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Abstract

We study the chemotaxis–fluid system

⎧⎪⎪⎨
⎪⎪⎩

nt +u ·∇n = �n − ∇· ( n
c ∇c), x ∈ �, t > 0,

ct + u ·∇c = �c − nc, x ∈ �, t > 0,

ut + ∇P = �u + n∇φ, x ∈ �, t > 0,

∇ · u = 0, x ∈ �, t > 0,

under homogeneous Neumann boundary conditions for n and c and homogeneous Dirichlet boundary con-
ditions for u, where � ⊂ R

2 is a bounded domain with smooth boundary and φ ∈ C2 (�̄). From recent 
results it is known that for suitable regular initial data, the corresponding initial–boundary value problem 
possesses a global generalized solution. We will show that for small initial mass 

∫
� n0 these generalized 

solutions will eventually become classical solutions of the system and obey certain asymptotic properties.
Moreover, from the analysis of certain energy-type inequalities arising during the investigation of the 

eventual regularity, we will also derive a result on global existence of classical solutions under assumption 
of certain smallness conditions on the size of n0 in L1(�) and in L logL (�), u0 in L4(�), and of ∇c0 in 
L2(�).
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1. Introduction

Even among the smallest and most primitive organisms there are cases of complex and macro-
scopical collective behavior, for instance bacteria of species E. coli were confirmed to form 
migrating bands when subjected to a test environment featuring gradients of nutrient concentra-
tion ([1]). Following these experimental findings, chemotaxis systems with singular sensitivity 
of the form

{
nt = �n − ∇· ( n

c
∇c),

ct = �c − nc,
(1.1)

were among the first phenomenological models proposed by Keller and Segel ([14]) to study 
these processes of chemotactic migration. Herein, n denotes the density of the bacteria which 
orient their movement towards increasing concentration c of a chemical substance which serves 
as their food source and is thereby consumed in the process. Singular chemotactic sensitivities of 
the type featured in (1.1) express the system assumption that the signal is perceived as described 
by the Weber–Fechner law ([11], [25]). An outstanding facet of this system, as already illustrated 
in [14], is the occurrence of wave-like solution behavior without any type of cell kinetics, which 
is known to be vital for such effects in standard reaction–diffusion equations. For studies on ex-
istence and stability properties of traveling wave solutions of (1.1) see [34,19,22] and references 
therein.

The results on global existence to systems of the form (1.1) are very sparse, with widely 
arbitrary initial data only being treated for the one-dimensional case ([30], [18]). In higher di-
mensions the results were constrained to the Cauchy problem for (1.1) in Rn with n ∈ {2, 3}, 
where smallness conditions on the initial data had to be imposed to show the existence of globally 
defined classical solutions ([35]). Only recently ([40]), so-called global generalized solutions to 
(1.1) were constructed in the two-dimensional case. The solutions are obtained through the study 
of a suitably chosen regularization guaranteeing that the regularized chemical concentration is 
strictly bounded away from zero for all times. These generalized solutions comply with the clas-
sical solution concept in the sense that generalized solutions which are sufficiently smooth also 
solve the system in the classical sense. In a sequel to the previously mentioned work the author 
furthermore proved that if the initial mass is small these generalized solutions eventually become 
classical solutions after some (possibly large) waiting time and that the solutions satisfy certain 
kind of asymptotic properties ([41]).

Eventual regularity and fluid interaction. Our interest slightly differing from the system 
proposed by Keller and Segel, where the model assumes no interaction between bacteria and 
surroundings, we will consider the case that the bacteria may be affected by their liquid envi-
ronment. Here, we do not only assume that this interaction occurs by means of transport, but 
also in form of a feedback between the cells and the fluid velocity stemming from a buoyancy 
effect assumed in the model development featured in [31]. The experimental evidence reported 
in the latter reference suggests that the chemotactic motion inside the liquid can be substantially 
influenced by the feedback between cells and fluid, with turbulence emerging spontaneously in 
population of aerobic bacteria suspended in sessile drops of water. As a prototypical model for 
the description of this phenomenon a system of the form
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⎧⎪⎪⎨
⎪⎪⎩

nt + u ·∇n = �n − ∇· (n∇c),

ct + u ·∇c = �c − nc,

ut +κ(u · ∇)u = �u + n∇φ − ∇P,

∇ · u = 0,

(1.2)

was proposed in [31] and has been the groundwork for many articles concerning the mathe-
matical analysis of chemotaxis–fluid interaction since the first analytical results asserting local 
existence of weak solutions ([20]). Obtaining results concerning the global existence of solu-
tions is far from trivial, even when u ≡ 0 the global existence of solutions is only known under 
a smallness condition on the initial data ([28]), or when N = 2 (e.g. [37]). These outcomes are 
similar in the case of u �≡ 0. In the two-dimensional setting global classical solutions stemming 
from reasonably smooth initial data have also been shown to exist in [37], whereas many results 
treating variants of (1.2) in three-dimensional frameworks are again restricted to weak solutions 
emanating from small initial data (e.g. [15], [4]). Nevertheless, even in these cases, where global 
regularity is hard to prove, some results concerning eventual regularity of solutions have been 
shown. In particular, for the fluid free case eventual smoothness of solutions was shown in [29]
for N = 3 and a result including fluid is contained in [42], where certain weak eventual energy 
solutions are considered.

Similar smoothing effects can also be observed in a setting where N = 3 and logistic growth 
terms of the form +ρn −μn2 (ρ ≥ 0, μ > 0) are included in the first equation. In this framework 
it is still unclear whether global classical solutions exist for small μ > 0 and reasonably arbitrary 
initial data, but weak solutions which eventually become smooth are known to exist for any μ > 0
and possibly large initial data, as indicated by the studies in e.g. [17].

Chemotaxis–fluid system with singular sensitivity. In light of the regularizing effects observed 
in the chemotaxis and chemotaxis–fluid problems mentioned above it seems reasonable to as-
sume that also in the case of singular sensitivity the smoothing effect of the second equation will 
eventually result in classical solutions even if fluid interaction with the bacteria is present. As the 
construction of weak solution used in [32] does not work for the full Navier–Stokes subsystem 
(as included in (1.2)) we instead work with the simpler Stokes realization of the fluid, which was 
also employed in [32], instead. In fact we will study systems of the form

⎧⎪⎪⎨
⎪⎪⎩

nt +u ·∇n = �n − ∇· ( n
c
∇c), x ∈ �, t > 0,

ct + u ·∇c = �c − nc, x ∈ �, t > 0,

ut + ∇P = �u + n∇φ, x ∈ �, t > 0,

∇ · u = 0, x ∈ �, t > 0,

(1.3)

with boundary conditions

∂n

∂ν
= ∂c

∂ν
= 0, and u = 0 for x ∈ ∂� and t > 0, (1.4)

and initial conditions

n(x,0) = n0(x), c(x,0) = c0(x), u(x,0) = u0(x), x ∈ �. (1.5)

� ⊂ R
2 denotes a bounded domain with smooth boundary and the gravitational potential φ is 

assumed to satisfy
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φ ∈ C2(�̄) with K1 := ‖φ‖W 1,∞(�). (1.6)

For the initial distributions we will prescribe the regularity assumptions

⎧⎨
⎩

n0 ∈ C0
(
�̄
)

with n0 ≥ 0 in � and n0 �≡ 0,

c0 ∈ W 1,∞(�) with c0 > 0 in �̄,

u0 ∈ D
(
Aα

r

)
for all r ∈ (1,∞) and some α ∈ ( 1

2 ,1),

(1.7)

with Ar denoting the Stokes operator Ar := −Pr� in Lr
(
�;R2

)
with domain D (Ar) =

W 2,r
(
�;R2

) ∩ W
1,r
0

(
�;R2

) ∩ Lr
σ (�), where Lr

σ (�) = {ϕ ∈ Lr
(
�;R2

) | ∇ · ϕ = 0} stands for 
the solenoidal subspace of Lr

(
�,R2

)
obtained by the Helmholtz projection Pr .

In this setting, building on the work [40], it was shown in [32] that for any (n0, c0, u0) sat-
isfying (1.7) the system (1.3) possesses at least on global generalized solution (in the sense of 
Definition 3.1 below). These solutions are constructed by a similar limiting procedure as in the 
fluid free setting, making sure that for each of the approximate solutions the quantity c remains 
strictly positive throughout � for all times. In a simplified version the result on global existence 
of generalized solutions and basic decay properties of c obtained in [32] can be summarized as 
follows.

Theorem A. Let � ⊂ R
2 be a bounded domain with smooth boundary. Then for all (n0, c0, u0)

satisfying (1.7), the problem (1.3)–(1.5) possesses at least one global generalized solution 
(n, c, u) in the sense of Definition 3.1 below. For each p ∈ [1, ∞) the solution has the properties 
that n(·, t) ∈ Lp(�) and ∇c(·,t)

c(·,t) ∈ L2(�) for a.e. t > 0. Moreover, c is continuous on [0, ∞) as 
L∞(�)-valued function with respect to the weak-� topology on L∞(�), and satisfies

c(·, t) �
⇀ 0 in L∞(�) and c(·, t) → 0 in Lp(�) as t → ∞.

Main results. The existence of global generalized solutions as provided by Theorem A at hand, 
it is the purpose of the present work to study the question of how far the eventual regularity and 
stabilization results for small data, as obtained in [41] for (1.1), may be affected by the interaction 
of the bacteria with their liquid surroundings.

Theorem 1.1. Let � ⊂ R
2 be a bounded domain with smooth boundary. Then there exists some 

m� > 0 such that for any (n0, c0, u0) satisfying (1.7) as well as

∫
�

n0 ≤ m�, (1.8)

the global generalized solution of (1.3)–(1.5) from Theorem A has the property that there exists 
T > 0 such that

n ∈ C2,1(�̄ × [T ,∞)
)
, c ∈ C2,1(�̄ × [T ,∞)

)
and u ∈ C2,1

(
�̄ × [T ,∞);R2

)
,

(1.9)

that
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c(x, t) > 0 for all x ∈ �̄ and any t ≥ T , (1.10)

and such that (n, c, u) solve (1.3)–(1.5) classically in � × (T , ∞). Furthermore, this solution 
satisfies

n(·, t) → 1

|�|
∫
�

n0 in L∞(�), c(·, t) → 0 in L∞(�), u(·, t) → 0 in L∞(�),

(1.11)

and

∇c(·, t)
c(·, t) → 0 in L∞(�) (1.12)

as t → ∞.

Our analysis will also in straightforward manner allow us to formulate a result for global 
classical solutions to (1.3)–(1.5) if certain smallness conditions are fulfilled by the initial dis-
tributions. Furthermore, these global classical solutions inherit the same asymptotic properties 
stated in Theorem 1.1. In order to completely formulate this outcome, we note that in two-
dimensional domains by the Gagliardo–Nirenberg inequality and elliptic regularity theory one 
can find K2 > 0 and K3 > 0 such that

‖ϕ‖3
L3(�)

≤ K2‖ϕ‖2
W 1,2(�)

‖ϕ‖L1(�) for all ϕ ∈ W 1,2(�) (1.13)

and

‖∇ϕ‖L4(�) ≤ K3‖�ϕ‖1/2

L2(�)
‖∇ϕ‖1/2

L2(�)
for all ϕ ∈ W 2,2(�) with

∂ϕ

∂ν
= 0 on ∂�.

(1.14)

We obtain the following.

Theorem 1.2. Let � ⊂ R
2 be a bounded domain with smooth boundary. Then there exists 

m�� > 0 such that for any (n0, c0, u0) satisfying (1.7),

∫
�

n0 ≤ m��, and
∫
�

|u0|4 ≤ m�� (1.15)

as well as

∫
�

n0 ln
n0

μ
+ 1

2

∫
�

|∇c0|2
c2

0

< min

{
1

4K3
,

1

8K2

}
− μ|�|

e
(1.16)

for some μ > 0 and K2, K3 given by (1.13) and (1.14), respectively, there exists a triple (n, c, u)

of functions, for each ϑ > 2 uniquely determined by the inclusions
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⎧⎪⎨
⎪⎩

n ∈ C0
(
�̄ × [0,∞)

)∩ C2,1
(
�̄ × (0,∞)

)
,

c ∈ C0
(
�̄ × [0,∞)

)∩ C2,1
(
�̄ × (0,∞)

)∩ L∞
loc

([0,∞);W 1,ϑ (�)
)
,

u ∈ C0
(
�̄ × [0,∞);R2

)∩ C2,1
(
�̄ × (0,∞);R2

)
,

such that n > 0 in �̄ × (0, ∞) and c > 0 in �̄ × [0, ∞), and such that (n, c, u) together with 
some P ∈ C1,0

(
�̄ × [0,∞)

)
solve (1.3)–(1.5) in the classical sense in � × (0, ∞). Furthermore, 

this solution has the convergence properties stated in Theorem 1.1.

