The reader can also refer to
[6,7] for further application of the velocity averaging lemma in kinetic theory.

The rest of the paper is organized as follows. In Section 2, we prove the well-posedness
of weak and strong solutions to the kinetic Cucker—Smale model in the Sobolev space. In Sec-
tion 3, we mainly study the kinetic Cucker—Smale model with noise by introducing two weighted
Hilbert spaces. Section 4 is devoted to the study of vanishing noise limit. In the last section, we
summarize our paper and make a brief comment on it.

Please cite this article in press as: C. Jin, Well-posedness of weak and strong solutions to the kinetic Cucker—Smale
model, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.10.001




YJDEQ:9046

C. Jin/ J. Differential Equations eee (eeee) eee—see 3

Notation. Throughout the paper, C represents a general positive constant that may depend on
the initial data. We write C, to emphasize that C depends on *. c(t) denotes a general positive
function continuous in [0, 00). C, C, and c(¢) may take different values in different expressions.

2. Kinetic Cucker-Smale model without noise

In this section, we prove the well-posedness of weak and strong solutions to the kinetic
Cucker—Smale without noise, i.e., c =0 in (1.1). Then the equation (1.1) reduces to

fi+v-Vef+V,-(L[f1f)=0,
Sfli=0 = fo(x, v).

(2.1)

Most previous results about this equation were obtained under the condition that the ini-
tial data fo(x, v) have compact support with respect to x and v; see [2](Theorem 3.10),
[12](Theorem 3.3) and [11](Theorem 6.2). In Section 2, we manage to establish our theorems
under minimum restrictions on initial data, by using the traditional characteristics method. How-
ever, the initial data are still required to be compactly supported in v-variable. In order to deal
with the general non-compactly supported initial data, we are forced to develop a framework by
adding a noise term o A, f to the right-hand side of (2.1). To our delight, it turns out that this
framework is a unified one in that it applies to both the kinetic Cucker—Smale model with and
without noise, regardless of supports of the initial data; see Section 3 and 4. Next we present the
definition and results in this section.

Definition 2.1. Let 0 < £ (¢, x, v) € C([0, +00), L' (R?)). f(t, x, v) is a weak solution to (2.1)
if

fi+v-Vef +Vy-(LIF1f)=0 inD'([0, +00) x R*?).

We say f(t,x,v) is a strong solution if f(¢,x,v) is a weak solution and f(¢,x,v) €
C ([0, +o00), WhI(R)).

Denote
R(t) = Sup{|v| : (xv v) € Sllppf(t, y )}
We have the following theorems.

Theorem 2.1. Assume Ry > 0 and 0 < fo(x,v) € WHLH(RD), supp, fo(x,-) S B(Ro). Then
(2.1) admits a unique weak solution f(t,x,v) € C([0, +00), LY(R2Y) in the sense of Defini-
tion 2.1, with the bound of its v-support R(t) satisfying

R(t) =< RO + ||f0||Ll(R2d)R0l.

Moreover, there exists ¢(t) < C(1 + t)ec(’HZ) such that
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T
sup || f () — gl L1 (we2ay = Il fo — goll 124y eXp /C(f)dt , YT =0,
0<t<T 0

where f(t,x,v) and g(t, x, v) are weak solutions with initial data fy and go satisfying the above
conditions, respectively.

Theorem 2.2. Assume Ry > 0 and 0 < fo(x,v) € W>L(R?), supp, fo(x,-) € B(Ro). Then
(2.1) admits a unique strong solution f(t,x,v) € C([0,+00), whl (RM)) in the sense of Defi-
nition 2.1, with the bound of its v-support R(t) satisfying

R(t) =< RO + ”f()”Ll(]RZd)R()l.

Moreover, there exists c(t) < C(1 + t)eC(H‘lz) such that

T

sup || f(#) — g@llwr.1weay < Il fo — goll w11 (r2ay eXp /C(l)df , YT >0,
0<t<T
- 0

where f(t,x,v) and g(t,x,v) are strong solutions with initial data fy and gg satisfying the
above conditions, respectively.

Remark 2.1. Compared with the initial data, the solutions in Theorem 2.1 and 2.2 lose one order
regularity, this is due to the fact that the L' type Sobolev space is not reflexive and the bounded
sequence cannot guarantee a weakly convergent subsequence.

Remark 2.2. We can refine the estimate of R(¢) by using the particle method as in [3]. In fact, it
is uniformly bounded in time. If we further require fy(x,v) € C ! (R2d), then the weak solution in

Theorem 2.1 becomes the classical one. Thus we improve the conditions of Theorem 3.3 in [12].

Remark 2.3. We can also establish the well-posedness of classical solutions by using the same
method and the Sobolev embedding if we improve the regularity of initial data.

In the following subsection, we derive some a priori estimates that are needed in our proof.
2.1. A priori estimates

Lemma 2.1. Assume Ro > 0 and fo(x,v) > 0, supp, fo(x,-) € B(Ro). If f(t,x,v) is a smooth
solution to (2.1), then

W 1f O 1 ey = 1 foll 1 w2ay, V=0

2) /f(t,x,v)vzdxdvg / fo(x,v)vzdxdv, Vvt > 0;
RZd de
(3) R(®) = Ro+ [ foll L1 g2ay Rot, V1 = 0.
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Proof. (1) Direct integrating (2.1)-1 over [0, ¢] x R gives the conclusion.
(2) Multiplying (2.1)-1 by v2, we obtain

0
5<va> + v Ve (fv) + Vy - (LIFI(fv7) =2 LI f] - v. 2.2)

Integrating (2.2) over [0, t] x R?¢ yields

t
/ f(t,x, v)v’dxdv +f / o(jx — YD f (s, y, v f (s, x, v)(v* — v)?dydv*dxdvds
R2d 0 R4d 2.3)

= / Sfolx, v)vzdxdv.
R2d

Then we prove f > 0 by the method of characteristics. Define (X (¢; xo, vg), V (¢; X0, vg)) as the
characteristic issuing from (xg, vg). It satisfies

dXx

= v,
dt

% o i} (2.4)
P f e(IX —yDf@ y, v) (0" = V)dydv™.

]RZ{I
Define

a(t, x) = f o(x — ¥ £ (1. y. v*)dydo*,

]RZd
b(t, x) = / o(x — ) £t, y, v *d ydo*.
RZ{I

Solving the equation (2.1) gives
t
f @, X (; %0, v0), V(t; x0,v0)) = fo(xo, vo) exp d/a(r, X(r))dz | = 0.
0

This together with (2.3) leads to

/ f(,x, v)v2dxdv < / folx, v)vzdxdv, vVt > 0.
R2d R2d
(3) It follows from the characteristic equation (2.4) that
q

t
V() = Voe~ Jo a(r.X(1))dt + e_,/g a(t,X(t))dt /b(r, X(r))efor a(s, X()ds g, (2.5)
0
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Using Cauchy’s inequality, we have

Nl
Nl

beol< | [ fa.yv)dyav / £, y. v 0* P ydo* 06
2d '

R R2d

< Il foll L1 (w2e) Ro-
From (2.5), we deduce that
R(t) < Ro+ Il foll L1 (r2eyRot, V1 =0.
This completes the proof. O

Lemma 2.2. Assume Ry > 0and 0 < fo(x,v) € WEL(RD), supp, fo(x,-) € B(Ro). If f(t,x,v)
is a smooth solution to (2.1), then there exists c(t) < C(1 + t)ec(“r’z) such that

2
(D 1O lwrr ey < ||f0||W1,1(R2d)€C(t+t ), Vt>0;

T

(2) sup | £(®) =gy < Il fo— goll 1 rae exp / cdt |, VT =0,
0<t<T
- 0

where f(t,x,v) and g(t,x,v) are smooth solutions with initial data fy and go satisfying the
above conditions, respectively.

