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Abstract

In this paper we study the Cauchy problem for the semilinear damped wave equation for the sub-
Laplacian on the Heisenberg group. In the case of the positive mass, we show the global in time well-
posedness for small data for power like nonlinearities. We also obtain similar well-posedness results for 
the wave equations for Rockland operators on general graded Lie groups. In particular, this includes higher 
order operators on Rn and on the Heisenberg group, such as powers of the Laplacian or the sub-Laplacian. 
In addition, we establish a new family of Gagliardo–Nirenberg inequalities on a graded Lie groups that 
play a crucial role in the proof, but which are also of interest on their own: if G is a graded Lie group of 
homogeneous dimension Q and a > 0, 1 < r <

Q
a , and 1 ≤ p ≤ q ≤ rQ

Q−ar
, then we have the following 

Gagliardo–Nirenberg type inequality

‖u‖Lq(G) � ‖u‖s
L̇r

a(G)
‖u‖1−s

Lp(G)
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for s = ( 1
p − 1

q )( a
Q

+ 1
p − 1

r )−1 ∈ [0, 1] provided that a
Q

+ 1
p − 1

r �= 0, where L̇r
a is the homogeneous 

Sobolev space of order a over Lr . If a
Q

+ 1
p − 1

r = 0, we have p = q = rQ
Q−ar

, and then the above inequality 
holds for any 0 ≤ s ≤ 1.
© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In this paper we investigate the global in time well-posedness for the damped wave equation 
for the sub-Laplacian on the Heisenberg group. Strichartz estimates for the wave equation for 
the sub-Laplacian on the Heisenberg group have been analysed by Bahouri, Gérard and Xu in 
[5] where a weak decay rate in dispersive estimates was established. Recently, such results were 
extended to step 2 stratified Lie groups by Bahouri, Fermanian-Kammerer and Gallagher [4]
where it was shown that the decay rate of solution may depend on the dimension of the centre of 
the group. Wave equations for the full Laplacian on the Heisenberg group have been investigated 
in [8], [23] where better decay rates have been obtained. We also mention recently published 
papers [21,22] where attractors were used to study damped hyperbolic equations.

One purpose of this paper is to investigate the global in time well-posedness of the Cauchy 
problem for the semilinear damped wave equation⎧⎪⎪⎨⎪⎪⎩

∂2
t u(t) −Lu(t) + b∂tu(t) + mu(t) = f (u), t > 0,

u(0) = u0 ∈ L2(Hn),

∂tu(0) = u1 ∈ L2(Hn),

(1.1)

with the damping term determined by b > 0 and with the mass m > 0, where Hn is the Heisen-
berg group and L is the sub-Laplacian. Consequently, we also establish similar results for a 
more general setting, namely, when the Heisenberg group Hn is replaced by a general graded Lie 

http://creativecommons.org/licenses/by/4.0/
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group G, and the sub-Laplacian L is replaced by an arbitrary Rockland operator R, i.e. by an 
arbitrary left-invariant homogeneous hypoelliptic differential operator.

The nonlinearity f in this paper will be assumed to satisfy, for some p > 1, the conditions{
f (0) = 0,

|f (u) − f (v)| ≤ C(|u|p−1 + |v|p−1)|u − v|. (1.2)

In particular, this includes the cases

f (u) = μ|u|p−1u, for some p > 1, μ ∈C, (1.3)

as well as the more general case of differentiable functions f satisfying

|f ′(u)| ≤ C|u|p−1. (1.4)

To fix the notation concerning the equation (1.1), for n ∈ N, the Heisenberg group Hn is the 
manifold R2n+1 endowed with the group structure

(x, y, t) ◦ (x′, y′, t ′) := (x + x′, y + y′, t + t ′ + 1

2
(x · y′ − x′ · y)),

where (x, y, t) and (x′, y′, t ′) are in Rn × R
n × R ∼ H

n. The sub-Laplacian on the Heisenberg 
group Hn is given by

L :=
n∑

j=1

(X2
j + Y 2

j ), with Xj := ∂xj
− yj

2
∂t , Yj := ∂yj

+ xj

2
∂t . (1.5)

In this case, in Theorem 3.2 we will show the global in time well-posedness of the Cauchy 
problem (1.1):

• for small data (u0, u1) ∈ H 1
L(Hn) × L2(Hn),

• and for nonlinearities f (u) satisfying (1.2) for 1 < p ≤ 1 + 1/n.

Here H 1
L(Hn) denotes the sub-Laplacian Sobolev space, analysed by Folland [9]. Consequently, 

we extend this result beyond the setting of the Heisenberg group and second order operators, in 
a way that we now describe.

Following Folland and Stein [15], we recall that G is a graded Lie group if there is a gradation 
on its Lie algebra g, i.e. a vector space decomposition

g =
∞⊕

j=1

Vj such that [Vi,Vj ] ⊂ Vi+j ,

will all but finitely many of Vj being zero, see Section 4.1 for a precise definition. This leads 
to a family of dilations on it with rational weights, compatible with the group structure. If V1
generates g as an algebra, the group is said to be stratified and the sum of squares of a basis of 
vector fields in V1 yields a sub-Laplacian on G. However, non-stratified graded G may not have 
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a homogeneous sub-Laplacian or Laplacian but they always have so-called Rockland operators. 
Such operators appeared in the hypoellipticity considerations by Rockland [28] defined by the 
condition that their infinitesimal representations are injective on smooth vectors. Suitable partial 
reformulations of these conditions were further proposed by Rockland [28] and Beals [1], until 
the resolution in [18] by Helffer and Nourrigat of what has become known as the Rockland 
conjecture, and what we can adopt as the definition here:

Rockland operators are left-invariant homogeneous hypoelliptic differential operators on G.
In fact, the existence of such operators on nilpotent Lie groups singles out the class of graded 

groups, see [24], [39]. In the realm of homogeneous Lie groups, the graded groups can be also 
characterised by dilations having rational weights, see [14, Section 4.1.1].