In contrast to the known result for the system without fluid, obtained by taking u ≡ 0 in 

(1.3) where requiring only 
∫
�

n0 ln n0
μ

+ 1
2

∫
�

|∇c0|2
c2

0
to be small was sufficient to obtain global 

classical solutions, in this case we require additional smallness conditions in the form of suffi-
ciently small bounds for n0 in L1(�) and u0 in L4(�). Let us also briefly note that the approach 
utilized here can not be used to prove eventual smoothness of global generalized solutions in 
higher dimensions, mainly due to the Gagliardo–Nirenberg type inequalities (1.13) and (1.14). 
In particular, the functional Fμ(n, z) := ∫

�
n ln n

μ
+ 1

2

∫
�
|∇z|2 (cf. Sections 2.2 and 4.1) has to 

be nonincreasing for small mass (see Lemma 4.2 below), necessitating control on ‖∇z‖4
L4(�)

by ‖�z‖2
L2(�)

‖∇z‖2
L2(�)

(cf. (4.6)), which is only possible in two dimensions. Similarly, prob-
lems stemming from dimension dependency of inequalities employed in the proofs also arise 
in Lemma 4.10. Moreover, one would also have to consider additional steps in order to control 
‖u‖L4(�) in Lemma 4.2 as Lemma 2.2 does not hold in higher dimensions.

Notation. Throughout the article, in addition to the previously mentioned assumptions in (1.6)
and (1.7) for �, φ, the initial data, the Stokes operator and its semigroup, we will make use of 
the following notations. λ1 > 0 will always denote the first positive eigenvalue of the Stokes 
operator in � with respect to homogeneous Dirichlet boundary data. Since Aα

r ϕ, e−tAr ϕ and 
Prψ are independent of r ∈ (1, ∞) for ϕ ∈ C∞

0 (�) ∩ Lr
σ (�) and ψ ∈ C∞

0 (�), we will drop 
the subscript whenever there is no danger of confusion. Similar to denoting by Lr

σ (�) all di-
vergence free functions of Lp(�), the space of divergence free, smooth test functions with 
compact support in � × (0, ∞) will be denoted by C∞

0,σ (� × (0,∞)). Additionally, when talk-
ing about classical solutions to some of the featured systems in � × (t0, ∞) for some t0 ≥ 0, we 
will often shorten the notation to (n, c, u) ∈ C0(� × [t0,∞)), when we are actually considering 
(n, c, u, P) ∈ C0(� × [t0,∞))×C0(� × [t0,∞))×C0

(
� × [t0,∞);R2

)×C1,0
(
�̄ × [t0,∞)

)
. 

The notation (n, c, u) ∈ C2,1(� × (t0,∞)) will be used in a similar fashion.

2. Basic properties of a family of generalized problems

The construction of the generalized solution mentioned above is based on a limit procedure of 
solutions to regularized problems and a transformation thereof. Since the original problem (1.3)
and the family of approximate problems in question are quite similar, we will first consider the 
even more general family of problems

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nt +u ·∇n = �n − ∇·
(

nf ′(n)
c

∇c
)
, x ∈ �, t > 0

ct + u ·∇c = �c − f (n)c, x ∈ �, t > 0,

ut + ∇P = �u + n∇φ, x ∈ �, t > 0,

∇ · u = 0, x ∈ �, t > 0,

(2.1)
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where we only require that the functions f ∈ C3([0,∞)) satisfy

f (0) = 0 and 0 ≤ f ′ ≤ 1 on [0,∞). (2.2)

Upon proper choice of a subfamily of these functions (cf. (3.5) below) the system will be reg-
ularized in a way that ensures that c is bounded away from zero, from which one can easily 
obtain global and bounded solutions to the corresponding approximate problems. These global 
and bounded solutions are one of the main ingredients of the limit process involved in the con-
struction of the generalized solution ([40], [32]).

The problems (2.1) will be regarded under the boundary conditions

∂n

∂ν
= ∂c

∂ν
= 0, and u = 0 for x ∈ ∂� and t ∈ (0, Tmax), (2.3)

and the initial conditions

n(x,0) = n0(x), c(x,0) = c0(x), u(x,0) = u0(x), x ∈ �. (2.4)

For any f ∈ C3([0,∞)) satisfying the conditions above, local existence of classical solutions 
can be obtained by well-established fixed point methods. Since the necessary adaptions are quite 
straightforward, we will refer to local existence proofs in closely related situations for details.

Lemma 2.1. Let � ⊂ R
2 be a bounded domain with smooth boundary, ϑ > 2 and f ∈

C3([0,∞)) satisfies (2.2). Then for all (n0, c0, u0) satisfying (1.7) there exist Tmax ∈ (0, ∞]
and uniquely determined functions

n ∈ C0(�̄ × [0, Tmax)
)∩ C2,1(�̄ × (0, Tmax)

)
,

c ∈ C0(�̄ × [0, Tmax)
)∩ C2,1(�̄ × (0, Tmax)

)∩ C0
(
[0, Tmax);W 1,ϑ (�)

)
,

u ∈ C0
(
�̄ × [0, Tmax);R2

)
∩ C2,1

(
�̄ × (0, Tmax);R2

)
,

which together with some P ∈ C1,0
(
�̄ × [0, Tmax)

)
solve (2.1)–(2.4) in the classical sense and 

satisfy n > 0 and c > 0 in �̄ × (0, Tmax) as well as

Tmax = ∞, or lim inf
t↗Tmax

inf
x∈�

c(x, t) = 0, (2.5)

or lim sup
t↗Tmax

(‖n(·, t)‖L∞(�) + ‖c(·, t)‖W 1,ϑ (�) + ‖Aαu(·, t)‖L2(�)

)= ∞.

Furthermore, the solution has the properties that∫
�

n(x, t)dx =
∫
�

n0(x)dx for all t ∈ (0, Tmax) (2.6)

and

c(x, t) ≤ ‖c0‖L∞(�) for all (x, t) ∈ �̄ × [0, Tmax). (2.7)
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Proof. Local existence, uniqueness and the blow-up criterion (2.5) can be obtained by straight-
forward adaption of well known arguments as detailed in [12,6,7] and [37] for related situations. 
Simple integration of the first equation in (2.1) proves (2.6), whereas by the nonnegativity of 
f an application of the parabolic comparison principle to the second equation in (2.1), with 
c̄ ≡ ‖c0‖L∞(�) taken as supersolution, immediately entails (2.7). �
2.1. Regularity of the Stokes subsystem

It is well known that the Stokes subsystem d
dt

u + Au = P(n∇φ) in (3.7) has the property that 
the regularity of the spatial derivative ∇u is solely reliant on the regularity of n (since ∇φ is 
bounded). In fact for Stokes systems of the form

⎧⎪⎨
⎪⎩

ut = �u − ∇P + n∇φ, x ∈ �, t0 > 0,

∇ · u = 0, x ∈ �, t0 > 0,

u = 0, x ∈ ∂�, t0 > 0,

(2.8)

we can obtain the following two results. The first is a refinement of a basic boundedness result 
e.g. featured in [33, Lemma 2.4].

Lemma 2.2. Let φ ∈ C2
(
�̄
)
. There exist constants λ1 > 0 and Ku > 0 such that whenever u ∈

C0
(
�̄ × [t0, T0);R2

) ∩ C2,1
(
�̄ × (t0, T0);R2

)
is a classical solution of (2.8) in � × (t0, T0) for 

some 0 ≤ t0 < T0 ≤ ∞ and n ∈ C0
(
�̄ × [t0, T0)

)
satisfying

∫
�

|n(·, t)| ≤ L for all t ∈ (t0, T0),

with some L > 0, then

‖u(·, t)‖L4(�) ≤ Kue
−λ1(t−t0)‖u(·, t0)‖L4(�) + KuL for all t ∈ (t0, T0).

Proof. By the variation-of-constants representation for u we have

u(·, t) = e−(t−t0)Au(·, t0) +
t∫

t0

e−(t−s)AP(n(·, s)∇φ)ds for all t ∈ (t0, T0).

Fixing any γ ∈ ( 3
4 , 1) we see that

‖u(·, t)‖L4(�) ≤ ‖e−(t−t0)Au(·, t0)‖L4(�) +
t∫

t0

‖Aγ e−(t−s)AA−γP(n(·, s)∇φ)‖L4(�) ds

holds for all t ∈ (t0, T0). Now, in view of the well known regularity estimates for the Stokes 
semigroup (e.g. [39, Lemma 3.1]) we find constants λ1 > 0 and C1 > 0 such that
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‖e−(t−t0)Au(·, t0)‖L4(�) ≤ C1e
−λ1(t−t0)‖u(·, t0)‖L4(�) for all t > t0,

and, since for 1 ≤ p < q < ∞ and γ ∈ (0, 1) satisfying γ > 1
p

− 1
q

it holds that ‖A−γPϕ‖Lq(�) ≤
C‖ϕ‖Lp(�) for all ϕ ∈ C∞

0 (�) ([33, Lemma 2.3]), there exists C2 > 0 such that

‖Aγ e−(t−s)AA−γP(n(·, s)∇φ)‖L4(�) ≤ C2(t − s)−γ e−λ1(t−s)‖n(·, s)∇φ‖L1(�)

for all s ∈ (t0, t),

by choice of γ ∈ ( 3
4 , 1). Hence, relying on (1.6) and our assumption for 

∫
�
|n(·, t)|, we may 

estimate

‖u(·, t)‖L4(�) ≤ C1e
−λ1(t−t0)‖u(·, t0)‖L4(�) + C2K1L

∞∫
0

(t − s)−γ e−λ1(t−s) ds for all t > 0,

which due to γ < 1 concludes the proof upon obvious choice for Ku. �
The second lemma regarding the Stokes subsystem concerns norms of the spatial gradient 

of u. These results are well-known. (See e.g. [33, Lemma 2.5] and [39, Corollary 3.4] for details.)

Lemma 2.3. Assume α ∈ ( 1
2 , 1), t0 ≥ 0 and φ ∈ C2

(
�̄
)

and let p ∈ [1, ∞) and r ∈ [1, ∞] be 
such that

{
r <

2p
2−p

if p ≤ 2,

r ≤ ∞ if p > 2.

Then for any u(·, t0) ∈ D
(
Aα

r

)
there exists a constant C = C(u(·, t0), φ, p, r, L) > 0 such that 

whenever u ∈ C0
(
�̄ × [t0, T0)

)∩C2,1
(
�̄ × (t0, T0)

)
is a classical solution of (2.8) in � ×(t0, T0)

for some 0 ≤ t0 < T0 ≤ ∞ and n ∈ C0
(
�̄ × [t0, T0)

)
satisfying

‖n(·, t)‖Lp(�) ≤ L for all t ∈ (t0, T0),

with some L > 0, then

‖∇u(·, t)‖Lr(�) ≤ Ce−λ1(t−t0) + CL for all t ∈ (t0, T0).

In particular, in view of the mass conservation property of n and the Sobolev embedding the-
orem, we can easily obtain bounds independent of f for the quantity ‖u‖Lp(�) with p < ∞ from 
the previous lemma. For these potentially better bounds than the one provided by Lemma 2.2
however, we do not know the exact relation to u0.
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2.2. Logarithmic rescaling and basic a priori information on z

Now, a quite standard change in variables transformation obtained by taking n, c and u from 
Lemma 2.1 and setting

z := − ln

(
c

‖c0‖L∞(�)

)
and z0 := − ln

(
c0

‖c0‖L∞(�)

)
,

will lead to the transformed systems

⎧⎪⎪⎨
⎪⎪⎩

nt +u ·∇n = �n + ∇· (nf ′(n)∇z), x ∈ �, t > 0,

zt − u ·∇z = �z − |∇z|2 + f (n), x ∈ �, t > 0,

ut + ∇P = �u + n∇φ, x ∈ �, t > 0,

∇ · u = 0, x ∈ �, t > 0,

(2.9)

which build the basis for our analysis of the energy-type inequalities featured in Section 4.1. 
This transformation has been thoroughly used in previous literature (see e.g. [35], [40], [41]) to 
analyze systems in similar settings. We will consider (2.9) along with the boundary conditions

∂n

∂ν
= ∂z

∂ν
= 0, and u = 0 for x ∈ ∂� and t > 0, (2.10)

and initial conditions

n(x,0) = n0(x), z(x,0) = z0(x) := − ln

(
c0(x)

‖c0‖L∞(�)

)
, u = u0(x), x ∈ �.

Remark 2.4. Let f ∈ C3([0,∞)) satisfy (2.2). Assume that (n, z, u) ∈ C2,1
(
�̄ × (T1, T2)

)
is a 

classical solution of the boundary value problem (2.9), (2.10) in � × (T1, T2) with some T1 ≥ 0
and T2 ∈ (T1, ∞]. Then the solution satisfies the mass conservation property

d

dt

∫
�

n(·, t) = 0 for all t ∈ (T1, T2).

This reformulation of our previous generalized systems at hand, we immediately obtain the 
following basic information – not depending on f – about the transformed chemical concentra-
tion z.

Lemma 2.5. Let m0 > 0. Suppose that for f ∈ C3([0,∞)) satisfying (2.2) and t0 ≥ 0 the triple 
(n, z, u) ∈ C2,1

(
�̄ × (t0,∞)

)
is a classical solution of (2.9)–(2.10) in � × (t0, ∞) with the prop-

erties that n ≥ 0 in � × (t0, ∞) and 
∫
�

n(·, t0) ≤ m0. Then

∫
�

z(·, t) +
t∫

t0

∫
�

|∇z|2 ≤
∫
�

z(·, t0) + (t − t0)m0 for all t > t0. (2.11)
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Proof. Integrating the second equation of (2.9) with respect to space shows that

d

dt

∫
�

z =
∫
�

�z −
∫
�

|∇z|2 +
∫
�

f (n) +
∫
�

u · ∇z

holds for all t ∈ (t0, ∞). Making use of ∇ ·u = 0, the Neumann boundary conditions for z, n ≥ 0
and the fact that f (s) ≤ s for all s ≥ 0 we obtain, upon integration by parts, that

d

dt

∫
�

z +
∫
�

|∇z|2 ≤
∫
�

n

is valid on t ∈ (0, ∞). Due to the mass conservation we have 
∫
�

n(·, t) ≤ m0 for all t > t0 and 
therefore integrating this inequality immediately establishes (2.11). �
3. Generalized solution concept and approximate solutions

Before going into more detail for our eventual smoothness result, let us briefly review the 
solution concept of generalized solutions and the exact form of the approximate problems. These 
were already used in [38,40] for the closely related settings without fluid and in [32] for the 
system with Stokes fluid.

