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1. Introduction

In this paper, we study the well-posedness and optimal trajectory regularity for the solution of 
the semilinear stochastic evolution equation (SEE)

dX(t) = (AX(t) + F(X(t)))dt + G(X(t))dW(t), t ∈ (0, T ];
X(0) = X0

(SEE)

in a separable Hilbert space H , under weak assumptions on the data. Here T is a fixed positive 
number and W := {W(t) : t ∈ [0, T ]} is a Q-Wiener process with values in another separable 
Hilbert space U with respect to a stochastic basis (�, F , (Ft )t∈[0,T ], P).

The well-posedness and the regularity for the solution of an SEE are two fundamental issues 
in both mathematical and numerical analysis (see, e.g., [2], [4], [5], [6], [7], [9] and references 
therein). These two problems for Eq. (SEE) with finite dimensional multiplicative noises or infi-
nite dimensional affine noises have been studied extensively; see, e.g., G. Da Prato, S. Kwapien̆ 
& J. Zabczyk [8], N. Krylov [15], S. Tindel, C. Tudor & F. Viens [17] and Z. Brzezńiak, J. van 
Neerven, M. Veraar & L. Weis [1] and references therein. For Eq. (SEE) with finite or infinite 
dimensional multiplicative smooth noises, we refer to M. Hofmanová [11] and X. Zhang [21]
where the authors studied conditions on the coefficients and the noises to ensure the existence 
of a continuous strong solution and the infinitely often differentiability in the spatial variable for 
the solution of Eq. (SEE), respectively. Recently, the authors in [19], [20] and references therein 
studied the maximal Lp-regularity for stochastic convolutions and applied to Dom(−A)

1
2 -well-

posedness of Eq. (SEE) with strong Lipschitz conditions.
One may expect that the solution of Eq. (SEE) with certain assumptions on the initial da-

tum X0, the coefficients F and G, inherits the same regularity as the solution of the associated 
linear SEE

dX(t) = AX(t)dt + dW(t), t ∈ (0, T ]; X(0) = X0. (1)

It is well-known that the unique solution of Eq. (1) is given by X(·) = S(·)X0 + WA(·), where 
S(·) := eA· is the semigroup generated by A and WA(·) is the so-called Ornstein–Uhlenbeck 
process

WA(t) :=
t∫

0

S(t − r)dW(r), t ∈ [0, T ].

If S(·) is a C0-semigroup, then by Itô isometry WA defines an H -valued stochastic process if and 
only if 

∫ T

0 ‖S(r)‖2
L0

2
dr < ∞.

To study the temporal regularity of WA, the authors in [8] introduced a factorization for-
mula which was then applied to study numerous SEEs by a lot of researchers in different 
settings (see, e.g., [13], [18] and references therein). Under the additional assumption that ∫ T

0 r−2α‖S(r)‖2
L0

2
dr < ∞ holds for some α ∈ (0, 1/2), [8] proved that WA has a continuous 

version in H . Moreover, if S is supposed to be an analytic C0-semigroup satisfying certain prop-
erties (see (5)), then
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WA ∈ Cδ([0, T ]; Ḣ θ ) a.s. (2)

for any δ, θ ≥ 0 with δ + θ/2 < α. The limit case α = 1/2 is included when Q is a trace operator 
(see [9, Theorems 5.15 and 5.16]). Moreover, the optimality of this regularity is shown by a 
counter-example in [8] when A is self-adjoint and positive definite. A natural problem whether 
one can extend the optimal regularity result (2) to the case θ ≥ 2α is unknown.

Another related interesting problem is to generalize this type of trajectory regularity to 
the solution of Eq. (SEE) with general data. An important result is given by A. Jentzen and 
M. Röckner [14], where the authors studied the well-posedness and regularity for the solution 
of Eq. (SEE) driven by a multiplicative trace class noise. Under the assumptions that S(·) is an 
analytic C0-semigroup, F : H → H and G : H → L0

2 are Lipschitz continuous, ‖G(z)‖Lγ
2

≤
C(1 + ‖z‖γ ) for some γ ∈ [0, 1) and any z ∈ Ḣ γ , and X0 ∈ Lp(�; Ḣ β) for some β ∈ [γ, γ + 1)

and p ≥ 2, they proved the existence of a unique mild solution X ∈ L∞([0, T ]; Lp(�; Ḣ β))

such that

E
[
‖X(t1) − X(t2)‖p

θ

]
≤ C|t1 − t2|

( 1
2 ∧ β−θ

2
)
p, t1, t2 ∈ [0, T ], (3)

for any θ ∈ [0, β) and that X is continuous with respect to ‖ · ‖Lp(�;Ḣ β ). It is not clear whether 
the solution of Eq. (SEE) possesses the trajectory continuity in Ḣ β . On the other hand, how to 
derive the optimal regularity of X for general β and γ remains open.

As a consequence of (3) for β ∈ [γ, γ + 1) and the Kolmogorov continuity theorem,

‖X(t1,ω) − X(t2,ω)‖θ ≤ C(ω)|t1 − t2|δ, t1, t2 ∈ [0, T ], ω ∈ �, (4)

for any δ < [1 ∧ (β − θ)]/2 − 1/p and θ < β − 2/p provided that p > 2. To derive the trajectory 
continuity of X in Ḣ θ , one needs the restriction that β > 2/p and θ < β − 2/p. Indeed, whether 
X possesses the trajectory continuity in Ḣ θ when β ≤ 2/p with θ ∈ [0, β] or β > 2/p with 
θ ∈ [β − 2/p, β] is still unknown.

The above questions are main motivations for us to study the well-posedness and optimal 
trajectory regularity for the solution of Eq. (SEE). Another motivation is to relax the assumptions 
on the data X0, A, F and G of Eq. (SEE), which can handle more SEEs in applications. These 
motivations lead to the following

Main Problem 1.1. To derive the well-posedness and optimal regularity for the solution of 
Eq. (SEE) under less assumptions on its data.

To study the well-posedness and optimal trajectory regularity for the solution of Eq. (SEE) and 
answer the aforementioned questions, we adopt a complete different method compared with [14]. 
It should be noticed that, to establish the well-posedness of Eq. (SEE) under less assumptions 
on the data, we only need that S(·) is a C0-semigroup. To show that the solution is continuous 
a.s., we need an additional assumption (see Assumption 2.3). In order to study the trajectory 
regularity for the solution of Eq. (SEE), we do not use spectral representation for the linear op-
erator A; our main assumption on the operator A is that (5) holds. Thus our well-posedness and 
continuity results (see Theorems 2.1 and 2.2) hold for C0-semigroup and our regularity results 
hold for analytic C0-semigroup (see Theorems 2.3 and 2.4). These results are also new for de-
terministic evolution equations under our assumptions. We also mention that the well-posedness 
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and regularity for the solution of Eq. (SEE) in Banach setting have been studied in a companion 
paper [12].

The rest of this article is organized as follows. In the next section, we give our main idea 
and results and present several concrete examples which satisfy our assumptions. We prove our 
well-posedness as well as trajectory regularity results in Sections 3 and 4, respectively.

2. Main results

To perform the formulation, let us recall some frequently used notations. Let (H, ‖ · ‖H )

be a separable Hilbert space and A : D(A) ⊂ H → H be the infinitesimal generator of a 
C0-semigroup S(·). In the study of the regularity for the solution of Eq. (SEE), we assume fur-
thermore that S(·) is an analytic C0-semigroup such that the resolvent set of A contains all λ ∈C
with �[λ] ≥ 0. Then one can define the fractional powers (−A)γ for γ ∈ R of the operator A
(see, e.g., [14, Section 2] or [16, Chapter 2.6]). Let Ḣ γ be the domain of (−A)

γ
2 equipped with 

the norm

‖x‖γ := ‖(−A)
γ
2 x‖, x ∈ Ḣ γ .

In particular, Ḣ 0 = H . We will need the following properties of the analytic C0-semigroup S(·)
(see, e.g., [16, Theorem 6.13 in Chapter 2]):

‖(−A)μS(t)‖L(H) ≤ Ct−μ, ‖(−A)−ρ(S(t) − IdH )‖L(H) ≤ Ctρ, (5)

for any t ∈ (0, T ], μ ≥ 0 and ρ ∈ [0, 1], where IdH denotes the identity operator in H and 
(L(H), ‖ · ‖L(H)) denotes the space of bounded linear operators in H .

Let U be another separable Hilbert space and Q be a self-adjoint, nonnegative definite 
and bounded linear operator on U . Denote by U0 := Q

1
2 U and Lγ

2 := HS(U0, Ḣ γ ), the 
Hilbert–Schmidt operator from U0 to Ḣ γ . The spaces H , U and Lγ

2 are equipped with Borel 
σ -algebras B(H), B(U) and B(Lγ

2 ), respectively. Let W := {W(t) : t ∈ [0, T ]} be a U -valued 
Q-Wiener process in a stochastic basis (�, F , (Ft )t∈[0,T ], P), i.e., there exists an eigensystem 
{(qn, hn)}∞n=1 of Q where {hn}∞n=1 forms an orthonormal basis of U and a sequence of mutually 
independent Brownian motions {βk}∞n=1 such that (see [9, Chapter 4])

W(t) =
∞∑

n=1

Q
1
2 hnβk(t) =

∞∑
n=1

√
qnhnβk(t), t ∈ [0, T ]. (6)

Definition 2.1. A predictable stochastic process X : [0, T ] × � → H is called a mild solution of 
Eq. (SEE) if X ∈ L∞(0, T ; H) a.s. and for all t ∈ [0, T ] it holds a.s. that

X(t) = S(t)X0 + S ∗ F(X)(t) + S 
 G(X)(t), (7)

where S ∗F(X) and S 
G(X) denote the deterministic and stochastic convolutions, respectively:

S ∗ F(X)(·) :=
·∫
S(· − r)F (X(r))dr,
0
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S 
 G(X)(·) :=
·∫

0

S(· − r)G(X(r))dW(r).

