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Abstract

This paper deals with a hierarchical control problem for the Kuramoto—Sivashinsky equation following
a Stackelberg—Nash strategy. We assume that there is a main control, called the leader, and two secondary
controls, called the followers. The leader tries to drive the solution to a prescribed target and the followers
intend to be a Nash equilibrium for given functionals. It is known that this problem is equivalent to a null
controllability result for an optimality system consisting of three non-linear equations. One of the novelties
is a new Carleman estimate for a fourth-order equation with right-hand sides in Sobolev spaces of negative
order, which allows to relax some geometric conditions for the observation sets for the followers.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

The Kuramoto—Sivashinsky (KS) equation is a fourth-order parabolic equation that serves as
a model for phase turbulence in reaction-diffusion systems (see [17,18]) and for plane flame
propagation (see [24]). The controllability properties of this one-dimensional partial differential
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equation has gained the attention of several researchers the last few years. We can mention, for
instance, the works [6,4,7,5,14].

In this paper, we propose to study a multi-objective control problem for the KS equation fol-
lowing a hierarchical strategy. Let us be more precise: we consider a distributed system governed
by the KS equation with a control v distributed over a sub domain . We assume that there are
two (or more) goals we would like to achieve. The main one being of “controllability” type and
the others expressing that the state of the system does not move too far from a given state. We
divide the control v into two (or more) parts, say f, vl, v2, ... where f is the main control, usu-
ally called the “Leader” and the controls v’ are the secondary controls, called “Followers”. We
will see that the leader is mainly responsible for the “controllability” property while the follow-
ers for some secondary objectives to be described later. This concept was mainly introduced by
J.-L. Lions (see [19,20]) where some techniques are presented. These works motivated the study
of this subject and a lot of other results appeared, see for instance [8,9,15,22,23]. We remark that
all these previous works combine the concepts of multi-criteria optimization and approximate
controllability. In the context of null controllability, few results are known and there are a lot
of open questions related to this subject. Recently, for the heat equation, the authors in [2] im-
proved the results known so far and proved a null controllability result, instead of an approximate
controllability under some suitable geometric conditions. Later, in [3], the authors improved the
result of [2] for, in some sense, less restrictive geometric conditions.

Consider the KS equation

Vi + Yexxx +VYxx ¥y = flo + Ul]l(?] + UZILOQ (x,1)€(0,L) x (0, T),

y(0,t)=y(L,t)=0 te0,7), (1)
yx(O,t)Zyx(L’t)ZO te(O7T)’ )
y(x,0)=y"(x) x€(0,L),

where y = y(x, t) is the state and y* is a prescribed initial condition. In (1.1), the set O C (0, L)
is the main control domain and Oy, O, C (0, L) are the secondary control domains (all them are
supposed to be small). We will assume that these sets are bounded intervals of the form O =
(a,b) and O; = (a;, b;) (i =1,2), moreover 1o, 1o, and 1, are the characteristic functions
of O, O and O, respectively; the controls are f, v! and vZ, where f is the leader and v! and
v? are the followers.

Let O1,4, 02,4 C (0, L) be open sets of the form O; 4 = (a;.4, bi.4), representing observation
domains for the followers. We will consider the (secondary) functionals

T T
Ji(fivh 0% :=%/ / |y—y,~,d|2dxdt+%//|v"|2dxdt, i=1,2 (1.2)
0 O;q 0 O
and the main functional
T
J(f) :=%//|f|2dxdt, (1.3)
0 O

where the o; > 0, t; > 0 are constants and the y; 4 = y; 4(x, t) are given functions. The structure
of the control process can be described as follows:
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1. The followers v! and v? assume that the leader f has made a choice and intend to be a Nash
equilibrium for the costs J; (i =1,2), that is, once f has been fixed, we look for controls
v' € L>(O; x (0, T)) that satisfy

Ji(fih 0?) = min S (f1 00,07, ) (f;vl,vz) = min /(30 9%). (1.4)
v v

2. Let us fix an uncontrolled trajectory of (1.1), that is, a sufficiently regular solution to the
system

Vi + Yoxxx T VYxx + ¥y =0 (,x)€[0,T] x [0, L],
y(,0) =y, L)=0 tel0,T],
(@0 =y:(t,L)=0 tel0,T],
y(x,0) = 3(x) x [0, L].

(1.5)

Once the Nash equilibrium has been identified and fixed for each f, we look for an optimal
control f € L*(O x (0, T)) such that

J(f)=min J(f), (1.6)
subject to the restriction of exact controllability
y(x, T)=y(x,T)in (0, L). (1.7)

Note that, if the functionals J; (i = 1, 2) are convex, then (vl, v2) is a Nash equilibrium if and
only if

J(f;o, 0@ 0=0, VvileL?(O;x(0,T)), v'eL?*(Ox(0,T)) (1.8)
and
Lo v)(0,0%) =0, Vi2eL*(Oyx (0,T)), v*eL?*(Oyx(0,T)). (1.9)

We will prove that if 1 and u, are sufficiently large, then the functionals (1.2) are indeed
convex for small data. More precisely, we have the following result.

Proposition 1.1. There exists r > 0 (independent of 11 and ») such that if

0 =0
I l2cox0,m) 1Y =Y 20 =7

then, if (vi, vz) is a pair such that conditions (1.8)—(1.9) hold, there exists C > 0, independent
of w1 and o, such that

T
<D?Ji(f;v1,v2>,<w",w")>zC//|w"|2dxdr, vw' € L*(0; x (0,T)), i =1,2,
0 O;

i

for wy and s sufficiently large. In particular, the functionals Jy and J» are convex in (v', v?).
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Therefore, for now on we will use (1.8) and (1.9) as an existence criterion for the Nash equi-
librium.
We now state the main result of this paper.
Theorem 1.2. Suppose
0;ianNO#£Y (i=1,2) (1.10)

and pn; > 0 (i = 1,2) are sufficiently large. Assume that one of the following two conditions
holds:

O1,4=024 (1.11)

or
01,aNOF#04NO. (1.12)
Let y € L*(0, T; Wl’oo((O, L))) a given trajectory of the uncontrolled equation (1.5). Then

there exist § > 0 and positive functions p; = pi(t) blowing up at t = T such that if y° and y
satisfy

T
10 = 31320+ D / / BIY — yial® dxdt <3, (1.13)
id

there exist controls f € L2(O x (0, T)) and associated Nash equilibria (v, v3) such that the
corresponding solution to equation (1.1) satisfy the control condition (1.7).

Let z :=y — y. It is clear that property (1.7) is equivalent to a null controllability property
for z, that is,

z2(x,T)=01in (0, L), (1.14)
where z is the solution of the equation

Z + Zowxx +VZex + 220 + G2)x = flo +v'lp, +v*1p, (x,1)€(0,L) x (0,T),

2(0,t) =z(L,t)=0 te(0,7),
ZX(O,I)ZZX(L,t):O te(ov T)!
2(x,0) =y (x) = 3°(x) x€(0,L).
(1.15)
On the other hand, the functionals J; can be rewritten as
T T
Ji(fivl,v?) :=%/ / \z—z,-,d|2dxdt+%f/mzdxdz i=1,2, (1.16)
0 O,‘yd 0 Oi
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where z; 4 := yi.q — . Following the arguments in [2], we can prove that a pair (v', v?) satisfying
(1.8)—(1.9) is characterized by

1 .
vi=——¢'lo, i=12, (1.17)

1

where (z, ¢!, $?) is the solution of the optimality system

_ 1 1
2t + Zexxx HVZox 22 + D) = flo — E¢]]1(91 - B(ﬁz]l(?z (x,1) €(0,L) x (0, 7),
i+ P VO — G+ NP =i —za)lo, =12  (x,1)€(0,L)x(0,T),

20,1) =z(L,t) = ¢ (0, 1) =¢' (L, 1) =0 i=1,2 te(0,7),
22(0,8) =z, (L, 1) =L (0,1) = ¢/ (L,1) =0 i=1,2 te(0,7),
2(x,00=2(x), ¢'(x,T)=0 i=1,2 x€(0,L).

(1.18)
Indeed, if (v, v2) is a pair of followers satisfying conditions (1.8)—(1.9), then we have
T T
Oli/ / (z —zi’d)pidxdt—i—u,-//.viﬁidxdt =0 Vd'eL>O;x(0,T) i=1,2,
0 Oia 0 O
(1.19)

where p' is the derivative of z with respect to v’ in the direction . In fact, p' is the solution of

P} Phxx P4+ @D+ P =0'1o,  (x,1) € (0, L) x (0, 7),

p'0,0)=p' (L, 1)=0 1e(0,7),
pL(0,1)=pi(L,1)=0 te,T),
p(x,00=0 x € (0,L).

Now, let ¢', i =1, 2, be the solution of the (adjoint) system

—pl+ Pl VO — @+ P =iz —zia)lo,, (x,1)€0,L)x(0,T),

#'(0,1)=¢ (L, 1) =0 te0,T),
¢.(0,0)=¢.(L,1)=0 1e€(0,T),
¢ (x,T)=0 xe(0,L).