Proof. (1) Applying V, to (2.1)-1, we have
(Ve )i +v- Ve (Ve f)+ Vo - (LIf1® Va ) ==V LI f]- Vo f — fVxVy - LIf].  (2.7)

Multiplying (2.7) by (sgn(ox, f),sgn(0x, f), -+ ,sgn(dx, f)), and integrating the resulting
equation over R24 we obtain

d
T IVe Fligeaay < 2RO ey I Vo f i gon +dIf I genl f . 28)
Applying V, to (2.1)-1 gives
(Vo) +0-Va(Vo ) + Vo - (LIFI® Vo ) = =VoLIf1- Vo f = Vaf. (29
Similarly, we derive
d
E”vvf”Ll(RZd) = ||f||L1(]R2d)||va||Ll(]R2d) + ||fo||Ll(]R2d)~ (2.10)

Adding (2.8) to (2.10) and using the fact that % I f L1 r2ey = 0, we arrive at
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d
SOl = (QRE +d+ DIFOl g0 + 1) 1Ol g @.11)

Using Lemma 2.1 and solving the above Gronwall’s inequality lead to

£ Ol geay < ||fo||W.,1(R2d)eC<’+’2>, Vi > 0. (2.12)

(2) For two smooth solutions f (¢, x, v) and g(¢, x, v) with initial data fy and g, respectively,
we define

h:=f—g.
It follows from the equation (2.1) that
hy+v-Veh+Vy - (L[ f1h) = —gVy - L[h] — L[h] - Vag. (2.13)

Multiplying (2.13) by sgn(h) and integrating the resulting equation over R??, we obtain

d - _ _

21Ol aey = dllg Ol aa) 1O 1 2y + 2RO NVog Ol L1 2a) 1O 1 ge2ay - (2:14)
Using (2.12) and solving the above Gronwall’s inequality, we deduce that there exists c(t) <
C(1 + 1)eC+ such that

T

OSUPT I1f (@) = g@ Il L1 w2ay < |l fo — &oll L1 (r2ey eXp /C(I)dl , VYT =0. (2.15)
<t<
T 0

This completes the proof. O

Lemma 2.3. Assume Ry > 0and 0 < fo(x,v) € W21 (R??), supp, fo(x,-) € B(Ro). If f(t,x,v)
is a smooth solution to (2.1), then there exists c(t) < C(1 + t)ec(’+’2) such that

2
(D) 1 £ Ollw21 geay < N follwz gaaye ™, Ve > 0;

T

(2) sup || f(@) — g(t)”Wl-](]RZd) < fo— g()||W1,|(R2d)6Xp /C(t)dt , YT >0,
0<r<T
- 0

where f(t,x,v) and g(t,x,v) are smooth solutions with initial data fy and go satisfying the
above conditions, respectively.

Proof. Based on Lemma 2.2, we only need to estimate the second-order derivatives. Applying
Oy, ij to (2.1)-1, we obtain
(8):,- 8)(_/- fli+v- Vx(ax,- ax,-f) +Vy- (L[f]ax,- 8)(_/- b
=— 0y, LIf]- Vydy, f — 0x; fOx; Vo - L[] — 0x;0x, L1 f]- Vo f (2.16)
- 8X;L[f] : Vvaxjf - ax_/ fax,' Vv : L[f] - fax,' Bvav : L[f]

Please cite this article in press as: C. Jin, Well-posedness of weak and strong solutions to the kinetic Cucker—Smale
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Multiplying (2.16) by sgn(dy; dx; f) and integrating the resulting equation over R, we get

d

Enax;axjf”Ll(]RZd) = 2R(t)||f||L1(de)||Vv8xif||L1(de) +d”axif”Ll(RZd)||f||L1(R2d)
+ 2RO\ fllLr ey Vo [l waay + 2RO | L1 g2y | Vods; £l L1 r2a)
+d||0x; fllp1weay 1 f Il L1 ey + dILf Il L1 eay Lf I 1 m2a)y.- (2.17)

Applying 9y, 0y, to (2.1)-1 yields
(8xi8vjf)t +v- Vx(ax,-avjf) + Vv : (L[f]ax,-avjf)

=— 0y, LLf1- Vo0, f — 0y, 0, L1f]- Vo f (2.18)
- 3x1L[f] . Vvav_,-f - av_;fax,v Vv : L[f] - ax; 8Xj f

Using the same method as above, we deduce that

d

I 19 9v; fll 1 2y < N L1 qaay l19v; Ox; f 1l 1 2y
F 1l ey 190, fll L1 g2y + 2RI N L1 oy | Vodu; £ 1 L1 r2a)
+d||8Ujf”Ll(RZd)”f”Ll(]Rz‘l) + ”axi axjfllLl(de). (219)

Applying 9y, 9y, to (2.1)-1 leads to
(B 9u; F)i + - Vi (B0, 00, ) + Vo - (LLF 130,90, )
=— 0y, LLf]- Vody, f (2.20)
— Oy, LLf]- Vo0, f — 8y, 0y, f-

Similarly, we deduce

d

— ||9y; Oy ; < Oy ; Oy;

dt l v; v,f”Ll(RZd) = ||f||L1(R2d)|| vj v,f||L1(R2d) 2.21)
+ I F ey 19, v, fll L1 r2ay + 10 0v; f Il L1 (24

Adding (2.17), (2.19), (2.21) together, summing over all 1 <i, j < d and then combining (2.11),
by Lemma 2.1 we arrive at

d
— I f O w21 g2y < CA+ DN f @)l w21 (). (2.22)
di (R2) (®2)

Solving the above Gronwall’s inequality gives

£ Ol ey < I follwe gaane€ O, e >0, (2.23)

(2) For two smooth solutions f(#, x, v) and g(¢, x, v) with initial data fy and g¢ satisfying the
initial condition in Lemma 2.3, respectively, we define
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hi=f—g F:=Vif—Veg and G:=V,f — Vyg.
It follows from (2.7) that

Fi+v-ViF+V, - (L[f]®F)
=—Vy (L[h ® Vxg) — Vi L[h]- Vo f (2.24)
— ViL[gl- G — hVyVy - L[ f]1— gViVy - L[1].