We say that X is the unique mild solution of Eq. (SEE) if Y is another solution, then X and Y
are stochastically equivalent, i.e., P{X(t) = Y(t)} = 1, t ∈ [0, T ].

Let θ ≥ 0. We use Lp(�; C([0, T ]; Ḣ θ )) to denote the Banach space consisting of Ḣ θ -valued 
a.s. continuous stochastic processes X = {X(t) : t ∈ [0, T ]} such that

‖X‖Lp(�;C([0,T ];Ḣ θ )) :=
(
E

[
sup

t∈[0,T ]
‖X(t)‖p

θ

]) 1
p

< ∞,

and Lp(�; Cδ([0, T ]; Ḣ θ )) with δ ∈ (0, 1] to denote Ḣ θ -valued a.s. continuous stochastic pro-
cesses X = {X(t) : t ∈ [0, T ]} such that

‖X‖Lp(�;Cδ([0,T ];Ḣ θ )) : =
(
E

[
sup

t∈[0,T ]
‖X(t)‖p

θ

]) 1
p

+
(
E

[(
sup

t,s∈[0,T ],t �=s

‖X(t) − X(s)‖θ

|t − s|δ
)p]) 1

p

< ∞.

Our main aim is to find the optimal constants δ and θ such that the solution of Eq. (SEE) is 
in Lp(�; Cδ([0, T ]; Ḣ θ )). For convenience, throughout C is a generic constant which may be 
different in each appearance.

2.1. Main idea

To study the well-posedness and spatial regularity for the solution X of Eq. (SEE), the main 
idea of our approach is to use a Burkholder–Davis–Gundy inequality and a weak assumption 
on the diffusion coefficient G (see Assumption 2.2) to bound the stochastic convolution (see 
Section 3 for more details):

‖S 
 G(X)(t)‖Lp(�,Ḣ θ ) ≤ C

( t∫
0

‖S(t − r)G(X(r))‖2
Lp(�,Lθ

2)
dr

) 1
2

≤ C

( t∫
0

K2
G(t − r)

(
1 + ‖X(r)‖Lp(�;Ḣ θ )

)2
dr

) 1
2

for any spatial regularity index θ ≥ 0. Similar argument is applied to the deterministic con-
volution S ∗ F(X). Then by Hölder inequality, to bound ‖X(t)‖Lp(�;Ḣ θ ) reduces to solve the 
following type of integral inequality with convolution:

0 ≤ f (t) ≤ m(t) +
t∫

0

K(t − r)f (r)dr, t ∈ [0, T ], (8)
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where f (·) is bounded, m(·) is non-decreasing and K(·) is nonnegative and integrable (which 
may have some singularity at 0) on [0, T ]. To overcome this difficulty, we establish a new version 
of Grönwall inequality with singular kernel, i.e., there exists a constant λ0 such that f (t) ≤
2eλ0tm(t) (see Lemma 3.1). Then we obtain the uniform moments’ estimation for the solution of 
Eq. (SEE) under ‖ · ‖θ -norm (see (12) and (15), respectively).

Using the fixed point argument, a general Lipschitz continuity assumption (see Assump-
tion 2.1) is used to establish the well-posedness as well as the optimal spatial regularity for the 
solution of Eq. (SEE) (see Section 4 for more details). In this procedure, another difficulty arises 
from the fact that (H p

θ , ‖ · ‖H p ) (see (29) and (39) for definitions of these two norms) for θ > 0
is not a Banach space, while we only assume that the coefficients are Lipschitz continuous in 
‖ · ‖-norm rather than ‖ · ‖θ -norm. This difficulty is a key problem of regularity analysis for semi-
linear stochastic partial differential equations (SPDEs) and has been pointed out in [14] and [21]. 
To overcome this difficulty, we first utilize the fact that H p

θ (M) := {Z ∈ H
p

θ : ‖Z‖H p
θ

≤ M}
with ‖ · ‖H p -norm forms a complete metric space for any M > 0 and p > 1 (see Lemma 3.2), 
which allows us to apply the Banach fixed point theorem to conclude the existence of a unique 
local solution of Eq. (SEE). Then we obtain the global existence by the aforementioned, uniform 
a priori estimation.

Our main idea to deal with the trajectory regularity for the solution X of Eq. (SEE) is the 
factorization formula

S 
 G(X)(t) = sin(πα)

π

t∫
0

(t − r)α−1S(t − r)Gα(r)dr, (9)

where α ∈ (0, 1) and

Gα(t) :=
t∫

0

(t − r)−αS(t − r)G(X(r))dW(r), t ∈ [0, T ]. (10)

Similar factorization formula holds for the deterministic convolution S ∗ F(X). To derive the 
Hölder continuity for the solution of Eq. (SEE), we give a generalized characterization (see 
Proposition 4.1) of temporal Hölder continuity of the linear operator Rα defined by

Rαf (t) :=
t∫

0

(t − r)α−1S(t − r)f (r)dr, t ∈ (0, T ]. (11)

As a consequence of this characterization, we prove the optimal regularity of the Ornstein–
Uhlenbeck process WA (see Corollary 4.1), which generalizes (2) to the case γ ≥ 2α. An 
interesting consequence of the above characterization formulas is that we can obtain stronger 
moments’ estimations (14) and (15), which is not a trivial property for the mild solution of 
Eq. (SEE) under weak assumptions on its data.

2.2. Main results

To perform our main results, we give the following assumptions on the coefficients F and G.
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The first assumption is the following Lipschitz-type continuity and linear growth condition, 
which is the main condition to yield the well-posedness of Eq. (SEE).

Assumption 2.1. There exist two nonnegative, Borel measurable functions KF and KG on [0, T ]
with

K0
F :=

T∫
0

KF (t)dt < ∞ and K0
G :=

( T∫
0

K2
G(t)dt

) 1
2

< ∞,

such that for any x, y ∈ H and almost every (a.e.) t ∈ [0, T ] it holds that

‖S(t)F (x)‖ ≤ KF (t)(1 + ‖x‖), ‖S(t)(F (x) − F(y))‖ ≤ KF (t)‖x − y‖,
‖S(t)G(x)‖L0

2
≤ KG(t)(1 + ‖x‖), ‖S(t)(G(x) − G(y))‖L0

2
≤ KG(t)‖x − y‖.

To study the spatial regularity for the solution of Eq. (SEE), we need more growth conditions 
on F and G. Throughout γ is a nonnegative number, which partially characterizes the spatial 
regularity for the solution of Eq. (SEE).

Assumption 2.2. There exist nonnegative, Borel measurable functions KF,γ and KG,γ on [0, T ]
with

K
γ

F :=
T∫

0

KF,γ (t)dt < ∞ and K
γ

G :=
( T∫

0

K2
G,γ (t)dt

) 1
2

< ∞,

such that for any z ∈ Ḣ γ and a.e. t ∈ [0, T ] it holds that

‖S(t)F (z)‖γ ≤ KF,γ (t)(1 + ‖z‖γ ), ‖S(t)G(z)‖Lγ
2

≤ KG,γ (t)(1 + ‖z‖γ ).

In particular, when γ = 0 we set KF,0 = KF and KG,0 = KG.
To obtain the temporal regularity for the solution of Eq. (SEE), we perform the final assump-

tion.

Assumption 2.3. There exists a constant α ∈ (1/p, 1/2) with p > 2 such that

K
γ,α

F :=
T∫

0

t−αKF,γ (t)dt < ∞, K
γ,α

G :=
( T∫

0

t−2αK2
G,γ (t)dt

) 1
2

< ∞.

Remark 2.1. Assumptions 2.1–2.3 are weaker than those of [14, Section 2] where the authors 
assumed that F : H → H and G : H → L0

2 are Lipschitz continuous and for some γ ∈ [0, 1), 
‖G(z)‖Lγ

2
≤ C(1 + ‖z‖γ ) for any z ∈ Ḣ γ . Indeed, for any t ∈ (0, T ], γ ∈ [0, 1) and z ∈ Ḣ γ ,

‖S(t)F (z)‖γ ≤ ‖(−A)
1
2 S(t)‖L(H) · ‖F(z)‖γ−1 ≤ C‖(−A)

1
2 S(t)‖L(H)(1 + ‖z‖γ ),
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and

‖S(t)G(z)‖Lγ
2

≤ ‖S(t)‖L(H) · ‖G(z)‖Lγ
2

≤ C‖S(t)‖L(H)(1 + ‖z‖γ ).

Similarly, for any t ∈ [0, T ] and x, y ∈ H there holds that

‖S(t)(F (x) − F(y))‖ ≤ C‖(−A)
1
2 S(t)‖L(H)‖x − y‖,

‖S(t)(G(x) − G(y))‖L0
2
≤ C‖S(t)‖L(H)‖x − y‖.

Set KF = KF,γ = C‖(−A)
1
2 S(·)‖L(H) and KG = KG,γ = C‖S(·)‖L(H). By the smooth estima-

tion (5), KF , KF,γ are integrable and KG(t), KG,γ are square integrable on [0, T ], which shows 
Assumptions 2.1–2.2. One can also derive Assumption 2.3 with α < 1/2, since

T∫
0

r−αKF,γ (t)dr +
T∫

0

r−2αK2
G,γ (t)dr ≤ C

T∫
0

(
r−(α+ 1

2 ) + r−2α
)

dr < ∞.

Our first main result is the following well-posedness result of Eq. (SEE).

Theorem 2.1. Let p ≥ 2 and X0 : � → H be F0/B(H)-measurable such that X0 ∈ Lp(�; H). 
Assume that S(·) is a C0-semigroup and Assumptions 2.1 holds. Then Eq. (SEE) possesses a 
unique mild solution X = {X(t) : t ∈ [0, T ]} such that the following statements hold.