Then, using the expression for ; (z — zi.¢) 1o, , in (1.19), after integration by parts we obtain

T
//(‘biwfv")ﬁ"dxdmo Vil e L2 (0; x (0,T)) i=1.2,
0 O

1

from where (1.17)—(1.18) follows.
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Notice that the existence of solution for (1.18) implies the existence of a Nash equilibria in
the sense of (1.4). The well-posedness of (1.18) is given by Theorem 2.1, and the proof can be
found in Appendix A. Therefore, the result given by Theorem 1.2 is equivalent to the (Iocal) null
controllability of (1.18), provided that condition (1.11) or (1.12) holds. Actually, since we only
need to control the state z, we can talk about partial null controllability of system (1.18). Let us
give some guidelines of the proof. First, we prove the null controllability of the linearized system
around zero

_ 1 1
2+ Zoxex FV2ex + G = O+ flo — Zdﬂﬂol - Ed’zﬂoz (x,1) € (0, L) x (0, T),

—0} + P + V0L, — IO = [ +izlo, i=1.2 (x, 1) € (0, L) x (0, T),
2(0,t)=z(L, 1) =¢' (0, 1) =¢'(L,t) =0 i=1,2 te(0,7),
2:(0,1) = 2:(L, 1) =L (0,1) = ¢pi(L, 1) =0 i=1,2 te(0,7),
2(x,00=2%x), ¢'(x,T)=0 x€(0,L),

(1.20)

where f0 and f? are (arbitrary) L-functions decaying exponentially to zero at r = T'. It is well
known by now that, with the help of a classical duality argument, the null controllability of
system (1.20) can be deduced from an observability inequality for the solutions of the so called
adjoint system, which in this case is given by

Yy + Yrex +Vxx — Y =g + a1y Lo, , +o2y?lo,, (x.1) € (0, L) x (0, T),

. . . . |
ytl+Y)éxxx+vy)éx+(.)_}yl)x=gl_;‘(/f]loi l=1?2 (x,t)G(O,L)X(O,T),
V(0,0 =v(L,t)=y0,1)=y(L,1)=0 i=1,2 te(0,7),
e (0,) =Y (L, ) =yL(0,) = yi(L, ) =0 i=1,2 te(0,7),
v, D) =vTx), y(x,0=0 i=1,2 xe(,L),

(1.21)

where g° and g’ are (arbitrary) L?-functions. Being more precise, the observability inequality
that we prove in this case looks like

L T L 2 T L
/|¢(x,0)|2dx+//,6§|¢|2dxdt+2//
0 0 0 00

i=1
T L T
//5[2|8i|2dxdt+C//5§|w|2dxdt (1.22)
00 0O

where p; (i =0,1,2) and p; (i =0,...,3) are suitable positive functions and C is a positive
constant independent of v, ! and y2. The presence of weights in an observability inequality is
not always needed to deduce controllability results. However, they will provide useful decaying
properties of the solution of system (1.21) to deal with the non-linearties.

pily' 1P dxdt
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The proof of (1.22) relies on Carleman estimates for the KS equation. They have the form

T

T L T L
//Pllwlzdxdticf/pzlfpt+§0xxxx|2dxdt+C//p3|</>|2dxdt
00 0 0 (@)

0

where ¢ is a smooth function such that ¢ (0, ) = @(L,1t) = ¢ (0,1) = ¢, (L,t) =0int € [0, T].
Inequalities of this kind have proven to be powerful tools to deduce observability of parabolic
equations. They were introduced in [13] and have been extensively used ever since. Notice that
it does not suffice to combine Carleman estimates for the solutions of the equations in system
(1.21) to obtain inequality (1.22). The idea is to use the couplings of the equations to estimate
the unwanted local terms. Of course, the location of the observation sets O; 4 (see assumptions
(1.10)—(1.12)) will play a fundamental role in our analysis. In particular, the weight functions
will strongly depend on them.

The work is divided as follows: In Section 2 we prove that, if u; are sufficiently large, then
the J; are convex and then the criteria (1.8) and (1.9) are equivalent to (1.4). In Section 3 we will
be concerned with Carleman estimates, the most technical part of the paper. We introduce the
weight functions, recall known results and prove a new Carleman inequality for the KS equation
needed to treat the case of assumption (1.12). Then, we deduce a Carleman estimate for the
adjoint system. Section 4 establishes the observability inequality (1.22) and deals with the null
controllability of the linear system (1.20). Finally, in Section 5, it is shown that the optimality
system is locally null controllable using a local inversion argument and thus completing the
proof of Theorem 1.2. In Appendix A, we give a proof of the well-posedness of the optimality
system (1.18).

2. On the convexity of J; and J>

In this section we prove Proposition 1.1. Before that, let us state a result that will be useful in
the following. The proof can be found in Appendix A.

Theorem 2.1. There exists r > 0 such that if || f | .20« 0.1y) + 120l 12(0,1.) = 7, then there exists
po > 0 (depending on o, v, r, | Yxlloo, I2i.dll 120, 4 x(0,1y)) Such that if juy, 2 = jro the system
(1.18) possesses a unique solution (z, ¢1,¢2) € (L°°(0, T: L%, L)) N L%, T; H02(0, L)))3.
Furthermore, the solution is such that

1E@. 6" 1), B>l 20,05 +1C D' D) 20 752 0,103 < C 2.1)
with C depending on i, v, r, ||yxlloo, |Zi.allL2¢0.L)x 0.1))> but independent of 1 and 3.

Proof of Proposition 1.1. Let f € L%2(©O x (0,T)) be given and let (v!, v?) be such that con-
ditions (1.8) and (1.9) hold. Note that, for any s € R and (w', w?) € L2(O; x (0,T)) x
L*(O2 x (0,T))
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T
<D1J1(f;v1+sw1,v2),w2>—<D1J1(f;v1,v2),w2>=sm/ w'w? dx dt
00O
T T ! 2.2)
+Ot1/ [(ZS—Zl,d)Pstdt—al/ [(Z—Zl,d)Pdth,
0 Ol,d 0 Ol,d
where

G+ TV 258+ ()

=flo+ @' +swhlp, +v?1p, (x,1) € (0, L) x (0, T),
Z20,)=2"(L,t)=230,t) =z3(L,t) =0 te(0,7T),
28 (x,0) = yo(x) — yo(x) xe(0,L),

2

p* is the derivative of z* with respect to v! in the direction w?, i.e. the solution to

PS4 P F VP + (@ P+ Ip ) =wtle, (x,1)€(0,L) x (0,T),
p*0,1)=pS(L,t) = p;(O, 1) = p;(L, t)=0 te(0,7), 2.3)
p’(x,0)=0 x€(0,L)

and we have used the notation z = z%|,_g and p = p*|,—.
Let us introduce the adjoint of (2.3):

=@ + Praax T VO — @ V)P =1 —z210)10,, (x,1)€(0,L) x(0,T)Q,
¢*(0,1) =¢*(L,1) =$2(0,1) = pS(L,1) =0 1e(0,7), (2.4)
¢*(x, T)=0 x€(0,L)

and let us also set ¢ = ¢*|s—o.
Replacing (2.4) into (2.2) and using integration by parts, we obtain the following identity:

T
(DlJl(f;vl+sw1,v2),w2)—(D1]1(f;vl,vz),wz):s/u//wlwzdxdt

0 O
T

+//(¢S — ¢p)yw>dxdt.
0 O

Notice that

=" =)+ (9" — Prxxx T V(P — Py — (& — Py — 2+ V)@’ — P =12’ —2)1o,,

and

(2 =2t + (2 = Daxax F V(@ = Dix + (@ =228+ 22 — ) + G —2)x =sw' 1o,
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Consequently, the limits
N N
n=Ilim —(¢* —¢) and h = lim —(z* —2)
s—>0 8 s—>0 5
exist and satisfy

=Nt + Maxxx + VNxx — oy — (T + V) = O51}111(’)1,‘1 (x,1)€(0,L) x (0,T),

e + Bxxxx + Vhgy + (hz +hy) = w'lp, (x,1) € (0,L) x (0,T),
h,t)=h(L,t) =h,0,t) =h(L,t)=0 te(0,7),
n(¢,T)=h(-,0)=0 xe(0,L).

Thus, from (2.5), we deduce that

T
(D2J1(f v! vz) (w w) M1f/w w dxdt—i—/ r]wzdxdt.
0 O 0 O
In particular, for all w! € L2(O; x (0, T)), one has
T

T
<D%Jl(f;u1,v2),(w1,w1)>=p,]//|w1|2dxdt+ nw' dx dt. (2.6)

0 O

ot

(@

Let us show that, for some C only depending on L, O, T, O;, O;4, @i, ||¥xllec and
Ivoll L2(0,1.)» We have

//nwldxdt <CU+1floxor)l 120,101 Yo' €L (O1x0,T). 2.7)
0 O

In fact, from standard energy estimates,

L L L L
d
E/lhlzdx+/|h”|2dx=—v/hxxhdx+/(z+y)hhxdx+/hw1dx
0 0 0 0 Oy

| =

and, using Young’s inequality,

2dt/|h| dx + = /Ihxx| dx
/|w | dx+

llo= (o, L) /Ihl dx.
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By Gronwall’s inequality we get that

L T L
f|h(r)|2dx+f/|hxx|2dx
0 0 0
T
= Cyexp ( / (12O g0,y + 15 O 10,0 )10 B2 0, w019
0

Now, notice that since (v!, v?) satisfy conditions (1.8)—(1.9), z is, together with (¢!, ¢?), the
solution of the optimality system (1.18) and (v', v?) are given by (1.17), provided that p1 and
wo are sufficiently large. Therefore, from (2.1), the previous inequality becomes

L

T L
[morax [ [l ar =i, o @8)
0 0 0

where C is independent of ;1 and j». Furthermore, notice that ¢ = ¢!.
Using the PDE:s in (2.5), we also get the following:

T T L
//nw]dxdt =//(h,+hxm+vhxx+(hz+hy)x)ndxdr
0 O 00
T L
= //h(_nt+7lxxxx+vnxx —(z+y)n.)dxdt
0 0
T L
= /‘/(h¢)lc+a1h]l@1’d)hdxdt
00
T L
= ff(|h|2¢j+o:1|h|2]1@11d)dxdt.
0 0
Then,
T T L T L
//nwldxdt 5/(II¢)1C||L°°(0,L)/|h|2dx>dl+a1//|h|2dxdt
0 O 0 0 00 29)