A global generalized solution is defined as follows (see also [38, Definition 2.1–2.3], [32, 
Definition 2.1]).

Definition 3.1. Assume that (n0, c0, u0) satisfy (1.7). Suppose that a triple (n, c, u) of functions

⎧⎪⎨
⎪⎩

n∈L1
loc

(
�̄ × [0,∞)

)
,

c ∈L∞
loc

(
�̄ × [0,∞)

)∩ L2
loc

([0,∞);W 1,2(�)
)
,

u∈L1
loc

([0,∞);W 1,1
0 (�) ;R2

)
,

(3.1)

satisfies

n ≥ 0, and c > 0, and ∇ · u = 0 a.e. in � × (0,∞), (3.2)

as well as

∇ ln(n + 1) ∈ L2
loc

(
�̄ × [0,∞)

)
and ∇ ln c ∈ L2

loc

(
�̄ × [0,∞)

)
. (3.3)

Then (n, c, u) will be called a global generalized solution of (1.3)–(1.5) if n satisfies the mass 
conservation property

∫
�

n(x, t)dx =
∫
�

n0(x)dx for a.e. t > 0,

if the inequality
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−
∞∫

0

∫
�

ln(n + 1)ϕt −
∫
�

ln(n0 + 1)ϕ(·,0)

≥
∞∫

0

∫
�

|∇ ln(n + 1)|2ϕ −
∞∫

0

∫
�

∇ ln(n + 1) · ∇ϕ +
∞∫

0

∫
�

n

n + 1
∇ ln c · ∇ϕ (3.4)

−
∞∫

0

∫
�

n

n + 1
(∇ ln(n + 1) · ∇ ln c)ϕ +

∞∫
0

∫
�

ln(n + 1)(u · ∇ϕ)

holds for each nonnegative ϕ ∈ C∞
0

(
�̄ × [0,∞)

)
, if the identity

∞∫
0

∫
�

cψt +
∫
�

c0ψ(·,0) =
∞∫

0

∫
�

∇c · ∇ψ +
∞∫

0

∫
�

ncψ −
∞∫

0

∫
�

cu · ∇ψ

is valid for any ψ ∈ L∞(� × (0,∞))∩L2
(
(0,∞);W 1,2(�)

)
compactly supported in �̄×[0, ∞)

with ψt ∈ L2(� × (0,∞)), and if furthermore the equality

∞∫
0

∫
�

u · �t +
∫
�

u0 · �(·,0) =
∞∫

0

∫
�

∇u · ∇� −
∞∫

0

∫
�

n∇φ · �

holds for all � ∈ C∞
0,σ (� × [0,∞)).

It can easily be verified that the supersolution property in (3.4) combined with the mass con-
servation (2.6) is sufficient to obtain that sufficiently regular global generalized solutions are also 
global solutions in the classical sense (see [40, Remark 2.1 ii)]), i.e. if (n, c, u) is a global gen-
eralized solution in the sense of Definition 3.1 and satisfies n ≥ 0 and c > 0 in �̄ × [0, ∞) as 
well as (n, c, u) ∈C0

(
�̄ × [0,∞)

)∩C2,1
(
�̄ × (0,∞)

)
then (n, c, u) solves (2.1) in the classical 

sense.
Generalized solutions in the sense of Definition 3.1 are constructed by an approximation pro-

cedure relying on regularizations in the form of (2.9) with suitably chosen f ≡ fε ([40,41,32]). 
For this we first fix a cut-off function ρ ∈ C∞([0,∞)) fulfilling ρ ≡ 1 in [0, 1] and ρ ≡ 0 in 
[2, ∞) and define the family of functions {fε}ε∈(0,1) ⊆ C∞([0,∞)) given by

fε(s) :=
s∫

0

ρ(εσ )dσ, s ≥ 0. (3.5)

Every function in this family evidently has the properties

fε(0) = 0 and 0 ≤ f ′
ε ≤ 1 on [0,∞), (3.6)

as well as
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fε(s) = s for all s ∈ [0, 1
ε
] and f ′

ε(s) = 0 for all s ≥ 2
ε
.

Furthermore it holds that

fε(s) ↗ s and f ′
ε(s) ↗ 1 as ε ↘ 0

for each s ≥ 0. According to this choice we can ensure that for the local solutions to (2.1)–(2.4)
nε is bounded throughout � ×(0, Tmax), and that cε is strictly positive on �̄×(0, Tmax), meaning 
that the most troublesome terms of the extensibility criterion in (2.5) remain bounded, whence 
the further estimation of remaining less troublesome terms in fact shows that the solution actually 
is global ([32]).

Relying on the logarithmic transformation again we obtain for this family of regularizing 
functions, (2.9)–(2.10) systems of the form

⎧⎪⎪⎨
⎪⎪⎩

nεt +uε ·∇nε = �nε + ∇· (nεf
′
ε(nε)∇zε), x ∈ �, t > 0,

zεt − uε ·∇zε = �zε − |∇zε|2 + fε(nε), x ∈ �, t > 0,

uεt + ∇Pε = �uε + nε∇φ, x ∈ �, t > 0,

∇ · uε = 0, x ∈ �, t > 0,

(3.7)

with boundary conditions

∂nε

∂ν
= ∂zε

∂ν
= 0, and uε = 0 for x ∈ ∂� and t > 0, (3.8)

and initial conditions

nε(x,0) = n0(x), zε(x,0) = z0(x) = − ln

(
c0(x)

‖c0‖L∞(�)

)
, uε(x,0) = u0(x), x ∈ �.

(3.9)

According to [32] also these problems posses global classical solutions, with again nε and zε

being nonnegative, nε still satisfying the mass conservation property as in Remark 2.4 and 
(nε, zε, uε) correspond to solutions of systems of the form (2.1) by means of the substitution 

zε = − ln
(

cε‖c0‖L∞(�)

)
.

The following result summarizes the result on approximation of the generalized solutions 
established in [32, Lemma 2.5].

Lemma 3.2. Let (1.7) hold and denote by (n, c, u) the global generalized solution of (1.3)–(1.5)
from Theorem A. Then there exists a sequence {εj }j∈N ⊂ (0, 1) such that εj ↘ 0 as j → ∞ and 
such that, for the choice of f ≡ fε in (2.1), the corresponding solution (nε, cε, uε) of (2.1)–(2.4)
satisfies

nε → n, and cε → c, as well as uε → u a.e. in � × (0,∞),

as ε = εj ↘ 0.



T. Black / J. Differential Equations 265 (2018) 2296–2339 2309
4. Eventual smoothness of small-data generalized solutions

4.1. Nonincreasing energy for small mass

We will appropriately adjust the functional methods employed in [41] to our needs. In fact we 
will study the behavior of functionals of the form

Fμ(n, z) :=
∫
�

n ln
n

μ
+ 1

2

∫
�

|∇z|2 (4.1)

for μ > 0, 0 ≤ n ∈ C0
(
�̄
)

and z ∈ C1
(
�̄
)
. We will show that a suitable condition on the size 

of Fμ

(
n(·, t0), z(·, t0)

)
for some t0 ≥ 0 implies that Fμ is non-increasing from that time onward, 

along the trajectory of classical solutions to the system (2.9). Since we are working with the 
more generalized version of (3.7) almost all of the properties of Fμ also hold in our limit case 
f (ξ) ≡ ξ obtained by taking ε ↘ 0 in (3.7). In particular, this will also hold true for the condi-
tional regularity estimates discussed in Section 4.2.

We start with some basic relations between Fμ and the quantities appearing therein.

Lemma 4.1. For μ > 0 let Fμ be given by (4.1). Then for all nonnegative n ∈ C0
(
�̄
)

and any 
z ∈ C1

(
�̄
)

we have

∫
�

n| lnn| ≤ Fμ(n, z) + lnμ

∫
�

n + 2|�|
e

, (4.2)

and ∫
�

|∇z|2 ≤ 2Fμ(n, z) + 2μ|�|
e

, (4.3)

as well as

Fμ(n, z) ≥ −μ|�|
e

. (4.4)

Proof. Making use of the facts that n is nonnegative and that −ξ ln ξ ≤ 1
e

for all ξ > 0 we can 
see that∫

�

n| lnn| = Fμ(n, z) − 1

2

∫
�

|∇z|2 + lnμ

∫
�

n − 2
∫

{n<1}
n lnn ≤ Fμ(n, z) + lnμ

∫
�

n + 2|�|
e

,

proving (4.2). Similarly, we may compute

1

2

∫
�

|∇z|2 = Fμ(n, z) − μ

∫
�

n

μ
ln

n

μ
≤ Fμ(n, z) + μ|�|

e
,

which first proves (4.3) and, upon reordering and dropping the nonnegative term, also (4.4). �
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The main ingredient in showing that this generalized energy is non-increasing (after some 
waiting time) will be the following differential inequality.

Lemma 4.2. Let m > 0 and T ≥ 0 and assume that for f ∈ C3([0,∞)) satisfying (2.2) the triple 
(n, z, u) ∈ C2,1

(
�̄ × (T ,∞)

)
is a classical solution of (2.9)–(2.10) in � × (T , ∞) satisfying ∫

�
|u(·, T )|4 ≤ �, and 

∫
�

n(·, t) ≤ m for all t > T , as well as n > 0 in � × (T , ∞). Then for all 
μ > 0 we have

d

dt
Fμ

(
n(·, t), z(·, t))+ ∫

�

|∇n(·, t)|2
n(·, t)

+
⎧⎨
⎩1

2
− K3

2

∫
�

|∇z(·, t)|2 − K2
3 Ku|�| 1

4
(
�e−λ1(t−T ) + m

)⎫⎬⎭
∫
�

|�z(·, t)|2 ≤ 0

for all t > T , with K3 as in (1.14) and Ku, λ1 provided by Lemma 2.2.

Proof. Since n is positive in �̄ × (T , ∞) we see by utilizing integration by parts that

d

dt
Fμ(n, z) = −

∫
�

|∇n|2
n

−
∫
�

|�z|2 +
∫
�

�z|∇z|2 −
∫
�

�z(u · ∇z) (4.5)

holds for all t > T , where we used the first and second equations of (2.9) and ∇ · u = 0. By 
Young’s inequality and (1.14) we have

∫
�

�z|∇z|2 ≤ 1

2

∫
�

|�z|2 + 1

2

∫
�

|∇z|4 ≤
⎧⎨
⎩1

2
+ K3

2

∫
�

|∇z|2
⎫⎬
⎭
∫
�

|�z|2 for all t > T .

(4.6)

To estimate the last term in (4.5), we note that by Hölder’s inequality and (1.14) there holds 
‖∇z‖L4(�) ≤ K2

3 |�| 1
4 ‖�z‖L2(�) for all t > T , which together with Lemma 2.2 implies

∫
�

|�z(u · ∇z)| ≤ ‖�z‖L2(�)‖u‖L4(�)‖∇z‖L4(�)

≤ K2
3 |�| 1

4 ‖�z‖2
L2(�)

‖u‖L4(�)

≤ K2
3 Ku|�| 1

4
(
�e−λ1(t−T ) + m

)∫
�

|�z|2 for all t > T , (4.7)

since 
∫
�

n ≤ m in (T , ∞). Combining (4.5)–(4.7) and reordering appropriately completes the 
proof. �
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In view of the lemma above, the possibility for an inequality of the form d
dt

Fμ

(
n(·, t), z(·, ))≤

0 will depend on the nonnegativity of the term 1
2 − K3

2

∫
�
|∇z(·, t)|2 − K2

3 Ku|�| 1
4 (�e−λ1t + m). 

Most of all, this will require some large waiting time t0 and some small bound on 
∫
�

n in order to 
treat the term �e−λ1(t−T ) + m. Similarly to the fluid free case, we further require that the energy 
at a certain time is already sufficiently small, which will provide control of the term containing ∫
�
|∇z|2.