(1) There exists a constant C = C(T , p, K0
F , K0

G) such that

sup
t∈[0,T ]

E
[
‖X(t)‖p

]
≤ C

(
1 +E

[
‖X0‖p

])
. (12)

(2) The solution X is continuous with respect to ‖ · ‖Lp(�;H):

lim
t1→t2

E
[
‖X(t1) − X(t2)‖p

]
= 0, t1, t2 ∈ [0, T ]. (13)

Remark 2.2. To the best of our knowledge, Theorem 2.1 is even new for related deterministic 
PDEs, i.e., Eq. (SEE) with G = 0, under the minimum Assumption 2.1 on F .

Under the conditions of Theorem 2.1, similarly to the additive case as in [9], one can say 
nothing about the continuity of the trajectory for the solution X of Eq. (SEE). However, if As-
sumption 2.3 holds for γ = 0, we can show that X possesses a continuous version in H by the 
factorization method even in the case of C0-semigroup. Moreover, we derive stronger moments’ 
estimation than (12).

Theorem 2.2. In addition to the conditions of Theorem 2.1 with p > 2, assume that Assump-
tion 2.3 holds for γ = 0. Then the mild solution X of Eq. (SEE) belongs to Lp(�; C([0, T ]; H)). 
Moreover, there exists a constant C = C(T , p, α, K0,α

, K0,α
) such that
F G
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E
[

sup
t∈[0,T ]

‖X(t)‖p
]

≤ C
(

1 +E
[
‖X0‖p

])
. (14)

Our next main result is the following optimal spatial regularity for the solution of Eq. (SEE).

Theorem 2.3. Let γ > 0, p ≥ 2 and X0 : � → Ḣ γ be F0/B(Ḣ γ )-measurable such that X0 ∈
Lp(�; Ḣ γ ). Assume that S(·) is an analytic C0-semigroup and Assumptions 2.1–2.2 hold. Then 
the mild solution X of Eq. (SEE) satisfies the following statements.

(1) There exists a constant C = C(T , p, Kγ

F , Kγ

G) such that

sup
t∈[0,T ]

E
[
‖X(t)‖p

γ

]
≤ C

(
1 +E

[
‖X0‖p

γ

])
. (15)

(2) The solution X is continuous with respect to ‖ · ‖Lp(�;Ḣ γ ) :

lim
t1→t2

E
[
‖X(t1) − X(t2)‖p

γ

]
= 0, t1, t2 ∈ [0, T ]. (16)

Analogously to Theorem 2.2, we can obtain stronger moments’ estimation than (14) and show 
the a.s. continuity for the solution of Eq. (SEE) in Ḣ γ , under the additional Assumption 2.3. 
Moreover, our last main result derives the following optimal trajectory regularity for the solution 
of Eq. (SEE).

Theorem 2.4. In addition to the conditions of Theorem 2.3 with p > 2, assume that X0 : � → Ḣ β

is F0/B(Ḣ β)-measurable such that X0 ∈ Lp(�; Ḣ β) and Assumption 2.3 holds with β ≥ γ ≥ 0. 
Then the following statements hold.

(1) When γ = 0, for any δ ∈ [0, α − 1/p), θ1 ∈ (0, 2α − 2/p) and θ2 ≤ β there holds that

X ∈ Lp(�;Cδ([0, T ];H) ∪ Lp(�;Cα− 1
p

− θ1
2 ([0, T ]; Ḣ θ1))

∩ Lp(�;C β−θ2
2 ∧1([0, T ]; Ḣ θ2)). (17)

(2) When γ > 0, for any δ ∈ [0, α − 1/p), θ ∈ (0, γ ), θ1 ∈ (γ, γ + 2α − 2/p) and θ2 ≤ β there 
holds that

X ∈ Lp(�;Cδ([0, T ]; Ḣ γ ) ∪ Lp(�;Cα− 1
p ([0, T ]; Ḣ θ ))

∪ Lp(�;Cα− 1
p

+ γ−θ1
2 ([0, T ]; Ḣ θ1)) ∩ Lp(�;C β−θ2

2 ∧1([0, T ]; Ḣ θ2)). (18)

Remark 2.3. In the analytic C0-semigroup case, (17) strengthens the continuity results in The-
orem 2.2. Moreover, (17) and (18) show the a.s. continuity for the solution of Eq. (SEE) in 
Ḣ β for β < γ + 2α − 2/p. When β ≥ γ + 2α − 2/p, one could not expect that the solution 
of Eq. (SEE) is a.s. continuous in Ḣ β due to the optimal regularity of the Ornstein–Uhlenbeck 
process; see Corollary 4.1. We also note that (17) and (18) show the Hölder regularity for the 
solution of Eq. (SEE) in Ḣ θ when β ≤ 2/p with θ ∈ [0, γ + 2α − 2/p) ∩ [0, β] or β > 2/p with 
θ ≤ β < γ + 2α − 2/p.
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Remark 2.4. Theorems 2.1–2.4 establish the well-posedness and optimal trajectory regularity of 
the solution of Eq. (SEE) for general β and γ under more general Assumptions 2.1–2.3, and thus 
give an answer to Main Problem 1.1.

Applying our main results in Theorems 2.1–2.4, we have the following well-posedness and 
regularity results for Eq. (SEE) under the type of assumptions in [14].

Corollary 2.1. Let β ≥ γ ≥ 0, p ≥ 2 and X0 : � → Ḣ β be F0/B(Ḣ β)-measurable such that 
X0 ∈ Lp(�; Ḣ β). Assume that S(·) is a C0-semigroup and F : H → Ḣ−1, G : H → L0

2 are 
Lipschitz continuous.

1. Eq. (SEE) possesses a unique mild solution X = {X(t) : t ∈ [0, T ]} which belongs to 
Lp(�; L∞(0, T ; H)) such that (13) and (14) hold. If p > 2, then X ∈ Lp(�; C([0, T ]; H)). 
Assume in addition that S(·) is analytic, then

X ∈ Lp(�;Cδ1([0, T ]; Ḣ θ1)) ∩ Lp(�;C β−θ2
2 ∧1([0, T ]; Ḣ θ2))

for any δ1, θ1, θ2 ≥ 0 with δ1 + θ1/2 < 1/2 − 1/p and θ2 ≤ β .
2. If S(·) is analytic and ‖F(x)‖γ−1 ≤ C(1 + ‖x‖γ ), ‖G(x)‖Lγ

2
≤ C(1 + ‖x‖γ ). Then X ∈

Lp(�; L∞(0, T ; Ḣ γ )) such that (16) holds. If p > 2, then

X ∈ Lp(�;Cδ1([0, T ]; Ḣ θ1)) ∩ Lp(�;C β−θ2
2 ∧1([0, T ]; Ḣ θ2))

for any δ1, θ1, θ2 ≥ 0 with δ1 < [1 ∧ (γ + 1 − θ1)]/2 − 1/p and θ2 ≤ β .

Proof. Taking into account Remark 2.1, we note that Assumptions 2.1–2.3 hold with α < 1/2. 
Thus we conclude the first claim by applying Theorems 2.1, 2.2 and 2.4 and another claim by 
applying Theorems 2.3 and 2.4.

2.3. Examples

The main aim of this part is to give several concrete examples which satisfy our main As-
sumptions 2.1–2.3. Our main model is the following second order parabolic SPDE:

dX(t, ξ) = (�X(t, ξ) + ∇ · f (X(t, ξ)))dt + g(X(t, ξ))dW(t, ξ),

X(t, ξ) = 0, (t, ξ) ∈ [0, T ] × ∂O,

X(0, ξ) = X0(ξ), ξ ∈ O,

(SHE)

where O ⊂ Rd is a bounded open set with regular boundary. Without loss of generality, we 
assume that X0 is a deterministic function which vanishes on the boundary ∂O .

Set U = H = L2(O) and A = � with domain Dom(A) = H 1
0 (O) ∩H 2(O). Then there exists 

an eigensystem {(λn, en)}∞n=1 of −A: −Aen = λnen, k ∈ N+, where {λn}∞n=1 is in an increasing 
order and {en}∞n=1 forms an orthonormal basis of H . Assume that f, g : R → R are Lipschitz 
continuous functions with Lipschitz constant Lf , Lg > 0, i.e., for any ξ1 and ξ2 ∈ R there holds 
that
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|f (ξ1) − f (ξ2)| ≤ Lf |ξ1 − ξ2|, |g(ξ1) − g(ξ2)| ≤ Lg|ξ1 − ξ2|. (19)

Let {(qn, hn)}∞n=1 be an eigensystem of Q where {hn}∞n=1 forms an orthonormal basis of H , and 
W = {W(t) : t ∈ [0, T ]} be an H -valued Q-Wiener process given by (6). Define the Nemytskii 
operators F : H → Ḣ−1(O) and G : H → L(H), respectively, by

F(x)(ξ) := ∇ · f (x(ξ)), G(x)hn(ξ) := √
qng(x(ξ))hn(ξ), (20)

for x ∈ H , k ∈ N+ and ξ ∈ O . Then Eq. (SHE) is equivalent to Eq. (SEE) with F and G given 
by (20).

In the following we will use (L∞(O), ‖ · ‖L∞(O)) to denote the essentially bounded function 
space and (Cε(O), ‖ · ‖Cε (O)) for some ε ∈ (0, 1) to denote the Hölder function space over O .

2.3.1. White noise
We begin with the case of white noise. Assume that W = {W(t) : t ∈ [0, T ]} is an H -valued 

cylindrical Wiener process, i.e., Q = IdH or equivalently, qn = 1 for each k ∈ N+ in (6). In this 
case, it is known that G defined by (20) is not a Lipschitz continuous operator from H to L0

2; 
indeed, G(H) � L0

2. However, we can verify that F and G satisfies Assumptions 2.1–2.3 with 
γ = 0 (Assumption 2.2 reduces to Assumption 2.1 when γ = 0).

Let t ∈ (0, T ] and x, y, z ∈ H . By the definition of L0
2-norm and the estimate ‖en‖L∞(O) ≤

Cλ
(d−1)/2
n , n ∈ N+, for the eigensystem of Dirichlet Laplacian (see, e.g. [10]), we get

‖S(t)G(z)‖2
L0

2
=

∞∑
n=1

e−2λnt‖g(z)en‖2 ≤ C

∞∑
n=1

[
λd−1

n e−2λnt

]
(1 + ‖z‖2).