Thus, in our extension of the obtained result from the Heisenberg group to graded Lie groups, 
we will work with positive Rockland operators R. To give some examples, this setting includes:

• for G = R
n, R may be any positive homogeneous elliptic differential operator with constant 

coefficients. For example, we can take

R = (−�)m or R= (−1)m
n∑

j=1

aj

(
∂

∂xj

)2m

, aj > 0, m ∈ N;

• for G = H
n the Heisenberg group, we can take

R= (−L)m or R = (−1)m
n∑

j=1

(ajX
2m
j + bjY

2m
j ), aj , bj > 0, m ∈N,

where L is the sub-Laplacian and Xj, Yj are the left-invariant vector fields in (1.5).
• for any stratified Lie group (or homogeneous Carnot group) with vectors X1, . . . , Xk span-

ning the first stratum, we can take

R= (−1)m
k∑

j=1

ajX
2m
j , aj > 0,

so that, in particular, for m = 1, R is a positive sub-Laplacian;
• for any graded Lie group G ∼ R

n with dilation weights ν1, . . . , νn let us fix the basis 
X1, . . . , Xn of the Lie algebra g of G satisfying

DrXj = rνj Xj , j = 1, . . . , n, r > 0,

where Dr denote the dilations on the Lie algebra. If ν0 is any common multiple of ν1, . . . , νn, 
the operator

R =
n∑

j=1

(−1)

ν0
νj ajX

2
ν0
νj

j , aj > 0,

is a Rockland operator of homogeneous degree 2ν0. The Rockland operator can be also 
adapted to a special selection of vector fields generating the Lie algebra in a suitable way, 
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such as the vector fields from the first stratum on the stratified Lie groups. We refer to [14, 
Section 4.1.2] for many other examples and a discussion of Rockland operators.

In the setting of a general graded Lie group G of homogeneous dimension Q, which is defined 
by

Q = ν1 + . . . + νn,

we consider the nonlinear damped wave equation for a positive Rockland operator R of homo-
geneous degree ν,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2
t u(t) +Ru(t) + b∂tu(t) + mu(t) = F(u, {Rj/νu}

[
ν
2

]−1
j=1 ), t > 0,

u(0) = u0 ∈ L2(G),

∂tu(0) = u1 ∈ L2(G),

(1.6)

with the damping term determined by b > 0 and with the mass m > 0. Here [ ν
2 ] stands for the 

integer part of ν
2 . In this case, in Theorem 4.6 and Theorem 4.7 we will show the global in time 

well-posedness of the Cauchy problem (1.6):

• for small data (u0, u1) ∈ Hν/2(G) × L2(G),
• and for nonlinearities F :C[ν/2] →C with the following property:

{
F(0) = 0,

|F(U) − F(V )| ≤ C(|U |p−1 + |V |p−1)|U − V |, (1.7)

where U = ({Rj/νu}
[

ν
2

]−1
j=0 ), for 1 < p ≤ 1 + 2

Q−2 .

Here Hν/2(Hn) denotes the Sobolev space of order ν/2 associated to R, analysed in [11] and in 
[14, Section 4.4].

In the case of the Heisenberg group G = H
n and R = −L, we have ν = 2 and Q = 2n + 2, 

and this result recaptures the first result in Theorem 3.2 in this setting. Moreover, on stratified 
groups, i.e. with ν = 2, this gives the class of semilinear equations in Theorem 4.6.

However, to simplify the exposition, we give a detailed proof in the case of the sub-Laplacian 
on the Heisenberg group, and then indicate the necessary modifications for the case of general 
positive Rockland operators on general graded Lie groups.

In both cases of Hn and more general graded Lie groups G, our proof relies on the group 
Fourier analysis on G to obtain the exponential time decay for solutions to the linear problem. 
This is possible due to the inclusion of positive mass term m > 0 leading to the separation of 
the spectrum of R and of its infinitesimal representations from zero. Consequently, the nonlinear 
analysis relies on the application of the Gagliardo–Nirenberg inequality on G. While such in-
equality is well-known on the Heisenberg group Hn, the known graded group versions in [3] or 
on [14] are not suitable for our analysis. Thus, in Theorem 4.2 we derive the necessary version 
of the Gagliardo–Nirenberg inequality based on the graded group version of Sobolev inequality 
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established in [14]. More generally, we show that if G is a graded Lie group of homogeneous 
dimension Q and

a > 0, 1 < r <
Q

a
and 1 ≤ p ≤ q ≤ rQ

Q − ar
,

then we have the following Gagliardo–Nirenberg type inequality

‖u‖Lq(G) � ‖u‖s

L̇r
a(G)

‖u‖1−s
Lp(G)


 ‖Ra/νu‖s
Lr (G)‖u‖1−s

Lp(G)
, (1.8)

for s =
(

1
p

− 1
q

)(
a
Q

+ 1
p

− 1
r

)−1 ∈ [0, 1] provided that a
Q

+ 1
p

− 1
r

�= 0. Here L̇r
a(G) is the 

homogeneous Sobolev space of order a over Lr(G), and we refer to [11] and [14, Section 4.4]
for an extensive analysis of these spaces and their properties in the setting of general graded Lie 
groups.

If a
Q

+ 1
p

− 1
r

= 0, we have p = q = rQ
Q−ar

, and then (1.8) holds for any 0 ≤ s ≤ 1.
The Fourier analysis we use follows the pseudo-differential analysis as described, for example, 

in [10], [2] or [13] in the case of the Heisenberg group, and in [14] on general graded Lie groups, 
see also [12].

The similar strategy of obtaining L2-estimates for solutions of linear problems has been used 
in [16] in the analysis of weakly hyperbolic wave equations for the sub-Laplacians on compact 
Lie groups. Some techniques of similar type also appear in the analysis of general operators 
with discrete spectrum and with time-dependent coefficients in [34–36] by using nonharmonic 
analysis developed in [32,7,33,20,37]. Estimates in Lp for solution of the wave equation for the 
sub-Laplacian on the Heisenberg group were considered in [25], and on groups of Heisenberg 
type in [26]. The potential theory and functional estimates in the setting of stratified groups have 
been recently analysed in [30,31,29].

Throughout this paper we will often use the notation � instead of ≤ to avoid repeating the 
constants which are not dependent on the main parameters, especially, on functions appearing in 
the estimates.

2. Linear damped wave equation on the Heisenberg group

In what follows, we will need some elements of the analysis on the Heisenberg group Hn. 
It will be convenient for us to follow the notations from [14, Chapter 6] to which we refer for 
further details. We start by recalling the definition of the group Fourier transform on Hn. For 
f ∈ S(Hn) we denote its group Fourier transform by

f̂ (λ) :=
∫
Hn

f (x)πλ(x)∗dx (2.1)

with the Schrödinger representations

πλ : L2(Rn) → L2(Rn) (2.2)

for all λ ∈R
∗ := R \ {0}. The Fourier inversion formula then takes the form
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f (x) =
∫

λ∈R∗
Tr[f̂ (λ)πλ(x)] |λ|ndλ, (2.3)

where Tr is the trace operator. The Plancherel formula becomes

‖f ‖2
L2(Hn)

=
∫

λ∈R∗
‖f̂ (λ)‖2

HS[L2(Rn)] |λ|ndλ, (2.4)

where ‖ · ‖HS[L2(Rn)] is the Hilbert–Schmidt norm on L2(Rn).
Now, we deal with the linear case of the Cauchy problem (1.1), that is,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂2
t u(t, z) −Lu(t) + b∂tu(t, z) + mu(t, z) = 0,

u(0, z) = u0(z),

∂tu(0, z) = u1(z),

for all t > 0 and z ∈ H
n.