Multiplying (2.24) by s gn(F) with each component being the signal function of the correspond-
ing one of F, and then integrating the resulting equation over R?¢, we obtain

d — - _
Z”F“LI(RM) <d|lhll g eay IV gl 1 2y + 2RIV Vo gll L1 r2ay 121 1 2

+ 2RIV fll 1 oy Wl 1 goay + 2ROl 1 oy 1G 1 ey B2
+d Il ey 1l 1 goay + dNg N 1 oy 1 L g2
From (2.9), we deduce that
G +v-VxG+V, (L[f1®G)
_ _ . (2.26)
=—Vy- (L[] ® Vyg) — VyL[h]-Vy f —V,L[g]- G — F.
Similarly, we have
d IGI| <d|Vugll 2]l +2R(1) Vgl 12l
- 1 2dy = g 1 2d 1 2d g 1 2d 1 2d
di L1 (R2d) v8 I L1R2) Il L1 (R24) v8IlL (2 1]l L1 (R24) 2.27)
+ ”va”Ll(]RZd) ||h||L1(]R2d) + ||g||Ll(]R2d) “G”LI(RM) + || F”LI(RZd).
Adding (2.25) to (2.27) and combining (2.14) lead to
d C(t+1?)
E”f(t)_g(t)”WLl(RZd) §C(1+t)e ”f(t) _g(t)le,l(RZd), (228)

where we have used Lemma 2.1 and (2.23). Solving the above Gronwall’s inequality, we deduce
that there exists ¢(f) < C(1 + 1)eC+) such that

T

sup ||f(t) — g(t)le,l(RZd) < ||f0 — g0||W1-1(R211) eXp /C(l)d[ s vT > 0. (229)
0<t<T
- 0

This completes the proof. O

Higher order estimates can also be obtained with the same method. Next we present the proof
of Theorem 2.1 and Theorem 2.2.
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2.2. Proof of Theorem 2.1 and Theorem 2.2

We first mollify the initial data by convolution, i.e.,

fo (x,v) = fo* je(x,0),

where j, is the standard mollifier. Using the contraction principle, we can obtain the local smooth
solution by the standard procedure. Combining with the a priori estimate in Lemma 2.2(1), one
can extend the local smooth solution to be global-in-time.

Then using the stability estimate in Lemma 2.2(2), we infer that

T

OSHP L5 @) = £ eay < 1fy" = £y Il groay exp fC(t)dt , YI'=0, (2.30)
<t<T
- 0

where f% (¢, x,v) and f% (¢, x,v) are smooth solutions with initial data fgi and fé'i , respec-
tively. From (2.30), we know there exists f (¢, x,v) € C([0, T], L'(R?%)) such that

Féit,x,v) > f(t,x,v) inC(0, T], L' (R*?)), as e — 0.

It is easy to see that f (¢, x, v) verifies (2.1) in the sense of distributions.
Take smooth initial data f;" and g;’. We also have

T

OSUPT £ (0) = g )Nl i rady < Ifg" — 8¢ I 1 raay exp /C(l)dl , YT >0. (231)
<t<
== 0

Letting ¢; — 0, we obtain the stability estimate for weak solutions to (2.1), which amounts to
uniqueness of the weak solution. Due to the arbitrariness of 7', we know the unique weak solution
f(t,x,v) € C([0, +00), L' ([R*)).

Theorem 2.2 can be proved in the same way. We omit its proof for brevity. Thus we complete
the proof.

3. Kinetic Cucker—-Smale model with noise

In this section, we study the kinetic Cucker—Smale model with noise, i.e.,

fi+v-Vef+Vy - (LIfl1f)=0Ayf, 0<o<1
fli=o = fo(x,v).

3.1

Unlike (2.1), the v-support of the solution f(z, x, v) to this equation may be unbounded, even if
the initial data have compact support. Thus, the method in section 2 is not valid. In order to cir-
cumvent this difficulty, we introduce two weighted Hilbert spaces to establish the well-posedness
of weak and strong solutions to (3.1). Define

Please cite this article in press as: C. Jin, Well-posedness of weak and strong solutions to the kinetic Cucker—Smale
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1

2

||f||L2(a)) = fz(x’ v)Cl)(x, v)dxdv 5
2d

R
1

;
1fllz2q) = A vv@)dxdy |
R2d
X={f: feLl), Vaf € L*(v), Vo f € L*(R*))},
1% = 1F 172y + 1V £l 720 + V0 F 17220
where (x, v) = (1 +v?)(1 +x% + %)%, a > d and v(v) = 1 + v2. The readers will understand

why we introduce such weights w (x, v) and v(v) from the proof of Lemma 3.2 and 3.3. Next we
present the definition and results in this section.

Definition 3.1. Let f(z, x, v) € C([0, +00), L2(R??)). f(t, x, v) is a weak solution to (3.1) if

fi+v-Vef +Vy-(LIf1f) =0Asf, inD'([0, +00) x R*).

We say f(¢,x,v) is a strong solution if f(¢,x,v) is a weak solution and f(¢,x,v) €
C ([0, +00), H' (R*)) N L?((0, T) x RY, H*(R%)), VT > 0.

Remark 3.1. Since the strong solution means that a solution satisfies the equation almost ev-
erywhere, thus f(t, x, v) is still a strong solution to (2.1) if f(¢,x, v) is a weak solution and
[t x,v) € C([0, +00), H' (R*)).

Theorem 3.1. Assume (1 + v2)%fo(x, v) € L%(w). Then (3.1) admits a unique weak solution
f(t,x,v) € C([0,+00), L%(w)) in the sense of Definition 3.1. Moreover, there exists c(t) <
C exp(e€?) such that

1
WU+ FOI ) +0 [ 1040 O,
0

1
< 1A+ foll g exp (¢ = 1), a0
T

@) s 1£@) = 80Ol < 1o = ol 20 &P / cdt |, vr=o,
<t<T
- 0

where f(t,x,v) and g(t, x, v) are weak solutions with initial data fy and go satisfying the above
condition, respectively.

Theorem 3.2. Assume (1 + vz)%fo(x, v) € X. Then (3.1) admits a unique strong solution
ft,x,v) € C([0,400), X) in the sense of Definition 3.1. Moreover, there exists c(t) <
C exp(e€?) such that
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t
(1) ||<1+v2>%f(r>||§+a/ 11+ )2V, £ (1)) 3dT
0

<10 +0) follkexp (¢ 1), ae.r=0;
T
@ sup £ —g®lx = I fo— gollx exp /c(r)dr . VT =0,
T

0<r<
0

where f(t,x,v) and g(t,x,v) are strong solutions with initial data fy and gq satisfying the
above condition, respectively.

Remark 3.2. We can also establish the well-posedness of classical solutions to (3.1) by using the
same method and the Sobolev embedding if we improve the regularity of initial data.

In the following subsection, we derive some a priori estimates that are needed in our proof.