Similarly,

‖S(t)(G(x) − G(y))‖2
L0

2
≤ C

∞∑
n=1

[
λd−1

n e−2λnt

]
‖x − y‖2.

Define

KG(t) := C

( ∞∑
n=1

[
λd−1

n e−2λnt

]) 1
2

, t ∈ (0, T ]. (21)

By Weyl’s law that λn � m2/d (here M � N means C1N ≤ M ≤ C2N for two nonnegative 
numbers C1 and C2), we obtain

T∫
0

K2
G(t)dt �

∞∑
n=1

m
2(d−2)

d ,

which converges if and only if d < 4/3. Thus only for d = 1, KG defined by (21) is square 
integrable on [0, T ]. Meanwhile, for α < 1/4,
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T∫
0

t−2αK2
G(t)dt ≤ C

T∫
0

t−2α− 1
2 dt < ∞.

On the other hand, for the nonlinear drift term, by the definition (20) and the Lipschitz condi-
tion (19) we get

‖S(t)F (z)‖ ≤ ‖(−A)
1
2 S(t)‖L(H)‖F(z)‖−1 ≤ Ct−

1
2 (1 + ‖z‖),

‖S(t)(F (x) − F(y))‖ ≤ Ct−
1
2 ‖x − y‖.

Define

KF (t) := Ct−
1
2 , t ∈ (0, T ]. (22)

Then the function KF defined by (22) is integrable on [0, T ] and for α < 1/2,

T∫
0

t−αKF (t)dt ≤ C

T∫
0

t−α− 1
2 dt < ∞.

Thus we have shown Assumptions 2.1–2.3 with γ = 0 and α ∈ (0, 1/4). As a result of Theo-
rem 2.4 with X0 ∈ Ḣ 1/2, γ = 0 and α ∈ (0, 1/4), Eq. (SHE) driven by an H -valued cylindrical 
Wiener process possesses a unique mild solution in Lp(�; Cδ([0, T ]; Ḣ θ )) for any p ≥ 1 and 
δ, θ ≥ 0 with δ + θ/2 < 1/4.

2.3.2. Colored noises
Next we give an example in the case of colored noises which satisfies Assumptions 2.1–2.3

for some γ > 0 and generalizes the examples from [14, Section 4].
Let γ ∈ (0, 1), t ∈ (0, T ], x, y ∈ H and z ∈ Ḣ γ . For γ ∈ (0, 1/2), by the Lipschitz condition 

(19) we have f (z) ∈ Ḣ γ and ‖f (z)‖γ ≤ C(1 + ‖z‖γ ) for any z ∈ Ḣ γ . This inequality holds 
true for any γ ∈ (1/2, 1) provided that f (0) = 0. Such additional requirement is due to the 
characterization of Ḣ γ (see, e.g., [9, Appendix (A.46)]):

Ḣ γ =
{

Wγ,2(O) for γ ∈ (0,1/2),{
x ∈ Wγ,2(O) : x|∂O = 0

}
for γ ∈ (1/2,1),

(23)

where Wγ,2(O) is the Sobolev–Slobodeckij space whose norm is defined by

‖X‖Wγ,2(O) :=
(

‖X‖2
L2(O)

+
∫
O

∫
O

|X(ξ) − X(η)|2
|ξ − η|d+2γ

dξdη

) 1
2

.

It follows by dual argument and the Lipschitz condition (19) that
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‖S(t)F (z)‖γ ≤ ‖(−A)
1
2 S(t)‖L(H)‖f (z)‖γ ≤ KF,γ (t)(1 + ‖z‖γ ),

‖S(t)(F (x) − F(y))‖ ≤ ‖(−A)
1
2 S(t)‖L(H)‖f (x) − f (y)‖ ≤ CKF (t)‖x − y‖.

Define

KF (t) = KF,γ (t) := Ct−
1
2 , t ∈ (0, T ]. (24)

Then the functions KF and KF,γ defined by (24) are integrable on [0, T ] and for any α < 1/2,

T∫
0

t−αKF,γ (t)dt ≤ C

T∫
0

t−α− 1
2 dt < ∞.

For the diffusion term, we assume that the eigensystem {(qn, hn)}n∈N+ of Q satisfies

Q0 :=
∑

n∈N+
qn‖hn‖2

L∞(O) < ∞. (25)

This condition is valid when Q is a trace class operator with uniformly bounded eigenfunctions. 
We use the uniform boundedness (5), the Lipschitz condition (19) and the assumption (27) to 
derive

‖S(t)(G(x) − G(y))‖2
L0

2
≤ ‖S(t)‖2

L(H)

∑
n∈N+

‖(G(x) − G(y))hn‖2

≤ C
∑

n∈N+
qn‖hn‖2

L∞(O)‖x − y‖2 ≤ CQ0‖x − y‖2.

Similarly,

‖S(t)G(z)‖2
Lγ

2
≤ ‖(−A)

γ
2 S(t)‖2

L(H)

∑
n∈N+

‖G(z)hn‖2 ≤ CQ0t
−γ (1 + ‖z‖)2.

Define

KG(t) := C, KG,γ (t) := Ct−
γ
2 , t ∈ (0, T ]. (26)

Then the functions KG, KG,γ defined by (26) are square integrable on [0, T ] for any γ < 1 and 
for α < (1 − γ )/2,

T∫
0

t−2αK2
G,γ (t)dt ≤ C

T∫
0

t−(2α+γ )dt < ∞.

Thus we have shown Assumptions 2.1–2.3 for α, γ > 0 such that γ + 2α < 1. Applying Theo-
rem 2.4 with X0 ∈ Ḣ 1 and γ + 2α < 1, Eq. (SHE) driven by an H -valued Q-Wiener process W
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given by (6) such that (25) holds possesses a unique mild solution in Lp(�; Cδ([0, T ]; Ḣ θ )) for 
any p ≥ 1 and δ, θ ≥ 0 such that 2δ + θ < 1.

If more smooth and decay properties on the eigensystem {(qn, hn)}n∈N+ of Q are imposed, 
using Theorem 2.4 leads to more regularity for the solution. Assume that there exists a constant 
ε ∈ (0, 1] such that

Qε :=
∑

n∈N+
qn‖hn‖2

Cε (O) < ∞. (27)

By the uniform boundedness (5), we get

‖S(t)G(z)‖2
Lγ

2
≤ ‖S(t)‖2

L(H)

∑
n∈N+

qn‖g(z)hn‖2
γ ≤ C

∑
n∈N+

qn‖g(z)hn‖2
γ .

It is shown in [14, (27) in Section 4] that∑
n∈N+

qn‖g(z)hn‖2
Wγ,2(O)

≤ C
∑

n∈N+
qn‖hn‖2

Cε (O)‖g(z)‖2
Wγ,2(O)

, ∀ γ < ε.

Then we conclude by the Lipschitz condition (19), the assumption (27) and the characterization 
(23) that

‖S(t)G(z)‖2
Lγ

2
≤ CQε(1 + ‖z‖γ )2,

for any γ < 1/2 ∧ ε and for any γ ∈ (0, ε) \ {1/2} provided that g(0) = 0 or hn|∂O = 0 for all 
n ∈ N+. Define

KG(t) = KG,γ (t) := CQε, t ∈ (0, T ]. (28)

Then the functions KG, KG,γ defined by (28) are square integrable on [0, T ] and for α < 1/2,

T∫
0

t−2αK2
G,γ (t)dt ≤ C

T∫
0

t−2αdt < ∞.

Thus we have shown Assumptions 2.1–2.3 with α ∈ (0, 1/2) and γ ∈ (0, 1/2 ∧ ε) or γ ∈
(0, ε) \{1/2} provided f (0) = g(0) = 0. Applying Theorem 2.4 with X0 ∈ Ḣ 3/2, γ ∈ (0, 1/2 ∧ε)

and α ∈ (0, 1/2), Eq. (SHE) driven by an H -valued Q-Wiener process W given by (6) such that 
(27) holds for some ε ∈ (0, 1] possesses a unique mild solution in

Lp(�;Cδ1([0, T ]; Ḣ γ )) ∪ Lp(�;Cδ2([0, T ]; Ḣ θ ))

for any p ≥ 1, δ1 ∈ (0, 1/2), θ ∈ (γ, 1 +γ ), δ2 ∈ (0, (1 +γ −θ)/2) and γ ∈ (0, 1/2 ∧ε). Assume 
furthermore that X0 ∈ Ḣ 2, f (0) = 0 and g(0) = 0 or hn|∂O = 0 for all n ∈N+, then this solution 
belongs to
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Lp(�;Cδ1([0, T ]; Ḣ γ )) ∪ Lp(�;Cδ2([0, T ]; Ḣ θ ))

for any p ≥ 1, δ1 ∈ (0, 1/2), θ ∈ (γ, 1 + γ ), δ2 ∈ (0, (1 + γ − θ)/2) and γ ∈ (0, ε) \ {1/2}.

3. Well-posedness and optimal spatial regularity

Our main task in this section is to establish the well-posedness and the optimal spatial regu-
larity for the solution of Eq. (SEE).

We first establish the well-posedness and uniform p-moments’ estimation (12) for the solution 
X of Eq. (SEE) under Assumption 2.1 (see Theorem 3.1). Then we show that X is continuous in 
Lp(�; H) (see Proposition 3.1). Combining these results and arguments, we give the proofs of 
Theorems 2.1 and 2.3 at the end of this section.

3.1. Well-posedness

For p ≥ 2, denote by H p the space of all H -valued predictable processes Y defined on [0, T ]
such that

‖Y‖H p := sup
t∈[0,T ]

(
E

[
‖X(t)‖p

]) 1
p

< ∞. (29)

Note that after identifying stochastic processes which are stochastically equivalent, (H p,

‖ · ‖H p ) becomes a Banach space.
To derive the uniform bounds (12) and (14) for the solution of Eq. (SEE), we prove a version 

of Grönwall inequality with singular kernel.