(2.5)

By acting by the group Fourier transform on this equation, we obtain⎧⎪⎪⎨⎪⎪⎩
∂2
t û(t, λ) + σL(λ)̂u(t, λ) + b∂t û(t, λ) + mû(t, λ) = 0, t > 0,

û(0, λ) = û0(λ),

∂t û(0, λ) = û1(λ),

(2.6)

where σL(λ) is the symbol of −L. It takes the form

σL(λ) = |λ|Hw ≡ |λ|
n∑

j=1

(−∂2
wj

+ w2
j ), (2.7)

where Hw :=∑n
j=1(−∂2

wj
+ w2

j ) is the harmonic operator acting on L2(Rn), see e.g. [14, Sec-
tion 6.2.1].

Since the harmonic oscillator Hw is essentially self-adjoint in L2(Rn) and, its system of eigen-
functions {ψk}∞k=1 is a basis in L2(Rn), we have an ordered set of positive numbers {μk}∞k=1 such 
that

Hwψk(w) = μkψk(w), w ∈R
n,

for all k ∈ N. More precisely, Hw has eigenvalues

λk =
n∑

j=1

(2kj + 1), k = (k1, . . . , kn) ∈N
n,

with corresponding eigenfunctions
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ek(w) =
n∏

j=1

Pkj
(wj )e

− |w|2
2 ,

which form an orthogonal system in L2(Rn). Here, Pm(·) is the m–th order Hermite polynomial 
and

Pm(t) = cme
|t |2

2

(
t − d

dt

)m

e− |t |2
2 , t > 0, cm = 2−m/2(m!)−1/2π−1/4.

For more details on these see e.g. [27].
Consequently, for (k, l) ∈N ×N, denoting

û(t, λ)kl := (̂u(t, λ)ψl,ψk)L2(Rn), (2.8)

we see that the equation (2.6) is reduced to the system

⎧⎪⎪⎨⎪⎪⎩
∂2
t û(t, λ)kl + b∂t û(t, λ)kl + (|λ|μk + m)̂u(t, λ)kl = 0, t > 0,

û(0, λ)kl = û0(λ)kl ∈L2(Rn),

∂t û(0, λ)kl = û1(λ)kl ∈L2(Rn),

(2.9)

for each λ ∈R
∗.

Now, we fix λ ∈ R
∗ and (k, l) ∈ N × N. By solving the second order ordinary differential 

equation (2.9) with constant coefficients, we get the estimates

|̂u(t, λ)kl | � e− b
2 t
[
|̂u0(λ)kl | + (b2/4 − |λ|μk − m)−1/2 |̂u1(λ)kl |

]
, (2.10)

for 2
√|λ|μk + m < b, and

|̂u(t, λ)kl | � e− b
2 t

[(
1 + b

2
t

)
|̂u0(λ)kl | + t |̂u1(λ)kl |

]
, (2.11)

for 2
√|λ|μk + m = b, and

|̂u(t, λ)kl | � e−( b
2 −
√

b2
4 −|λ|μk−m)t

[
|̂u0(λ)kl | + (|λ|μk + m − b2/4)−1/2 |̂u1(λ)kl |

]
, (2.12)

for b < 2
√|λ|μk + m. Thus, there exists a positive constant δ > 0 such that in all the cases we 

have

| |λ|μk + m − b2/4|1/2 |̂u(t, λ)kl |
� e−δt

[
| |λ|μk + m − b2/4|1/2 |̂u0(λ)kl | + |̂u1(λ)kl |

]
.

(2.13)
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Consequently, we obtain

‖(1 − σL(λ))1/2 |̂u(t, λ)‖2
HS =

∞∑
k,l=1

(1 + |λ|μk)̂u(t, λ)kl |2

� e−δt

⎡⎣ ∞∑
k,l=1

(1 + |λ|μk)|̂u0(λ)kl |2 +
∞∑

k,l=1

|̂u1(λ)kl |2
⎤⎦

� e−δt
[
‖(1 − σL(λ))1/2û0(λ)‖2

HS + ‖û0(λ)‖2
HS

]
.

(2.14)

The same estimates work if we multiply the equation (2.9) by powers of the spectral decomposi-
tion of the symbol of the sub-Laplacian.

The Sobolev spaces Hs
L, s ∈R, associated to L, is defined as

Hs
L(Hn) :=

{
f ∈D′(Hn) : (I −L)s/2f ∈ L2(Hn)

}
,

with the norm ‖f ‖Hs
L(Hn) := ‖(I −L)s/2f ‖L2(Hn). We refer to Folland [9] for a thorough anal-

ysis of these spaces and their properties.
For the solution of the system (2.9), for each ̂u(t, λ)kl for fixed (k, l) ∈ N × N, we obtain an 

explicit formula

û(t, λ)kl =[
(

b

4i
√|λ|μk + m − b2/4

+ 1

2

)
e(−b/2+i

√|λ|μk+m−b2/4)t

+
(

ib

4
√|λ|μk + m − b2/4

+ 1

2

)
e(−b/2−i

√|λ|μk+m−b2/4)t ]̂u0(λ)kl

+ [ 1

2i
√|λ|μk + m − b2/4

e(−b/2+i
√|λ|μk+m−b2/4)t

+ i

2
√|λ|μk + m − b2/4

e(−b/2−i
√|λ|μk+m−b2/4)t ]̂u1(λ)kl .

(2.15)

To obtain similar Sobolev estimates for negative s we consider cases b < 2
√|λ|μk + m and 

2
√|λ|μk + m < b, and then the case 2

√|λ|μk + m ≈ b.
When b < 2

√|λ|μk + m let us denote ak :=√|λ|μk + m − b2/4. Then by the direct calcula-
tions we get

û(t, λ)kl =e−b/2t

[
b sin(akt)

2ak

]
û0(λ)kl + e−b/2t

[
sin(akt)

ak

]
û1(λ)kl . (2.16)

When b > 2
√|λ|μk + m we denote ck :=√

b2/4 − |λ|μk − m. Then we obtain

û(t, λ)kl =e−b/2t

[
b sinh(ckt) + cosh(ckt)

]
û0(λ)kl + e−b/2t

[
sinh(ckt)

]
û1(λ)kl . (2.17)
2ck ck
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We observe that

sin(akt)

ak

= t + o(1), as ak ∼ 0;
b sinh(ckt)

2ck

+ cosh(ckt) = bt

2
+ 1 + o(1), as ck ∼ 0;

sinh(ckt)

ck

= t + o(1), as ck ∼ 0.