3.1. A priori estimates
Lemma 3.1. Assume (1 + vz)% fo(x,v) € L*(w). If f(t, x,v) is a smooth solution to (3.1), then
M N f Ol weay = 1 foll L1 g2ay, V2 =0;
1 1
@) 1A+ D)2 fFOll 1 g2y < 1A+ 052 foll 1 gaaye’. Ve >0;

t
G A +0)2 D)2, +0 f 10+ 0229, £ (D112, dT
0

1
<11 +0)? follzg, exp (e = 1), Vr=o0.
Proof. (1) Since (1+v2)? fo(x, v) € L2(w), it is easy to see that

1 1 1 1
(L + )2 foll 11 geay = /(1 + )2 fow2w 2dxdv

R2d
_1 2.1 3.2)
< o™ 2l 2@y (1 +07)2 foll 12

1
<CIA+ )2 foll 120
Direct integrating (3.1) over [0, 7] x R yields
I f Ol reay = Il foll L1 r2ay, Vi =0.

(2) Multiplying (3.1) by (1 + v%)2, we deduce that
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(L)) 40 Ve((L+ D)2 )+ Vy - (LA + D)2 f)

—o(14+ )2 A, f + FLIf]- Vo(l +07)7.

Integrating (3.3) over R?? and performing integration by parts, we obtain

13

(3.3)

d 1
E”(] + 097 fllpigeay <ol f ey + 1L 0N g gaay 1 N aay + 1L 1o ggeay I F 01 oy

1
< @l foll 1 gaay + DI+ 072 £l 1 goay,

Solving the above Gronwall’s inequality gives

1L+ 22 F Ol ey < 1+ D2 foll 1 aaye’, Vi >0,
(3) Multiplying (3.1) by 2 f (1 + vz)a), we get
(14 v)of) + v Ve (1 +v)wf) + Vo - (LI + vD)of?)
=f2LIf]- Vo((1 + D)) + 1+ 07 20 Vew

+20(1+)of Ay f — (1 +vH)wfV, - LLf].

Integrating (3.6) over R?“ leads to
d 2y £12
TNA+02f1T,,

:/sz[f]-V,,((1+v2)a))dxdv+ /(1+v2)f2v-an)dxdv
]R2d ]RZd

+/20(1+v2)wa.,fdxdv— /(1+v2)wf2V.,-L[f]dxdv.
de ]RZd

We estimate each term of the R.H.S. of (3.7) as follows.

/ FALLFT- Vo1 + D) @)dxdv < C[(1+ 877 fll 1 ey I (1+ v2>%f||iz(w),
]RZJ

/(1 + vZ)va - Vewdxdv < C|[(1 + 1)2)%f||iz(w)v

RZd
/ 20 (1 + v)wf Ay fdxdv = —20 / (1 + 0|V, flPwdxdv
RZd RZd

+aff2Av((l+v2)w)dxdv,
RZ{J

(3.4)

(3.5)

(3.6)

3.7

(3.8)

(3.9)

(3.10)
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1
- / (1 +v*)af?Vy - LI fldxdv <d|| f |1 gy |1+ 072 I35, - (3.11)
R2d

Substituting (3.8)—(3.11) into (3.7) yields

%ua + )2 22, + ol + 0DV f12
<CIA+ D)2 fll e I +0)2 12, +CIA+0)2 f12, ) (3.12)
| f Il |+ 02 F12,
Using (3.5) and solving the above Gronwall’s inequality, we deduce that

t
1A +v)2 f )12, +0 / 1A+ 623V, (D)2, dT
; (3.13)

1
<10 +8D3 foll 2, exp (¢ = 1), V0.
This completes the proof. O

Lemma 3.2. If f(t,x,v) and g(t,x,v) are two smooth solutions with initial data fy and go
satisfying the condition in Lemma 3.1, respectively, then there exists c(t) < Cexp(e€?) such
that

T

Sup 11/ (0) = 80l 20y = /o — 80l 2 €XP / eyt |, VT =0,
0<t<T
- 0

Proof. Define /1 := f — g. It follows from the equation (3.1) that
hi +v-Veh +Vy - (L[ flh + L[h]g) = o Ayh. (3.14)
Multiplying (3.14) by 2hw, we deduce that

(R*w); + v Vi (BPw) + Vy - (L[ f11 )
=20whAyh +h*v - Vew — i*0V, - L[ f] (3.15)
+h2Lf] - Vow — 2hwV, - (L[h]g).

Integrating (3.15) over R?? gives
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d - 2

=20/a)ﬁA.,f_zdxdv+/l_z2v-an)dxdv—/ﬁzwvv-L[f]dxdv
R2d R2d R2d
) _ _ (3.16)
+ / WL f]- Vowdxdv —2 / hwV, - (L[h]g)dxdv

R2d R2d
5
St
k=1
We estimate each I (1 <k <5) as follows.

11:_2a||v,,13||§2(w)+o/EzAvwdxdv;
RZd
L<C / hwdxdv = C||ﬁ||iz(w);
RZd
I < Cll fllp ooy 1117
l -
I4 < CIl (A + 972 fll oy 1A 2, )
Is=2 / gL[h] - (Vohw + Vywh)dxdv
]RZd
— l — —
< Clll 2l (1 + 2D 28 200 | Voltll 1200y + C”g”Lz(w)”h”iz(w)
< oIVl + ClIlA + 02 2g1%, 712, + Cllgll 2 A1
= v 2 () Bl 2 M 20 L2y 1124y

In the estimate of /s, we have used the weighted Holder inequality, Young’s inequality and the
following fact that

- 1 - 1 o o
|L[h1|sc<1+v2>f/|h|<1+|v*|2)7<1+|y|2+|v*|2>7<1+|y|2+|v*|2>—7dydv*
RZd
2,1 2 *2\— % 7
<CA+v) A+ Iy + 1072 2@ 1l 2 0)
1 -
<CU+ )27 12y

Substituting these estimates into (3.16), we obtain

d - _
11172 + 0 IV0R17 2,

—I
dt (3.17)
| | 2,1 1 234 2 a2
< C + ”( +v ) f”Ll(de) + ”( +v ) g||L2(w) ” ||L2(a))
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Using Lemma 3.1 and solving the above Gronwall’s inequality, we infer that there exists c(f) <
C exp(e©") such that

T
sup [1£0) = 80l 120y < Ifo — g0/l 12y €XP / ctdt |, VT =o0.
0<t<T ;

This completes the proof. O

Lemma 3.3. Assume (14 v?) 5 fo(x,v) e X. If f(t,x,v) is a smooth solution to (3.1), then there
exists c(t) < C exp(e®") such that

t
(1) ||<1+v2>%f(r>||§+a/ 11+ )2V, £ (1)) 3dT
0
<11 +0)? folexp (e = 1), Vr=0:

@) sup [[f()—gOllx < Ilfo—gollxexp| | c()dt ]|, VT =0,

0<t<T

St~

where f(t,x,v) and g(t,x,v) are smooth solutions with initial data fy and go satisfying the
above condition, respectively.

Proof. Based on Lemma 3.1 and 3.2, we only need to estimate the first order derivatives. Apply-
ing Vy to (3.1) yields

(Ve )i +0- Ve (Ve f) + Vo - (LIf1® Ve f) =0 Ay Vi f — Vi L[f]- Vo f — fViVy - LIf].
(3.18)
Multiplying (3.18) by 2(1 + v%)2V, f, we have
(Ve FPA+ D) 4+ v Ve (Ve FPA 4+ 0D + Vy - (LLF1IVR F12 (1 40D

=20 (1 4+ )2 Ay Vs f - Vi f — (1 4+ 05| Vi 17V - LI f] (3.19)
+ Ve FIPLLST- Vo (1 + 02 = 2(1 + 0?2V f - (Vo LIf]- Vo f + fVaVy - LIfD).