Lemma 3.1. Let m : [0, T ] → R be a non-decreasing and bounded function and K : [0, T ] →
R+ be a measurable and nonnegative function such that

αT :=
T∫

0

K(r)dr < ∞.

Assume that f is nonnegative and bounded on [0, T ] such that

f (t) ≤ m(t) +
t∫

0

K(t − r)f (r)dr, t ∈ [0, T ].

Then there exists a constant λ0 = λ0(T , αT ) such that

f (t) ≤ 2eλ0tm(t).

Proof. We extend the functions f, m, K to f̃ , ̃m, K̃ , respectively, in R by setting them to be 0
outside [0, T ]. Then we get
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f̃ (t) ≤ m̃(t) +
t∫

0

K̃(t − r)f̃ (r)dr.

Multiplying the above both sides by e−λt with λ ∈ [0, ∞), we obtain

e−λt f̃ (t) ≤ e−λt m̃(t) +
t∫

0

e−λ(t−r)K̃(t − r)e−λr f̃ (r)dr.

Set fλ(t) = e−λt f̃ (t), mλ(t) = e−λt m̃(t) and Kλ(t) = e−λtK(t), t ∈ [0, T ]. Then we have

fλ(t) ≤ mλ(t) +
t∫

0

Kλ(t − r)fλ(r)dr.

Since αT (λ) := ∫ T

0 Kλ(t)dt decreases in [0, ∞) and

lim
λ→0

αT (λ) = αT < ∞, lim
λ→∞αT (λ) = 0,

there exists a λ0 ∈ (0, ∞) such that

αT (λ0) =
T∫

0

Kλ0(t)dt <
1

2
.

Thus

fλ0(t) ≤ mλ0(t) + sup
r∈[0,t]

fλ0(r)

( t∫
0

Kλ0(r)dr

)

≤ mλ0(t) + 1

2
sup

r∈[0,t]
fλ0(r),

from which we get

sup
r∈[0,t]

fλ0(r) ≤ 2 sup
r∈[0,t]

mλ0(r).

Therefore,

e−λ0t f (t) ≤ sup
r∈[0,t]

e−λ0t f̃ (t) ≤ 2 sup
r∈[0,t]

e−λ0t m̃(t) ≤ 2m(t).

Consequently, we have
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f (t) ≤ 2eλ0tm(t).

This completes the proof.

Remark 3.1. From the proof we can see that the constant 2 can be replaced by any constant 
larger than 1.

Theorem 3.1. Let p ≥ 2 and X0 : � → H is F0/B(H)-measurable such that X0 ∈ Lp(�; H). 
Assume that the linear operator A generates a C0-semigroup and Assumption 2.1 holds. Then 
Eq. (SEE) possesses a unique mild solution X such that (12) holds.

Proof. For X0 ∈ Lp(�; H) and X ∈ H p define an operator M by

M (X)(t) = S(t)X0 + S ∗ F(X)(t) + S 
 G(X)(t), (30)

where t ∈ [0, T ]. We first show that M maps H p to H p .
By Minkovskii inequality, we get

∥∥M (X)
∥∥

H p ≤ ∥∥S(t)X0
∥∥

H p + ∥∥S ∗ F(X)(t)
∥∥

H p + ∥∥S 
 G(X)(t)
∥∥

H p .

By the uniform boundedness of the semigroup S, we set

M(t) := sup
r∈[0,t]

‖S(r)‖, t ∈ [0, T ]. (31)

Then

∥∥S(·)X0
∥∥

H p ≤ MT ‖X0‖Lp(�;H).

By Minkovskii inequality and Assumption 2.1, we get

‖S ∗ F(X)‖H p ≤ sup
t∈[0,T ]

t∫
0

‖S(t − r)F (X(r))‖Lp(�;H)dr

≤ sup
t∈[0,T ]

t∫
0

KF (t − r)(1 + ‖X(r)‖Lp(�;H))dr

≤
( T∫

0

KF (r)dr

)(
1 + ‖X‖H p

)
.

For the stochastic convolution, applying Burkholder–Davis–Gundy inequality and Assump-
tion 2.1, we obtain
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E

[
‖S 
 G(X)(t)‖p

]
≤

( t∫
0

‖S(t − r)G(X(r))‖2
Lp(�,L0

2)
dr

) p
2

≤
( t∫

0

K2
G(t − r)

(
1 + ‖X(r)‖Lp(�;H)

)2dr

) p
2

≤
( t∫

0

K2
G(r)dr

) p
2 (

1 + ‖X‖H p

)p

.

Then

‖S 
 G(X)‖H p ≤
( T∫

0

K2
G(r)dr

) 1
2 (

1 + ‖X‖H p

)
.

Combining the above estimates, we have

∥∥M (X)
∥∥

H p ≤ MT ‖X0‖Lp(�;H) + NT

(
1 + ‖X‖H p

)
,

where N(t) is the non-decreasing, continuous function defined by

N(t) =
t∫

0

KF (r)dr +
( t∫

0

K2
G(r)dr

) 1
2

, t ∈ [0, T ].

Thus 
∥∥M (X)

∥∥
H p < ∞ and M maps H p to H p .

Next we show that M is a contraction. To this end, we introduce the norm

‖Y‖H p,u := sup
t∈[0,T ]

e−ut
(
E

[
‖X(t)‖p

]) 1
p
, (32)

which is equivalent to ‖ · ‖H p for any u > 0. Then for X1, X2 ∈ H p,u, previous arguments yield 
that

‖M (X1)(t) − M (X2)(t)‖Lp(�;H)

≤
∥∥∥∥

t∫
0

S(t − r)(F (X1(r)) − F(X2(r)))dr

∥∥∥∥
Lp(�;H)

+
∥∥∥∥

t∫
S(t − r)(G(X1(r)) − G(X2(r)))dW(r)

∥∥∥∥
Lp(�;H)
0
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≤
t∫

0

KF (t − r)‖X1(r) − X2(r)‖Lp(�;H)dr

+
( t∫

0

K2
G(t − r)‖X1(r) − X2(r)‖2

Lp(�;H)dr

) 1
2

≤
( t∫

0

eurKF (t − r)dr +
( t∫

0

e2urK2
G(t − r)dr

) 1
2
)

‖X1 − X2‖H p,u .

Then

‖M (X1) − M (X2)‖H p,u ≤ NT (u)‖X1 − X2‖H p,u ,

where

NT (u) = sup
t∈[0,T ]

[
e−ut

( t∫
0

eurKF (t − r)dr +
( t∫

0

e2urK2
G(t − r)dr

) 1
2
)]

=
T∫

0

e−urKF (r)dr +
( T∫

0

e−2urK2
G(r)dr

) 1
2

.

It is clear that the function NT : R+ → R+ is non-increasing and continuous with NT (0) =
NT < ∞ and NT (∞) = 0. Thus there exists a sufficiently large u∗ ∈ R+ such that NT (u∗) < 1. 
As a consequence, the operator M is a strict contraction in (H p, ‖ · ‖H p,u∗ ), which shows the 
existence and uniqueness of a mild solution of Eq. (SEE) such that

sup
t∈[0,T ]

E
[
‖X(t)‖p

]
< ∞. (33)

The existence of a predictable version is a consequence of [9, Proposition 3.6].
It remains to prove the estimation (12). Previous idea implies the following estimation:

‖X(t)‖Lp(�;H) ≤ M(t)‖X0‖Lp(�;H) + N(t)

+
t∫

0

KF (t − r)‖X(r)‖Lp(�;H)dr

+
( t∫

0

K2
G(t − r)‖X(r)‖2

Lp(�;H)dr

) 1
2

.

Then by Hölder inequality, we have
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‖X(t)‖2
Lp(�;H) ≤ 3

(
M(t)‖X0‖Lp(�;H) + N(t)

)2

+ 3

( t∫
0

KF (r)dr

)( t∫
0

KF (t − r)‖X(r)‖2
Lp(�;H)dr

)

+ 3

t∫
0

K2
G(t − r)‖X(r)‖2

Lp(�;H)dr.

Set for t ∈ [0, T ]

m(t) := 3
(
M(t)‖X0‖Lp(�;H) + N(t)

)2
, K(t) := 3

(
K0

F KF (t) + K2
G(t)

)
.

It is clear that m is non-decreasing and bounded, K is integrable on [0, T ] and

‖X(t)‖2
Lp(�;H) ≤ m(t) +

t∫
0

K(t − r)‖X(r)‖2
Lp(�;H)dr.

Applying the uniform boundedness (33) and Lemma 3.1, we conclude (12).

3.2. Lp(�)-continuity

Under the conditions of Theorem 3.1, we can show that the solution X of Eq. (SEE) is con-
tinuous with respect to ‖ · ‖Lp(�;H).

Proposition 3.1. Assume that the assumptions of Theorem 3.1 hold. Then for any t1, t2 ∈ [0, T ]
there holds that

lim
t1→t2

E
[
‖X(t1) − X(t2)‖p

]
= 0. (34)

Proof. Without loss of generality, assume that 0 ≤ t1 < t2 ≤ T . Due to the strong continuity of 
the C0-semigroup S(t):

(S(t) − IdH )x → 0 in H as t → 0, ∀ x ∈ H, (35)

the term S(·)X0 is continuous in Lp(�; H):

lim
t1→t2

E
[
‖S(t1)X0 − S(t2)X0‖p

]
= lim

t1→t2
E

[
‖(S(t2 − t1) − IdH )S(t1)X0‖p

]
= 0. (36)

Next we consider the stochastic convolution S 
 G(X). By Hölder and Burkholder–Davis–
Gundy inequalities, we get
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E
[
‖S 
 G(X)(t1) − S 
 G(X)(t2)‖p

]
≤

( t1∫
0

‖(S(t2 − t1) − IdH )S(t1 − r)G(X(r))‖2
Lp(�;L0

2)
dr

) p
2

+
( t2∫

t1

‖S(t2 − r)G(X(r))‖2
Lp(�;L0

2)
dr

) p
2 =: I1 + I2.