(2.18)

Let us now define a characteristic function χ ∈ C∞
0 ([0, ∞)) as

χ(t) =
{

1, |t − b2/4 + m| < 1;
0, |t − b2/4 + m| > 2.

Then for any s ∈R we have

‖w‖Hs
L(Hn) 
 ‖χ(L)w‖Hs

L(Hn) + ‖(1 − χ(L))w‖Hs
L(Hn). (2.19)

Since for any s1, s2 ∈ R we have

‖χ(L)w‖
H

s1
L (Hn)

∼= ‖χ(L)w‖
H

s2
L (Hn)

, (2.20)

in view of (2.18), the estimate (2.11) extends to the estimate in Sobolev spaces. The estimate for 
‖(1 −χ(L))w‖Hs

L(Hn) for any s works in the same way as for s ≥ 1. Therefore, summarising the 
arguments above, we obtain

Proposition 2.1. Let s ∈ R and assume that u0 ∈ Hs
L(Hn) and u1 ∈ Hs−1

L (Hn). Then there exists 
a positive constant δ > 0 such that

‖u(t, z)‖2
Hs
L(Hn) = ‖(1 − σL(λ))s/2û(t, λ)‖2

L2(Ĥn)

=
∫
R∗

‖(1 − σL(λ))s/2û(t, λ)‖2
HS |λ|ndλ

� e−2δt (‖u0‖2
Hs
L(Hn) + ‖u1‖2

Hs−1
L (Hn)

)

(2.21)

holds for all t > 0.
Moreover, for any α ∈ N0 we have

‖∂α
t u(t, z)‖2

Hs
L(Hn) = ‖(1 − σL(λ))s/2∂α

t û(t, λ)‖2
L2(Ĥn)

=
∫
R∗

‖(1 − σL(λ))(α+s)/2û(t, λ)‖2
HS |λ|ndλ

� e−2δt (‖u0‖2
Hα+s
L (Hn)

+ ‖u1‖2
Hα+s−1
L (Hn)

)

for all t > 0.
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3. Semilinear damped wave equations on the Heisenberg group

In this section we consider the semilinear wave equation for the sub-Laplacian L on the 
Heisenberg group Hn:⎧⎪⎪⎨⎪⎪⎩

∂2
t u(t) −Lu(t) + b∂tu(t) + mu(t) = f (u), t > 0,

u(0) = u0 ∈ L2(Hn),

∂tu(0) = u1 ∈ L2(Hn).

(3.1)

The main case of interest may be of

f (u) = μ|u|p−1u, (3.2)

for p > 1 and μ ∈ C, but we can treat a more general situation of f satisfying conditions (1.2), 
see also (3.4).

We now recall the Gagliardo–Nirenberg inequality on the Heisenberg group Hn, see e.g. Fol-
land [9] and Varopoulos [40], and also [6] for derivation of the best constants there:

Proposition 3.1. Let n ≥ 1, 2 ≤ q ≤ 2 +2/n, and let Q := 2n +2 be the homogeneous dimension 
of Hn. Then for θ = Q(q−2)

2q
the following Gagliardo–Nirenberg inequality is true

‖u‖Lq(Hn) � ‖∇Hnu‖θ
L2(Hn)

‖u‖1−θ

L2(Hn)
, (3.3)

where ∇Hn = (X1, . . . , Xn, Y1, . . . , Yn) is the horizontal gradient on Hn.

We now formulate our main result for the Heisenberg group Hn.

Theorem 3.2. Let b > 0 and m > 0. Assume that f satisfies the properties{
f (0) = 0,

|f (u) − f (v)| ≤ C(|u|p−1 + |v|p−1)|u − v|, (3.4)

for some 1 < p ≤ 1 + 1/n. Assume that the Cauchy data u0 ∈ H 1
L(Hn) and u1 ∈ L2(Hn) satisfy

‖u0‖H 1
L(Hn) + ‖u1‖L2(Hn) ≤ ε. (3.5)

Then, there exists a small positive constant ε0 > 0 such that the Cauchy problem⎧⎪⎪⎨⎪⎪⎩
∂2
t u(t) −Lu(t) + b∂tu(t) + mu(t) = f (u), t > 0,

u(0) = u0 ∈ H 1
L(Hn),

∂tu(0) = u1 ∈ L2(Hn),

has a unique global solution u ∈ C(R+; H 1 (Hn)) ∩ C1(R+; L2(Hn)) for all 0 < ε ≤ ε0.
L
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Moreover, there is a positive number δ0 > 0 such that

‖∂α
t Lβu(t)‖L2(Hn) � e−δ0t , (3.6)

for (α, β) = (0, 0), or (α, β) = (0, 1/2), or (α, β) = (1, 0).

As noted in the introduction, an example of f satisfying (3.4) is given by (3.2) or, more 
generally, by differentiable functions f such that

|f ′(u)| ≤ C|u|p−1.

Proof of Theorem 3.2. Let us consider the closed subset Z of the space C1(R+; H 1
L(Hn)) de-

fined as

Z := {u ∈ C1(R+; H 1
L(Hn)) : ‖u‖Z ≤ L},

with

‖u‖Z := sup
t≥0

{(1 + t)−1/2eδt (‖u(t, ·)‖L2(Hn) + ‖∂tu(t, ·)‖L2(Hn) + ‖L1/2u(t, ·)‖L2(Hn))},

where L > 0 will be specified later. Now we define the mapping � on Z by

�[u](t) := ulin(t) +
t∫

0

K[f (u)](t − τ)dτ, (3.7)

where ulin is the solution of the linear equation, and K[f ] is the solution of the following linear 
problem: ⎧⎪⎪⎨⎪⎪⎩

∂2
t w(t) −Lw(t) + b∂tw(t) + mw(t) = 0, t > 0,

w(0) = 0,

∂tw(0) = f.

We claim that

‖�[u]‖Z ≤ L (3.8)

for all u ∈ Z and

‖�[u] − �[v]‖Z ≤ 1

r
‖u − v‖Z (3.9)

for all u, v ∈ Z with r > 1. Once we proved inequalities (3.8) and (3.9), it follows that � is a 
contraction mapping on Z. The Banach fixed point theorem then implies that � has a unique 
fixed point in Z. It means that there exists a unique global solution u of the equation
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u = �[u] in Z,

which also gives the solution to (3.1). So, we now concentrate on proving (3.8) and (3.9).
Recalling the second assumption in (3.4) on f , namely,

|f (u) − f (v)| ≤ C(|u|p−1 + |v|p−1)|u − v|,

applying it to functions u = u(t) and v = v(t) we get

‖(f (u) − f (v))(t, ·)‖2
L2(Hn)

≤ C

∫
Hn

(|u(t, z)|p−1 + |v(t, z)|p−1)2|u(t, z) − v(t, z)|2dz.