1 2 2
S ||¢x ”LZ(O,T;LOO(O,L)) ”h ”L4(0,T;L2(0,L)) + o1 ”h ”LZ((O,L)X(O,T))'
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Using (2.1) and (2.8) in (2.9), we obtain

T
Vaxdt| < Cllw'|?
nw" dx <Clw ||L2(O]x(O,T))’
0 O

where C does not depend on 1¢1 nor p>.
We can use (2.7) in (2.6) and we get

T
(D} (f5 00 %), (! wh) > (g —C)// lw![?dx dt, (2.10)
0 O

forall w' € L2(O; x (0, T)).
Of course, the same can be done for D%Jz( £ v!, v?) to obtain

T
(D2I(f: 0", 02, (P, w)) = (,uz—C)// WP dx dt, @.11)
0 O,

for all w? € L2(O, x (0,T)). The proof is complete taking | and wo large enough in (2.10)
and (2.11). O

3. Carleman estimates

This section is devoted to Carleman estimates. In a first step we prove a Carleman estimate
for the linear fourth-order parabolic equation

U+t = F + Y0 0LFT (x,1) € (0, L) x (0, T),

i=1"%x
u,t)=u(L,t)=0 te(0,7), 3.1
uy(0,6) =u,(L,1) =0 te(0,7), :
u(x,0) =u(x) x€(0,L),

where u® € L?(0, L) and, F and F! (i = 1, ..., 4) are functions belonging to L2((0, L) x (0, T'))
and, in a second step, for the adjoint system (1.21). We will see how this result depends on the
position of the observation sets O; 4.

3.1. Preliminaries

Let us begin by introducing the weight functions. Let w and wy be non-empty open subsets of
(0, L) such that wp CC w. Let ng be a C4([O, L])-function such that

no > 0in (0, L), no(0) =no(L) =0,
IVinol > 0in [0, L]\ @o.
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The existence of such a function in dimension higher than one is proved in [13, Lemma 1.1].
Next, we introduce the (positive) weight functions

exp (4Al1m0lloo) — exp (2 (llmolloc + no(X))) exp (A(lImolloo + 10(x)))

olx.1):= (T — /3 0, 0= BT B
3.2)
where A > 1. Consider the following notations:
(1) = 1), o(t)= mi ,1),
o’ (1) xg%ﬁ]a(x ), o) xg[lé}lL]a(x )
(1) = mi 1, EM)= 1),
§7(1) xg[l(l)flL]S(x ), &) xgg(%é(x )
Notice that we have
= SR M Iml) —exp (imolloe) ) exp (Rl ll)
o= (3T — )13 ’ ORI — /3 a3
50y = SR (@Hm0llx) —exp (2hlmolloe) 5 exp (i) '
- 113(T —)1/3 ’ T AT — BT
A simple computation shows that, for any m, n € N we have
1<T?Bg, |amote| < CT™A g3 |gmda| < CT™ A g1 H3m (3.4)

for every A > 1. These properties will be used several times in this paper.
Finally, before stating the first Carleman estimate, let us keep in mind the following notation
for the weighted energy:

T
I(u): /
0

e (s T (Jug 12 4 x| + 5226 urx|?) dix dt

(3.5)

+

Ct~—~ O\m

L
fe—”” (22282 U |* + 572087 |y |* + 572367 |u|?) dx dt.
0
For the simpler case where the right-hand side of (3.1) belongs to L>((0, L) x (0, T)), we
have the following result.

Proposition 3.1. Let of F € L*((0, L) x (0,T)), Fi = Oforalli=1,...,4and o C (0, L).
Then, there exists C(L, ) > 0 such that for every s > C(Tz/3 + T1/3) and every A > C we have

T T L
Iw<cC s7A8//e*2Ms7|u|2dxdt+//e*2”|F|2dxdt : 3.6)
0 w 00

where u is the solution of (3.1).

Please cite this article in press as: N. Carrefio, M.C. Santos, Stackelberg—Nash exact controllability for the
Kuramoto—Sivashinsky equation, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.10.043




YJDEQ:9613

N. Carreiio, M.C. Santos / J. Differential Equations eee (eeee) eee—eee 13

The proof of Proposition 3.1 can be found in [7, Theorem 3.3]. In the case where the obser-
vation set are identical (see assumption (1.11)), we will see that, following the arguments in [2],
Carleman estimate (3.6) suffices to prove the wanted observability for system (1.21). However,
when this is not the case (see assumption (1.12)), we need a Carleman estimate with a right-hand
side in weaker spaces.

3.2. A new Carleman estimate

Before stating our Carleman estimate, let us recall the notion of solution by transposition of
equation (3.1). To this end, let G € LZ((O, L) x (0, T)) and consider the (adjoint) equation

—@r + Qxxxx =G (x,1)e(0,L) x(0,T),
00,1)=9p(L,t)=0 te(0,7),
0x(0,8) = (L, 1)=0 1€(0,7),
ox,T)=0 x € (0, L).

(3.7)

The following lemma, corresponding to [6, Proposition 2.1], establishes the well-posedness
of this equation.

Lemma 3.2. For every G € L*>((0,L) x (0,T)), there exist a unique solution ¢ €
L2(0,T; H*(0, L)) N C([0, T; Hg) and a positive constant such that

el 220,714 0. Lync 0. 71:2) = CNG N L20,)x 0.7

Now, let H = H*(0, L) N Hg(O, L) and assume that the right-hand side of equation (3.1)
satisfies

F,Fl e L>((0,L) x 0, T)(i=1,....,4) and F> _,F* eL*0,T;H), (3.8)

XXX T XxXxx

where H' denotes de dual space of H. Notice that under (3.8), we can consider the dual product

of the distribution F7 . with an element of L?(0, T; H) in the sense that there exist some

functions g1, g2, 71 and A belonging to LZ(O, T) such that

T L T
f / Fhtgens dx di + / (920 itx (L 1) — g1 (D (0.1)) d
0 0 0
T

f o () txx (L, 1) — hy (Duxx (0, 0)) dt,  Vu € L*0, T; H).
0

Notice that if F* were regular enough, we would have
() =F}0,1), gt)=FXL,1t), h@t)=F*0,r) and ha(t) = F*(L,1).

Therefore, in the following we will use this notation. Of course, the same argument can be
adapted for the distribution F>

XXXx*
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With the previous considerations, we establish the notion of solution of equation (3.1).

Definition 3.3. Given u° € L?(0, L), F, F! € L*>((0,L) x (0,T)) (i =1,...,4), we say that
u e L2((0, L) x (0, T)) is a solution by transposition of (3.1) if

L

T L
/qudxdt:/uO(x)w(x,O)dx
0 0

0

L
+ /(F(p - Fl(px + Fz‘Pxx - F3§0xxx + F4‘Pxxxx)dth
0

+

Ct~— T—

T T
(F3oxx) |\ di + / (Flow) |12y di — / (Flowd)|\=hdt  (3.9)
0 0

for every G € L2((0, L) x (0, T)), where ¢ is the unique solution of equation (3.7).
Notice that the existence and uniqueness of a solution of equation (3.1) is a direct consequence
of Lemma 3.2 and Riesz’s representation theorem.

We have the following theorem, which is one of the main results of the paper.

Theorem 3.4. Let F, FI (i=1,...,4) satisfy (3.8). Then, there exists C(L, w) > 0 such that for
every s > C(Tz/3 + T1/3) and every ). > C we have

T L T L
s7X8//e 250 £7\y| dxdt<C< W// 20Ty dxdt+//e—2m|F|2dxdz
00 0 0

T L
+//672S0(s2k2§2|F1|2 +S4A4%—4|F2|2 +S6)\,6é6|F3|2 +S8)\.8$8|F4|2) dxdt
00

T
+s5x5/e*2w*(g*)5(|F3(L, D+ F3O0, 0 + |[FXL, 0> + |[F20,0)) ar
0
T
+s7)»7/e_zw*(é*)7(|F4(L,t)|2+ |F4 (0, t)|2)dt>, (3.10)

0

where u is the solution of (3.1).

Remark 3.5. Carleman estimate (3.10) will be a key step for the purposes of this paper. Never-
theless, it has an interest on its own: it allows to obtain a null controllability result for equations
like
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Up + Uyxxx +aou + aruy + arityy + azigey =vly,  (x,1) €(0,L) x (0, 7),

u@,t)=u(L,t)=0 te(0,7),
ur(0,1) =uy (L, 1) =0 te(0,7),
u(x,0)=u(x) x € (0, L),

where a; € L*°((0, L) x (0, T)) fori =0, ..., 3. Indeed, the corresponding adjoint equation is
given by

— @ + Qrxxx = —ao@ + (@19)x — (@@ xx + (@30)xxx  (x,1) €(0,L) x (0, T),

¢0,1)=¢p(L,t)=0 te0,7),
‘px(o’t)ZQDX(Lvt):O IE(O,T),
e(x, T)=¢"(x) x €0, L).