For the first term, by the uniform boundedness of the C0-semigroup S(t) and the uniformly 
boundedness (12) of X, we get

I1 ≤ C

( t1∫
0

K2
G(r)dr

) p
2
(

1 + ‖X‖H p

)p

< ∞.

Then I1 tends to 0 as t1 → t2 by the strong continuity (35) of the C0-semigroup S(t) and 
Lebesgue dominated convergence theorem. For the second term, we have

I2 ≤
( t2−t1∫

0

K2
G(r)dr

) p
2 (

1 + ‖X‖H p

)p → 0 as t1 → t2

by Lebesgue dominated convergence theorem. Therefore,

lim
t1→t2

E
[
‖S 
 G(X)(t1) − S 
 G(X)(t2)‖p

]
= 0. (37)

Similar arguments can handle the deterministic convolution S ∗ F(X):

lim
t1→t2

E
[
‖S ∗ F(X)(t1) − S ∗ F(X)(t2)‖p

]
= 0. (38)

Combining the estimations (36)–(38), we derive (13).

3.3. Proof of Theorems 2.1 and 2.3

In this part, we prove Theorems 2.1 and 2.3.

Proof of Theorem 2.1. Combining Theorem 3.1 and Proposition 3.1, we conclude Theorem 2.1.

To study the spatial regularity for the solution of Eq. (SEE) and prove Theorem 2.3, for θ > 0
and p ≥ 2, we denote by H p

θ the space of all H -valued predictable processes Y defined on 
[0, T ] such that

‖Y‖H p
θ

:= sup
t∈[0,T ]

(
E

[
‖X(t)‖p

θ

]) 1
p

< ∞. (39)
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Unlike the proof of Theorem 3.1 where we used the fact that (H p, ‖ · ‖H p ) is a Banach space, 
(H

p
θ , ‖ · ‖H p ) for θ > 0 does not form a Banach space. However, the following result shows 

that

H
p

θ (M) := {Z ∈ H
p

θ : ‖Z‖H p
θ

≤ M} (40)

with norm ‖ · ‖H p is a complete metric space for any M > 0 and p ≥ 2.

Lemma 3.2. For any M > 0, p > 1 and θ ≥ 0, the space H p
θ (M) defined by (40) with norm 

‖ · ‖H p is a complete metric space.

Proof. Let M > 0, p ≥ 1 and θ ≥ 0. Assume that {un}n∈N+ ⊂ H
p

θ (M) and un → u in H p as 
n → ∞. Then {un}n∈N+ is uniformly bounded in H p

θ by M and thus there exists a subsequence, 
which we still denote by {un}n∈N+ , such that un(t) → u(t) in Lp(�; H) for a.e. t ∈ [0, T ].

Since for each p > 1 and θ ≥ 0 the space Lp(�; Ḣ θ ) is reflexible and

(
Lp(�; Ḣ θ ),‖ · ‖Lp(�;Ḣ θ )

)
↪→ (

Lp(�;H),‖ · ‖Lp(�;H)

)
,

we conclude by [3, Theorem 1.2.5] that the limit u belongs to H p
θ such that

‖u‖L∞(0,T ;Lp(�;Ḣ θ )) ≤ lim inf
n→∞ ‖un‖L∞(0,T ;Lp(�;Ḣ θ )) ≤ M.

This shows that u ∈ H
p

θ (M) and completes the proof.

Lemma 3.2 allows us to apply the Banach fixed point theorem to conclude the existence of 
a unique local solution of Eq. (SEE). Then we prove the global existence by a uniform a priori 
estimation.

Proof of Theorem 2.3. Let X ∈ H
p

γ and X1, X2 ∈ H p . Using similar arguments as in the 
proof of Theorem 3.1 yields that the operator M defined by (30) satisfies

∥∥M (X)
∥∥

H p
γ

≤ MT ‖X0‖Lp(�;Ḣ γ )+Nγ (T )
(
1 + ‖X‖H p

γ

)
,

‖M (X1) − M (X2)‖H p ≤ Nγ (T )‖X1 − X2‖H p ,

where M(·) is defined by (31) and Nγ is a non-decreasing, continuous function defined by

Nγ (t) :=
t∫

0

KF,γ (r)dr +
( t∫

0

K2
G,γ (r)dr

) 1
2

, t ∈ [0, T ].

Since Nγ is non-decreasing and continuous with Nγ (0) = 0, there exists a small enough T
such that Nγ (T ) < 1. Taking M sufficiently large such that
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M ≥ MT ‖X0‖Lp(�;Ḣ γ ) + Nγ (T )

1 − Nγ (T )
,

we conclude that M maps H p
γ (M) to H p

γ (M) and is a contraction under the ‖ · ‖H p -norm for 
sufficiently small time T . By Lemma 3.2 and the Banach fixed point theorem, given any T > 0
there exists a deterministic time τ ∈ (0, T ) satisfying Nγ (τ) < 1 such that Eq. (SEE) possesses 
a unique local mild solution {u(t) : t ∈ [0, τ ]} which possesses a predictable version such that

sup
t∈[0,τ ]

E
[
‖X(t)‖p

γ

]
< ∞. (41)

It remains to prove the uniform a priori estimation (15) to conclude the global existence for 
the solution of Eq. (SEE). Let t ∈ [0, τ ]. Similar arguments as in the proof of Theorem 3.1 imply 
the following estimation:

‖X(t)‖Lp(�;Ḣ γ ) ≤ M(t)‖X0‖Lp(�;Ḣ γ ) + Nγ (t)

+
t∫

0

KF,γ (t − r)‖X(r)‖Lp(�;Ḣ γ )dr

+
( t∫

0

K2
G,γ (t − r)‖X(r)‖2

Lp(�;Ḣ γ )
dr

) 1
2

.

Then by Hölder inequality, we obtain

‖X(t)‖2
Lp(�;Ḣ γ )

≤ mγ (t) +
t∫

0

Kγ (t − r)‖X(r)‖2
Lp(�;Ḣ γ )

dr,

where

mγ (t) := 3
(
M(t)‖X0‖Lp(�;Ḣ γ ) + Nγ (t)

)2
, Kγ (t) := 3

(
K

γ

F KF,γ (t) + K2
G,γ (t)

)
.

It is clear from Assumptions 2.1–2.2 that mγ is non-decreasing and bounded and Kγ is integrable 
on [0, T ]. Then applying Lemma 3.1, we conclude by the boundedness (41) that there exists a 
constant C = C(T , p, Kγ

F , Kγ

G) independent of τ such that the aforementioned local solution 
satisfies the following a priori estimation:

sup
t∈[0,τ ]

E
[
‖X(t)‖p

γ

]
≤ C

(
1 +E

[
‖X0‖p

γ

])
.

Since the above constant C is independent of τ , Eq. (SEE) exists a unique solution on [0, T ]
such that (15) holds.

To prove (16), set t1 < t2 without loss of generality. Let us note that it follows from the proof 
of Proposition 3.1 that
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E
[
‖S 
 G(X)(t1) − S 
 G(X)(t2)‖p

γ

]
≤

( t1∫
0

(
E

[∥∥(S(t2 − t1) − I )S(t1 − r)G(X(r))
∥∥p

γ

]) 2
p

dr

) p
2

+
( t2−t1∫

0

K2
G,γ (r)dr

) p
2
(

1 + ‖X‖p

H p
γ

)
,

which tends to 0 as t1 → t2 by strong continuity (35) of the C0-semigroup S(t) and Lebesgue 
dominated convergence theorem. Similar arguments can handle the deterministic convolution 
S ∗ F(X) and the term S(·)X0:

lim
t1→t2

E
[
‖S 
 G(X)(t1) − S 
 G(X)(t2)‖p

γ

]
= 0,

lim
t1→t2

E
[
‖S(t1)X0 − S(t2)X0‖p

γ

]
= 0.

This completes the proof of (16) and thus the proof of Theorem 2.3.

4. Optimal trajectory regularity

Now we consider the trajectory regularity for the solution of Eq. (SEE) in Ḣ θ for some θ ≥ 0. 
The main tool is the factorization method introduced in [8].

To derive more temporal regularity of X, we generalize a characterization of the temporal 
Hölder Continuity for the linear operator Gα defined by (11) in [9, Proposition 5.14] (see Propo-
sition 4.1). Then we obtain the optimal temporal regularity of X by this characterization (see 
Theorem 4.1) and thus prove Theorem 2.4.

4.1. Proof of Theorem 2.2

Factorization method is a powerful tool to show the existence of a continuous version of the 
solution of an SEE. It is first introduced by G. Da Prato, S. Kwapien̆ & J. Zabczyk [8] to the 
stochastic setting; see also [9, Proposition 5.9].

We begin with a continuity characterization of Rα defined by (11).

Lemma 4.1. Let S(·) be a C0-semigroup generated by A. Assume that p > 1, ρ ≥ 0, α > 1/p+ρ

and E1, E2 are Banach spaces such that

‖S(t)x‖E1 ≤ Ct−ρ‖x‖E2, t ∈ (0, T ], x ∈ E2.

Then Rα defined by (11) is a bounded linear operator from Lp(0, T ; E2) to C([0, T ]; E1).

Now we can prove Theorem 2.2 by the above lemma.
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Proof of Theorem 2.2. The property (35) and Lebesgue dominated convergence theorem yield 
that

‖S(t2)X0 − S(t1)X0‖ = ‖(S(t2 − t1) − IdH )S(t1)X0‖ → 0

as t1 → t2. Thus S(·)X0 ∈ C([0, T ]; H).
By Burkholder–Davis–Gundy inequality, we get

‖Gα(t)‖Lp(�;H) ≤
( t∫

0

‖(t − r)−αS(t − r)G(X(r))‖2
Lp(�;L0

2)
dr

) 1
2

≤
( t∫

0

r−2αK2
G(r)dr

) 1
2
(

1 + ‖X‖H p

)
.