Consequently, by the Hölder inequality, we get

‖(f (u) − f (v))(t, ·)‖2
L2(Hn)

≤ C(‖u(t, ·)‖p−1
L2p(Hn)

+ ‖v(t, ·)‖p−1
L2p(Hn)

)2‖(u − v)(t, ·)‖2
L2p(Hn)

since 1
p

p−1
+ 1

p
= 1. By the Gagliardo–Nirenberg inequality (3.3), and by Young’s inequality

aθb1−θ ≤ θa + (1 − θ)b

for 0 ≤ θ ≤ 1, a, b ≥ 0, we obtain

‖(f (u) − f (v))(t, ·)‖L2(Hn) ≤ C
[(

‖L1/2u(t, ·)‖L2(Hn) + ‖u(t, ·)‖L2(Hn)

)p−1

+
(
‖L1/2v(t, ·)‖L2(Hn) + ‖v(t, ·)‖L2(Hn)

)p−1 ]
×
(
‖L1/2(u − v)(t, ·)‖L2(Hn) + ‖(u − v)(t, ·)‖L2(Hn)

)
.

(3.10)

Recalling that ‖u‖Z ≤ L and ‖v‖Z ≤ L, from (3.10) we get

‖(f (u) − f (v))(t, ·)‖L2(Hn) ≤ C(1 + t)p/2e−δptLp−1‖u − v‖Z. (3.11)

By putting v = 0 in (3.11), and using that f (0) = 0, we also have

‖f (u)(t, ·)‖L2(Hn) ≤ C(1 + t)p/2e−δptLp. (3.12)

Now, let us estimate the integral operator

J [u](t, z) :=
t∫

0

K[f (u(τ, z))](t − τ)dτ. (3.13)

More precisely, for α = 0, 1 and for all β ≥ 0 we have
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|∂α
t LβJ [u](t, z)|2 ≤

∣∣∣ t∫
0

∂α
t LβK[f (u(τ, z))](t − τ)dτ

∣∣∣2

≤
⎛⎝ t∫

0

∣∣∣∂α
t LβK[f (u(τ, z))](t − τ)

∣∣∣dτ

⎞⎠2

≤ t

t∫
0

∣∣∣∂α
t LβK[f (u(τ, z))](t − τ)

∣∣∣2dτ.

Then by using Proposition 2.1, for (α, β) = (0, 0), (α, β) = (0, 1/2) and (α, β) = (1, 0) we 
get

‖∂α
t LβJ [u](t, ·)‖2

L2(Hn)
≤ t

t∫
0

‖∂α
t LβK[f (u(τ, z))](t − τ)‖2

L2(Hn)
dτ

≤ Ct

t∫
0

e−2δ(t−τ)‖f (u(τ, ·))‖2
L2(Hn)

dτ

= Cte−2δt

t∫
0

e2δτ‖f (u(τ, ·))‖2
L2(Hn)

dτ.

(3.14)

Thus, using (3.11) and (3.12), we obtain from (3.14) that

‖∂α
t Lβ(J [u] − J [v])(t, ·)‖L2(Hn) ≤ Ct1/2e−δt Lp−1‖u − v‖Z, (3.15)

and

‖∂α
t LβJ [u](t, ·)‖L2(Hn) ≤ Ct1/2e−δt Lp, (3.16)

with the estimates (3.15)–(3.16) holding for (α, β) = (0, 0), (α, β) = (0, 1/2) and (α, β) =
(1, 0).

Consequently, by the definition of �[u] in (3.7) and using Proposition 2.1 for the first term 
and estimates for ‖J [u]‖Z for the second term below, we obtain

‖�[u]‖Z ≤ ‖ulin‖Z + ‖J [u]‖Z

≤ C1(‖u0‖H 1
L(Hn) + ‖u1‖L2(Hn)) + C2L

p,
(3.17)

for some C1 > 0 and C2 > 0.
Moreover, in the similar way, we can estimate

‖�[u] − �[v]‖Z ≤ ‖J [u] − J [v]‖Z ≤ C3L
p−1‖u − v‖Z, (3.18)
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for some C3 > 0. Taking some r > 1, we choose L := rC1(‖u0‖H 1
L(Hn) + ‖u1‖L2(Hn)) with 

sufficiently small ‖u0‖H 1
L(Hn) + ‖u1‖L2(Hn) < ε so that

C2L
p ≤ 1

r
L, C3L

p−1 ≤ 1

r
. (3.19)

Then estimates (3.17)–(3.19) imply the desired estimates (3.8) and (3.9). This means that we can 
apply the fixed point theorem for the existence of solutions.

The estimate (3.6) follows from (3.14). Theorem 3.2 is now proved. �
4. Nonlinear damped wave equations on graded Lie groups

In this section for a positive Rockland operator R we will derive the well-posedness results 
for the semilinear and then for nonlinear wave equation for small Cauchy data. At first, we start 
by recalling some definitions and notations following Folland and Stein [15] or [14, Section 3.1]. 
We also establish a new family of Gagliardo–Nirenberg inequalities on graded Lie groups.

4.1. Gagliardo–Nirenberg inequalities

A Lie algebra g is called graded when it is endowed with a vector space decomposition

g =
∞⊕

j=1

Vj such that [Vi,Vj ] ⊂ Vi+j ,

and where all but finitely many of Vj ’s are zero. Consequently, a connected simply connected 
Lie group G is called graded if its Lie algebra g is graded. A special case of stratified G arises 
when the first stratum V1 generates g as an algebra.

Graded Lie groups are necessarily nilpotent. Moreover, they are also homogeneous Lie groups 
with a canonical choice of dilations. Namely, let us define the operator A by setting AX = jX

for X ∈ Vj . Then the dilations on g are defined by

Dr := Exp(A ln r), r > 0.

The homogeneous dimension Q of G is defined by

Q := ν1 + . . . + νn = TrA.

From now on let G be a graded Lie group. Rockland operators have been originally defined in 
[28] through the representation theoretic language. Following [14, Definition 4.1.1], we say that 
R is a Rockland operator on G if R is a left-invariant differential operator which is homogeneous 
of a positive order ν ∈ N and satisfies the following Rockland condition:

• for all representations π ∈ Ĝ, excluding the trivial one, the operator π(R) is injective on 
H∞

π , namely, from
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π(R)v = 0

it follows that v = 0 for all v ∈ H∞
π .

Here Ĝ denotes the unitary dual of the graded Lie group G, H∞
π is the space of smooth vectors 

of the representation π ∈ Ĝ, and π(R) is the infinitesimal representation (or the symbol) of R
as an element of the universal enveloping algebra of G, see [14, Definition 1.7.2]. For more 
information on graded Lie groups and Rockland operators we refer to [14, Chapter 4].

