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Abstract

The theory of versal normal form has been playing a role in normal form since the introduction of the
concept by V.I. Arnol’d in [1,2]. But there has been no systematic use of it that is in line with the semidirect
character of the group of formal transformations on formal vector fields, that is, the linear part should
be done completely first, before one computes the nonlinear terms. In this paper, we address this issue
by giving a complete description of a first order calculation in the case of the two- and three-dimensional
irreducible nilpotent cases, which is then followed up by an explicit almost symplectic calculation to find the
transformation to versal normal form in a particular fluid dynamics problem and in the celestial mechanics
L4 problem.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In normal form theory for general differential equations or symplectic systems around equi-
libria, not much attention is usually given to the linear part of the problem. A typical approach
in bifurcation theory is to compute the normal form of a general system with respect to a given
organizing center and add versal deformation terms (as first considered in [1,2]). One can then
analyze all possible bifurcations in a neighborhood of the organizing center. While there is noth-
ing wrong with this approach, it does not answer the question where a given system fits in the
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analysis. In other words, how does one compute where the given system is in this neighborhood
of the organizing center?

It is this question that we attempt to answer for a number of examples. Some of these examples
will be very concrete, with only one or two parameters to give us a possibility to actually, see the
bifurcations, others are completely general systems where one can use the computation by just
filling in the parameter values of a given system with the same type of organizing center.

Ideally, before starting the nonlinear computation, the linear system should be brought in
versal normal form in a finite number of steps, as is attempted in [16]. In practice what one
does is to put the linear part in normal form in the same way as one does the nonlinear part
of the equation, but this may involve infinitely many steps. Since the linear terms influence the
computation in every step, this is not very desirable (contrary to the nonlinear computations,
which cannot influence the linear part unless there is also a constant term to take into account).

In this paper, we address this problem for a very particular system that has been the subject
of several papers already from the versal deformation point of view, namely the L4-problem
as described in [6]. This paper contains a very clear discussion of the arguments involved in
the versal deformation computation and we will not repeat these here. The issue we want to
address here is to change the infinite series approach into a finite explicit computation. Apart
from the L4-problem, we have added several examples to illustrate the method and to show that
it is indeed a method, not a computation that happens to work in the one example. We treat the
2- and 3-dimensional irreducible nilpotent case in section 3 and 4, respectively. We started this
research by computing exponential maps using the generators of the Chevalley normal form of
the Lie algebra. In the specific L4-problem this leads to quartic equations in the flow parameters
and even if one is able to explicitly solve these equations the result is a map full of radical
expressions which will be very hard to use if one applies the result to the full nonlinear problem
as is our goal. We should mention that in the general linear case this does not occur and one can
expect that for simply laced simple Lie algebras this approach will work without problems.

In order to simplify the resulting map that puts the linear system in versal normal form, we
then decided to drop the requirement that the symplectic form be preserved. As remarked in [12]
there is a strong belief that the symplectic form should be preserved, which is a bit strange if one
considers the fact that in order to put the symplectic form in its Darboux normal form, one has
to use (by definition) transformations that are not symplectic.

Dropping this requirement, which has anyway no consequence for the further analysis since
we work with the symplectic vector fields, not with the Hamiltonians, we then proceed as follows.
We first determine a theoretical form of the versal normal form, depending on a finite number of
versal deformation parameters. Since we want to reach the versal normal form by conjugation,
the characteristic polynomial of the original linear vector field and the versal deformation should
be equal. From this equality, we determine the versal deformation parameters (this is in the
symplectic case the only nonlinear part of the procedure, in the general linear case this part is
completely straightforward).