Lemma 4.3. Let T ≥ 0 and 
(

4K2
3Ku|�| 1

4

)−1
> m0 > 0, with K3 and Ku provided by (1.14)

and Lemma 2.2, respectively. Suppose that for f ∈ C3([0,∞)) satisfying (2.2) the triple 
(n, z, u) ∈ C2,1

(
�̄ × (T ,∞)

)
is a classical solution of (2.9)–(2.10) in � × (T , ∞) satisfy-

ing 
∫
�
|u(·, T )|4 ≤ � and m := ∫

�
n(·, T ) ≤ m0, as well as n > 0 in � × (T , ∞) and z ∈

C0
([T ,∞);W 1,2(�)

)
. Then if there exist t0 ≥ T and μ > 0 such that

�e−λ1(t0−T ) + m0 ≤ 1

4K2
3 Ku|�| 1

4

(4.8)

and

Fμ

(
n(·, t0), z(·, t0)

)
<

1

4K3
− μ|�|

e
, (4.9)

then

d

dt
Fμ

(
n(·, t), z(·, t))≤ 0 for all t > t0. (4.10)

Furthermore, one can find κ > 0 such that

t∫
t0

∫
�

|∇n|2
n

+ κ

t∫
t0

∫
�

|�z|2 <
1

4K3
for all t > t0. (4.11)

Proof. First we note that in view of Remark 2.4 the inequality in (4.8) implies that

�e−λ1(t−T ) + m < �e−λ1(t0−T ) + m0 ≤ 1

4K2
3Ku|�| 1

4

for all t > t0. (4.12)

Furthermore, recalling Lemma 4.1 we see that (4.9) implies K3
2

∫
�
|∇z(·, t0)|2 ≤ K3Fμ

(
n(·, t0),

z(·, t0)
)+ K3μ|�|

e
< 1

4 . Therefore, the set

S :=
{
T ′ > t0

∣∣∣ K3

2

∫
�

|∇z(·, t)|2 <
1

4
for all t ∈ [t0, T ′)

}

is not empty and TS := supS is a well-defined element of (t0, ∞]. In order to verify that actually 
TS = ∞ we assume TS < ∞ an derive a contradiction. To this end, we make use of Lemma 4.2
to obtain from the definition of TS and (4.12) that
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d

dt
Fμ

(
n(·, t), z(·, t))+ ∫

�

|∇n(·, t)|2
n(·, t) + κ

∫
�

|�z(·, t)|2 ≤ 0 for all t ∈ (t0, TS), (4.13)

with some small κ > 0. Due to the assumed W 1,2(�)-valued continuity of z, the mapping 
[t0, ∞) � t �→ Fμ

(
n(·, t), z(·, t)) is continuous as well and we infer from the definition of TS

that K3
2

∫
�
|∇z|2 < 1

4 for all t ∈ (t0, TS), but

K3

2

∫
�

|∇z(·, TS)|2 = 1

4
. (4.14)

Integrating (4.13) we obtain

Fμ

(
n(·, TS), z(·, TS)) ≤ Fμ

(
n(·, t0), z(·, t0)

)
,

which by Lemma 4.1 and (4.9) shows

∫
�

|∇z(·, TS)|2 ≤ 2Fμ

(
n(·, TS), z(·, TS)) + 2μ|�|

e
≤ 2Fμ

(
n(·, t0), z(·, t0)

)+ 2μ|�|
e

<
1

2K3
,

contradicting (4.14) and thus proving TS = ∞. Therefore, the inequality (4.13) actually holds for 
all t > t0, which firstly proves (4.10) and secondly, upon integration of (4.13) shows (4.11) due 
to (4.9). �
4.2. Conditional regularity estimates

In this section we will establish appropriate Hölder bounds for the components of our approx-
imate solutions under the assumption that we already have control of 

∫
�
|∇z|p for some p > 2. 

In fact, as we will see in Section 4.3, obtaining the bound assumed throughout the section for 
the special value of p = 4, will only require bounds on 

∫
�

n| lnn| and 
∫
�
|∇z|2, which (at least 

for possibly large times) can be obtained by relying on our analysis of Fμ (see Section 4.4). Our 
arguments here are inspired by an approach illustrated in [41, Section 4.2 and 4.3].

Lemma 4.4. Let p > 2, m0 > 0, M > 0 and τ > 0. Then there exists C = C(p, m0, M, τ) > 0
such that if for f ∈ C3([0,∞)) satisfying (2.2) and some t0 ≥ 0 the triple (n, z, u) ∈
C2,1

(
�̄ × (t0,∞)

)
is a classical solution of (2.9)–(2.10) in � × (t0, ∞) satisfying n ≥ 0 in 

� × (t0, ∞) and

∫
�

n(·, t0) ≤ m0 (4.15)

as well as ∫
�

|∇z(·, t)|p ≤ M for all t > t0,
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then

‖n(·, t)‖L∞(�) ≤ C for all t ≥ t0 + τ. (4.16)

Proof. The proof is based on arguments employed in e.g. [41, Lemma 4.4]. We let T > t0 + 1
and define

S(T ) := max {S1, S2(T )}

with

S1 := max
t∈[t0,t0+1](t − t0)‖n(·, t)‖L∞(�) and S2(T ) := max

t∈[t0+1,T ] ‖n(·, t)‖L∞(�).

Now, in order to estimate S(T ) from above, we let t1(t) := max{t − 1, t0} and for t ∈ (t0, T )

represent n(·, t) according to

n(·, t) = e(t−t1)�n(·, t1) +
t∫

t1

e(t−s)�
[
∇ ·(n(·, s)f ′(n(·, s))∇z(·, s))− (u(·, s) ·∇n(·, s))]ds

=: e(t−t1)�n(·, t1) + I (t1, t), (4.17)

where (eσ�)σ≥0 denotes the heat semigroup with Neumann boundary data in �. Fixing some 
q ∈ (2, p), we may rely on well known estimates for the heat semigroup (e.g. [36, Lemma 1.3]
and [8, Lemma 3.3]) to find C1 > 0 and C2 > 0 such that for all σ ∈ (0, 1) there holds

‖eσ�ϕ‖L∞(�) ≤ C1σ
−1‖ϕ‖L1(�) for all ϕ ∈ L1(�) (4.18)

and

‖eσ�∇ · ϕ‖L∞(�) ≤ C2σ
−γ ‖ϕ‖Lq(�) for all ϕ ∈ C1(�̄) such that ϕ · ν = 0 on ∂�,

(4.19)

with γ := 1
2 + 1

q
< 1. In the case t ∈ (t0, t0 + 1], when t1(t) = t0, we thus have

∥∥e(t−t0)�n(·, t0)
∥∥

L∞(�)
≤ C1m0(t − t0)

−1, (4.20)

thanks to (4.15) and (4.18). Furthermore, making use of ∇ ·u = 0, the fact that f ′ ≤ 1 on [0, ∞), 
and (4.19) we see that

‖I (t0, t)‖L∞(�) ≤ C2

t∫
t0

(t − s)−γ
(∥∥n(·, s)∇z(·, s)∥∥

Lq(�)
+ ∥∥n(·, s)u(·, s)∥∥

Lq(�)

)
ds

holds for all t ∈ (t0, t0 + 1]. Herein, multiple applications of the Hölder inequality show that
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∥∥n(·, s)∇z(·, s)∥∥
Lq(�)

≤ ‖n(·, s)‖a
L∞(�)‖n(·, s)‖1−a

L1(�)
‖∇z(·, s)‖Lp(�)

≤ m1−a
0 M

1
p ‖n(·, s)‖a

L∞(�) for all s > t0 (4.21)

with a := 1 − p−q
pq

∈ (0, 1) and

∥∥n(·, s)u(·, s)∥∥
Lq(�)

≤ C3(1 + m0)m
1−a
0 ‖n(·, s)‖a

L∞(�) for all s > t0, (4.22)

for some C3 > 0, where ‖u(·, t)‖Lp(�) ≤ C3(1 + m0) in view of Lemma 2.3. In particular, re-
calling the definition of S1 we have

‖I (t0, t)‖L∞(�) ≤ C4S
a
1

t∫
t0

(t − s)−γ (s − t0)
−a ds for all t ∈ (t0, t0 + 1], (4.23)

with some C4 > 0. Since 
∫ t

t0
(t − s)−γ (s − t0)

−a ds = (t − t0)
1−γ−a

∫ 1
0 (1 − ζ )−γ ζ−a dζ ≤ B(1 −

a, 1 −γ ) is finite according to the facts that a < 1 and γ < 1, we consequently see that collecting 
(4.17), (4.20), and (4.23) shows that there exists some C5 > 0 such that

(t − t0)‖n(·, t)‖L∞(�) ≤ C5 + C5S
a
1 for all t ∈ (t0, t0 + 1],

which, due to a < 1, implies that

S1 ≤ C6 := max
{
1, (2C5)

1
1−a
}
. (4.24)

The estimation of S2(T ) follows a similar path. We fix t ∈ [t0 + 1, T ] and obtain from (4.17), 
(4.18), and (4.19) that

‖n(·, t)‖L∞(�) ≤ ∥∥e�n(·, t − 1)
∥∥

L∞(�)
+ ‖I (t − 1, t)‖L∞(�)

≤ C1‖n(·, t − 1)‖L1(�)

+ C2

t∫
t−1

(t − s)−γ
(∥∥n(·, s)∇z(·, s) − n(·, s)u(·, s)∥∥

Lq(�)

)
ds,

from which, again by relying on (4.15), (4.21), and (4.22), we infer that

‖n(·, t)‖L∞(�) ≤ C1m0 + C2m
1−a
0

(
M

1
p + C3(1 + m0)

) t∫
t−1

(t − s)−γ ‖nε(·, s)‖a
L∞(�) ds

holds for all t ∈ [t0 + 1, T ]. By the definition of S2(T ) we have ‖n(·, s)‖a
L∞(�) ≤ Sa

2 (T ) for all 
s ∈ [t0 + 1, T ], so that in both of the cases t ∈ [t0 + 1, t0 + 2] and t > t0 + 2 we may estimate
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t∫
t−1

(t − s)−γ ‖n(·, s)‖a
L∞(�) ds ≤ Sa

1

t∫
t−1

(t − s)−γ (s − t0)
−a ds + Sa

2 (T )

t∫
t−1

(t − s)−γ ds

≤ C7S
a
1 + 1

1 − γ
Sa

2 (T ),

with some C7 > 0. Collecting these estimates and making use of (4.24) we find C8 > 0 such that

‖n(·, t)‖L∞(�) ≤ C8 + C8S
a
2 (T ) for all t ∈ [t0 + 1, T ],

which implies S2(T ) ≤ C9 := max
{
1, (2C8)

1
1−a
}

for all T > t0 + 1. Finally, combining both 
estimates for S1 and S2(T ) establishes (4.16) if we let C := max{S1, 

S1
τ

, C9}. �
With the improved regularity for n at hand, we can easily derive time local Hölder continuity 

of n and u under the same assumptions as above.

Lemma 4.5. Let p > 2, m0 > 0, M > 0 and τ > 0. Then there exist some θ = θ(p) ∈ (0, 1) and 
C = C(p, m0, M, τ) > 0 such that if f ∈ C3([0,∞)) satisfies (2.2) and if for some t0 ≥ 0 the 
triple (n, z, u) ∈ C2,1

(
�̄ × (t0,∞)

)
is a classical solution of (2.9)–(2.10) in � × (t0, ∞) with the 

properties that n ≥ 0 in � × (t0, ∞) and

∫
�

n(·, t0) ≤ m0, (4.25)

as well as ∫
�

|∇z(·, t)|p ≤ M for all t > t0, (4.26)

then

‖n‖
C

θ, θ
2
(
�̄×[t,t+1]) ≤ C and ‖u‖

C
θ, θ

2
(
�̄×[t,t+1]) ≤ C for all t ≥ t0 + τ.

Proof. With α given by (1.7) we fix β ∈ ( 1
2 , α
)
. Then we apply the fractional power Aβ of the 

L2-realization of the Stokes operator to a variation-of-constants representation for u to obtain 
the identity

Aβu(·, t) = Aβe−(t−t1)Au(·, t1) +
t∫

t1

Aβe−(t−s)AP (n(·, s)∇φ) ds, t ≥ t1,

where t1 := max{t − 1, t0}. Recalling that the positive sectorial Stokes operator A generates the 
contracting semigroup 

(
e−tA

)
t≥0 in L2

σ (�) and the fractional powers of the Stokes operator 
fulfill the decay property
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∥∥Aβe−tA
∥∥≤ C1t

−βe−λ1t for all t > 0,

with some C1 > 0 ([26, Theorem 37.5]), we can make use of the boundedness of P in L2(�), 
(1.6), (4.25), and Lemma 2.3 to obtain C1 > 0 such that

∥∥Aβu(·, t)∥∥
L2(�)

≤ ∥∥Aβe−(t−t1)Au(·, t1)
∥∥

L2(�)
+

t∫
t1

∥∥Aβe−(t−s)AP (n(·, s)∇φ)
∥∥

L2(�)
ds

≤ C1(t − t1)
−β + C1K1

t∫
t1

(t − s)−β‖n(·, s)‖L2(�) ds (4.27)

for all t > t1. Since the assumptions (4.25) and (4.26) allow for an application of Lemma 4.4, we 
can find C2 > 0 such that ‖n(·, t)‖L2(�) ≤ C2 for all t ≥ t0 + τ . Combining β < 1 with the fact 
that in both cases (t − t1)

1−β ≤ 1 and (t − t1)
−β ≤ 1 + τ−β hold for t ≥ t0 + τ , we infer from 

(4.27) the existence of some C3 := C3(p, m0, M, τ) > 0 such that

∥∥Aβu(·, t)∥∥
L2(�)

≤ C3 for all t ≥ t0 + τ.

Considering that since β ∈ ( 1
2 , α) the domains of fractional powers of the Stokes semigroup 

satisfy D(Aα) ↪→ D(Aβ) ↪→ Cθ1
(
�̄
)

for any θ1 ∈ (0, 2β − 1) ([27, Lemma III.2.4.3] and [5, 
Theorem 5.6.5]), the previous estimate entails the existence of some C4 > 0 such that

‖u(·, t)‖Cθ1
(
�̄
) ≤ C4 for all t ≥ t0 + τ.