It has been shown by Helffer and Nourrigat in [18] that a left-invariant differential operator 
R of homogeneous positive degree ν ∈ N satisfies the Rockland condition if and only if it is 
hypoelliptic. Such operators are called Rockland operators.

So, a left-invariant differential operator is a Rockland operator if and only if it is homoge-
neous and hypoelliptic.

The Sobolev spaces Hs
R(G), s ∈ R, associated to positive Rockland operators R have been 

analysed in [11] using heat kernel methods, see also [14]. The positivity (of an operator) refers 
to the positivity in the operator sense. One of the equivalent definitions of Sobolev spaces is

Hs(G) := Hs
R(G) :=

{
f ∈ D′(G) : (I +R)s/νf ∈ L2(G)

}
,

with the norm ‖f ‖Hs
R(G) := ‖(I +R)s/νf ‖L2(G), for a positive Rockland operator of homoge-

neous degree ν. Among other things, it has been shown that these Sobolev spaces are independent 
of a particular choice of the Rockland operator R, so we may omit writing the subscript R.

We now establish a version of the Gagliardo–Nirenberg inequality on graded Lie groups. 
Some version of such inequality was shown in [3], and also in [14, Theorem 4.4.28, (7)], namely, 
for q, r ∈ (1, ∞) and 0 < σ < s there exists C > 0 such that

‖f ‖L̇
p
σ

≤ C‖f ‖θ
Lq ‖f ‖1−θ

L̇r
s

, (4.1)

where θ = 1 − σ
s

and p ∈ (1, ∞) is given via 1
p

= θ
q
+ 1−θ

r
. Here L̇p

σ is the homogeneous Sobolev 

space defined as the space of all f ∈ D′(G) such that Rσ/νf ∈ Lp(G), where R is a positive 
Rockland operator of homogeneous degree ν. Again, these spaces are independent of a particular 
choice of R, see [14, Section 4.4]. We also note results on the best constants, for example, see 
[38,19]. However, this inequality (4.1) will not be suitable for our purpose, and we establish 
another version as a consequence of the following Sobolev inequality on G:

Proposition 4.1 ([14, Proposition 4.4.13, (5)]). Let G be a graded Lie group of homogeneous 
dimension Q. Let a > 0 and 1 < p < q < ∞ be such that

Q

(
1

p
− 1

q

)
= a.

Then we have the following Sobolev inequality

‖u‖Lq(G) � ‖u‖L̇
p
a (G) 
 ‖Ra/νu‖Lp(G), (4.2)

for all u ∈ L̇
p
a (G), and where R is any positive Rockland operator of homogeneous degree ν.
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If G is a stratified Lie group, R is a sub-Laplacian and ν = 2, the estimate (4.2) was es-
tablished by Folland [9]. We refer to [14, Proposition 4.4.13] for other embedding theorems on 
graded Lie groups.

We now show that the Sobolev inequality implies a family of the Gagliardo–Nirenberg in-
equalities, one of which is needed for our analysis:

Theorem 4.2. Let G be a graded Lie group of homogeneous dimension Q and let R be a positive 
Rockland operator of homogeneous degree ν. Assume that

a > 0, 1 < r <
Q

a
and 1 ≤ p ≤ q ≤ rQ

Q − ar
. (4.3)

Then we have the following Gagliardo–Nirenberg type inequality,

‖u‖Lq(G) � ‖u‖s

L̇r
a(G)

‖u‖1−s
Lp(G)


 ‖Ra/νu‖s
Lr (G)‖u‖1−s

Lp(G)
, (4.4)

for s =
(

1
p

− 1
q

)(
a
Q

+ 1
p

− 1
r

)−1 ∈ [0, 1], provided that a
Q

+ 1
p

− 1
r

�= 0.

If a
Q

+ 1
p

− 1
r

= 0, we have p = q = rQ
Q−ar

, in which case (4.4) holds for any 0 ≤ s ≤ 1.

Proof. By the Hölder inequality, we have

∫
G

|u|qdx =
∫
G

|u|qs |u|q(1−s)dx ≤
⎛⎝∫

G

|u|p∗
dx

⎞⎠
qs

p∗ ⎛⎝∫
G

|u|pdx

⎞⎠
q(1−s)

p

,

for any s ∈ [0, 1] such that

qs

p∗ + q(1 − s)

p
= 1. (4.5)

Then by using Corollary 4.1, for 1 < r < p∗ < ∞ we obtain

‖u‖Lq(G) � ‖u‖s

L̇r
a(G)

‖u‖1−s
Lp(G)

,

where

Q

(
1

r
− 1

p∗

)
= a, (4.6)

yielding (4.4). We only have to check that conditions (4.3) imply that r < p∗ and that s ∈ [0, 1]. 
Indeed, the relation (4.6) implies that 1

p∗ = 1
r

− a
Q

> 0, and so (4.5) gives

s

(
a + 1 − 1

)
= 1 − 1 ≥ 0.
Q p r p q



JID:YJDEQ AID:9393 /FLA [m1+; v1.287; Prn:2/07/2018; 16:19] P.18 (1-25)

18 M. Ruzhansky, N. Tokmagambetov / J. Differential Equations ••• (••••) •••–•••
The condition q ≤ rQ
Q−ar

guarantees that a
Q

+ 1
p

− 1
r

≥ 1
p

− 1
q

, so that s is uniquely determined 

for a
Q

+ 1
p

− 1
r

�= 0. We also note that then automatically s ∈ [0, 1].
Assume now that a

Q
+ 1

p
− 1

r
= 0. This implies that p = rQ

Q−ar
, so that the conditions (4.3)

imply that

p = q = rQ

Q − ar
. (4.7)

If s = 0, (4.4) trivially holds for p = q , so we may assume that 1 ≥ s > 0. Moreover, we can 
assume that ‖u‖Lq �= 0 since otherwise there is noting to prove. Consequently, using that s > 0, 
p = q and ‖u‖Lq �= 0, inequality (4.4) reduces to the Sobolev inequality in Proposition 4.1 since 
we have Q( 1

r
− 1

q
) = a under conditions (4.7), and since r < q in view of 1

r
− 1

q
= a

Q
in this 

case. �
A special case of Theorem 4.2 important for our further analysis is that of p = r = 2 and 

a = 1, in which case we obtain a more classical Gagliardo–Nirenberg inequality:

Corollary 4.3. Let G be a graded Lie group of homogeneous dimension Q ≥ 3 and let R be a 
positive Rockland operator of homogeneous degree ν. Then for any

2 ≤ q ≤ 2Q

Q − 2
= 2 + 4

Q − 2

we have the following Gagliardo–Nirenberg type inequality,

‖u‖Lq(G) � ‖u‖s

Ḣ 1(G)
‖u‖1−s

L2(G)

 ‖R1/νu‖s

L2(G)
‖u‖1−s

L2(G)
, (4.8)

for s = s(q) = Q(q−2)
2q

∈ [0, 1].