Once we have, given a linear vector field X5, where 0 < &, which consists of an organizing
center Xg plus terms in a neighborhood of the organizing center, in order to compute its versal
deformation )_(8, we need to solve the linear problem X7 = T¢X ¢ in such a way that 70 reduces
to the identity and )_(8 is in versal normal form. We then can obtain reasonable expressions for
the transformation, which can then be put to good use in the nonlinear normal form analysis.
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2. The algorithm

We start with polynomials R[xq, -, x,]. We then add to these commuting deriyations
01, , 0, and consider these as a left R[xy, -, x,] module, such that [9;, x;] = 83.. (One
could write 0; as %) We write % € R[xy,---,x,] for [0;, P]. We then define a multi-

plication P;d; » Pjd; = P; %—28]-. This defines a non-associative algebra with an associator
a(x,y,7) = (x*xy)*z — x % (y *z) which is symmetric in its first two variables (this ensures that
the Jacobi identity holds, [9]) and from it we can define a Lie algebra, the Polynomial Lie algebra
by defining the Lie bracket as [x, y] = x * y — y » x. Apart possibly from the notation, this is the
usual way of defining polynomial vector fields. We can put a grading on the polynomial vector
field by assigning degree 1 to the x;’s and degree —1 to the d;’s. We remark that the x-product
is a graded product, that is, the degree of U = V is the sum of the degree of U and the degree of
V, and this makes the Lie algebra into a graded Lie algebra g = [];2, gx. Among the elements
in this Lie algebra, as a special position is reserved for those of degree zero. They form a Lie
subalgebra gl(n, R).

We start with a given linear vector field which we consider as an element in a reductive Lie
algebra go. In our examples, go will be gl(n, R) or sp(n, R). We chose an organizing center (in
all our example this will be characterized by the fact that the real part of all its eigenvalues is zero,
since this is where bifurcations happen) and introduce for organizational reasons a deformation
parameter 0 < ¢, which at the end of the computation can be set back to 1. In our first two
examples, we assume that the organizing center Xg is in real Jordan normal form as is usually
done in normal form theory. This is not really necessary and might need the knowledge of the
spectrum of X{, something we try to avoid in this paper, so we stress the fact that the whole
construction works well without this choice. Alternatively one might want to put X8 in rational
normal form before starting the computation, or not all, as in Section 5. All this is a matter of
taste and convenience.

We then split X(O) into a semisimple and nilpotent part, X8 =g + ng, with sg and ng commut-
ing, sp, Np € go. We remark that this only needs the characteristic polynomial of X8 [10,18]. In
kerad(sp) (where ad(X)Y = [X, Y], as usual) we construct around ng an sl-triple (ng, hg, mo)
as follows, cf. [11].

Let zp € kerad(sg) N go be a solution of 2ng — adz(no)zo = 0. Put hg = [ng, zo]. If

[ho, zo] = 220,
then we let yg = 0. Otherwise, let yg € kerad(sg) N kerad(ng) N go. Then we solve

[ho, Yo — zo] = 2(yo — 20),
and put mg = yg — zg. We now have the following relations:
[ho, nol = [[no, Zo, nol = —ad*(ng)zo = —2ny,
[ho, mo] = 2mo,
[mo, no] = [yo — 2o, No]l = [no, zo] = ho.

Now, we have an sl-triple (ng, hg, mp), commuting with sg.
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As in the sp + ng-decomposition, this is a completely rational procedure [7]. The existence of
solutions to the equations is guaranteed by the Jacobson-Morozov theorem, see [11]. We give an
explicit example of this computation in Section 5.

Remark 2.1. This construction determines the style of the normal form, since we will choose
kerad(mg) as the complement to im ad(ng) and costyle of the normal form transformation, since
we will choose im ad(mg) as the complement to kerad(ng). The costyle of normal form trans-
formation is the way we choose the free parameters in transformations. As suggested by the
terminology, other choices of style are also possible and may in specific problems be preferable.

The versal normal form should be equivalent to the rational (or Frobenius) normal form of the
matrix of X, although for that normal form one usually chooses a different style. The computa-

tion of X o from X§ has already been described. The T¢ can be computed by linear elimination.
If for some &g, T¢ fails to be invertible, then we should take & < g.

Definition 2.2. We say that X§ = Xg + \_(8 is in normal form (in sly-style) with respect to Xg if
Y§ € kersg Nkermg. We say that X§ = XJ + Y is a versal normal form with respect to XJ if Y
is in normal form with respect to Xg and there exists a T¢ € GL(n, R) such that X{T° = TS)_(S
and TO0 =1.