Making use of similar arguments we can find C5 > 0 such that

∥∥Aβu(·, t) − Aβu(·, t2)
∥∥

L2(�)
≤ C5(t − t2)

1−β for all t2 ≥ t0 + τ and t ∈ [t2, t2 + 1],

which together with (4.27) readily implies the Hölder regularity of u for some θ2 := min{1 −
β, θ1}. For the regularity of n we first note that by Lemma 4.4 we obtain a constant C6 :=
C6(p, m0, M, τ) > 0 such that n(x, t) ≤ C6 for all x ∈ � and t ≥ t0 + τ

2 . Hence, the function n
is a bounded distributional solution to the parabolic equation

ñt − ∇ · a(x, t, ñ,∇ñ) = 0 in � × (t0,∞),

with a(x, t, ñ, ∇ñ) := ∇ñ + n(x, t)f ′(n(x, t)
)∇z(x, t) − un and a(x, t, ñ, ∇ñ) · ν = 0 on the 

boundary of �. Considering that with the arguments illustrated in the first part of the proof we 
can find C7 := C7(p, m0, M, τ) > 0 such that |u(x, t)| ≤ C7 for all x ∈ � and t ≥ t0 + τ

2 , we let 
ψ0(x, t) := n(x, t)2|∇z(x, t)|2 +|u(x, t)n(x, t)|2 and ψ1(x, t) := C6|∇z(x, t)| +C6C7 and then 
see by means of Young’s inequality and (3.6) that

a(x, t, ñ,∇ñ)∇ñ ≥ 1

2
|∇ñ|2 − ψ0 and |a(x, t, ñ,∇ñ)| ≤ |∇ñ(x, t)| + ψ1(x, t)
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for all (x, t) ∈ � ×(t0 + τ
2 , ∞). Since (4.26) provides a bound for |∇z|2 in L∞

(
(t0,∞);Lp

2 (�)
)

, 
we obtain from a well known result in [23, Theorem 1.3] that ‖n‖

C
θ3,

θ3
2
(
�̄×[t,t+1]) ≤ C8 for all 

t > t0 + τ with some θ3(p) > 0 and C8 > 0. Picking θ ∈ (0, min{θ2, θ3}) the claim follows 
immediately. �

In order to prepare a further improvement on the regularity we will show the following.

Lemma 4.6. Let p > 2, m0 > 0, m1 > 0, M > 0 and T > 0. Then there exists C =
C(p, m0, m1, M, T ) > 0 such that if for f ∈ C3([0,∞)) satisfying (2.2) and t0 ≥ 0 the triple 
(n, z, u) ∈ C0

(
�̄ × [t0,∞)

) ∩ C2,1
(
�̄ × (t0,∞)

)
is a classical solution of (2.9)–(2.10) in 

� × (t0, ∞) with the properties that n ≥ 0 in � × (t0, ∞) and

∫
�

n(·, t) ≤ m0 for all t > t0, (4.28)

and ∫
�

z(·, t0) ≤ m1, (4.29)

as well as ∫
�

|∇z(·, t)|p ≤ M for all t > t0, (4.30)

then

z(x, t) ≤ C for all x ∈ � and t ∈ (t0, T ).

Proof. Because of the assumption p > 2 we have W 1,p(�) ↪→ C
1− 2

p (�) and thus there exists 
some constant C1 > 0 such that for each ϕ ∈ W 1,p(�) it holds that

|ϕ(x) − ϕ(y)| ≤ C1|x − y|1− 2
p ‖∇ϕ‖Lp(�) for all x, y ∈ �. (4.31)

By Lemma 2.5, Remark 2.4 and the assumptions (4.28) and (4.29) we see that

∫
�

z(·, t) ≤
∫
�

z(·, t0) + m0(t − t0) ≤ m1 + m0T for all t ∈ (t0, T ),

whence for any such t ∈ (t0, T ) we can find x0(t) ∈ � such that

z(x0(t), t) ≤ m1 + m0T

|�| .

Therefore, (4.31) in conjunction with the assumption (4.30) shows that



2318 T. Black / J. Differential Equations 265 (2018) 2296–2339
z(x, t) ≤ z(x0(t), t) + ∣∣z(x, t) − z(x0(t), t)
∣∣

≤ m1 + m0T

|�| + C1|x − x0(t)|1− 2
p ‖∇z(·, t)‖Lp(�)

≤ m1 + m0T

|�| + C2M
1
p

holds for all x ∈ �, with C2 only depending on p and the diameter of �. �
Drawing on the now proven time-local bound for z, we can rely on the Hölder estimates for n

and u and well known parabolic regularity theory to the following set of further bounds.

Lemma 4.7. Let p > 2, m0 > 0, m1 > 0, M > 0, T > 0 and τ > 0. Then there exist θ = θ(p) ∈
(0, 1) and C = C(p, m0, m1, M, T , τ) > 0 such that if for f ∈ C3([0,∞)) satisfying (2.2)
and t0 ≥ 0 the triple (n, z, u) ∈ C0

(
�̄ × [t0,∞)

) ∩ C2,1
(
�̄ × (t0,∞)

)
is a classical solution 

of (2.9)–(2.10) in � × (t0, ∞) with the properties that n ≥ 0 and z ≥ 0 in � × (t0, ∞) and∫
�

n(·, t0) ≤ m0,

and ∫
�

z(·, t0) ≤ m1,

as well as ∫
�

|∇z(·, t)|p ≤ M for all t > t0,

then

‖n‖
C

2+θ,1+ θ
2
(
�̄×[t0+τ,T ]) ≤ C, ‖z‖

C
2+θ,1+ θ

2
(
�̄×[t0+τ,T ]) ≤ C, ‖u‖

C
2+θ,1+ θ

2
(
�̄×[t0+τ,T ]) ≤ C.

(4.32)

Proof. By Lemma 4.6 and the fact that z is nonnegative we have

0 ≤ z ≤ C1 in � × (t0, T )

with some C1 = C1(p, m0, m1, M, T ) > 0. Thus, letting c̃ := e−z we obtain

e−C1 ≤ c̃ ≤ 1 in � × (t0, T ). (4.33)

Furthermore, c̃ solves the Neumann boundary value problem c̃t = �c̃ + u∇ c̃ − f (n)c̃ in � ×
(t0, ∞) with Hölder continuous coefficients, since Lemma 4.5 entails the existence of θ1 ∈ (0, 1)

and C2 = C2(p, m0, M, τ) > 0 such that
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‖n‖
C

θ1,
θ1
2
(
�̄×[t0+ τ

4 ,T ]) + ‖u‖
C

θ1,
θ1
2
(
�̄×[t0+ τ

4 ,T ]) ≤ C2.

Hence, according to standard parabolic Schauder theory ([16, III.5.1 and IV.5.3]), there exists 
some θ2 ∈ (0, 1) and C3 = C3(p, m0, m1, M, T , τ) such that

‖c̃‖
C

2+θ2,1+ θ2
2
(
�̄×[t0+ τ

2 ,T ]) ≤ C3,

yielding the regularity assertion for z featured in (4.32) due to the lower bound for c̃ in (4.33). Re-
lying on parabolic Schauder theory once more, we can conclude from the first equation that also 
n satisfies (4.32). That also u satisfies (4.32) can be readily obtained by well known smoothing 
properties of the Stokes operator (see e.g. [9, Theorem 2.8], [2, Theorem 1.1]) and the bounded-
ness of n established in Lemma 4.4. �
4.3. Conditional estimates for 

∫
�
|∇z|4 and 

∫
�

n2

In this section we will focus on obtaining a bound on 
∫
�
|∇z|4, which in view of Section 4.2 is 

the main requirement for the regularity estimates we will depend on later. As a preliminary step 
we derive some basic differential inequalities through standard testing procedures.

Lemma 4.8. Suppose that for f ∈ C3([0,∞)) satisfying (2.2) and t0 ≥ 0 the triple (n, z, u) ∈
C2,1

(
�̄ × (t0,∞)

)
is a classical solution of (2.9)–(2.10) in � × (t0, ∞). Then

d

dt

∫
�

n2 +
∫
�

|∇n|2 ≤
∫
�

n2|∇z|2 for all t > t0. (4.34)

Proof. By simply testing the first equation of (2.9) with n, we can rely on integration by parts, 
one application of Young’s inequality, and the fact |f ′(n)| ≤ 1 to easily arrive at (4.34). �
Lemma 4.9. For any η ∈ (0, 54 ) there exists C > 0 such that if for f ∈ C3([0,∞)) satisfying 
(2.2) and t0 ≥ 0 the triple (n, z, u) ∈ C2,1

(
�̄ × (t0,∞)

)
is a classical solution of (2.9)–(2.10) in 

� × (t0, ∞) with n ≥ 0 in � × (t0, ∞), then

d

dt

∫
�

|∇z|4 +
(

5

2
− 2η

)∫
�

∣∣∣∇|∇z|2
∣∣∣2

≤ 8
∫
�

|∇z|6 + 12

η

∫
�

n2|∇z|2 + 4
∫
�

|∇z|4|∇u| + C

⎛
⎝∫

�

|∇z|2
⎞
⎠

2

(4.35)

holds for all t > t0.

Proof. We differentiate the second equation of (2.9) with regard to space and multiply by 
|∇z|2∇z. In the resulting equality we can employ the identity ∇z · ∇�z = 1

2�|∇z|2 − |D2z|2 to 
obtain upon integration by parts that
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d

dt

∫
�

|∇z|4 + 2
∫
�

∣∣∇|∇z|2∣∣2 + 4
∫
�

|∇z|2|D2z|2

= −4
∫
�

|∇z|2∇z · ∇|∇z|2 − 4
∫
�

|∇z|2f (n)�z − 4
∫
�

f (n)∇|∇z|2 · ∇z

− 4
∫
�

|∇z|2∇z · (∇u · ∇z) + 2
∫
∂�

|∇z|2 ∂|∇z|2
∂ν

(4.36)

holds for all t > t0, due to the fact that u is divergence free and the assumed boundary conditions. 
Drawing on arguments first employed in [13, Proposition 3.2], we can make use of the facts 

that ∂|∇z|2
∂ν

≤ C1|∇z|2 on ∂� holds for some C1 > 0 only depending on � ([21, Lemma 4.2]) 
and that for fixed η ∈ (0, 54 ) there exists C2 > 0 such that ‖|∇z|2‖L2(∂�) ≤ η‖∇|∇z|2‖L2(�) +
C2‖∇z‖L2(�) (cf. [24, Remark 52.9]), to obtain

2
∫
∂�

|∇z|2 ∂|∇z|2
∂ν

≤ η

∫
�

∣∣∇|∇z|2∣∣2 + C3

(∫
�

|∇z|2
)2

for all t > t0, (4.37)

with some C3 > 0. For the remaining integrals, we note that since f (n) ≤ n and |�z|2 ≤ 2|D2z|2
by the Cauchy–Schwarz inequality, we can employ Young’s inequality to see that

−4
∫
�

|∇z|2∇z · ∇|∇z|2 ≤ 1

2

∫
�

∣∣∇|∇z|2∣∣2 + 8
∫
�

|∇z|6 for all t > t0, (4.38)

−4
∫
�

|∇z|2f (n)�z ≤ η

∫
�

|∇z|2|�z|2 + 4

η

∫
�

n2|∇z|2

≤ 2η

∫
�

|∇z|2|D2z|2 + 4

η

∫
�

n2|∇z|2 for all t > t0, (4.39)

as well as

−4
∫
�

f (n)∇|∇z|2 · ∇z ≤ η

2

∫
�

∣∣∇|∇z|2∣∣2 + 8

η

∫
�

n2|∇z|2 for all t > t0. (4.40)

Collecting (4.36)–(4.40) we thus obtain

d

dt

∫
�

|∇z|4 +
(

3

2
− 3

2
η

)∫
�

∣∣∇|∇z|2∣∣2 + (4 − 2η)

∫
�

|∇z|2|D2z|2

≤ 8
∫
�

|∇z|6 + 12

η

∫
�

n2|∇z|2 + 4
∫
�

|∇z|4|∇u| + C3

(∫
�

|∇z|2
)2

for all t > t0.

Due to the pointwise inequality 
∣∣∇|∇z|2∣∣2 ≤ 4|D2z|2|∇z|2 this readily implies (4.35). �
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Combination of the two prepared inequalities will now result in the desired bounds for ∫
�
|∇z|4 and 

∫
�

n2, if we assume that we already have suitable bounds for the quantities 
∫
�

n lnn

and 
∫
�
|∇z|2. The bounds on these quantities will later on be obtained from the energy functional 

upon the requirement that 
∫
�

n0 is small.