Using estimate (3.10) with F = —agp, F! =aj¢, F?> = —a>, F? = azp and F* =0, and taking
s sufficiently large with respectto 7 and a; (i =0, ..., 3), we get

T L T
//e*%“gﬁmzdxdt gc//e*z*“(g)ﬂmzdxdt.
00 0 w

Proof. To prove inequality (3.10) we follow a duality argument introduced in [16] for the heat
equation with right-hand side in LZ(O, T:H! (0, L)). Since then, this method have been used
in different contexts (see [10,11,4,14]). In particular, several arguments remain unchanged with
respect to the ones used in [4, Theorem 3.5], so we will use some estimates from there. We start
with the null controllability problem of finding (¢, /) such that

—@1 + @rexx =5 287" Bu 4+ 1, (x,1) €(0,L) x (0, T),
00,1) =¢x(0,1) =0, @(L,t)=¢x(L,t)=0 te€(0,T), (3.11)
p(x,00=0, ¢x,T)=0 x€(0,L),

where u is the solution (by transposition) of equation (3.1). From the proof of Theorem 3.5 in [4],
there exists a pair (¢, k) that solves this control problem. Furthermore, they satisfy

T L
/ f (R e e e T O IR
00

+

Sig)‘igéig |@xxxx |2) dxdt

T T L
+s—7r8f/e2Wg—7|h|2dxdt 5cs7A8f/e—2Wg7|u|2dxdt (3.12)
0 o 0 0

and
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T
s / 277 ()7 (Igax (0,02 + @ux (L, 1)[?) dt
0
T T L
+s7 277 / 2 E) T (Igwx (0,2 + @rxx (L, 1)[*) dt < Cs738 / / e 9 u|? dx dt.
0 0 0

(3.13)

We now take G = s'A8&7¢727y + h1,, in equality (3.9). We obtain
quality

T L
//S7A88_2SGE7|M|2dx dt
0 0

T T L
—//uhdxdt+//(F¢—F1¢x+F2g0xx—F3¢XXX+F4<pxxxx)dxdt
0 o 00

T T
+ | (FPou) 12y di + f (Floxx) |2y dr - / Ype) iz d
0 0

S—

From this identity, we conclude using estimates (3.12), (3.13) and Young’s inequality. O
3.3. Carleman estimates for the adjoint system

Here we prove some Carleman estimates for the adjoint system (1.21), provided that assump-
tions of Theorem 1.2 hold. In particular, we will deal with conditions (1.11) and (1.12) separately.

3.3.1. Case O1,4 =024
We start assuming that condition (1.11) is satisfied. It is convenient then to denote Oy =
014 = O, 4. Notice that system (1.21) now reads

Y+ Yrwxx + Vax — Y = &0 + (laly‘ +ay?)lo, (x,1)e(0,L)x0,T),
y,"+y;xxx+vy;x+<wi>x=gf—;wﬂoi i=1,2 (x,0e(0,L)x0,T),

lﬂ(O,t)zl//(L,t)zyi(O,t)=)/i(L,tl)=0 i=1,2 te(0,7),
v, T)=¢yT(x), y(x,0=0 i=1,2 x€(0,L).

Following the arguments in [2], let 4 := a1y ! + a2y, Of course, by linearity, the pair (¥, k)
is solution to
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_¢t+wxxxx+vwxx_)_7wx=gO+h]l(’)d o o (x,t) € (0,L) x (0, T),
ht + hxxxx + Vhxx + (Yh)x :o{lgl +0‘2g2 - ,L,L_llw]lol - /J,_iwll(92 (x,1)€(0,L) x(0,T),
v(0,0) =y (L,1)=h(0,1) =h(L,1)=0 t€(0,7),

Vx(0,1) =Yx(L,1) =hy(0,1) =hy(L,1) =0 te(0,7),
Y, T) =y (x), h(x,00=0 x€(0,L).
(3.14)

For the solutions of this system, we have the following result.

Proposition 3.6. Assume that conditions (1.10) and (1.11) hold, and y € L*°(0,T;
WL°((0, L))). Then, there exists C = C(L, O, Og, a;, tti, |3 lloos I7xlloc) > O such that for
every s > C(T?*3 + T/3) and every A > C we have

T L
1) + (k) sc( / / 27 (sTASET|gOP + 1g' |2 + [g22) dx dr
0 0

T
+s‘5)\‘6//e—ZS"§‘5|1/f|2dxdr>, (3.15)
00
where (Y, h) is the solution of (3.14).
Proof. Since we are assuming condition (1.10), there exists a non-empty open set @ such that

w C Oy N O. From Proposition 3.1 applied to the first equation in (3.14), we have (recall the
definition of 7 (-) from (3.5))

T L
1) sc(f/e%“’(wmﬂ 171210 + 1801 + [ %) dx dt
0 0

T
+s7x8//e—2sag7|1/f|2dxdz>
0 w

for every s > C(T%/? 4+ T'/3) and every A > C. From the properties of the weight functions (3.4),
we obtain

T L T
1(¢)5c(//e2”(|g0|2+ |h|2)dxdt+s7/\8//e2S057|¢|2dxdt> (3.16)
00 0 w

for every s > C(T2/3 + T1/3) and every A > C.

Please cite this article in press as: N. Carrefio, M.C. Santos, Stackelberg—Nash exact controllability for the
Kuramoto—Sivashinsky equation, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.10.043




YJDEQ:9613

18 N. Carreiio, M.C. Santos / J. Differential Equations eee (eeee) see—see

Similarly, applying Proposition 3.1 to the second equation in (3.14), we get

T L
1h) sC(//e2S“(|hxx|2+ 151201 2 4 152 12 + 18" 2+ 162 + 9 P) due it
0 0

T
+s7,\8//e—2ws7|h|2dxdr>
0 w

for every s > C(T?/3 + T'/3) and every A > C. Again, properties (3.4) yield

T L
I(h) < c(//ez“’ g1+ 1g%1° + 1y |?) dx dt +s7A8// —20g7 | p) dxdt) (3.17)
0 0 0 o
for every s > C(T?/3 + T'/3) and every A > C.
Now, we combine inequalities (3.16) and (3.17). Notice that the global terms of ¢ and 4 in

the right-hand side, can be absorbed by the left-hand side taking s and A sufficiently large as
before. Therefore, we end up with

T L
1) +1(h) < c(//e”"(|g°|2+ 18" + 1g21%) dx dr
00

T
+s7/\8//e 2T (ly|? + | )dxdt) (3.18)
0 w

for every s > C(Tz/3 + T1/3) and every A > C.

To finish the proof, we only need to eliminate the local term of % in the previous inequality.
Let 6 € Cg((’)d N O) such that = 1 in w. From the equation satisfied by 4 in (3.14), we have
that

h= =Y + Yaxax + V¥ — 39 — g0 in (04N O) x (0, T).

Then,
T T
cs7x8/fe—2me7|h|2dxdt5cs7)\8f / e 279 |h)> dx dt
0 o 0 O;nO

T
= Cs7k8/ f e BETOR( = Yy + Yexex +V¥ax — Y — ) dxdt. (3.19)
0 O,NO
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Let us treat each one of the terms in the last integral, which will be denoted by Aj, ..., As.
Integration by parts in time for the first term gives

T T
A :Cs7A8/ / (e77€7),0hy dxdt+Cs7,\8/ / e 270y dx dt.
0 OnO 0 OnO

Using weight properties (3.4) and Young’s inequality, we obtain

T
1
A< l—ol(h)+Cs15A16/ / e 27 EB 1y 2 dx dt
0 O,NO

for every s > C(TZ/3 + T1/3) and every A > C.

Similarly for A,, we integrate by parts in space. Again from properties (3.4) and Young’s
inequality we get

T
1 ‘
Ay < I—OI(h)+Cs]5kl6/ / e 2By 2 dx dt
0 O,NO

for every s > C(TZ/3 + T1/3) and every A > C.
Terms A3z and Ay are treated analogously. Keeping in mind the regularity of y, we have

T
1 ‘
Aggml(h)JrCs”)sz / e 27Ny 2 dx dt
0 O,NO

and

T
1
Ag < l—ol(h)+Cs9k10/ / e 2y P dx dt
0 O,nNO

for every s > C(T 2/3 4 T3y and every A > C. Notice that the constant in A4 depends on the

norms of y.
For the last term, we obtain directly

T
1
As < EI(h) +cs7x8/ / e 271802 dx dt
0 O,NO

for every s > C(T2/3 + T1/3) and every A > C.

Please cite this article in press as: N. Carrefio, M.C. Santos, Stackelberg—Nash exact controllability for the
Kuramoto—Sivashinsky equation, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.10.043




YJDEQ:9613

20 N. Carreiio, M.C. Santos / J. Differential Equations eee (eeee) see—see

Finally, adding the integrals Ay, ..., As in (3.19) we get
T
Cs'A8 f f e 27N> dx dt
0 w

T T
1
< 51(h)+cs15x”’/ / e_z‘€“§15|1/r|2dxdt+Cs7)»8‘/‘ / e 771802 dx dt.
0 O,nO 0 O;nO
(3.20)

Plugging this inequality in (3.18) and using properties (3.4), we deduce estimate (3.15). O

3.3.2. Case O1 4% Oz 4

Now we turn to assumption (1.12). Notice that the argument presented to prove Carleman
estimate (3.15) is no longer viable in this case. Therefore, a new approach is needed. Let @ and
w» be two disjoint non-empty open subsets of (0, L) such that

w1 CO1gNO and w2 CO4NO, (3.21)

and let Oy be a non-empty subset of O such that Oy € O and

w1 COy and @y C Oy (3.22)
Fori =1, 2, let n; be C*([0, L])-functions such that

ni >0 in(0,L), n0)=n(L)=0,
[Vni[>0 inl0, L]\ ;, (3.23)
ni=mny in[0, L1\ Op.

Conditions in (3.23) say that these functions have their critical points in disjoint sets, but
coincide outside a set containing these sets. This property will be very useful in our argument.
The existence of such functions in this case (one dimension in space) does not require much
discussion. However, a proof in dimension higher than one can be found in [3].

Analogously as in (3.2), for i = 1, 2, we define the weight functions

exp (4rlimilloc) — exp (A(Imilloo 4 1i (x)))

exp (A(Imi lloo + 1i (x)))
oi(x,t):= (T — 1)1 , _

éi(xst):_ t1/3(T—t)1/3 ’
(3.24)

where A > 1, and 6;, al.*, é,- and El.* as in (3.3). We denote by [;(-) the corresponding weighted
energy as in (3.5).