Integrating (3.19) over R24 Jeads to
d 2,1 2 2\2
EII(I + )2V flij2,) =20 | A 4+07)7Ay Ve f - Vi fdxdv

R2d

— | A+ D Vi fI*Vy - LI fldxdv
de
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+ / Ve FIPLLS]- Vo(1 + v*)2dxdv
RZd

—/2(1+v2)2fo~(VxL[f]-va+foVv-L[f])dxdv-
RZd
(3.20)

We estimate the right-hand side of (3.20) term by term.

20 /(1 +92)2AVy f - Vi fdxdv

R2d

1
== 20Il(1+ )2V Ve fl72 ) +0 / Vi f2Ap(1 + ) dxdv,

R2d

—/(1+v2)2|vxf|2v,,-L[f]dxdv
RM

1
< Cllf i I+ 972 Ve £l

/ Ve fFIPLLS]- Vo(1 + v?)2dxdv
R2d

1 1
< CIA+ 77 fll g |1+ P2 Ve flI7a,)

_ f 21+ 012V, f - (VxL[f]-V,,f+foV,,~L[f])dxdv

RrR2d

= / 2fVeL[f]: [(1 + V)2V Vo f + Vi f ® Vy(1 + vz)z] dxdv
RZd

- f 2(14+ 922 fVy f - VeV, - L[ fldxdv
RZd

1 1 1
=CI1+ v2)2f||L1(de)||(1 + v2)2f||L2(w)||(1 + v2)2Vvif||Lz(U)
1 1 1
+ CIA+ )2 fll gy A+ 022 Fll 2 10+ 7)2 Ve £l 120,
<ol|(1+ )2V, Vy 2 Cl(1+ )2 f)2 1+ f)
_all( +v ) v xf||L2(U)+ ”( +v ) fHLl(RZd)”( +v ) f”LZ(w)

1
+1A+9)2Ve fl72,-

Substituting these estimates into (3.20), we obtain

Please cite this article in press as: C. Jin, Well-posedness of weak and strong solutions to the kinetic Cucker—Smale
model, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.10.001




YJDEQ:9046

18 C. Jin/ J. Differential Equations eee (eeee) eee—eee

%n(l )V fI2y, + oI+ 0TV Ve I,
<C(1H 1A+ Fll g 1A +9)2 V5 [, (3:21)
+CIA+ 02 F 12, g I+ 0D F12,
Applying V, to (3.1), we deduce that
(Vo )i +0-Va(Vo )+ Vo (LIF1® Vo f) =0 Ay Vo f — VoLIf]- Vo f = Vi f. (3.22)

Multiplying (3.22) by 2(1 4 v%)V, f leads to

(Vo FIP+02)) 4+ v - Ve (Vo fI2(1+07) + Vy - (LLF1IVo fI2 (1 +v?))
=20(1+v)AVof - Vo f + Vo fIPLIf]-Vo(1 +0%) —2(1 + 0PV, f - Vo f  (3.23)
— (14 0|V fIPVy - LIf1=2(1 + vH)Vy f - Vo LIf1- Vo f.

Similarly, we have

L+, r2 ol + 22V, Y, 2
dt v L2 (R2) v Vo Il 2R2d)y
3 1
= C(l +iA+ vz)zf“Ll(RZd))”(l + 992V £ 1172 g0, (3.24)
24 2
FIA+0)2Ve fll2,)-

Combining (3.12), (3.21), (3.24) and using Lemma 3.1, we deduce that there exists c(¢) < CeC!
such that

d 1 1 1
SNAFOD2 I+ ol + D2V fI§ < eI +v7)2 f1I%- (3.25)
Solving the above Gronwall’s inequality yields

t
(1 + vz)%f(t)”%( —|—0/ (1 + vz)%vvf("—')”%(df
; (3.26)

5|I<1+v2)%fo||§exp(€0‘1)» vt > 0.

(2) For two smooth solutions f(t, x, v) and g(¢, x, v) with initial data fy and g¢ satisfying the
initial condition in Lemma 3.3, respectively, we define

hi=f—g, F:=Vif—Vig and G:=V,f—V,g.

It follows from (3.18) that
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Fi4+v-ViF+V, - (LI[f1QF)
=0AyF —Vy - (L[h] ® Vyg) — Vi L[h]-Vy f (3.27)
— Vi L[g]-Vyh —hVyVy - Ligl — ViV, - L[A].

Multiplying (3.27) by 2(1 + v*)F, we obtain

(140 F) 40 Vel(1 +0)F) + Yy - (L1 +0)F)
=20(140*)A,F-F —2(14+v*)Vy - (L[A] ® Vig) - F

- ) y2 (3.28)
+FLIf]-Vo(l +vY) — 1+ 0> F Vy - L[f]
—2(1+v})F - (VxL[ﬁ] Vo f + fVeVy - LI + ViLig]- Vol + hVy Y, - L[g]).
Integrating (3.28) over R?? gives
d F|l?, =2 14+ v3)A,F - Fdxd
2 1F 2y =20 | A+ ) A F - Fdxdv
]de
- f 2(1 4+ v*)Vy - (L[] ® Vi g) - Fdxdv
RZd
=2 2 22
+ / (FLU1- Va1 +9%) — (L4 0V, - LLf1)dxd
R2 (3.29)
_z/(1+v2)7. (VeLIR1- Vof + fVeVy - LIA]
R2d

+ VaLlgl- Vol + VeV, - Ligl)dxdv

4
=> 1.
i=1

‘We estimate each J; as follows.

— -2
J]:—20||V,,F||iz(v)~|—afF Ay(1 + v*)dxdv,

R2d

b =2 / (L[h] ® Vig) : Vo (1 + v2)F)dxdv
RZd

l — - - —
< ClI+ 072 Vagll 2 IV F Il 20 1l 2y + CHV gl 20 12 2 1 F 20

=112 2,1 2 72 =012
<0IVaF 32, + CIA+ 22 Vel 7o, 181132, + IF 17

(w) ()’
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1 — —
I3 < CIA+ )2 Fllpigea IFllgag, + CIE @I Fl72 )

J4=2/Vva(ﬁ(l+v2)):(ﬁVxL[g]—i—foL[fl])dxdv

R2d

_ / (201 +0)%G +4F @ v) : (AVeLlg) + /9, L1 )dxdv

R2d
1 = =~ 1 = =
< CIA 4+ vP)2gll 1 ey Vo Fll 120y 12l 20y + CHCA + 072 g L gaay 1] 1200 | F 1l 20
l — - - —
+CNA+ D2 fll 2@y Vo Fll 2y 1l 2wy + CILE 2y AN L2000y 1 F 220

- 1 1 - _
<olIVoFls, + C(u(l +0)) 281171 ey + 101+ vz)zfniz(w))nhniz(w) +CIIF 72,