Lemma 4.10. Let K2 be as in (1.13). Then for all m0 > 0, each L > 0 and any M ∈ (0, 1
4K2

)
and τ > 0 there exists C > 0 such that if for f ∈ C3([0,∞)) satisfying (2.2) and some t0 ≥ 0
the triple (n, z, u) ∈ C2,1

(
�̄ × (t0,∞)

)
is a classical solution of (2.9)–(2.10) in � × (t0, ∞)

satisfying n ≥ 0 in � × (t0, ∞) and ∫
�

n(·, t0) ≤ m0, (4.41)

as well as ∫
�

n(·, t)| lnn(·, t)| ≤ L and
∫
�

|∇z(·, t)|2 ≤ M for all t > t0, (4.42)

then ∫
�

n2(·, t) ≤ C and
∫
�

|∇z(·, t)|4 ≤ C for all t ≥ t0 + τ. (4.43)

Proof. First, we note that due to M < 1
4K2

, by continuity, one can find some small η ∈ (0, 1)

such that

M <
(2 − 2η)(1 − η)

8K2(1 + η)
. (4.44)

Now, assuming (4.41) and (4.42) to hold, we combine the inequalities established in Lemma 4.8
and Lemma 4.9 to obtain

d

dt

⎧⎨
⎩
∫
�

n2 +
∫
�

|∇z|4
⎫⎬
⎭+

∫
�

|∇n|2 +
(5

2
− 2η

)∫
�

∣∣∇|∇z|2∣∣2 (4.45)

≤
(

1 + 12

η

)∫
�

n2|∇z|2 + 8
∫
�

|∇z|6 + 4
∫
�

|∇z|4|∇u| + C1M
2 for all t > t0,

with some C1 > 0. Herein, Young’s inequality provides C2 > 0 such that

(
1 + 12

η

)∫
�

n2|∇z|2 ≤ 8η

∫
�

|∇z|6 + C2

∫
�

n3 for all t > t0. (4.46)

To further control the term containing n3, we recall that by a variant of the Gagliardo–Nirenberg 
inequality (cf. [3, (22)]) and Remark 2.4 we have
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C2

∫
�

n3 ≤ 1

2L

⎛
⎝∫

�

|∇n|2
⎞
⎠
⎛
⎝∫

�

n| lnn|
⎞
⎠+ C3

⎛
⎝∫

�

n

⎞
⎠

3

+ C3

≤ 1

2

∫
�

|∇n|2 + C3m
3
0 + C3 for all t > t0, (4.47)

with some C3 > 0. Returning to the analyzation of the remaining terms in (4.45), we observe that 
by Hölder’s inequality, Lemma 2.3 combined with (4.41), the Gagliardo–Nirenberg inequality, 
and finally Young’s inequality we can find C4, C5, C6 > 0 such that

4
∫
�

|∇z|4|∇u| ≤ 4
∥∥|∇z|2∥∥2

L6(�)
‖∇u‖

L
3
2 (�)

≤ C4(1 + m0)
∥∥|∇z|2∥∥2

L6(�)

≤ C5

⎛
⎝∫

�

∣∣∇|∇z|2∣∣2
⎞
⎠

5/6⎛
⎝∫

�

|∇z|2
⎞
⎠

1/3

+ C5

⎛
⎝∫

�

|∇z|2
⎞
⎠

2

≤ 1

2

∫
�

∣∣∇|∇z|2∣∣2 + C6M
2 for all t > t0. (4.48)

The estimation of the remaining term on the right in (4.45) is more involved. First, note that by 
(1.13) we have

∫
�

|∇z|6 ≤ K2

⎛
⎝∫

�

∣∣∇|∇z|2∣∣2
⎞
⎠
⎛
⎝∫

�

|∇z|2
⎞
⎠+ K2

⎛
⎝∫

�

|∇z|4
⎞
⎠
⎛
⎝∫

�

|∇z|2
⎞
⎠ for all t > t0,

where additionally by the Cauchy–Schwarz inequality 
∫
�
|∇z|4 ≤ (∫

�
|∇z|6)1/2 (∫

�
|∇z|2)1/2

for 
all t > t0, so that an application of Young’s inequality combined with our assumption (4.42)
implies that

∫
�

|∇z|6 ≤ K2

⎛
⎝∫

�

∣∣∇|∇z|2∣∣2
⎞
⎠
⎛
⎝∫

�

|∇z|2
⎞
⎠+ η

∫
�

|∇z|6 + K2
2

4η

⎛
⎝∫

�

|∇z|2
⎞
⎠

3

≤ K2M

∫
�

∣∣∇|∇z|2∣∣2 + η

∫
�

|∇z|6 + K2
2M3

4η
for all t > t0

and therefore

(8 + 8η)

∫
�

|∇z|6 ≤ 8(1 + η)K2M

1 − η

∫
�

∣∣∇|∇z|2∣∣2 + 2(1 + η)K2
2 M3

(1 − η)η
for all t > t0.

(4.49)
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Collecting (4.46)–(4.49), we infer from (4.45) that for some C8 > 0 we have

d

dt

⎧⎨
⎩
∫
�

n2 +
∫
�

|∇z|4
⎫⎬
⎭+ C7

∫
�

|∇n|2 + C7

∫
�

∣∣∇|∇z|2∣∣2 ≤ C8 for all t > t0, (4.50)

where C7 := min
{

1
2 ,2 − 2η − 8(1+η)K2M

1−η

}
is positive due to (4.44). In order to conclude the 

desired bounds, we want to derive from the inequality above a differential inequality of the form 
y′(t) + Cy2(t) ≤ C, where y(t) := ∫

�
n2(·, t) + ∫

�
|∇z(·, t)|4 and C > 0. To this end, we still 

need to estimate the terms without time derivatives, arising in (4.50) on the left, from below. 
By making use of the Gagliardo–Nirenberg inequality, we firstly obtain upon use of the mass 
conservation and (4.41) that

⎛
⎝∫

�

n2

⎞
⎠

2

≤ C9

⎛
⎝∫

�

|∇n|2
⎞
⎠
⎛
⎝∫

�

n

⎞
⎠

2

+ C9

⎛
⎝∫

�

n

⎞
⎠

4

≤ C9m
2
0

∫
�

|∇n|2 + C9m
4
0 for all t > t0

for some C9 > 0, and secondly, relying on (4.42), we find C10 > 0 such that

⎛
⎝∫

�

|∇z|4
⎞
⎠

2

≤ C10

⎛
⎝∫

�

∣∣∇|∇z|2∣∣2
⎞
⎠
⎛
⎝∫

�

|∇z|2
⎞
⎠

2

+ C10

⎛
⎝∫

�

|∇z|2
⎞
⎠

4

≤ C10M
2
∫
�

∣∣∇|∇z|2∣∣2 + C10M
4 for all t > t0.

Thus, letting C11 := max{2C9m
2
0, 2C10M

2}, we see that y satisfies

y′(t) + C12y
2(t) ≤ C13 for all t > t0,

with C12 := C7
C11

and C13 := C8 + C9m
4
0+C10M

4

C11
. By application of an ODE comparison argument, 

we observe that ȳ(t) := 2
C12(t−t0)

+
√

2C13
C12

satisfies y(t) ≤ ȳ(t) for all t > t0, implying that

y(t) ≤ 2

C12τ
+
√

2C13

C12
for all t ≥ t0 + τ

and thus proving (4.43). �
4.4. Eventual smoothness for generalized solutions with small mass

For our next proof we will require the following result demonstrated in [32, Lemma 2.6], 
which is based on an application the Trudinger–Moser inequality combined with a spatio-
temporal estimate on ∇ ln(nε + 1) in L2.
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Lemma 4.11. There exists K4 > 0 such that for all ε ∈ (0, 1) the solution to (3.7)–(3.9) satisfies

t∫
0

ln

{
1

|�|
∫
�

(nε(x, s) + 1)2 dx

}
ds ≤ K4

⎛
⎝1 +

∫
�

n0

⎞
⎠ t + K4

⎛
⎝∫

�

z0 +
∫
�

n0

⎞
⎠ for all t > 0.

Relying on the properties previously established for Fμ, we can now determine some possibly 
large time t� depending on the initial data. But not on ε ∈ (0, 1), for which 

∫
�

nε| lnnε|, 
∫
�
|∇zε|2

and Fμ(nε, zε) are sufficiently small for all times beyond t�. This in turn will then ensure that we 
can obtain the conditional estimates featured in Section 4.3 for times larger than t�.

Lemma 4.12. Let K2, K3 be as in (1.13) and (1.14), respectively. There exist constants 
m�, �, M > 0 and μ ∈ (0, 1) such that

� <
1

4K3
− μ|�|

e
and M <

1

4K2
, (4.51)

and such that if the initial data (n0, c0, u0) satisfy (1.7) as well as

m :=
∫
�

n0 ≤ m�, (4.52)

then one can find t� > 0 such that for each ε ∈ (0, 1) the solution (nε, zε, uε) of (3.7)–(3.9)
satisfies

Fμ

(
nε(·, t), zε(·, t)

)≤ � for all t ≥ t�, (4.53)

and ∫
�

nε(·, t) |lnnε(·, t)| ≤ 1

4K3
+ 2|�|

e
for all t ≥ t�, (4.54)

as well as ∫
�

|∇zε(·, t)|2 ≤ M for all t ≥ t�. (4.55)

Proof. We fix M ∈ (0, 1
4K2

)
and afterwards choose some small μ ∈ (0, 1), such that

2μ|�|
e

≤ M

2
and 0 <

1

4K3
− μ|�|

e
. (4.56)

Upon these choices, we can pick � > 0 fulfilling the first inequality in (4.51) as well as

� ≤ M

4
. (4.57)
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Furthermore, letting K4 be provided by Lemma 4.11 we can find η ∈ (0, 1) such that

η|�|e16K4 ≤ �

4
. (4.58)

Relying on the previous choices and with K3, Ku given by (1.14) and Lemma 2.2, respectively, 
we introduce the positive number

m� := min

{
1,

�

4 ln 1
ημ

,
�

8
,

1

5K2
3 Ku|�| 1

4

}
, (4.59)

where the positivity follows from the facts μ, η < 1. Now given (n0, c0, u0) such that (1.7) and 
(4.52) hold, we find � > 0 such that 

∫
�
|u0|4 ≤ �, due to D(Aα) ↪→ L4(�) ([4, Lemma 2.3 iv)]). 

Moreover, since λ1 > 0, we can easily find t0 ≥ 0 such that

�e−λ1t0 + m� ≤ 1

4K2
3Ku|�| 1

4

(4.60)

holds. We next claim that the asserted inequalities are true if we fix some large t� satisfying the 
conditions

(1 + m)t� ≥
∫
�

z0 + m, mt� ≥
∫
�

z0, and t� > 2t0, (4.61)

with z0 as defined in (3.9). To verify this claim we define the sets

S1(ε) :=
⎧⎨
⎩t ∈ (0, t�)

∣∣∣ ln
{ 1

|�|
∫
�

(nε(·, t) + 1)2
}

> 8K4(1 + m)

⎫⎬
⎭

and

S2(ε) :=
⎧⎨
⎩t ∈ (0, t�)

∣∣∣ ∫
�

|∇zε(·, t)|2 > 8m

⎫⎬
⎭

and estimate their respective sizes. By Lemma 4.11 we know that for all ε ∈ (0, 1) we have

I1(ε) :=
t�∫

0

ln
{ 1

|�|
∫
�

(nε(·, t) + 1)2
}

dt ≤ K4(1 + m)t� + K4

⎛
⎝∫

�

z0 + m

⎞
⎠ ,

so that the first condition in (4.61) combined with our definition of S1(ε) shows that

2K4(1 + m)t� ≥ K4(1 + m)t� + K4

⎛
⎝∫

�

z0 + m

⎞
⎠≥ I1(ε) ≥ 8K4(1 + m)|S1(ε)|
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holds for all ε ∈ (0, 1), meaning that

|S1(ε)| ≤ t�

4
for all ε ∈ (0,1). (4.62)

In pursuance of a similar bound for the size of |S2(ε)|, we recall that by Lemma 2.5 we have

I2(ε) :=
t�∫

0

∫
�

|∇zε|2 ≤
∫
�

z0 + mt� for all ε ∈ (0,1).

Relying on the second inequality in (4.61) and the definition of S2(ε) we infer that

2mt� ≥
∫
�

z0 + mt� ≥ I2(ε) ≥ 8m|S2(ε)|

holds for all ε ∈ (0, 1) and hence

|S2(ε)| ≤ t�

4
for all ε ∈ (0,1). (4.63)

Now, (4.62) and (4.63) guarantee that

∣∣(0, t�) \(S1(ε) ∪ S2(ε)
)∣∣≥ t�

2
for all ε ∈ (0,1),

so that we conclude from the third inequality in (4.61) that for any ε ∈ (0, 1) we can pick some 
tε ∈ (t0, t�) such that

ln

⎧⎨
⎩ 1

|�|
∫
�

(
nε(·, tε) + 1

)2⎫⎬⎭≤ 8K4(1 + m) and
∫
�

|∇zε(·, tε)|2 ≤ 8m (4.64)

hold. Relying on the elementary estimate s ln s
μ

≤ η(s + 1)2 + s ln 1
ημ

for all s > 0 (cf. [41, 
Lemma 5.5]), we can combine the mass conservation from Remark 2.4 with (4.52) and the first 
part of (4.64) to obtain that

∫
�

nε(·, tε) ln
nε(·, tε)

μ
≤ η

∫
�

(
nε(·, tε) + 1

)2 + ln
1

ημ

∫
�

nε(·, tε) ≤ η|�|e8K4(1+m) + m ln
1

ημ
.

Now, recalling the first and second requirement for m� from (4.59), as well as (4.58), we see that

∫
�

nε(·, tε) ln
nε(·, tε)

μ
≤ η|�|e16K4 + m ln

1

ημ
≤ �

4
+ �

4
= �

2
.

In a similar fashion, the third part of (4.64) in conjunction with the second inequality contained 
in (4.59) entails that
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1

2

∫
�

|∇zε(·, tε)|2 ≤ �

2

and thus we obtain that

Fμ

(
nε(·, tε), zε(·, tε)

)= ∫
�

nε(·, tε) ln
nε(·, tε)

μ
+ 1

2

∫
�

|∇zε(·, tε)|2 ≤ �.