Remark 3.7. Notice that properties (3.4) are still valid for these new functions. Therefore, Propo-
sition 3.1 and Theorem 3.4 are still valid for weight functions (3.24) instead of (3.2).
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Before introducing the Carleman estimate, we distinguish two cases for O; 4 and O, 4 under
assumption (1.12). If

(01,4NO02L)NO =1, (3.25)
then we can choose w; and w» satisfying (3.21) and
01N (O24NO)=0 and wN(O1,4NO)=0. (3.26)

On the other hand, if (3.25) does not hold, it means that (O; 4 NO) N (O2,4 N O) # @. Further-
more, since we are assuming (1.12), the symmetric difference between O; 4 N O and O 4N O
is not the empty set. Therefore, there are i, j € {1, 2}, i # j, such that w; and w; can be chosen
to satisfy (3.21) and

w; N (Oj,d NO)=@ and w; C (Oi.aNO). (3.27)

Remark 3.8. Without loss of generality, we will fix i = 1 and j =2 in (3.27) for the rest of the
paper, that is,

01 N(O24NO0)=0 and wr C(O14N0O).
The other case is completely analogous.

These two cases yield to slightly different Carleman estimates, which are presented in the
following proposition.

Proposition 3.9. Assume that conditions (1.10) and (1.12) hold, and y € L*°(0,T;
W12((0, L))). Furthermore, let w; and w, be non-empty disjoint open set such that (3.21)
and (3.22). Then,

(1) if (3.25) holds, there exists C = C(L, O, O; 4, ai, i, | lloos [ x llcc) > O such that for every
s> C(Tz/3 + T1/3) and every . > C we have

T L
§Ta / / B Pdxdi + L)+ boA)
00
T
< C(slskmf/(e_z“‘”élls+e_2”2§215)|1//|2dxdt
00
T L
+s7x8//(e*ZS“lsf+e*2”2527)|g°|2dxdz
0 0

T L
+//(e—zsallgllz+e—250‘2|g2|2) dxdt> (328)
00

or
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(i1) if (3.27) holds for (i, j) = (1, 2), there exists C = C(L, O, O, 4, i, i, |¥lloos |Vxlloc) > 0
such that for every s > C(T?/3 + T'/3) and every » > C we have

T L
s7x8//e—2”153|w|2dxdr+wl)+12<a1y1 +azy?)
00

T
< C(Sls)\.16/[(e_zso-lé:lls+€_2S0-2$215)|'(p|2dxdt
00

T L
+S7)»8// (6—2S01§17 +€_ZSU2§27)|g0|2dX dt
0 0

T L
_i_//‘(estal +e2502)(|g1|2+|g2|2)dxdt> (329)
0 0

for every solution (W, y', y?) of system (1.21).
Proof. We start by considering a function A € C 4([0, L)) such that

A(x) =0 for x € Oy,

A(x)=1 forx €[0,L]\ O. (3.30)
It is straightforward to check that
—(AY); + (AP)xry = A+ a1 Ay Lo, , + a2 Ay?1o,, + R(Y) (3.31)

where

ROW) = —20A" Y — FAY — 5 Ay — A" + QuA'Y + FAY +4A"Y),
— (WAY +O6A"Y)x + 4N V) xix-
Notice that the function Ay, together with equation (3.31), fulfills the conditions of Theo-

rem 3.4 for weight functions (3.24) with i = 1 (see Remark 3.7). Thus, we obtain from inequality
(3.10) for every s > C(T*3 4+ T1/3) and every A > C

578

S—

L
/ “2orgl Ay > dx dt
0

T L T L
</fe—2ml|g0|2dxdt+f/ 29 (|Ay 2+ |Ay??) dx dt
0 0 0
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T
+s7k8//e_z‘Y”1517|A1//|2dxdt

0 o

T L
(L 112 + 15212628 / / 3 E0 Y 2 dx dz), (3.32)
0 0

where we have used properties (3.4). To estimate the last term in (3.32), notice that from the
properties (3.30) of A, we have

T L T
s7A8/fe_zsaléf|w|2dxdt—s7k8//e_2501€17|1ﬁ|2dxdt
0 0 00
T L
§s7k8//6_2501517|A1ﬂ|2dxdt
0 0

and, since the weight functions are equal outside Og (see (3.23)),

T L T
// 20 (|Ay P+ Ay ) dx dt = / f e 2 Ay P dx dt
00 0 (0,L)\Oo
T
+/ / e 22| Ay?? dx dt.
0 (0,L)\Op

Going back to (3.32), we get using (3.4) the estimate

T L T L T
37)»8//@_2m‘§17|1//|2dxdt§C<//e_2m‘|g0|2dxdt+/ / e~y 2 dx dt
0 0 00 0 (0,L)\Oo
T
f / e~ 20y dxdt+s7k8// e gl |y dxdt> (3.33)

0 (0,L)\Og

for every s > C(Tz/3 + T1/3) and every A > C.
Now, we first prove Carleman estimate (3.28) which is somewhat simpler and then we turn
to (3.29).

e Proof of (i). For i = 1,2, we apply Proposition (3.1) for the equations satisfied by y' in
system (1.21). We have
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T L
e sc(//e—l‘“f(w;gu 11217 12 15 12y P 12 4+ [ ) dox it
00

T
+S7k8//e2S”f$l7|yi|2dxdt), i=1.2

0 w;

for every s > C(T'*/3 + T'/3) and every A > C. From properties (3.4), we get

T L
Ii(y")gc<//e—2“’f lg' 1?4+ 1y )dxdz+s7x8// e gl |yl dxdt) i=1,2
0 0

0 w;
(3.34)
for every s > C(Tz/3 + T1/3) and every A > C. From (3.23), we have
T L T
//e 2591 |y 1> dx dt = // —259i |y, |2 dxdt~|—f / e BN Pdxdr, i=1,2.
00 0 0 (0,L)\O

Thus, summing inequalities (3.33) and (3.34) we obtain
T L T
sW//e*2S01g17|¢|2dxdt+11(y1)+12(y2) 5c<//(s7,\8e2”1517+e2”2)|¢|2dxdz
00 00

T L
+// (€27 (g0 +1g' D) + e 2 g2 P) dxdr +5738 Y /f e d””)
0 0

k=127 o
(3.35)

for every s > C(T*3 + T3y and every A > C, where we have used again (3.4).

It remains to estimate the local terms corresponding to y!' and 2. For this, we will take
advantage of the fact that we can choose w; and w; to satisfy (3.26) since we are assuming that
(3.25) holds. Similarly to what we did in the proof of Proposition 3.6 (see (3.17) and (3.18)), we
use the equations satisfied by ! and y? in system (1.21).

Fori=1,2,1et6; € Cé(@i,d N O) such that = 1 in w;. Since (3.25) holds, observe that

; 1
yh= 07(—% + Yrxxx +V¥xx — Y¥x — go) in(OiaNO)x0,T), i=1,2,
i

and thus we have
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T T
CS7AS//6_2‘Y0[517|Vi|2dxdt SCS7)\.8/ / e_zsaiél79|yi|2dxdt
0 w; 0 0;4nO

T
C 950 i - ;
=;s7x8/ f e UE Oy (= Vi + Vowr + V¥ — $¥ — g0)dxdr, i=1,2.
' 0 O;4nO

Here we find the same (up to the constant C) expression as (3.19), therefore we obtain for free
the estimate (compare with (3.20))

T T

i 1 i o

CS7)\18/\/\672SU,‘€_-Z_7|7/1|2 d.x dt S 5Il(yl) _’_CSIS)\’]G//e*ZAO‘,gi]S'wlZ d.x dt
0 w; 0O

T
+Cs7A8//e_z‘”"éi7|g0|2dxdt, i=12 (3.36)
(@)

for every s > C(T%/3+T1/3) and every A > C. Using this last inequality in (3.35) and properties
(3.4), we find estimate (3.28).

e Proof of (ii). We now assume that (3.27) holds with i = 1 and j = 2 (see Remark 3.8). From
(3.21) and (3.27), we choose w; and w; such that
w01 CO1aNO)\NO24 and w2 CO14NO24NO.
Notice that from the first equation in system (1.21) we have

1
yl= o7 (Y Y+ 0Ue = = ¢" i ((0LaNO)\O0r4) x (0,T),

thus we can combine estimates (3.33), (3.34) and (3.36) with i = 1 to get
T L T
s7x8//e*2“’1517|¢|2dxdt+Il(y‘) §C<s15A16//ezmléllslwzdxdt
0 0 00

T L T L T
+S7)\'8\/\\/‘g—25‘01$i7|g0|2 d.x dt + //6—2S01|g1|2dx dt +/ / 6—2S02|y2|2 d.x dt>
0 0 0 0

0 (0.L)\Og
(3.37)

for every s > C(T2/3 + T1/3) and every A > C.
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To estimate the last term in (3.37), we borrow the idea from the proof of Proposition 3.6. Let
h:=o yl + a2y2. From Proposition 3.1, we obtain an estimate similar to (3.17). Namely,

T L
Iz(h)<C<//e_2“’2 18" + 1217 + v )dxdt+s7A8// —202g ]|y dxdt) (3.38)
0 0

0 w2

for every s > C(T%/3 + T'/3) and every A > C. Since we have

h= =Y + Yaxax + V¥ — 39 — g0 in (O1,4NO24NO) x (0, T),

we repeat the computations to obtain (3.20) (with 0 € CS (01,4 N O24 N O) such that 6 = 1
in w7). This time we get

T T
1
cS7x8//e*2“’2§27|h|2dxdzg Elz(h)+cs15x‘6//e*h”zgzlﬂmzdxdz

0 w2 00
T

+Cs7x8//e*2“’2§27|g°|2dxdt (3.39)

for every s > C(Tz/3 + T1/3) and every A > C.
From (3.23) and (3.4), we have

T
C/ / e~ 22)y22 dx dt
0 (0,L)\Op
T T
§c</ / e—2501|y1|2dxdt+/ / e_2m2|h|2dxdt>
0 (0,L)\Op 0 (0,L)\Oq
< ThON + b (3.40)

for every s > C(TZ/3 + T1/3) and every A > C.
Putting together estimates (3.37)—(3.40) we finally get (3.29). O

4. Analysis of the linear system

This section is dedicated to prove an observability inequality from Carleman estimates in
Propositions 3.6 and 3.9. Then, we will be able to establish the null controllability of linear
system (1.20).