Substituting these estimates into (3.29), we obtain

d —n 2,1 =02 2\1 2
TIF 12, = C(14+ 10+ Fllpaeen ) IF 2, +C (10 +0) 7813 g

(3.30)
A+ f 1, + 10+ 822 Vegl 2, ) )12
L2(w) xoll2() L2(w)
It follows from (3.22) that
Gl‘i‘v'vxa“‘vv'(L[f]@E) (3.31)
=0AyG —Vy - (L[N ® Vyg) — VyLlh]- Vo f —VyL[g]-G —F.
Multiplying (3.31) by 2G yields
—2 —2 -2
(G +v- V(G )+ Vy - (LLfIG))
— GV L[f]—20A,G -G — 2V, - (L[] ® Vug) - G (3.32)
—2G -VyL[h]-Vof —2G -VyL[g]-G —2F - G.
Integrating (3.32) over R?? and performing integration by parts, we have
G2y g0, <CA+ £ + gl MG 2 g2ay + IFII
dt L2(R2) = L' (R%) 8l (R2d) L2(R24) L2(v) (333)

l -
+ C(IVa S Baggany + 101+ 3V0g 25 0 )12,

Combining (3.17), (3.30), (3.33) and using (3.26), Lemma 3.1, we deduce that there exists c(¢) <
Cexp(e€h)

d
0 —g® 1% <cOIf@) — g%, (3.34)
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which implies
T
sup [ f(®) —g®llx = Il fo— gollx exp fC(t)dt , VYT >0. (3.35)
0<t<T o

This completes the proof. O
3.2. Proof of Theorem 3.1 and 3.2

We first mollify the initial data by convolution, i.e.,

fo (x,v) = fo* je(x, v),

where j,. is the standard mollifier. Using the contraction principle, we can obtain the local smooth
solution by the standard procedure. Combining with the a priori estimate in Lemma 3.1(3), one
can extend the local smooth solution to be global-in-time.

Then using the stability estimate in Lemma 3.2, we infer that

T

s 1750 = 7 Ol 1S = o 2 exp / cwdt |, vr=o0, (336
<t<T
- 0

where f% (¢, x,v) and f%/ (¢, x,v) are smooth solutions with initial data f(fi and f(fj , respec-
tively. From (3.36), we know there exists f (¢, x,v) € C([0, T], L?()) such that

[, x,v)— f@t,x,v) inC(0,T], Lz(a))) VT >0, asg; — 0. (3.37)

It is easy to see that f(¢, x, v) verifies (3.1) in the sense of distributions.
Take smooth initial data f;" and g . We also have

T

OSHP £ @) = & (Dl 2wy < 1y — 80 l12(w) €XP /C(t)dt , YT =0. (3.38)
<t<T
- 0

Letting &; — 0, we obtain the stability estimate for weak solutions to (3.1), which also amounts
to uniqueness of the weak solution. Due to the arbitrariness of 7', we know the unique weak
solution f(z, x, v) € C([0, +00), L?(w)). It follows from 3.1(3) that for all f%,

t
1 ) 1 :
10+ 022 5O, +o / 1499290 @2, T
0

] (3.39)
S+ 02 £ 12, exp (e = 1)

<Cexp(e®"), Vi=>0.
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Using (3.37), we infer that for any 7 > 0,

A+v)2f5% ~ (A +v)2f, weakly- in L0, 1), L2()), as & — O, (3.40)

and
14022V, f5 = (1+02)2IV, f, weaklyin L2((0,1), L*(@)), as&; — 0. (3.41)

Combining (3.39)—(3.41) and letting &; — 0 lead to

t
1 1
10+ 92E 01, “/ 13499290 f D)l 2(, 4T
0

<+ vz)%foﬂiz(w) exp (eC’ — 1) , ae.t>0.

Theorem 3.2 can be proved in the same way. We omit its proof for brevity. Thus we complete
the proof.

4. Vanishing noise limit

In this section, we study the vanishing noise limit as o tends to 0. In fact, we can pass to the
limits of both weak and strong solution sequences to (3.1). Our results are as follows.

Definition 4.1. Let f(z, x, v) € C([0, +00), LZ(R2?)). f(t,x, v) is a weak solution to (2.1) if

fi+v-Vef+Vy-(LIf1£) =0, inD'([0,+00) x R*).

We say f(t,x,v) is a strong solution if f(¢,x,v) is a weak solution and f(¢,x,v) €
C ([0, +00), H'(R?)).

Theorem 4.1. Assume (1 + vz)%fo(x, V) € Lz(a)). Then (2.1) admits a unique weak solution
f(t,x,v) € C([0, +00), L*(w)) in the sense of Definition 4.1. Moreover, there exists c(t) <
C exp(e©?) such that

1 1
W 1A+ 922 F Ol 2 = 10 +D2 foll 2y exp (¢ 1), ae.r20;
T

@) sup £ (1) = 8Dl 12w < 1fo— goll 12w exP f ctydt |, YT =0,
0<t<T
- 0

where f(t,x,v) and g(t, x, v) are weak solutions with initial data fy and g¢ satisfying the above
condition, respectively.
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Theorem 4.2. Assume (1 + vz)%fo(x, v) € X. Then (2.1) admits a unique strong solution
f(t,x,v) € C([0,400), X) in the sense of Definition 4.1. Moreover, there exists c(t) <
C exp(e®?) such that

WA+ FOlx <10+ follxexp (e = 1), ae 120
T

@ s 10— 50lx < o= sollxexo f ctydt |, VT =0,
<t<
- 0

where f(t,x,v) and g(t,x,v) are strong solutions with initial data fy and gy satisfying the
above condition, respectively.

In fact, Remark 3.2 still holds as 0 — 0. The following velocity averaging lemma is due to
[6](Theorem 5 and Remark 3 of Theorem 3). It plays an import role in the proof of Theorem 4.1.

Lemma 4.1 (DiPerna and Lions). Let m > 0, f, g € L*(R x R?®) and f(t,x,v), g(t, x, v) sat-
isfy

)
a—]:+v-fo:V§g inD,

1 2 d .
where Vs = 35’;1 852 .- -afd and |&| = Z?:l &' =m. Then for any ¢ (v) € CE’O(R‘]), it holds that

/ £t %, 06 (0)dv < Cy (1 2 emat, + 18120y
R4 HS (RxR4)

1 . ..
pIgE) and Cy is a positive constant.

where s =

Denote the solution to (3.1) by f? (¢, x, v). Then we present the proof of the above two theo-
rems.

Proof of Theorem 4.1. According to Theorem 3.1 (1), we know
t
I +69)7 7 (1), +0 / I+ %29, 7 (02, d7
0 4.1)
<+ v2)%fo||iz(w) exp (eC’ - 1) , ae.t>0.
Thus there exists a sequence { f°/ (¢, x, v)} such that
F(t,x,v) =~ f(t,x,v) weakly-x in L®((0,T), L*(R*)) VT >0, asa; — 0.  (4.2)

This also leads to
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T T
//(1+v2)%w%f“f¢dxdvdz—>f/(1+v2)%w%fwdxdvdr, aso;—0, (4.3)

0 R2d 0 R2d

for any ¥ (¢, x, v) € C2°((0, T) x R??), which implies that
(1412202 f7 - (1+ ) 2w f inD, aso;—0 (4.4)
9 ] . .