Then by Fubini theorem, we get

E

[
‖Gα(t)‖p

Lp(0,T ;H)

]
=

T∫
0

E

[
‖Gα(t)‖p

]
dt

≤
[ T∫

0

( t∫
0

r−2αK2
G(r)dr

) p
2

dt

](
1 + ‖X‖H p

)p

< ∞.

This shows that Gα ∈ Lp(0, T ; H) a.s. Applying Lemma 4.1 with E1 = E2 = H and ρ = 0, 
we have that S 
 G(X) ∈ C([0, T ]; H). Similar argument yields that S ∗ F(X) ∈ C([0, T ]; H). 
Combining the continuity of S(·)X0, S ∗ F(X) and S 
 G(X), we complete the proof of the 
continuity of X in H .

For the term S(t)X0, we have

E
[

sup
t∈[0,T ]

‖S(t)X0‖p
]

≤ M
p
T E

[
‖X0‖p

]
.

By the factorization formula (9) for S 
 G(X) with Gα being given by (10), we have

sup
t∈[0,T ]

∥∥S 
 G(X)(t)
∥∥p

≤
(

sin(πα)

π

)p( T∫
0

r(α−1)p′
dr

) p

p′ (
sup

t∈[0,T ]

t∫
0

‖S(t − r)Gα(r)‖pdr

)

≤ T αp−1
(

sin(πα)

π

)p

M
p
T

( T∫
0

‖Gα(t)‖pdt

)
.
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On the other hand, by Fubini theorem and Burkholder–Davis–Gundy inequality, we obtain

E

[ T∫
0

‖Gα(t)‖pdt

]
=

T∫
0

E

[
‖Gα(t)‖p

]
dt

≤
T∫

0

( t∫
0

(t − r)−2α‖S(t − r)G(X(r))‖2
Lp(�;L0

2)
dr

) p
2

dt

≤
( T∫

0

( t∫
0

r−2αK2
G(r)dr

) p
2

dt

)(
1 + ‖X‖2

H p

) p
2

≤ 2
p
2 −1T

(
K

γ,α

G

)p(
1 + ‖X‖p

H p

)
.

Thus we get

E

[
sup

t∈[0,T ]
∥∥S 
 G(X)(t)

∥∥p
]

≤ 2
p
2 −1T αpM

p
T

(
K

γ,α

G

)p
(

sin(πα)

π

)p(
1 + ‖X‖p

H p

)
.

Similarly, we have

E

[
sup

t∈[0,T ]
∥∥S ∗ F(X)(t)

∥∥p
]

≤ T αp−1M
p
T

(
sin(πα)

π

)p( T∫
0

E

[∥∥∥∥
t∫

0

(t − r)−αS(t − r)F (X(r))dr

∥∥∥∥p]
dt

)

≤ T αp−1M
p
T

(
sin(πα)

π

)p( T∫
0

( t∫
0

r−αKF (r)dr

)p

dt

)(
1 + ‖X‖H p

)p

≤ 2p−1T αpM
p
T

(
K

γ,α

F

)p
(

sin(πα)

π

)p(
1 + ‖X‖p

H p

)
.

Combining the above estimations, we obtain by Hölder inequality that

E
[

sup
t∈[0,T ]

‖X(t)‖p
]

≤ C
(

1 +E
[
‖X0‖p

]
+ ‖X‖p

H p

)
,

from which and (12) we conclude (14).

4.2. Hölder continuity criterion

To deduce more temporal regularity of the deterministic and stochastic convolutions, one 
needs to assume that S(·) is an analytic C0-semigroup generated by A. From now on we assume 
that the linear operator A generates an analytic C0-semigroup such that (5) hold.
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We have the following characterization of temporal Hölder continuity of the linear operator 
Rα defined by (11). The case β = 0 was derived in [9, Proposition 5.14]. We give a self-contained 
proof for completeness.

Proposition 4.1. Let p > 1, 1/p < α < 1 and ρ, θ, δ ≥ 0. Then Rα defined by (11) is a bounded 
linear operator from Lp(0, T ; Ḣ ρ) to Cδ([0, T ]; Ḣ θ ) when α, ρ, θ, δ satisfy one of the following 
conditions:

1. δ = α − 1/p − (θ − ρ)/2 when θ > ρ and α > (θ − ρ)/2 + 1/p;
2. δ < α − 1/p when θ = ρ;
3. δ = α − 1/p when θ < ρ.

Proof. Let 0 ≤ t1 < t2 ≤ T and f ∈ Lp([0, T ]; Ḣ ρ). Then

‖Rαf (t2) − Rαf (t1)‖Ḣ θ

≤
∥∥∥∥

t2∫
t1

(t2 − r)α−1(−A)
θ
2 S(t2 − r)f (r)dr

∥∥∥∥
+

∥∥∥∥
t1∫

0

[(t2 − r)α−1 − (t1 − r)α−1](−A)
θ
2 S(r)f (r)dr

∥∥∥∥
+

∥∥∥∥
t1∫

0

(t1 − r)α−1[(−A)
θ
2 S(t2 − r) − (−A)

θ
2 S(t1 − r)]f (r)dr

∥∥∥∥
=: I1 + I2 + I3.

Assume that θ ≥ ρ. Then we have

I1 =
∥∥∥∥

t2∫
t1

(t2 − r)α−1(−A)
θ−ρ

2 S(t2 − r)(−A)
ρ
2 f (r)dr

∥∥∥∥
≤

( t2∫
t1

(t2 − r)(α−1)p′ ‖(−A)
θ−ρ

2 S(t2 − r)‖p′
dr

) 1
p′

×
( t2∫

t1

‖(−A)
ρ
2 f (r)‖pdr

) 1
p

.

Since the semigroup S(·) is analytic, by (5) there exists a constant C > 0 such that

‖(−A)
θ−ρ

2 S(t)‖ ≤ Ct−
θ−ρ

2 , t ∈ (0, T ].

Consequently,
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I1 ≤ C

( t2−t1∫
0

r(α−1− θ−ρ
2 )p′

dr

) 1
p′ ( t2∫

t1

‖(−A)
ρ
2 f (r)‖pdr

) 1
p

≤ C(t2 − t1)
α− θ−ρ

2 − 1
p ‖f ‖Lp(0,T ;Ḣ ρ).

Similarly,

I2 ≤ C

( t1∫
0

[(t1 − r)α−1 − (t2 − r)α−1]p′

(t2 − r)
(θ−ρ)p′

2

dr

) 1
p′

‖f ‖Lp(0,T ;Ḣ ρ).

Using the fact that

(b − a)p ≤ bp − ap, a ≤ b, p ≥ 1,

we get

I2 ≤ C

( t1∫
0

(t1 − r)(α−1)p′

(t2 − r)
(θ−ρ)p′

2

− (t2 − r)(α−1− θ−ρ
2 )p′

dr

) 1
p′

‖f ‖Lp(0,T ;Ḣ ρ)

≤ C

( t1∫
0

(t1 − r)(α−1− θ−ρ
2 )p′ − (t2 − r)(α−1− θ−ρ

2 )p′
dr

) 1
p′

‖f ‖Lp(0,T ;Ḣ ρ)

≤ C(t2 − t1)
α− θ−ρ

2 − 1
p ‖f ‖Lp(0,T ;Ḣ ρ).

It remains to estimate I3. Note that

(−A)
θ−ρ

2 S(t2 − r) − (−A)
θ−ρ

2 S(t1 − r) =
t2−r∫

t1−r

(−A)
θ−ρ

2 +1S(t)dt.

Therefore,

I3 ≤ C

t1∫
0

(t1 − r)α−1‖(−A)
ρ
2 f (r)‖

( t2−r∫
t1−r

t−1− θ−ρ
2 dt

)
dr.

If θ > ρ, then similar arguments to estimate I2 yield that

I3 ≤ C

t1∫
0

(t1 − r)α−1[(t1 − r)−
θ−ρ

2 − (t2 − r)−
θ−ρ

2 ]‖(−A)
ρ
2 f (r)‖dr

≤ C(t2 − t1)
α− θ−ρ

2 − 1
p ‖f ‖Lp(0,T ;Ḣ ρ).
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If θ = ρ, then for any δ ∈ (0, 1), we have

I3 ≤ C

t1∫
0

(t1 − r)α−1‖(−A)
ρ
2 f (r)‖

( t2−r∫
t1−r

t−δt−1+δdt

)
dr

≤ C

t1∫
0

(t1 − r)α−1−δ‖(−A)
ρ
2 f (r)‖

( t2−r∫
t1−r

t−1+δdt

)
dr

≤ Cδ−1

t1∫
0

(t1 − r)α−1−δ[(t2 − r)δ − (t1 − r)δ]‖(−A)
ρ
2 f (r)‖dr

≤ Cδ−1(t2 − t1)
δ

( t1∫
0

(t1 − r)(α−1−δ)p′
dr

) 1
p′

‖f ‖Lp(0,T ;Ḣ ρ),

where we use the fact that

(b − a)p ≥ bp − ap, a ≤ b, p ≤ 1.

Taking δ ∈ (0, α − 1/p), we obtain

I3 ≤ C(t2 − t1)
δ‖f ‖Lp(0,T ;Ḣ ρ).

Now we assume that θ < ρ. Then we have the following estimations for the first two terms 
when α > 1

p
:

I1 ≤ C(t2 − t1)
α− 1

p ‖f ‖Lp(0,T ;Ḣ ρ),

I2 ≤ C(t2 − t1)
α− 1

p ‖f ‖Lp(0,T ;Ḣ ρ).

If θ ≥ ρ − 2α + 2/p, then by (5) there exists a constant C > 0 such that

‖(−A)1+ θ−ρ
2 S(t)‖ ≤ Ct−1+ ρ−θ

2 , t ∈ [0, T ].