We also record another more general special case of Theorem 4.2 with p = r = 2, but with 
any a > 0:

Corollary 4.4. Let G be a graded Lie group of homogeneous dimension Q and let R be a positive 
Rockland operator of homogeneous degree ν. Then for any

0 < a <
Q

2
and 2 ≤ q ≤ 2Q

Q − 2a
= 2 + 4a

Q − 2a

we have the following Gagliardo–Nirenberg type inequality,

‖u‖Lq(G) � ‖u‖s

Ḣ a(G)
‖u‖1−s

L2(G)

 ‖Ra/νu‖s

L2(G)
‖u‖1−s

L2(G)
, (4.9)

for s = Q
a
( 1

2 − 1
q
) ∈ [0, 1].
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4.2. Linear equation

Now, we are ready to deal with the linear equation⎧⎪⎪⎨⎪⎪⎩
∂2
t u(t) +Ru(t) + b∂tu(t) + mu(t) = 0, t > 0,

u(0) = u0 ∈ L2(G),

∂tu(0) = u1 ∈ L2(G),

(4.10)

with the damping term determined by b > 0 and with the mass m > 0.
Following [14], we briefly recall some definitions related to the Fourier analysis on a graded 

Lie group G. For f ∈ S(G) its group Fourier transform is given by

f̂ (π) :=
∫
G

f (x)π(x)∗dx (4.11)

with the representation π ∈ Ĝ realised as the mapping

π :Hπ → Hπ , (4.12)

where Hπ is the representation space of π , and where we routinely identify π with its equiva-
lence class. The Fourier inversion formula takes the form

f (x) =
∫
Ĝ

Tr[f̂ (π)π(x)]dμ(π), (4.13)

where Tr is the trace operator, and dμ(π) is the Plancherel measure on Ĝ. The Plancherel theo-
rem says that

‖f ‖2
L2(G)

=
∫
Ĝ

‖f̂ (π)‖2
HS[Hπ ]dμ(π), (4.14)

where ‖ · ‖HS[Hπ ] is the Hilbert–Schmidt norm on Hπ . We refer to [14] for details of the Fourier 
analysis on graded Lie groups.

Now, the group Fourier transform applied to (4.10) gives⎧⎪⎪⎨⎪⎪⎩
∂2
t û(t, π) + σR(π)̂u(t,π) + b∂t û(t, π) + mû(t,π) = 0, t > 0,

û(0,π) = û0(π),

∂t û(0,π) = û1(π),

(4.15)

where σR(π) = π(R) is the symbol of R given by its infinitesimal representation. It is known 
that σR(π) has a discrete spectrum in (0, ∞) for any non-trivial representation π ∈ Ĝ, see [17], 
[39], and also [14, Remark 4.2.8, (4)]. Therefore, we can decompose (4.15) with respect to the 
basis of eigenvectors of π(R). Repeating discussions of Section 2 we obtain
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Proposition 4.5. Let R be a positive Rockland operator of homogeneous degree ν on the graded 
Lie group G. Suppose that s ∈ R. Assume that u0 ∈ Hs(G) and u1 ∈ Hs−ν/2(G). Then there 
exists a positive constant δ1 > 0 such that

‖u(t, z)‖2
Hs(G) � e−2δ1t (‖u0‖2

Hs(G) + ‖u1‖2
Hs−ν/2(G)

) (4.16)

for all t > 0. Moreover, for all α ∈N0 we obtain

‖∂α
t u(t, z)‖2

Hs(G) � e−2δ1t (‖u0‖2
Hs+να/2(G)

+ ‖u1‖2
Hs+(α−1)ν/2(G)

)

for any t > 0.

4.3. Semilinear equations

From now on we assume that G is a graded Lie group of homogeneous dimension Q ≥ 3. 
We now consider the semilinear equation associated to the positive Rockland operator R of 
homogeneous degree ν.

Theorem 4.6. Let G be a graded Lie group of homogeneous dimension Q ≥ 3, and let R be 
a positive Rockland operator of homogeneous degree ν. Let b > 0 and m > 0. Assume that 
1 < p ≤ 1 + 2

Q−2 and that f satisfies the properties

{
f (0) = 0,

|f (u) − f (v)| ≤ C(|u|p−1 + |v|p−1)|u − v|. (4.17)

Assume that the Cauchy data u0 ∈ Hν/2(G) and u1 ∈ L2(G) satisfy

‖u0‖Hν/2(G) + ‖u1‖L2(G) ≤ ε. (4.18)

Then, there exists a small positive constant ε0 > 0 such that the Cauchy problem

⎧⎪⎪⎨⎪⎪⎩
∂2
t u(t) +Ru(t) + b∂tu(t) + mu(t) = f (u), t > 0,

u(0) = u0 ∈ Hν/2(G),

∂tu(0) = u1 ∈ L2(G),

(4.19)

has a unique global solution u ∈ C(R+; Hν/2(G)) ∩ C1(R+; L2(G)) for all 0 < ε ≤ ε0.
Moreover, there is a positive number δ2 > 0 such that

‖∂α
t Rβu(t)‖L2(G) � e−δ2t , (4.20)

for all (α, β) ∈ N0 × 1
ν
N0 and α + νβ ≤ ν/2.
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Proof. Similarly to the Heisenberg group case, we introduce the closed subsets ZR of the space 
C(R+; H 1(G)) defined by

ZR := {u ∈ C1(R+;H 1(G)) : ‖u‖ZR ≤ LR},

with

‖u‖ZR := sup
t≥0

⎧⎪⎨⎪⎩(1 + t)−1/2eδ1t

⎛⎜⎝ α+νβ≤ν/2∑
(α,β)∈N0× 1

ν
N0

‖∂α
t Rβu(t, ·)‖L2(G)

⎞⎟⎠
⎫⎪⎬⎪⎭ ,

where LR > 0 will be specified later. Indeed, the last sum is taken over terms (α, β) =
{(0, 0), (1, 0), (0, 1/ν), . . . , (0, 

[
ν
2

]
1/ν)}.

Now we define the mapping �R on ZR by

�R[u](t) := ulin(t) +
t∫

0

KR[f (u)](t − τ)dτ, (4.21)

where ulin is the solution of the linear equation, and KR[f ] is the solution of the following linear 
problem: ⎧⎪⎪⎨⎪⎪⎩

∂2
t w(t) +Rw(t) + b∂tw(t) + mw(t) = 0, t > 0,

w(0) = 0,

∂tw(0) = f.