It follows from (4.1) that the sequence {(1 + vz)%w% f°i} admits a weak-x limit in L*°((0, T'),
L%(R?%)), VT > 0. Using uniqueness of the limit in the sense of distributions, we also have

2L L . 2.1 1
A+v)2w2f% =~ (1 +v7)2w2f, 4.5)
weakly-* in L>°((0, T), L?>(R*?)) ¥T > 0, as o; — 0. Therefore, we deduce that

1 1
ess sup [[(1+ 077 D2, < I1+023 foll g, exp (€T = 1), ¥T>0.  (46)

0<t<T
Next, we prove
LLf1f% — LIf1f inD'((0,T) x R*), asa; — 0.
Rewrite (3.1) in the form of

3%
o1

0 Ve f7 =V (0o 7 = LIS, @7

Using Lemma 4.1 and (4.1), we infer that for all £/,

/f"-f (t,x,v)¢(v)dv < Cyp(1 +T)exp(CeCT), Vo (v) e CXRY).
Rd

Hi ([0, T1xR4)

The reader is referred to [6] (step 1 in Section 4, p. 748) for the details in applying Lemma 4.1.
Since

HT([0,T]x K)<><> L' ([0, T]1 x K) for any compact K in RY,

there exists a subsequence, still denoted by { f°/}, such that

/f"~f¢>(v)dv—> /fgb(v)dv inL},.((0,T) x R?), as o; — 0. (4.8)

Rd R4

For any ¢ > 0, if we choose R suitably large, it follows from (4.1) that
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T
// /(1+v2)%f“fdv dxdt
0 R4 |[[v|>R
1 1
T 2 T 2
< // f o~ 'dvdxdt /Il(l+v2)%f"-"(f)lliz<w)dt
0 R4 |v|>R 0
§CTexp(CeCT)e
and
T
/(1 +v2)2 f%idv| dxdr
0 x|>R |Rd
1 1
T 2 T 2
<[ [ [ortavasar| | [rasottrmani, i
0 |x|>RRd 0
§CTeXp(CeCT)5.

Combining (4.8), (4.9) and (4.10), we infer that

/(1+v2)%f“fdv—>/(1+v2)%fdv in L'((0,T) x RY), as o — 0.

R4 R4

YJDEQ:9046
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(4.9)

(4.10)

@11

It follows from (4.11) that there exists a subsequence, still denoted by { f?/}, such that

LIf%1— LIf], ae. (t,x,v)€[0,T] x R*, asqo; — 0.

From (4.1), it is easy to see that

4.12)

1
/¢(|x_y|)fff.z(t,y,v*)(1+|v*|2)%dydv* 5Cexp<§eCT), Viel0,T]. (4.13)

R2d

Combining (4.8), (4.12) and (4.13), we deduce that

T T
/ / LLfI1f% 1 (0)a(t, x)dvdxdi — / / LIf1fé1@da(t, x)dvdxdr,  (414)

0 R2d 0 R2

for any ¢ (v) € C° (RY), ¢ (t, x) € CX((0,T) x R%), as oj — 0. Using the density of the sums

of the function with the form ¢ (v)$2 (¢, x) in C°((0, T') x R24) we can show that

model, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.10.001
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LIfo1f% — LIf1f inD'((0,T)x R*), aso; — 0.

Therefore,

L Ve f Ve WA =0 DO, T) < B, (4.15)

Then we prove f € C([0, T, L?(w)). Since (1 + vz)%f € L°°((0,T), Lz(a))), by interpolation,
it is sufficient to prove f € C([0, T], L>*(R*?)). From (4.6) and (4.15), we know

fi € L®((0, T), H'(R*)). (4.16)
This together with the fact that f € L%°((0, T), L>(R??)) gives

feCqo, T1,L2R*) — W), (4.17)
which means that f is continuous in [0, 7] with respect to the weak topology in L>(R>¢). In the
following, we prove || f (1)l 12 (r2¢y € C[O, T].

Take the standard mollifier j,(x — -, v — -) as the test function in (4.15). Denoting f * j.(x, v)
by (f)e, we have

((f)e)t +v- Vx(f)e + Vv : (L[f]<f>€)

(4.18)
Ve (0f)e+ - Vel f)e — Vo (LLF1f e + Vo - (LLFI(S)e) -
Multiplying (4.18) by 2(f) yields
0 2 2 2
(2 Vel D+ Vo (LU
= — (F)2Vy L1 = 2[Ve - (0f)e — 0 Vel f)el - (F)e (4.19)
—2[Vy - (LLF1Sf)e — Vo - (LLFUSI] - (£)e.
Integrating (4.19) over R??, we obtain
LT L / (F)2Vs - LLf1dxdv
dl & L2(R2d) - e vV
]RZd
- / 2Ve - (0f)s = - Ve (f)e] - (fledxdv
RZd
(4.20)
- / 20V - (LLF1f)e = Vo - (LLFIFI] - (Fhedxd
]RZd

3
ZZK,'.
i=1
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We estimate each K; (1 <i < 3) as follows.

K1l < ClLf Nl ey 1 F 117 2 oay-

K| =2 //(w—v)-ijg(x—z,v—w)f(t,z,w)dzdw(f)gdxdv
RZdRZd

< 2C| 1172 goay
where we have used the fact that

. c
lw—v|<e and [Vyjellpirea) < .

K3 =2 / v, / (LU w) — LEAI ) ) jox = 2.0 = w) (1. 2. w)dzduw () odxdy
de de
<2C1 fllp ey 1 172 g

+2 / / (LU 1@ w) — LIFIE 0)) - Vaolx = 2.0 = w) (1, 2, w)dzdw( fedxdv

R2d R2d
1 1
<2C1 fllp ey I 172 gaay + 2C 1A+ D)2 fll gy |1+ 02)2 £l 2oy L f 12 goy-

Substituting these estimates into (4.20) and integrating the resulting inequality over [f1, 2],
Vi, € [0, T], we obtain

<Cexp(CeTN|p —1|, V11,1 €[0,T1,

\||<f<zz>>g||iz(R2d) — I @DVl 72 ey
where we have used (4.6). Letting ¢ — 0 yields
170212 g0y = 1 Do ggan | < Cexp(Ce Dl =0l ¥n,el0.T] @21
Combining (4.17) with (4.21), we deduce that
feco,T], L*(R*)), VT >0. (4.22)
Similarly to (4.5), we can prove
w? [0~ w2 f,  weakly-# in L0, T), L*(R%*)) ¥T > 0, as 0j—0 (4.23)

and
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wig% — wig, weakly-+ in L¥((0,T), L2R*)) VT > 0, as o; — 0, (4.24)

for solution sequences { f°/} and {g°/} with initial data fy and go, respectively. It follows from
Theorem 3.1(2) that

T
sup [ /(1) — 87 Dl 2wy = I fo— goll L2(w) €XP /C(t)dt , YT >0. (4.25)
0<t<T 0
Combining (4.23)—(4.25) and letting o; — 0 give
T
sup || f (1) = 8Dl 12(w) = I fo — goll 12 (w) EXP /C(t)dt , VYT >0,
0<t<T o

which implies uniqueness of the weak solution. Due to the arbitrariness of T, it is easily shown
that the unique weak solution f € C([0, 00), L?(w)). From (4.6) we infer that

1 1
10+ F Ol 2 = 10+ foll 2 exp (¢ = 1), a1 20.
This completes the proof. O
Proof of Theorem 4.2. According to Theorem 3.2, we have
t
1 1
I +v)2 7Ok + af (1 + )2V, f7 () 1%dT
5 (4.26)
<11+ %) foll % exp (ec' - 1) ., ae.t>0.