If the Lie algebra is defined by an invariant bilinear form €2 (for instance, a symplectic form),

one has to compute the induced form S_Zf) = (T?)'QoT*¢. In this case we write g** and g*. Similar
remarks apply to invariant trilinear forms in the less popular (in dynamics) case g, the Lie
algebra of Gy, cf. [3], not to be confused with an element of grade two in g. This ensures that the

versal deformation vector field behaves correctly with respect to QF, that is, )_(8 € ggz. Here we
trade symplecticness of the maps involved against computational convenience.

Definition 2.3. Let 7° € GL(2n, R). Then this induces a new symplectic form 5_28 and a new
vector field X§ as follows

Q= (T°)'QoT?, 2.1
XETS =T X} (2.2)

Lemma 2.4. The vector field )_(8 is Qg—symplectic iff Xg is an Qo-symplectic vector field.
The claim is that X{ is a Qg-symplectic vector field, that is, we have to prove that
(X5)' Q5+ QEX§ =0. (2.3)
Proof. Assume (X{)'Qo + QoX{ =0. Then
(R Q5+ 24 %;
= (X5 (T*)'QT* + (T*)' QT X},
=(T*XE) QT + (T%) QT X
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= (X§T*) QT + (T°)' QX{T*
= (T*)" ((Xp)' Q0 + Q0X5) T*

=0,
proving the statement of the Lemma. O

The next order step is to compute

expad(®))(X§ + X{ 4+ -+ ) =X§+ X + [t], XG1 + -+ - . (2.4)

Then we solve

ad(so + mo) (X] + [t], XG1) =0, (2.5)

in order to obtain )_(8 + )_(i +---in gQ, or, in the general linear case, in g, where X’i is the first
order nonlinear term and, with t‘i a general vector field of order 1 and X‘i is in normal form with
respect to X8 in the slp-style.

This procedure can then be repeated until the full system is in normal form up to the fixed
degree. The ad(sop 4+ mg) ensures that the normal form will automatically have the sl,-style with
respect to Xg.

We should remark here that if we start with a general t, there may be free parameters in the
normal form corresponding to elements in kerad(sp) N kerad(np) in t]. This is analogous to the
way unique normal forms are computed [4,17]. The free parameters may be used to simplify
the normal form by removing (typically) higher order e-terms. There is no style known to us that
would be preferable to this simple free-costyle). In most of our examples the transformation turns
out to be in sly-costyle.

Remark 2.5. In some problems, when one wants to do the calculations by hand, it pays to view
the g, the polynomial vector fields as representation spaces of gg, and more specifically of
representation spaces of (sg, ng, hg, mp). For instance, in [4] the gi is shown to be a direct sum
(as vector spaces, not as Lie algebras) of two irreducible representations of slp, a; and by and
this gives rise to a basis that is completely natural with respect to the action of the given sl, and
such that [3x, 311 C k4 for 3 =a, b.

As formulated, the algorithm follows what might be called the rational approach: no eigen-
values need to be computed, only characteristic polynomials, cf [5]. This makes it suitable not
only for Computer Algebra Systems, but also for Symbolic Formula Manipulation Systems like
FORM [13] or FERMAT [14], which is nice if the problems get big.

An alternative method, which might also work when the vector fields are not finitely generated
at any given order and might be called the spectral approach, is to use the spectrum of sp and hy,
as is done in the averaging method; we refer for this method to [18].
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2.1. Nonlinear nilpotent versal normal form

Lemma 2.6. For given X; € gx, k > 0, and parametric vector field X = so + no + vq in which
v € ker ad(mo) N ker ad(sg) and \78 =0, there exists a transformation t; € gy to the following
problem

ad(X)E =X — X¢,

where )_(i € kerad(mo) Ngk. The transformation t;, and the normal form )_(,i can be found explicitly
from equations (2.7) and (2.8), respectively.

Proof. It should be noted that this proof follows (but with some minor corrections and clarifica-
tions) the proof given in [16, Section 2.3].