In accordance with (4.51) and (4.60), this allows for the application of Lemma 4.3, implying that

Fμ

(
nε(·, t), zε(·, t)

)≤ � for all t ≥ tε, (4.65)

which, since tε < t�, immediately establishes (4.53) again due to (4.51). Now, to verify that also 
(4.54) and (4.55) hold, we recall that in view of Lemma 4.1 we have

∫
�

nε(·, t)| lnnε(·, t)| ≤ Fμ

(
nε(·, t), zε(·, t)

)+ lnμ

∫
�

nε(·, t) + 2|�|
e

.

Therefore, (4.65), the fact μ < 1 and once more (4.51) imply

∫
�

nε(·, t)| lnnε(·, t)| ≤ � + 2|�|
e

<
1

4K3
+ 2|�|

e
for all t ≥ tε,

proving (4.54), because t� > tε . Similarly, again relying on Lemma 4.1 and (4.65), we conclude 
that due to (4.57) and the first restriction in (4.56), we have

∫
�

|∇zε(·, t)|2 ≤ 2Fμ

(
nε(·, t), zε(·, t)

)+ 2μ|�|
e

≤ 2� + 2μ|�|
e

≤ M

2
+ M

2
= M

for all t ≥ tε,

which proves (4.55). �
The bounds for 

∫
�

nε lnnε and 
∫
�
|∇zε|2 at hand, we can first draw on the conditional esti-

mates on 
∫
�
|∇zε|4 from Section 4.3 and afterwards on the conditional regularity estimates from 

Section 4.2 to obtain the following result.

Proposition 4.13. Let m� > 0 be as provided by Lemma 4.12. Suppose that (n0, c0, u0) satisfy 
(1.7) as well as

∫
�

n0 ≤ m�,

and let (n, c, u) denote the global generalized solution of (1.3)–(1.5) from Theorem A. Then there 
exists T > 0 such that
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n ∈ C2,1(�̄ × [T ,∞)
)
, c ∈ C2,1(�̄ × [T ,∞)

)
and u ∈ C2,1

(
�̄ × [T ,∞);R2

)
,

(4.66)

that

c(x, t) > 0 for all x ∈ �̄ and any t ≥ T ,

and such that (n, c, u) solves (1.3)–(1.5) classically in � × (T , ∞). Moreover, one can find μ > 0
such that

Fμ

(
n(·, t), z(·, t))< 1

4K3
− μ|�|

e
for all t ≥ T , (4.67)

with z := − ln c
‖c0‖L∞(�)

.

Proof. Let K2, K3 be provided by (1.13) and (1.14), respectively. In view of Lemma 4.12 we 
can find μ ∈ (0, 1), � ∈ (0, 1

4K3
− μ|�|

e

)
, M ∈ (0, 1

4K2
), L > 0 and t� > 0 such that for any choice 

of ε ∈ (0, 1) we have

Fμ

(
nε(·, t), zε(·, t)

)≤ � for all t > t� (4.68)

and ∫
�

nε(·, t)| lnnε(·, t)| ≤ L as well as
∫
�

|∇zε(·, t)|2 ≤ M for all t > t�.

Since M < 1
4K2

, we may employ Lemma 4.10 to obtain C1 > 0 such that for any ε ∈ (0, 1) we 
have ∫

�

|∇zε(·, t)|4 ≤ C1 for all t > t� + 1.

This bound at hand, Lemma 4.7 yields θ ∈ (0, 1) such that for each T > t� + 2 we can pick 
C2(T ) > 0 such that

‖nε‖
C

2+θ,1+ θ
2
(
�̄×[t�+2,T ]) + ‖zε‖

C
2+θ,1+ θ

2
(
�̄×[t�+2,T ]) + ‖uε‖

C
2+θ,1+ θ

2
(
�̄×[t�+2,T ]) ≤ C2(T )

for all ε ∈ (0, 1). In view of the Arzelà–Ascoli theorem, we can find a subsequence (εjk
)k∈N

of the sequence provided by Lemma 3.2, along which nε , zε and uε are convergent in 
C

2,1
loc

(
�̄ × [t� + 2,∞)

)
. The respective limits of nε , zε and uε must clearly coincide with n, z

and u, which ensures that n, c and u have the desired regularity properties in (4.66). Addition-
ally, the continuity of z implies c > 0 in �̄ × [T , ∞) and passing to the limit for ε = εjk

↘ 0
in (4.68) we easily obtain (4.67) due to � < 1

4K3
− μ|�|

e
. Letting ε = εjk

↘ 0 in (3.7) we first 
conclude that (n, z, u) solves (2.9)–(2.10) with f (ξ) ≡ ξ classically in � × (T , ∞), which then 
in combination with c > 0 in �̄ × [T , ∞) entails that (n, c, u) solve (1.3)–(1.5) classically in 
� × [T , ∞). �
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4.5. Stabilization of solutions with small energy

This section discusses the last missing part for the proof of Theorem 1.1, which is the con-
vergence properties featured therein. Since from the last section we already know, that our 
generalized solutions will be classical solutions after some waiting time, we will concern our 
investigation only with convergence of classical solutions to (2.9). Before proving the desired 
large time behavior we require one additional preparation in form of a time-independent Hölder 
bound from ∇z.

Lemma 4.14. For all m0 > 0, M > 0, τ > 0 there exist θ ∈ (0, 1) and C > 0 such that 
if for f ∈ C3([0,∞)) satisfying (2.2) and t0 ≥ 0 the triple (n, z, u) ∈ C0

(
�̄ × [t0,∞)

) ∩
C2,1

(
�̄ × (t0,∞)

)
is a classical solution of (2.9)–(2.10) in � × (t0, ∞) satisfying

∫
�

n(·, t0) ≤ m0,

and ∫
�

|∇z(·, t)|4 ≤ M for all t > t0,

it holds that

‖∇z(·, t)‖Cθ
(
�̄
) ≤ C for all t ≥ t0 + τ. (4.69)

Proof. The arguments are quite similar to the ones employed in [41, Lemma 4.9] and we will 
not recount all details here. First, we note that by Lemma 4.4 we can find C1 > 0 such that

‖n(·, t)‖L4(�) ≤ C1 for all t ≥ t0 := t0 + τ

2
. (4.70)

Now, we may choose some β ∈ (0, 1) close to 1 such that β > 1
4 and afterwards q > 1 satisfy-

ing 1
4 < 1

q
< 5

4 − β . With these values fixed we will make use of several well known estimates 

for the Neumann heat semigroup 
(
e−sB

)
s≥0 in L4(�), where B := −� + 1 (e.g. [36]). More-

over, for any fixed θ ∈ (0, 2β − 3
2 ) we have that D

(
Bβ
)
↪→ C1+θ

(
�̄
)

([10, Theorem 1.6.1]) and 
hence

‖∇ϕ‖Cθ
(
�̄
) ≤ C2‖Bβϕ‖L4(�) for all ϕ ∈ D

(
Bβ
)
, (4.71)

with some C2 > 0. Letting

S1 := max
t∈[t0,t0+1]

(t − t0)
β‖∇z(·, t)‖Cθ

(
�̄
) and S2(T ) := max

t∈[t0+1,T ]
‖∇z(·, t)‖Cθ

(
�̄
)

for T > t0 + 1 we continue by estimating S(T ) := max {S1, S2(T )}. Consequently, with t1(t) :=
max{t − 1, t0} we start by representing z(·, t) according to
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z(·, t) = z(·, t1) + et−t1e−(t−t1)B
(
z(·, t1) − z(·, t1)

)
−

t∫
t1

et−se−(t−s)B |∇z(·, s)|2 ds

+
t∫

t1

et−se−(t−s)Bf
(
n(·, s))ds −

t∫
t1

et−se−(t−s)Bu(·, s)∇z(·, s)ds. (4.72)

In the case of t − t0 ≤ 1 we make use of Young’s inequality, (4.71), the semigroup estimates 
for the Neumann heat semigroup, and the fact that f (s) ≤ s for all s ≥ 0 to obtain C3 > 0 such 
that

‖∇z(·, t)‖Cθ
(
�̄
) ≤ C3e(t − t0)

−β‖z(·, t0) − z(·, t0)‖L4(�)

+ C3e

t∫
t0

(t − s)−γ
∥∥|∇z(·, s)|2∥∥

Lq(�)
ds

+ C3e

t∫
t0

(t − s)−β‖n(·, s)‖L4(�) ds + C3e

t∫
t0

(t − s)−β‖u(·, s)‖2
L2p(�)

ds,

(4.73)

holds for all t ≤ t̄0 + 1, where γ := β + 1
q

− 1
4 < 1. Herein, (4.70) and Lemma 2.3, and the fact 

that β < 1 imply the existence of C4 > 0 such that

C3e

t∫
t0

(t − s)−β‖n(·, s)‖L4(�) ds + C3e

t∫
t0

(t − s)−β‖u(·, s)‖2
L8(�)

ds

≤ C4

t∫
t0

(t − s)−β ds ≤ C4

1 − β
,

for all t ≥ t̄0 + 1, and the Poincaré inequality provides C5 > 0 satisfying

‖z(·, s) − z(·, s)‖L4(�) ≤ C5‖∇z(·, s)‖L4(�) ≤ C5M
1
4 for all s ≥ t0.

Furthermore, by means of the Hölder inequality we see that

∥∥|∇z(·, s)|2∥∥
Lq(�)

≤ ‖∇z(·, s)‖
4
q

L4(�)
‖∇z(·, s)‖a

L∞(�) ≤ M
1
q ‖∇z(·, s)‖a

Cθ
(
�̄
)

for all s ≥ t0,

with a := 2q−4 , and hence for all t ≥ t̄0 + 1 we have

q
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t∫
t0

(t − s)−γ
∥∥|∇z(·, s)|2∥∥

Lq(�)
ds ≤ M

1
q Sa

1 (t − t0)
1−γ−βa

1∫
0

(1 − σ)−γ σ−βa dσ

≤ C6M
1
q Sa

1 (t − t0)
1−γ−βa,

where we used that 
∫ 1

0 (1 − σ)−γ σ−βa dσ =: C6 is finite due to the facts that 0 < a < 1, 
0 < β < 1 and γ < 1. Accordingly, from (4.73) we infer that

(t − t0)
β‖∇z(·, t)‖Cθ

(
�̄
) ≤ C3C5eM

1
4 + C3C6eM

1
q Sa

1 (t − t0)
1−γ+(1−a)β + C4

1 − β

≤ C7 + C7S
a
1

for all t ∈ [t0, t0 + 1], with some C7 > 0, which implies that S1 ≤ max{1, (2C7)
1

1−a }. Similarly, 
in the case t ∈ [t0, T ] we conclude from (4.72) that

‖∇z(·, t)‖Cθ
(
�̄
) ≤ C8M

1
4 + C8M

1
q

t∫
t−1

(t − s)−γ ‖∇z(·, s)‖a

Cθ
(
�̄
) ds + C8

t∫
t−1

(t − s)−β ds,

for some C8 > 0. In both of the cases t ≤ t0 + 2 and t > t0 + 2 we can estimate

t∫
t−1

(t − s)−γ ‖∇z(·, s)‖a

Cθ
(
�̄
) ds ≤ Sa

1

t∫
t−1

(t − s)−γ (s − t0)
−βa ds + Sa

2 (T )

t∫
t−1

(t − s)−γ ds

≤ C5S
a
1 + 1

1 − γ
Sa

2 (T )

with C5 as defined above. Therefore, for suitable large C9 > 0 we have

S2(T ) ≤ C9 + C9S
a
2 (T ) for all T > t0 + 1,

which implies that S2(T ) ≤ max{1, (2C9)
1

1−a } =: S2 for all T > t0 + 1. Consequently, together 
with the previous estimate for S1, this establishes (4.69) with C := max{S1, 

S1
τ

, S2}. �
Assuming that the energy Fμ(n, z) remains small for all times succeeding some waiting 

T ≥ 0, which according to Proposition 4.13 is true for the generalized solutions with small mass, 
we will now show that any given solution to (2.9)–(2.10) in � × (T , ∞) will satisfy the asymp-
totic properties described in Theorem 1.1. Here we explicitly allow T = 0, because if the energy 
is already suitably small initially we can transfer these asymptotic properties also to the global 
classical solutions discussed in Section 4.6.