From (4.26) and the equation (3.1), we deduce that f° are uniformly bounded in L*°((0, T),
H'(R??)), and % are uniformly bounded in L2((0, T), L>(R2?)), VT > 0. It follows from the
Ascoli—Arzela theorem and (4.26) that there exists a sequence { f°/} such that

foi(t,x,v) = f(t,x,v) inC([0,T], L>(R*)), as o; — 0. (4.27)

It is easy to see that f(t, x, v) verifies (2.1) in the sense of distributions. Similarly to the proof
in Theorem 4.1, we can show that

(14027 f% =~ (1+v2)2f, weakly-+ in L¥((0, T), L3(@)),
14+ 022V, % —~ (1+0H)2Vy f, weakly-+ in L2((0, T), L2(v)),
and
(14+0))2V, % —~ (14 022V, f, weakly-# in L®((0, T), L2(R>))

forany T > 0, as 0; — 0. Thus we have
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ess sup [[(1+ )7 FOlx < (1+0D)2 follxexp (7 = 1), ¥T>0.  (@28)
0<t<T

Next, we prove f(t,x,v) € C([0,T], X), VT > 0. In fact, by using (4.28) and the interpolation,
it suffices to prove

f(t,x,v) € C([0, T], W-2(R*)), VT >0. (4.29)
Similarly to the proof in Theorem 4.1, we can easily show that
ft,x,v) e C(0,T], WH2(R*?) — W), VT >0, (4.30)

which means that f is continuous in [0, T'] with respect to the weak topology in W 1-2(R?). The
following proof is devoted to demonstrating that

ILf @Ol w122y € CIO,T1, YT > 0.

Based on Theorem 4.1, we just show that ||fo||L2(de) and ||va||Lz(de) are in C[0, T],
VT > 0. Since

(Ve )i +v -V (Ve )+ Vo - (LIf1® Vi f) = =V LIf]- Vo f — fVxVy - L[ f]
in D'((0, T) x R*),

taking the standard mollifier j.(x — -, v — ) as the test function yields

(Ve fledr +v- Ve (Ve fle + Vo - (LLF1® (Vi f)e)
=(=VxL[f]- Vo f = fVxVy - L[f])e

—[Ve - (0® Vi fle — v Vi (Vi f)e]

—[Vo - (LLf1® Vi fle = Vo - (LLF1® (Vi fe)].

4.31)

Multiplying (4.31) by 2(Vy f). and integrating the resulting equation over R??, we obtain

d
e Pelagany = - / (Vi )2V, - LLfldxdv
RZd

2 / (Ve fle - (VoLLf]- Vof + f VeV - LLfDedxdv
RZd

2 / (Ve (08 Vi fle — v Ve (Ve f)e] - (Vi fedxdv
de

2 / (Ve - (LLF1® Vi f)e — Vo - (LLF1® (Ve f)e)] - (Vi fedxdv
de

4
= Z H;. (4.32)
i=1
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We estimate each H; (1 <i <4) as follows.
|Hil < 1V - LU oo oy | (Vi el 2 gaay < CILF Nl oy 1V £ 117 2 oa;
|Ho| < IVx fllp2eay IV LLfT- Vo f + f Ve Vo - LI f1ll 12 (r24y
< CIIV Fll ey (104922 Il |0+ 9290 £l 2o,

1 N £ 2o )

\Hs| < 2/ (Vs f)eldxdv
RZd

< ClIVa f I3 goay;

/ (W = ) - Vi jo (x — 2,0 — W) (Vi ) (0. 2, w)dzdw

R2d

\Hy| <2 / / Vo LLI(Ve ). 2 w)jo(x — 2,0 — wydzdw - (Ve f)e |dxdv
RZd RZd
2 [ [ Vuietx =20 = w)- [ (211 w0) = LA 0) © (T )0z, w)]
RZd RZd

dzdw - (Vy f)e|dxdv

<Clf Il @eay 1V £ 172 goa,
1 1
+ O+ )2 fll gy | (1402 Ve £ll 2@y 1 Vi £ 1| 22y
where (Vi f)(t, z, w) denotes the value of V, f at (¢, z, w). Substituting these estimates into

(4.32) and integrating the resulting inequality over (71, t2), V1, 2 € [0, T'], then letting ¢ — O,
we obtain

1V £ N2 g2y = IV £ @D 17 2oy | < Cexp(Ce D2 — 11, (4.33)
where we have used (4.28). Combining (4.30) and (4.33), we know
Vi f e C([0,T], L>(R*?), VT >0.
Similarly, we can prove V, f € C([0, T], LZ(RM), VT > 0.
As for the solution sequences {f°/} and {g°/} with initial data fy and go, respectively, it
follows from (4.26) that

f% — f, weakly-x in L*°((0,T), X) VT >0, aso; — 0 (4.34)

and
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g% —g, weakly-» in L((0,T),X) VT >0, aso; — 0. (4.35)

From Theorem 3.2(2), we deduce that

T
sup || f77(t) — g% (D)llx < Il.fo— gollx exp /C(t)dl , YT =0. (4.36)
0<t<T 0

Combining (4.34)—(4.36) and letting 0'; — O lead to

T

s £0) = 2Ol < 1o = gollxexp fe(r)dr . VT =0,
<t<T
- 0

which amounts to uniqueness of the strong solution. Due to the arbitrariness of 7', we can easily
prove the unique strong solution f € C([0, +00), X). From (4.28) we infer that

10 +9)2 FOllx <10 +6D3 follxexp (¢ 1), ae.r=0.
This completes the proof. O
5. Conclusion

In this paper, we have developed a framework that can be used to establish the well-posedness
of weak, strong and classical solutions to the kinetic Cucker—Smale model with or without noise,
no matter whether the initial data have compact support or not. Besides, we also rigorously
justify the vanishing noise limit, which can be as a counterpart result to the vanishing viscosity
method in hyperbolic conservation laws. Therefore we present complete theory for the kinetic
Cucker—Smale model except for the large-time behavior of the solution.

Our proof is based on weighted energy estimates and subtle compact analysis. The two
weighted Hilbert spaces we introduced and the velocity averaging lemma in kinetic theory play
important roles in our analysis. However, the time-asymptotic behavior of the solution is difficult
to analyze. Maybe we can begin with some special situations. As for the kinetic Cucker—Smale
model with noise, we guess the solution will tend to its steady state, if the initial perturbations
are suitably small. This problem will be pursued in our future.
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