Then

I3 ≤ C

t1∫
0

(t1 − r)α−1‖(−A)
ρ
2 f (r)‖

( t2−r∫
t1−r

t−1+ ρ−θ
2 dt

)
dr

≤ C

t1∫
(t1 − r)α−1‖(−A)

ρ
2 f (r)‖

( t2−r∫
t

ρ−θ
2 −α+ 1

p t
−1+α− 1

p dt

)
dr
0 t1−r
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≤ C

t1∫
0

(t1 − r)
ρ−θ

2 − 1
p′ [(t2 − r)

α− 1
p − (t1 − r)

α− 1
p ]‖(−A)

ρ
2 f (r)‖dr

≤ C(t2 − t1)
α− 1

p

( t1∫
0

(t1 − r)
ρ−θ

2 p′−1dr

) 1
p′

‖f ‖Lp(0,T ;Ḣ ρ)

≤ C(t2 − t1)
α− 1

p ‖f ‖Lp(0,T ;Ḣ ρ).

Consequently, Gα is a bounded linear operator from Lp(0, T ; Ḣ ρ) to Cα−1/p([0, T ]; Ḣ θ ) for 
θ ≥ ρ − 2α + 2/p.

If θ < ρ − 2α + 2/p. Then applying the property (5), we obtain the existence of a constant 
C > 0 such that for any t ∈ [0, T ],

‖(−A)1+ θ−ρ
2 S(t)‖ ≤ ‖(−A)

α− 1
p

− ρ−θ
2 ‖ · ‖(−A)

1−α+ 1
p S(t)‖ ≤ Ct

−1+α− 1
p .

Then

I3 ≤ C

t1∫
0

(t1 − r)α−1‖(−A)
ρ
2 f (r)‖

( t2−r∫
t1−r

t
−1+α− 1

p dt

)
dr

≤ C

t1∫
0

(t1 − r)α−1[(t2 − r)
α− 1

p − (t1 − r)
α− 1

p ]‖(−A)
ρ
2 f (r)‖dr

≤ C(t2 − t1)
α− 1

p

( t1∫
0

(t1 − r)(α−1)p′
) 1

p′
‖f ‖Lp(0,T ;Ḣ ρ)

≤ C(t2 − t1)
α− 1

p ‖f ‖Lp(0,T ;Ḣ ρ).

Thus Gα is a bounded linear operator from Lp(0, T ; Ḣ ρ) to Cα−1/p([0, T ]; Ḣ θ ) for θ < ρ −
2α + 2/p. Combining the result for ρ − 2α + 2/p ≤ θ < ρ, we conclude that Gα is a bounded 
linear operator from Lp(0, T ; Ḣ ρ) to Cα−1/p([0, T ]; Ḣ θ ) for θ < ρ.

Corollary 4.1. Assume that S(·) is an analytic C0-semigroup and there exist constants α ∈
(0, 1/2) and γ ≥ 0 such that

T∫
0

r−2α‖S(r)‖2
Lγ

2
dr < ∞.

Then for any p ≥ 1,

WA ∈ Lp(�;Cδ1([0, T ]; Ḣ θ1)) ∪ Lp(�;Cδ2([0, T ]; Ḣ θ2))
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for any δ1 < α with θ1 ∈ [0, γ ] and δ2 < α − (θ2 − γ )/2 with θ2 ∈ (γ, γ + 2α). The limit case 
α = 1/2 is included when (−A)

γ
2 ∈ L0

2.

Proof. Applying Burkholder–Davis–Gundy inequality, we get

∥∥∥∥
t∫

0

(t − r)−αS(t − r)dW(r)

∥∥∥∥
Lp(�;Ḣ γ )

≤ C

( t∫
0

r−2α‖S(r)‖2
Lγ

2
dr

) 1
2

< ∞.

Then by Fubini theorem, we get

E

[∥∥∥∥
t∫

0

(t − r)−αS(t − r)dW(r)

∥∥∥∥p

Lp(0,T ;Ḣ γ )

]

≤
T∫

0

( t∫
0

r−2α‖S(r)‖Lσ
2
dr

) p
2

dt < ∞.

This shows that 
∫ ·

0(· − r)−αS(· − r)dW(r) ∈ Lp(0, T ; Ḣ γ ) a.s. for any p ≥ 1. Now we can apply 
Proposition 4.1 and obtain that

WA ∈ Cδ([0, T ]; Ḣ β) ∩ Cα− 1
p

− θ1−β

2 ([0, T ]; Ḣ θ1) ∩ Cα− 1
p ([0, T ]; Ḣ θ2)

for any δ < α − 1/p, θ1 ∈ (β, β + 2α − 2/p) and θ2 ∈ (0, β). Applying Proposition 4.1 with 
β = 0, we have

WA ∈ Cδ([0, T ];H) ∩ Cα− 1
p

− θ3
2 ([0, T ]; Ḣ θ3)

for any δ < α − 1/p, θ3 ∈ (0, 2α − 2/p). Taking p large enough, we complete the proof.

Now we assume that (−A)
β
2 ∈ L0

2 and α = 1/2. Let 0 ≤ t1 < t2 ≤ T . Then

E
[
‖WA(t2) − WA(t1)‖2

Ḣ β

]
=: II1 + II2,

where

II1 =
t2∫

t1

‖(−A)
β
2 S(t2 − r)‖2

L0
2
dr,

II2 =
t1∫

0

‖(−A)
β
2 (S(t2 − r) − S(t1 − r))‖2

L0
2
dr.

By the uniform boundedness of ‖S(·)‖, we have
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II1 = C

t2∫
t1

‖(−A)
β
2 ‖2

L0
2
dr ≤ C(t2 − t1).

Note that

(−A)
β
2 S(t2 − r) − (−A)

β
2 S(t1 − r) =

t2−r∫
t1−r

(−A)
β
2 +1S(ρ)dt.

Then

II2 =
t1∫

0

∥∥∥∥
t2−r∫

t1−r

(−A)
β
2 +1S(ρ)dt

∥∥∥∥2

L0
2

dr

≤
∞∑

n=1

t1∫
0

( t2−r∫
t1−r

‖AS(ρ)(−A)
β
2 Q

1
2 en‖dt

)2

dr

≤ C‖(−A)
β
2 ‖2

L0
2

t1∫
0

( t2−r∫
t1−r

t−1dt

)2

dr.

For any ε ∈ (0, 1/2),

II2 ≤ C‖(−A)
β
2 ‖2

L0
2

t1∫
0

(t1 − r)−2ε

( t2−r∫
t1−r

tε−1dt

)2

dr

≤ Cε−2‖(−A)
β
2 ‖2

L0
2

t1∫
0

(t1 − r)−2ε
(
(t2 − r)ε − (t1 − r)ε

)2dr

≤ Cε−2‖(−A)
β
2 ‖2

L0
2
(t2 − t1)

2ε

t1∫
0

(t1 − r)−2εdr

≤ C(t2 − t1)
2ε .

Thus we obtain

E
[
‖WA(t2) − WA(t1)‖2

Ḣ β

]
≤ C(t2 − t1)

2ε .

Since WA(t2) − WA(t1) is Gaussian, we conclude that

WA ∈ Cδ([0, T ]; Ḣ β), δ < 1/2.
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Other cases that WA ∈ Cδ1([0, T ]; Ḣ θ1) for any δ1 < (1 + β − θ1)/2 with θ1 ∈ (β, β + 1) and 
WA ∈ Cδ2([0, T ]; Ḣ θ2) for any δ2 < 1/2 with θ2 < β are analogous and we omit the details.

4.3. Proof of Theorem 2.4

Proof of Theorem 2.4. For the initial datum, by (5) we get

‖S(t2)X0 − S(t1)X0‖θ = ‖(−A)
θ−β

2 (S(t2 − t1) − IdH )(−A)
β
2 S(t1)X0‖

≤ C|t2 − t1| β−θ
2 ∧1‖X0‖β

for any θ ∈ [0, β), which combining with the proof of Theorem 2.2 shows that S(·)X0 ∈
C

β−θ
2 ∧1([0, T ]; Ḣ θ ) for any θ ∈ [0, β].
By Burkholder–Davis–Gundy inequality, we get

‖Gα(t)‖Lp(�;Ḣ γ ) ≤
( t∫

0

(t − r)−2α‖S(t − r)G(X(r))‖2
Lp(�;Lγ

2 )
dr

) 1
2

≤
( t∫

0

r−2αK2
G,γ (r)dr

) 1
2
(

1 + ‖X‖H p
γ

)
.

Then by Fubini theorem, we get

E

[
‖Gα(t)‖p

Lp(0,T ;Ḣ γ )

]
=

T∫
0

E

[
‖Gα(t)‖p

γ

]
dt

≤
[ T∫

0

( t∫
0

r−2αK2
G,γ (r)dr

) p
2

dt

](
1 + ‖X‖H p

γ

)p

< ∞.

This shows that Gα ∈ Lp(�; Lp(0, T ; Ḣ γ )).
Now we can apply Proposition 4.1 with ρ = γ . When γ = 0, we have

S 
 G(X) ∈ Lp(�;Cδ([0, T ];H)) ∪ Lp(�;Cα− 1
p

− θ
2 ([0, T ]; Ḣ θ ))

for any δ ∈ [0, α − 1/p) and θ ∈ (0, 2α − 2/p). When γ > 0, we obtain

S 
 G(X) ∈ Lp(�;Cδ([0, T ]; Ḣ γ )) ∪ Lp(�;Cα− 1
p ([0, T ]; Ḣ θ ))

∪ Lp(�;Cα− 1
p

+ γ−θ1
2 ([0, T ]; Ḣ θ1))

for any δ ∈ [0, α − 1/p), θ ∈ [0, γ ) and θ1 ∈ (γ, γ + 2α − 2/p). Similar argument yields the 
same regularity for S ∗ F(X). Thus we conclude the results (17) and (18) by combining the 
Hölder continuity of S(·)X0, S ∗ F(X) and S 
 G(X).
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