Before going into the details, let us make some remarks about the Carleman inequalities from
Propositions 3.6 and 3.9.
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In the following, we will ask the functions defined in (3.23) to satisfy also that

M1 lloe = lIM2lcc- (4.1)

As it is stated in Remark 7 in [3], this can be possible even in higher dimension.
Let us unify Propositions 3.6 and 3.9.

Lemma 4.1. Assume that condition (1.10) holds and y € L°(0, T; WH%°((0, L))). If the func-
tions defined by (3.23) satisfy (4.1), then

(1) if (1.11) holds, there exists C > O such that for every s > C(T*3 + 113y and every A > C
we have

T L T L
S7A8//672S0*($*)7|w|2dx dt +S7)\.8/‘/672S(7’*(%‘*)7|a1y1 +O{2y2|2d.x dt
00 0 0

T L T
§C<// 26 (T80 + I P + |°) )dxdt+s15x16/f ~258 £15)y 2 dxdt)
0 0 0
(4.2)
or
(i) if (1.12) holds, there exists Cy > 0 such that for every s > Cx(T*3+T1/3) and every 1 > Cy
we have
T L T L
S7)\.8\// —230‘?(5?)7|w|2dxdt+S7)“8/\/\e—zso'l*(%-ik)7(|yl|2+ |y2|2) dxdl
00 0 0
T L T
Ck(//e_zwl (s"2%&] 18P + 18" 1> +1g! )dxdt—l—sls)»lﬁ/f “2GES |y 2 dxdt)
00 0
(4.3)

where Cy may be different constants C1 and Co depending if condition (3.25) holds or not,
respectively, for every solution (W, y', y?) of system (1.21).

Proof. The only case that is not direct from Propositions 3.6 and 3.9 is the one coming from
inequality (3.29). However, it is enough to notice that |y?| < 011052_1 Iyl + ocz_l lary! + any?
and that under (4.1) the weights coincide when we take the minimum. O

4.1. Observability inequality

Let us now prove the observability inequality for the solutions of the adjoint system (1.21).
We start by proving an energy estimate.
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Lemma 4.2. Assume that y € L*°((0, L) x (0, T)). Then, there exist g > 0 such that for every
U1, U2 = po and every gO, gl, g2 € L?((0, L) x (0, T)) and every wT € L?(0, L), the solution
W, y', y?) of system (1.21) satisfies
2 1,2
”w“L°°(0,T;LZ(O,L))OLZ(O,T;HZ(O,L)) + ”)/ ”LOQ(O,T;LZ(O,L))QLZ(O,T;HZ(O,L))
202 1 22
1Y Moo 0,7:200,LynL20,7: 20,0y T N1V 2V o0 7120, L )00200,7: 200, 1)
02 12 22 T2
S C(”g ||L2((0,L)><(O,T)) + ”g ||L2((0,L)><(0,T)) + ”g ||L2((0,L)X(0,T)) + ||1/f ||L2((0,L)))’ (44)

where C > 0 is a constant independent of |11 and ;.

Proof. Let us multiply the first equations of system (1.21) by ¥ and integrate in space. Integra-
tion by parts yields

L L
s [wraxs [warax
0 0
L L L
=—v/l/f”wdx+fmwdx+/g°wdx+m f ylwdx+a2/y2wdx.
0 0 0 O14 02,4

Using Poincaré’s and Young’s inequalities, we have

L

———/II/fld +5 /Illfxxl dx<Cf|¢| dX+/|g|dX+/(|Vxx| + v ) dx,

0

where C is a constant depending on || y||0, v, 1 and oy, but independent of 1 and ;. Then,
by Gronwall’s inequality, we obtain for all # € (0, T)

L T L
/|¢<t)|2dx+//|wxx|2dxdt
0 00
L T L T L
sc(/|wT|2dx+//|g°|2dxdt+//(|y;x|2+|y3x|2)dxdz). “.5)
0 0 0 00

Similar computations for the equations satisfied by y! and y2 show that, fori = 1, 2,

L L L
/Iyl dx+/|y dx=—v /Vxx)/ dx+/yy J/xder/gV dx+—/w dx
0 0

Oi
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and then

1dL 1L L L 1L
EE/Mﬂ%x+5/wM%usC/w%dwﬂ/WFM+—?/me,
0 0 0 0 Hig

where C is a constant depending on |y|sc and v, but independent of w; and ;. Since
y'(x,0)=0,i=1,2, we get from Gronwall’s inequality

L T L T L L
[Ny i 2 i2 1 2 .
Iy () dx + ly! |*dxdt <C 4 dxdt+; W) dx), i=1,2.
0 0 0 00 Lo

(4.6)

Now, let h :=a1y! + a?y2. Since h satisfies the second equation in system (3.14), we can
obtain similarly as before the estimate

L T L

(ﬁmﬁw+//mmwm

0 00
T L

c</1[|g|?+m| axdr + /Xwaneu) @)
0 0

Adding estimates (4.5)—(4.7) (with a rescaling of the constants if necessary), we obtain (4.4)
by taking w; and w, sufficiently large. O

We are ready to prove the observability inequality (1.22). To do this, we need to introduce
some new weight functions similar to the ones in (3.2) and (3.24) that do not degenerate at t = 0.
Let 7(¢) € C'([0, T]) be defined by

)= (T/2)%3 tel0,T/2),
=108 =B rer)/2, 1],

and
exp (4A[nilloo) — exp (A(Imillo + i (x)))
(1)

exp (A(Imillso + 1i (x)))
T(t)

Bi(x, 1) :=

’

Gi(x, 1) =

. i=1,2, (4.8)

where A > 1. Similarly, we define (8, ¢) corresponding to (o, £) in (3.2).

Notice that properties (3.4) are valid for these new functions and we keep the notation intro-
duced at the beginning of the section.

The observability inequality is given by the following proposition.
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Proposition 4.3. Assume that condition (1.10) holds and y € L>(0, T; W1°((0, L))). Also,
let the functions defined by (3.23) satisfy (4.1) and, s and A be constants such that Lemma 4.1 is
verified. If either (1.11) or (1.12) hold, then there exists a constant C > 0 such that every solution
W, y', y?) to system (1.21) satisfies

L T L T L
/|¢(x,0)|2dx+//e*25'ﬁ?‘(c{‘>7|w|2dxdt+[/e*w?‘(wlﬁ+|y2|2)dxdt
0 00 0 0

T

T L
C<f/ “2PU(ET10P + 112 + |g?] )dxdt+// “2BIEIS |y 2 dxdt) (4.9)
0 0

0
Remark 4.4. In the spirit of unify both cases (1.11) and (1.12) is that we have considered only the

weight functions (Bi, ¢1). Of course, when (1.11) holds, it suffices to replace (8, ¢) by (B1, 1)
and take w; to only satisfy w1 C 014N O.

Proof. It is classical to prove (4.9) from (4.2), (4.3), (4.4), and the fact that

47/3
7
P’ = T

For details, please see [12, Lemma 1] or [4, Proposition 4.1], for instance. On the other hand, if
(1.11) holds, we can get from (4.2) and (4.4) the estimate

L T L T L
/|w(x,0)|2dx+//e*z"ﬂ*(;*)ﬂmzdxdt+//e*2x/3 (lory! +ooy??) dxdt
0 00 0 0

T L
<c(f/e (ET18%2 +15' P + 1% )dxdr+f/ e HBEB P dxdr)
0 0

00O

To add the weighted integrals of ! and y2, we do the following. Let p(r) = e—*F". Notice
that o(¢) is a positive non-increasing function in (0, 7). If we denote y"' := p(¢)y’, we obtain
from system (1.21) that

L o T ‘
Vi + Vixxx TV OV D =p )8 — ;p(t)llfﬂoi + 0 )y,
1
(x,)€(0,L)x (0,T), i=1,2.

As in the proof of Lemma 4.2, we multiply this equation by 7’ and integrate in (0, L). We
have fori =1,2
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L L |k L L |k
sip [ PRaxes [Pax=c [i7Rast [lpwePas+— [loouPas
0 0 0 0 "o

L
+/p’(r>p<r)|y"|2dx.

0

Since the last term is negative and 7’ (x, 0) = 0, we obtain

T L T L | T L
//e_zsﬁ*|yi|2dxdt§C</fe_25ﬁ lg'1? dx dt + —sze—sz’*wﬁdxdt), i=1,2.
0 0 0 0 Hi 0 0

From here, it is easy to obtain (4.9) from properties (3.4) and the fact that e 1P <e™% B . O
4.2. Null controllability of the linear system

Let us denote by L the linear operator

Lu:=u; + Uyxrr + Vit + u)x

and by L£* its formal adjoint

* . -
LU = —up + Uyyxyx + Vityx — iy,

Also, consider the functional space

={@ 1.2 )1 ePETP2e L2((0. 1) x (0.7)). P19 € L2((0. L) x (0. T))).i =1.2,
ePE B2 F e 120 x (0, 7)),
P (; )Lz — flo+uy ¢ Lo, + 1y ¢ 10,)
€ L2((0, L) x (0, 7)),
ePI(L ¢ —aizle,,) € L2(((0, L) x (0,T)),i = 1,2,
P e e 190, T L2(0, L)) N L2(0. T: H(0, L)),
P T2 e 1200, T; L2(0, L)) N L20, T; HX(0, L)), i = 1,2},

which is a Banach space endowed with its natural norm.
We have the following result.