Now, we repeat the discussions of the proof of Theorem 3.2, namely, by the Hölder inequality, 
we obtain

‖(f (u) − f (v))(t, ·)‖2
L2(G)

≤ C(‖u(t, ·)‖p−1
L2p(G)

+ ‖v(t, ·)‖p−1
L2p(G)

)2‖(u − v)(t, ·)‖2
L2p(G)

,

where 1
p

p−1
+ 1

p
= 1. Then by taking into account the Gagliardo–Nirenberg inequality (4.8) of 

Corollary 4.3, and by Young’s inequality, we get

‖(f (u) − f (v))(t, ·)‖L2(G) ≤ C
[(

‖R1/νu(t, ·)‖L2(G) + ‖u(t, ·)‖L2(G)

)p−1

+
(
‖R1/νv(t, ·)‖L2(G) + ‖v(t, ·)‖L2(G)

)p−1 ]
×
(
‖R1/ν(u − v)(t, ·)‖L2(G) + ‖(u − v)(t, ·)‖L2(G)

)
.

(4.22)

Recalling that ‖u‖ZR ≤ LR and ‖v‖ZR ≤ LR, from (4.22) we obtain

‖(f (u) − f (v))(t, ·)‖L2(G) ≤ C(1 + t)p/2e−δ1ptL
p−1‖u − v‖Z . (4.23)
R R
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Put v = 0 in (4.23). Then by using that f (0) = 0, we have

‖f (u)(t, ·)‖L2(G) ≤ C(1 + t)p/2e−δ1ptL
p

R. (4.24)

Now, we estimate the following integral operator

JR[u](t, z) :=
t∫

0

KR[f (u(τ, z))](t − τ)dτ. (4.25)

Since

|∂α
t RβJR[u](t, z)|2 ≤

∣∣∣ t∫
0

∂α
t RβKR[f (u(τ, z))](t − τ)dτ

∣∣∣2

≤
⎛⎝ t∫

0

∣∣∣∂α
t RβKR[f (u(τ, z))](t − τ)

∣∣∣dτ

⎞⎠2

≤ t

t∫
0

∣∣∣∂α
t RβKR[f (u(τ, z))](t − τ)

∣∣∣2dτ,

by Proposition 4.5, for all (α, β) = {(0, 0), (1, 0), (0, 1/ν), . . . , (0, 
[

ν
2

]
1/ν)}, i.e. for α + νβ ≤

ν/2, we obtain

‖∂α
t RβJR[u](t, ·)‖2

L2(G)
≤ t

t∫
0

‖∂α
t RβKR[f (u(τ, z))](t − τ)‖2

L2(G)
dτ

� t

t∫
0

e−2δ1(t−τ)‖f (u(τ, ·))‖2
L2(G)

dτ

= te−2δ1t

t∫
0

e2δ1τ‖f (u(τ, ·))‖2
L2(G)

dτ.

(4.26)

Thus, using (4.23) and (4.24), from (4.26) we get

‖∂α
t Rβ(JR[u] − JR[v])(t, ·)‖L2(G) � t1/2e−δ1t L

p−1
R ‖u − v‖ZR, (4.27)

and

‖∂α
t RβJR[u](t, ·)‖L2(G) � t1/2e−δ1t L

p

R, (4.28)

with the estimates (4.27)–(4.28).
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Finally, continuing to discuss as in the above Heisenberg case we obtain the statement of 
Theorem 4.6. �
4.4. Nonlinear equations

We note that the techniques of the proof of Theorem 4.6 allow us to consider the nonlinear 
equation (4.19) with more general nonlinearities. Namely, instead of f satisfying (4.17) we can 
deal with the function F :C[ν/2] →C with the following property:{

F(0) = 0,

|F(U) − F(V )| ≤ C(|U |p−1 + |V |p−1)|U − V |, (4.29)

where U = ({Rj/νu}
[

ν
2

]−1
j=0 ). Here [ ν

2 ] stands for the integer part of ν2 .

Theorem 4.7. Let G be a graded Lie group of homogeneous dimension Q ≥ 3, and let R be a 
positive Rockland operator of homogeneous degree ν. Let b > 0 and m > 0. Assume that 1 < p ≤
1 + 2

Q−2 and that F satisfies the properties (4.29). Assume that the Cauchy data u0 ∈ Hν/2(G)

and u1 ∈ L2(G) satisfy

‖u0‖Hν/2(G) + ‖u1‖L2(G) ≤ ε. (4.30)

Then, there exists a small positive constant ε0 > 0 such that the Cauchy problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2
t u(t) +Ru(t) + b∂tu(t) + mu(t) = F(u, {Rj/νu}

[
ν
2

]−1
j=1 ), t > 0,

u(0) = u0 ∈ Hν/2(G),

∂tu(0) = u1 ∈ L2(G),

has a unique global solution u ∈ C(R+; Hν/2(G)) ∩ C1(R+; L2(G)) for all 0 < ε ≤ ε0.
Moreover, there is a positive number δ3 > 0 such that

‖u(t)‖L2(G) + ‖R1/νu(t)‖L2(G) � e−δ3t . (4.31)

Proof. As in the proof of Theorem 4.6, we consider the closed subset Z1,R:

Z1,R := {u ∈ C(R+;H 1(G)) : ‖u‖Z1,R ≤ L1,R},

with the norm

‖u‖Z1,R := sup
t≥0

{(1 + t)−1/2eδ1t
(
‖u(t, ·)‖L2(G) + ‖R1/νu(t, ·)‖L2(G)

)
}.

Then similarly to the inequality (4.26), we have
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‖RβJR[u](t, ·)‖2
L2(G)

� te−2δ1t

t∫
0

e2δ1τ‖F(u, {Rj/νu}
[

ν
2

]−1
j=1 )‖2

H
ν
2 (2β−1)

(G)
dτ. (4.32)

Here we need to control ‖F(u, {Rj/νu}
[

ν
2

]−1
j=1 )‖

H
ν
2 (2β−1)

(G)
with ν

2 (2β − 1) ≤ 0. By using the 
Gagliardo–Nirenberg inequality (4.8) of Corollary 4.3, and by Young’s inequality, we obtain

‖F(u, {Rj/νu}
[

ν
2

]−1
j=1 ) − F(v, {Rj/νv}

[
ν
2

]−1
j=1 )‖

H
ν
2 (2β−1)

(G)

�
[(

‖R1/νu(t, ·)‖L2(G) + ‖u(t, ·)‖L2(G)

)p−1

+
(
‖R1/νv(t, ·)‖L2(G) + ‖v(t, ·)‖L2(G)

)p−1 ]
×
(
‖R1/ν(u − v)(t, ·)‖L2(G) + ‖(u − v)(t, ·)‖L2(G)

)
(4.33)

for β = 0 and β = 1/ν. Consequently, repeating the rest of the proof as in the previous proofs, 
we obtain the statement of Theorem 4.7. �
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