Proposition 4.15. Assume T ≥ 0, � > 0 and let m� > 0 be as in Lemma 4.12. Suppose that for 
f ∈ C3([0,∞)) satisfying (2.2) the triple (n, z, u) ∈ C0

(
�̄ × [T ,∞)

) ∩ C2,1
(
�̄ × (T ,∞)

)
is 
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a classical solution of (2.9)–(2.10) in � × (T , ∞) satisfying z ∈ C0
([T ,∞);W 1,2(�)

)
, m :=∫

�
n(·, T ) < m�, 0 ≤ n �≡ 0, and 

∫
�
|u(·, T )|4 ≤ �, as well as

inf
t>T

Fμ

(
n(·, t), z(·, t))< 1

4K3
− μ|�|

e
(4.74)

for some μ > 0. Then

n(·, t) → nT := 1

|�|
∫
�

n(·, T ) in L∞(�) as t → ∞, (4.75)

and

∇z(·, t) → 0 in L∞(�) as t → ∞, (4.76)

and

inf
x∈�

z(x, t) → ∞ as t → ∞, (4.77)

as well as

u(·, t) → 0 in L∞(�) as t → ∞. (4.78)

Proof. The convergence of n and z can be proved by relying on the methods shown in [41, 
Lemma 6.1], whereas the decay of u then follows by adapting the arguments illustrated in [39, 
Lemma 5.3]. For the sake of completeness we only recount the main steps and refer to the men-
tioned sources for more details. Recalling that m� < 1

4K2
3 Ku|�| 1

4
, we can first find t0 > T such 

that �e−λ1(t0−T ) + m� ≤ 1

4K2
3 Ku|�| 1

4
and then rely on (4.74) and Lemma 4.3 to see that we can 

pick t� > t0 > T such that

d

dt
Fμ

(
n(·, t), z(·, t))≤ 0 for all t > t�, (4.79)

and

Fμ

(
n(·, t), z(·, t))< C1 := 1

4K3
− μ|�|

e
for all t > t�, (4.80)

and that with some κ > 0,

∞∫
t�

∫
�

|∇n|2
n

+ κ

∞∫
t�

∫
�

|�z|2 ≤ C2 := 1

4K3
. (4.81)

Since (n, z, u) solve (2.9) classically in � × (T , ∞) by Remark 2.4 we have
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∫
�

n(·, t) = m for all t > T , (4.82)

and thus, making use of (4.2) and (4.80), we see that

∫
�

n(·, t)| lnn(·, t)| ≤ Fμ

(
n(·, t), z(·, t))+ lnμ

∫
�

n(·, t) + 2|�|
e

≤ C1 + m lnμ + 2|�|
e

(4.83)

holds for all t > t�. Since W 1,1(�) ↪→ L2(�), a Poincaré–Sobolev inequality implies the exis-
tence of C3 > 0 such that

‖ϕ − ϕ‖L2(�) ≤ C3‖∇ϕ‖L1(�) for all ϕ ∈ W 1,1(�). (4.84)

Similarly, by means of elliptic regularity theory we can find C4 > 0 satisfying

‖∇ϕ‖L2(�) ≤ C4‖�ϕ‖L2(�) for all ϕ ∈ W 2,2(�) such that
∂ϕ

∂ν
= 0 on ∂�. (4.85)

According to (4.84) and the Cauchy–Schwarz inequality we thus have

∞∫
t�

‖n(·, t) − nT ‖2
L2(�)

dt ≤ C2
3

∞∫
t�

‖∇u‖2
L[1] dt ≤ mC2

3

∞∫
t�

∫
�

|∇n|2
n

,

whereas (4.85) shows that

T∫
t�

‖∇z(·, t)‖2
L2(�)

dt ≤ C2
4

∞∫
t�

∫
�

|�z|2.

By combination of the two previous estimates with (4.81) we thereby see that

∞∫
t�

{
‖n(·, t) − nT ‖2

L2(�)
+ ‖∇z(·, t)‖2

L2(�)

}
dt ≤ C2

(
mC2

3 + C2
4

κ

)
(4.86)

which implies that there must exist (tk)k∈N ⊂ (t�, ∞) such that tk → ∞ and such that

n(·, tk) → nT in L2(�) and ∇z(·, tk) → 0 in L2(�) (4.87)

as k → ∞. Relying on the convexity of 0 < ξ �→ ξ ln ξ and the Jensen inequality we see that

∫
�

ϕ lnϕ dx ≥
∫
�

ϕ lnϕ for all positive ϕ ∈ C0(�̄) ,
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and thus, we can make use of the mean value theorem, the Cauchy–Schwarz inequality, the first 
convergence in (4.82), and (4.87) to obtain

0 ≤
∫
�

n(·, tk) lnn(·, tk) −
∫
�

nT lnnT =
∫
�

n(·, tk)
(

lnn(·, tk) − lnnT

)

≤
∫

{n(·,tk)>nT }
n(·, tk)

(
lnn(·, tk) − lnnT

)

≤ 1

nT

‖n(·, tk)‖L2(�)‖n(·, tk) − nT ‖L2(�) → 0 as k → ∞. (4.88)

This, together with the definition of Fμ and the second convergence established in (4.87) shows 
that Fμ

(
n(·, tk), z(·, tk)

)→ C5 := ∫
�
nT ln nT

μ
as k → ∞, which in turn by the monotonicity 

property (4.79) implies

Fμ

(
n(·, t), z(·, t))→ C5 as t → ∞.

In view of (4.88) this convergence actually yields

lim sup
t→∞

∫
�

|∇z(·, t)|2 = 2 lim sup
t→∞

⎧⎨
⎩Fμ

(
n(·, t), z(·, t))− ∫

�

n(·, t) ln
n(·, t)

μ

⎫⎬
⎭≤ 2C5 − 2C5 = 0.

(4.89)

Combining this with the bound provided by (4.83) we may first employ Lemma 4.10 and after-
wards Lemma 4.5 and Lemma 4.14 to obtain t�� > t�, θ ∈ (0, 1) and C6 > 0 such that

‖n‖
C

θ, θ
2
(
�̄×[t,t+1]) ≤ C6, ‖u‖

C
θ, θ

2
(
�̄×[t,t+1]) ≤ C6, and ‖∇z(·, t)‖Cθ

(
�̄
) ≤ C6

(4.90)

for all t ≥ t��. If the asserted convergence for n in (4.75) was false we could find (t̃k)k∈N ⊂
(t��, ∞) and C7 > 0 such that t̃k → ∞ as k → ∞ and

‖n(·, t̃k) − nT ‖L∞(�) ≥ C7 for all k ∈N,

implying that, due to the uniform convergence of n in �̄×[t��, ∞) asserted by (4.90), there exist 
(xk)k∈N ⊂ �, r > 0, and τ > 0 such that Br(xk) ⊂ � for all k ∈ N and

∣∣n(x, t) − nT

∣∣≥ C7

2
for all x ∈ Br(xk) and each t ∈ (t̃k, t̃k + τ).

In turn this would show that
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t̃k+τ∫
t̃k

‖n(·, t) − nT ‖2
L2(�)

dt ≥ τ
C2

7

4
πr2 for all k ∈N,

contradicting the spatial–temporal estimate (4.86) and thus proving (4.75). In a similar fashion, 
assuming that (4.76) is false, in view of the second portion of (4.90), we could find (t̂k)k∈N ⊂
(t��, ∞), (x̂k)k∈N ⊂ �, r > 0, and C8 > 0 such that t̂k → ∞ as k → ∞ and Br(x̂k) ⊂ � for all 
k ∈ N as well as

|∇z(x, t̂k)| ≥ C8 for all x ∈ Br(x̂k) and each k ∈ N.

This implies that

∫
�

|∇z(·, t̂k)|2 ≥ C2
8πr2 for all k ∈ N,

which contradicts (4.89) and thereby proves (4.76). For (4.77) we make use of the fact that (4.75)
together with the nontriviality of n establishes the existence of some t��� > T satisfying

n(x, t) >
nT

2
for all x ∈ � and t > t���,

whence, by relying on the nonnegativity of z and parabolic comparison with the function �̄ ×
[t���, ∞) � (x, t) �→ nt

2 (t − t���), we see that

z(x, t) ≥ nT

2
(t − t���) for all x ∈ � and t > t���,

ensuring (4.77). In order to prove (4.78), we recall that the Stokes operator A in L2
σ (�) is positive 

and self-adjoint with compact inverse and as such, there exists a complete orthonormal basis 
(ψk)k∈N of eigenfunctions of A to positive eigenvalues λk , k ∈ N. Since 

⋃
m∈N span {ψk|k ≤ m}

is dense in L2
σ (�), in view of the uniform Hölder continuity of u in � × (t��, ∞) from (4.90), 

we only have to show that for each k ∈N we have

∫
�

u(x, t) · ψk(x)dx → 0 as t → ∞. (4.91)

To this end we fix k ∈ N and let y(t) := ∫
�
u(x, t) · ψk(x) dx, t > T . From the third equation in 

(2.9), the eigenfunction property of ψk , as well as the fact that ∇ · ψk = 0 we obtain

y′(t) = −λk

∫
�

u · ψk +
∫
�

(
n − nT

)∇φ · ψk for all t > T . (4.92)

Since n → nT in L∞(�) as t → ∞ by (4.75), for any given δ > 0 we can find t� > T such 
that
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∣∣∣∣∣∣
∫
�

(
n(x, t) − nT

)∇φ · ψk(x)dx

∣∣∣∣∣∣≤
δλk

2
for all t > t�,

which shows upon integration of (4.92) that, due to the boundedness of u in � × (T , ∞), we 
have

y(t) < y(t�)e−λk(t−t�) + λkδ

2

t∫
t�

e−λk(t−s) < C9e
−λk(t−t�) + δ

2
for all t > t�,

with some C9 > 0. Now letting t�� := max
{
t�, t� + 1

λk
ln 2C9

δ

}
we have

|y(t)| < δ for all t > t��,

yielding (4.91) and thus completing the proof. �
All that is left is to gather the results of our previous two propositions to conclude the proof 

of Theorem 1.1.

Proof of Theorem 1.1. With m� > 0 provided by Lemma 4.12 we obtain from Proposition 4.13
that for any initial data (n0, c0, u0) satisfying (1.7) as well as (1.8), there exists T > 0 such that 
the solution (n, c, u) from Theorem A has the regularity properties featured in (1.9) and the pos-
itivity of c in �̄ × (T , ∞) as claimed in (1.10) are valid. Since (4.67) from Proposition 4.13
furthermore guarantees that inft>T Fμ

(
n(·, t), z(·, t)) < 1

4K3
− μ|�|

e
, we may employ Proposi-

tion 4.15 to obtain (1.11) and (1.12). �
4.6. Global classical solutions for small initial data. Proof of Theorem 1.2

As mentioned in the introduction, the result featured in Theorem 1.2 is a by-product of our 
previous analysis. Our main tools in the proof will on one hand be the fact that the assumed 
smallness conditions for the initial data, expressed in (1.15) and (1.16), allows for the choice 
of t0 = 0 in Lemma 4.3, and on the other hand the uniqueness statement from Lemma 2.1. 
The uniqueness statement is essential, since we can only guarantee the global existence for our 
approximate solutions when f (s) ≡ fε(s) with fε(s) provided by (3.5).

Proof of Theorem 1.2. We denote by (n, c, u) the local classical solution from Lemma 2.1
for f (s) ≡ s, extended to its maximal existence time Tmax ∈ (0, ∞]. Then, writing z :=
− ln

(
c

‖c0‖L∞(�)

)
and τ := min{1, Tmax

2 }, we infer that C1 := ‖n‖L∞(�×(0,τ )) is finite, by the con-

tinuity of n in �̄ × [0, Tmax). On the other hand, let us also consider the approximate problems 
(3.7) and denote the corresponding solutions by (nε, zε, uε) with ε ∈ (0, 1). According to [32, 
Section 2.1] these solutions are global for each of these ε ∈ (0, 1). For these solutions and μ as 
in (1.16) we have

Fμ

(
nε(·,0), zε(·,0)

)= C2 :=
∫
�

n0 ln
n0

μ
+ 1

2

∫
�

|∇z0|2
c2

0

for all ε ∈ (0,1),
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and furthermore, defining m�� := 1

8K2
3 Ku|�| 1

4
we conclude that the inequalities contained in (1.15)

imply

∫
�

|u0|4e−λ1t +
∫
�

n0 <
1

4K2
3 Ku|�| 1

4

for all t > 0.

In light of (2.6) and (1.16) we have C2 < 1
4K3

− μ|�|
e

, Lemma 4.3 becomes applicable, asserting 
that

Fμ

(
nε(·, t), zε(·, t)

)≤ C2 for all t > 0 and each ε ∈ (0,1).

Thanks to Lemma 4.1 this implies that for any ε ∈ (0, 1) we have

∫
�

nε |lnnε(·, t)| ≤ C2 + lnμ

∫
�

n0 + 2|�|
e

and
∫
�

|∇zε|2 ≤ M := 2C2 + 2μ|�|
e

for all t > 0.

Herein, the second restriction on C2 from (1.16) shows that

M <
2

8K2
− 2μ|�|

e
+ 2μ|�|

e
= 1

4K2
.

Hence, we may employ Lemma 4.10 to find C3 > 0 such that

∫
�

|∇zε(·, t)|4 ≤ C3 for all t >
τ

2
and each ε ∈ (0,1).

In turn, Lemma 4.4 becomes applicable and provides C4 > 0 such that

‖nε(·, t)‖L∞(�) ≤ C4 for all t > τ and every ε ∈ (0,1). (4.93)

Now, fixing ε ∈ (0, 1) so small such that it satisfies ε ≤ min
{

1
C1

, 1
C4

}
, we see that by the defini-

tion of fε in (3.5) we have

fε(n) = n in �̄ × [0, τ ],

from which, in view of the uniqueness statement contained in Lemma 2.1 when applied to the 
system (2.1) with f ≡ fε , we infer that

(n, z,u) ≡ (nε, zε, uε) in �̄ × [0, τ ]

for our fixed ε. On the other hand, relying on (4.93) and the second restriction on ε we also have 
fε(nε) ≡ nε in �̄ × (τ, ∞) and (nε, zε, uε) actually solves (2.9) in � × (τ, ∞) with f (s) ≡ s. 
Now, making use of the uniqueness result from Lemma 2.1 once more, when applied to (2.1)
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with f (s) ≡ s, guarantees that Tmax = ∞ and that (n, z, u) ≡ (nε, zε, uε) in � × (0, ∞). The 
desired convergence properties easily follow from Proposition 4.15, since C2 < 1

4K3
− μ|�|

e
. �
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