Proposition 4.5. Let the assumptions of Proposition 4.3 be satisfied. Then, for any z° € L*(0, L),
and any triplet (f°, f, ?) such that

T L T L
0 0 0 0
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there exists a control f € L?((0, L) x (0, T)) such that the solution (z, q‘)l, ¢2) of system (1.20)
satisfies (z, ¢1, 92, ) € S. In particular, z(x, T) =0in (0, L).

Proof. We follow a classical strategy (see [12,4], for instance). Consider the space
Po={(p.q",q*) € C*(0, L1 x [0, T]) :
p,1) =q’(0, t)=p(L,t) =q’(L_,t) =0 Vre(,7),i=1,2,
Ppx(0.0) =gi(0.0) = pe(L.1) =qi(L.) =0 Vre(0.T),i=1.2,
q'(x,00=0 Vxe(,L),i=1, 2}.

Now, let b : Py x Pyo — R be the bilinear functional
b((p.q'. g, (r.w' w?)

T L
= //e’zsﬁl 517(5*17 — othl]lolyd — angllozyd)(ﬁ*r - Ollw]]l(’)l,d — ozzwz]l@z_d)dx dt
00

T L T
4 | : 1 A~
+ /fe_Zsﬂl (Eq' + fpﬂ@i>(£w' + frﬂoi>dxdt+//e_2sﬁ1§115 prdxdt
=1y b Mi i 5o
and £ : Py — R the linear functional

T L L
E(r,wl,w2)://(f0r+flwl +f2w2)dxdt+/z0(x)r(x,0)dx.

00 0

Observability inequality (4.9) allows to show that b(-, )1/2 defines a norm in Py. We denote
by P the closure of Py with respect to this norm. Furthermore, P is a Hilbert space with the inner
product coming from b and, again from (4.9), £ is bounded in P. Therefore, by Lax—Milgram’s
Lemma, we deduce that the problem: find (p, ql, qz) € P such that

b((p.q' g%, (rnw', wh) =, w', w?) Vi, w' w)eP (4.11)

possesses a unique solution that we call (p, ¢!, §2).
Define

= PE(Lp — 1§10, , — 026*10, ),

N R 1

¢ = e~ 2h (ﬁq” + —13]1@,.), i=1,2, (4.12)
i

f=—e2PPp1p.

_We will show now thAat (2, ¢A>1 , %) is actually the solution of the linear system (1.20) associated
f and that (2, ¢', 2, f) belongs to S, therefore solving the null controllability problem.
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Since b((%, qsl, (2)2)) < 400, we have that

T L » T L T
//e2sﬁl 51—7|2|2dx dt + Z//e2sﬁ1|(l§i|2dx dt _i_/\/\eZSﬁlEl—]Slle dx dt < 4+00.
00 00 00

i=1
4.13)

Now, let ('Z~ $ 1;;52) be the weak solution of system (1.20) with f = f defined in (4.12). It is
clear that (Z, ¢!, $?) is also the unique solution by transposition of (1.20) (see Definition 3.3).
This means that

T L T L L
//(Zg°+$1g‘ +¢?¢%)dxdr = f/(for—i-f]wl +f2w2)dxdt—l—/zo(x)r(x,O)dx
0 0 0 0 0

(4.14)

forall (g%, ¢!, g2) € L2((0, T) x (0, L))?, where (r, w!, w?) is the solution of the system

£rr=g"+aw'lp, , + mw?lp,, (x,1) €(0,L) x (0, T),
. . 1
Lw' =g ——rlp, i=1,2 (x,t) € (0,L) x (0,T),
Hi , _
r0,)=r(L,t)=w'0,))=w'(L,t1)=0 i=1,2 te(0,7),

re(0,8) =1y (L, 1) =wi(0,1) =wi(L,t)=0 i=1,2 te€(0,T),
r(x,T)=0, w'(x,00=0 i=1,2 xe(0,L).

From (4.11) (with (p,q'.¢%) = (p 4',4%) and (4.12), we find that the triplet (2, ¢', $?)
also satisfies (4.14). Thus, (z, ¢1 ¢ ) coincides with (Z, ¢1 (]52) and must be the weak solution
of (1.20) associated to f

Finally, let z, := e‘ﬂlg“ 15/25 and qb’ = evﬂ' 15/2¢’ i =1,2. Then, (z4, ¢*, ¢f) solves

1 “
Lzy=f2+ filo — —¢i]101 = M—moz + @ P : (x)e(0.L) x (0.7),

LAl = fl +a,~z*11@,,d @PET B¢ i=1,2 (x.1) € (0, L) x (0, T),
2+(0,1) = z4(L, 1) :qb*(O 1) _qb*(L,t) =0 i=1,2 te(0,7),
2ex (0, 1) = 2ax (L, 1) = ¢, (0,1) = ¢} (L, 1) =0 i=1,2  1€(0,7),
2:(x,0) = O P20)0), ¢l(x. T)=0 xe (0, L),
where we have denoted as well (f*, i )= esh 715/2(f0 fi, f) i =1, 2. From the fact that
|(e”31 15/2) | < Cesl31 _7/2 , (4.10), (4.13), the definition of the weight functions and proper-

ties (3. 4) we see that the terms in the right-hand side of the equations of this system belong to
L*((0,L) x (0, 7).
Therefore, using a regularity result similar to Lemma 4.2 (eventually for w; large enough)
3
we deduce that (z4, ¢!, ¢2) belongs to <L°°(O, T: L2(0, L)) N L2(0, T; H2(0, L))) . This com-
pletes the proof of Proposition 4.5. O
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5. Null controllability of the non-linear system

In this section we complete the proof of Theorem 1.2. As mentioned in the introduction, it is
equivalent to a local null controllability result for the optimality system (1.18). More precisely,
we prove the following result.

Theorem 5.1. Let the assumptions of Theorem 1.2 be satisfied. Then there exist § > 0 and positive
functions p; = p; (t) blowing up at t = T such that if z° and z; 4 satisfy

T
||ZO||iz(0’L) + Z / / P lzial*dxdr <8,
i=1,2} Oia

there exist a control f € L*(O x (0, T)) and a associated solution (z, ¢', ¢*) of the optimality
system (1.18) such that z(x, T) =0 in (0, L).

The proof is based on a local inversion argument, for which we use the following theorem

((see [1])).

Theorem 5.2. Let B1 and B> be two Banach spaces and let F : B — Ba satisfy F € C'(By; By).
Assume that by € By, F(by) = by and that F'(by) : By — By is surjective. Then, there exists
8 > 0 such that, for every b' € By satisfying |b' — b2, < 8, there exists a solution of the
equation

Fb)="b, behB.
Proof. Let us define the spaces

By =S,
By:=XxL*0,L)x Y x Y,

where
X = {u: eI Pu e L0, L) x (0, 7))
and
Y= {u:ePiue L2((0, L) x (0, T))}.
For every (z, ¢!, $%, f) € S, let the operator F : B — B> be defined by

Lz+z2z: — flo+up o 1o, + 1y 9?10,
z(x,0)
Ll —z¢' —aizlo,,
L*¢? — z2¢? —arzlp, ,

F(z.¢'.¢% f) =

To check the hypothesis of Theorem 5.2, the following lemma will be useful.
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Lemma 5.3. Let Z := {u : ePE=15/2 € 1290, T L2(0, L)) N L2(0, T; H2(0, L))}. The map

1 .2 1.2
(U ,u”) > u uy

is continuous from Z to X and from Z to'Y .

Proof. It suffices to check that |[u'u?|x < Cllu'|z|lu?lz and |lu'u?|ly < Cllu'|z|u?|z. We
only do the first, since the other is analogous. Notice that the function

o~ 25Bitsp 2115 (gl*)—7/2
is bounded (eventually for a large A). Then for any u!, u> € X we have

lu'u? || x = || (41*)_7/2M1M§||L2((0,L)x(0,T))

2sf12—-15 1.2
< Clle™P1 e u w20,y x 0,7y

g, 2—15/2 1 sB2—15/2 2
=< C||€Sﬁl §1 u ||L00((0,L);L2(0,T))||€Yﬂl§1 “x”LZ((O,L);LOC(O,T))

1 2
=Clulizllullz. O

From the definition of By, B, and Lemma 5.3, it is fairly simple to check that F is well defined
and of class C!(By; B,). Furthermore,

Lz— flo+u;'¢' 1o, + 1, ¢ 10,
7(x,0)
E*(pl —Ol]Z]l(Ol,d
L — 0zlo,,

F'(0,0,0,0)(z, ', 9%, f) =

is surjective from B; to B, thanks to Proposition 4.5. From Theorem 5.2 with b1 = (0, 0, 0, 0),
by =(0,0,0,0) and b’ = (0, 2%, —a121,410, ;. —@222,410, ) We obtain the existence of a pos-
itive number § such that if

T
12200+ O f / PPz dxdi <5,

i=1,2 3y

there exists (z, ¢1, ¢2, f) solution to system (1.18) belonging to S. In particular, z(x, 7) =0 in
(0, L) and the proof is done. O
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Appendix A. Well-possedness of the optimality system (1.18)
Consider the following linear KS equation

yt+yxxxx+vyxx:f (x,1) €(0,L) x (0, T),
y(0,t)=y(L,t)=0 te(0,7),
(0, 0) =y (L, 1)=0 1€(0,7),
y(x,0) =y’ (x) x€(0,L).

(A.1)

In order to prove the existence of solution for (1.18) we will first study the existence of solution
for (A.1). We have the following

Lemma A.1. Let A : D(A) C L*(0, L) — L?(0, L) the operator defined by:

{ D(A) =[H* N H{1(0, L),
Ay = —Yrxxx — VYrx-

Then A is the generator of a strongly continuous semigroup {T (t)};>0 : L%(0,L) — L?(0, L).
Moreover, if yo € L*>(0, L), u(t) = T (t)yq is the unique solution of (A.1) in the space

ue C([0,T; L*(0, L)) N L*(0, T; HZ(0, L)).

Proof. The first thing to do is to prove that ( ﬁ, o0) C p(A), more precisely we will show that
for each f € L?©0,L)and o € (ﬁ, 00) problem

ou—Au=f (A2)

has a unique solution u € D(A).
Define the bilinear form B : [HOZ(O, L)]2 — R given by

B(u,v) =0 (u,v) + (txx, Vxx) + V(lxx, V).
It is clear that B is continuous in HO2 (0, L) and it is easy to see that

_ 2 2 _V_2 2
B(u,u) =olu|” + luxx|” + v(uxy, u) = (1 40)|uxx|-

Then, for o > "4—2 the bilinear functional B is coercive. We also have that L : Hg(O, L)—> R

given by L(v) = (f, U>H—2(0,L),Hg(0,L) is continuous and
[IL(v)| < ||f||H—2((),L)”v”HOZ((),Ly
Using the Lax Milgram theorem, there exists a unique u* € HO2 (0, L) solution of

Bu*,v)=L(v), VveHZO,L).
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2

We conclude that, if f e H ~2(0,L) and o > UT’ problem (A.2) has a unique solution u* €

HZ(0,L).If f € L?(0, L) then, using (A.2), we see that u*,,, = f —ou* — vu?, and then we
obtain that u™ € D(A). Let us define the resolvent operator R (o, A) : LZ(O, L)— L2(0, L) by

2

R0, A)=@ld—A) ", o> UZ'

‘We observe that

(R(0, AV f, f) = (u, 01 — Au) = (s, 0t + Uyyry + Vitry) = 0 [ul* + tx |* + v(ttyy, u)

> ( —"—2) 2= —”—2>R< A)fI?
> (0 = Pl =(0 = IR0, A)f]

This proves that

|R(0, A)" f] < fl.

V2n|

By [21, Theorem 5.3] we see that A is the generator of a strongly continuous semigroup {7 (¢)};>0
and

v2
ITOI<es". O
As a consequence we have the following:

Corollary A.2. Let y° € L%(0, L) and f € L'([0, T1; L?(0, L)), then problem (A.1) has a
unique mild solution y € C([0, T]; L?(0, L)) given by

t

y(t)=T(t)y0+/T(t—s)f(s)ds. (A3)

0

If, moreover, yo € D(A) and f € C'([0, T1; L%(0, L)) then the mild solution given by (A.3)
is the unique solution for the inhomogeneous boundary value problem (A.l) in the class
C([0, T1; D(A) N C([0, TT; L*(0, L))

Proof. The proof comes from the fact that the 7'(¢) is strongly continuous. See Pazy ([21],
p-107). O

Remark A.3. For yy € L2(O, L) and f € L0, T; LZ(O, L)) the mild solution (A.3) has the
regularity y € LZ(O, T; Hg (0, L)), moreover the following estimate holds:

||y(t)||L2(0,L) + IIyIILz(O,T;Hg(o,L)) =G, (”yO”LZ(O,L) + ”f”L'(O,T;LZ(O,L))) ,Vi€[0,T]. (A4)

If ag, a1, € L°(Q) and g € L1(0, T; L?(0, L)), taking f = g —agy — a1y, in (A.1), then we
can prove that the equation
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Yt + Yxxxx +VYxx +aoy +aiyx =g,
y(0,1)=y(L,1) =0,

yx(0,8) =yx (L, T) =0,

y(x, 0) =),

(A.5)

has a unique solution y € C ([0, T']; L2(0, L)) N L0, T; Hg(O, L)) and there exists a constant
Co = Co(v, laolloc, llar llos) such that

”y(t)”[?((),L) + ”y”LZ((),T;HOZ(o’L)) <Co (”yO”]}(O,L) + ”g”L'(O,T;LZ(O,L))) . (A.6)

The next step is the study of the nonlinear problem

Ve F Yxxxx + YYx + Vyax a0y +aryy = f,
y(0,1) =y(L,1) =0,

yx(0,8) =yx (L, T)=0,

y(x,0) =y (x).

(A7)

Theorem A4. Let B = C([0,T1; L*(0, L)) N L?(0, T; HJ(0, L)). There exist r > 0 such that
for each y° € L*(0, L) and f € L'(0, T; L*(0, L)) satisfying

0
Iy N2,y + 1 f Lo 7: 020,00 =7

problem (A.7) has a unique solution in B.

Proof. Let 7 = IIyOIILz(O,L) + 1/ lL10.7:22(0.1))- By Corollary A.2 and Remark A.3 we can
define A : L%(0, T; W40, L)) — L?(0, T; WH4(0, L)) such that A(¥) = y where y € B is the
unique solution of (A.5) with g = f — yy,. Notice that

1

T 2

L
f /wxﬁdx
0

T
dti/\”y”%VlA(O,L) dt
0 0

and then, using (A.6) and the fact that L2(0, T; H3(0, L)) <> L?(0, T; W4(0, L)) we have

T
Iyl 20.rwia. < Co | 1901 2002, + / (I Ol200) + 15O, ) de |- (AS)
0

From the equation (A.5) we have that y, € L?(0, T; H2(0, L)). Also, the immersion
Hg(O, L) < W40, L) is compact. Hence by Aubin-Lions compactness Lemma we conclude
that A is compact.

Let Bg = {u € L2(0, T; W40, L)); llull z2¢0,7.w14(0.0y) < K}. Then if § € Bx we have by
(A.8) that

Iyl 20.7:w140.1y) < ColF + K. (A.9)
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If K < CLO and 7 < %&’Kz we have that A(Bgx) C Bg. By Schauder’s fixed point theorem,

2
A has fixed point and the existence of solution is proved by taking r = % It is easy to see
that the solutions of (A.7) satisfies the same inequality (A.6) with the constant Co, this can be
used to prove the uniqueness of solution for (A.7). O

We will now study the existence of solution for (1.18).

Theorem A.5. Let r given by Theorem A.4 and assume that || f || 1 0.7 12¢0.)) + 120l L20.) = 5-
If i are sufficiently large (depending on o, v, 1, || yx oo, 12i,d |l 2(0; ;% 0, 1)) then system (1.18)
possesses a unique solution (z, ¢1 , ¢2) e B3.

Proof. We will use again the Schauder’s fixed point theorem. Indeed, let K be a constant to be
determined later and fix (¢!, $) € B 116 where

B ={(u,v) € L'0, T; L*(0, L))*; |, )l 10,7512,y < K}

Notice that

r

1 . 1 . ~ 1 1
lzoll 200, + 1.f 1o — —@'1o, — —¢* Lo, 101220,y < = + K (— + —).
L2(0,L) 0 1 o 2ILHO,T5L2(0,L)) = o wi wr

If we take K = %(% + t)’l then, by Theorem A.4, there exists z € BN Bg the unique solution
of

S0+ Zrvnx + Vi + 220+ GDx = flo — i@lﬂol - iéﬂnoz (x.1)€(0,L) x (0, T)
with 2(0) = z° and satisfying
12O 20,2y + 120 20,7120,y = Cor- (A.10)
Consider now ¢’ € C([0, T']; L2(0, L)) N L2([0, T1; HZ(0, L)) with ¢ (-, T) = 0 solution of
@ Py VP — G+ =i C—zi)lo, i=12 (x,0)€(0,L)x0T).

Multiplying by ¢' and integrating on (0, L) we have

1d

=5 710 Ol720,1) + 195 D220 1) = % (E = 200 10,40 B 120,.2) = Vi D 20.1)

G+ DL ) 1201 (A.11)

Notice that
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L
— 1 .
((2+y)¢;y¢1)1‘2(0,1‘) =—E/(Ex(t,x)+ix(t,x))|¢’(t,x)|2dx
0

< (12Ol L.y + 13 Ol L20.1)) / 6" (¢, %) dx.

Replacing the last inequality in (A.11) we obtain for i = 1, 2 the inequality

1d -, 1 -
= 5 1 Ol 1) + S 195 O 20 1)
L
1 a? 2
5/ 217 + lzial )dx+ > +7+||)’x(t)||oo+||zx(t)”oo 6'Pdx. (A.12)
0
By Gronwall’s inequality
16' ()17 ||¢xx(s)|| 201y @5 < Clei, v, 1, 1 xlloo, IZidll 12¢0,1)) (A.13)
L2(0, L) L*(0,L)

where
T
Clai, v.r. 13+ los Nzl 20.1) /exp (c? +v% + 2015 loo + Cor ) )
0

x (C3r2 + 2ia s 1, ) ds)

for i =1, 2. In this way, if w| and u, are sufficiently large, such that

rf1 1\!
Car v [3xlloon il 20.2y) < 2<—+_) _

>

w1 M2

then A : L! (o T: L%(0, L))2 — L0, T; L*(0, L))* given by A((¢1 ) = (¢!, 2) is com-
pact and A(B (K )) c B! (K ). By Schauder’s fixed point theorem A has a fixed point (¢1 ¢ )
which is, together with z, a solution of (1.18). Notice that, thanks to (A.10) and (A.13), the
solution (3, ¢!, $?) satisfies

I1G@. 6" 1), $* 120,03 + G D' D) 20 7512 0,108 < C@is v 7 I3xllows 12 120,1)
(A.14)

provided that 11 and p, are large enough.
The uniqueness part can be obtained using (A.14) and standard energy estimates. [
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