Our problem is that to find the admissible transformation t; and the obstruction term )_(8 €
kerad(mg) N gx such that the following hold

ad(X)Ht, = Xe — X;.
From [18, Chapters 11-12] the procedure is given to solve the following linear problem
ad(no)t = Xg — Xg. (2.6)

Denote the transformation tg in equation (2.6) by NX;. Hence from the fact that V =
kerad(mg) @ imad(ng) one has

ad(N) N = Timad(ng) = | — Tkerad(mo)-

Note that the notation NX; shows that the operator N acts on Xj. Let now O =ad(sg + ES)N
and Q = Nad(sg + V(). We will show that O and Q are nilpotent operators, so that (1 + Q)~!
and (1 + Q)_l are both well defined. Observe that NQ = Ql\_!.

Lemma27. N1+ Q) '=1+ Q)"'N.

Proof. We compute

x o
NI+ "= (-DINQ'=) (-1))O'N=(1+0)"'N,
i=0 i=0
and the lemma is proved. O
We claim that t;, is given by
E=N1+0) X=0+0)" N =1+ 0t (2.7)

Therefore we have to first show that Q and Q are nilpotent and Xy — ad()_(f))ti € kerad(mgp) N gy
Assume that the X has ad(hg)-eigenvalue A; then the NX; has ad(hp)-eigenvalue A +2 as follows



F. Mokhtari, J.A. Sanders / J. Differential Equations 267 (2019) 3083-3113 3089

from standard finite dimensional representation theory of sl since ad(hg)ng = —2ng and we can
ignore terms in kerad(ng) when we choose a representant of tg.

By assumption, v, € ker ad(mg) Nker ad(sp); hence ad(mg)vy = ad(sp)vj, = 0. Therefore the
ad(ho)-degree of all terms in Vg is > 0. Since ad(hg)sp = ad(mg)so = O then its ad(ho)-degree
is zero. This implies that the ad(hg)-degree of Q = ad(sg + VS)N > 2 hence Q is nilpotent. The

proof for Q is the almost the same. It follows that 1 + Q and 1 + Q are invertible. What remains
to be done is to show Xi — ad(Xp)t; € kerad(mg) N gx:

ad(so + no + V)t =ad(so +no + V)N (1 + Q) ™' Xx
= (ad(n) N + Q) (1 + 0)~'Xx
=140 - —adng)N)(1+ 0) "X
=X, — (1 — ad(n)) N)(1 + Q) ™' Xi
= Xk — Mherad(mo) (1 + Q)" Xk

We rewrite this as
X = Tkeradmo) (1 + @)~ Xy +ad(so +no + VN (1 + Q) ™' Xy,
and we define
X, = Terad(mo) (1 + Q) ™' X (2.8)
This concludes the proof of Lemma 2.6. O
2.2. Nonsemisimple versal normal form

We now extend the versal normal form computation problem from the nilpotent to the non-
semisimple case. We follow [16, Section 2.4]. We consider the problem

ad(X{)t; = X — ):(,‘i, X € kerad(my), ):(,i € kerad(mg) Nkerad(sp).

We observe that the right hand side is by definition in kerad(mg) N im ad(sp) and ad(sp + no)
is invertible on this subspace. We define operators K : ker ad(mg)|gr — kerad(mg)|gx such that
K # Ixerad(mg)|g; Tor € # 0. Let

Ky =ad(X{) (1 + Q)_lnkerad(no)-

The projection on kerad(ng) is necessary, in order not to interfere with the previous normal form
calculation in Section 2. We now show that K : kerad(mo)|gx — kerad(mg)|gx:

Ki = ad(X5)(1 + 0) ™' er ad(ny)

=ad(X5)(1+ 0)~'(1 — Nad(no))
=ad(X5)(1+ 0)~'(1 + 0 — Nad(X§))
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=ad(X5)(1 — (1 + 0) "' Nad(X5))

=ad(X5)(1 — N(1 + @)~ "ad(X)))

=1 —adX§)N(1 + Q) Had(X§)

= (I = (1 = Meradm)) (1 + Q)" = Q(1 + @)~ Had(X§)
== (40" 4 Teradmy (1 + @)~ — (1 + @) Had(X)
= Tkerad(mg) (1 + @)~ 'ad(X5).

The map I%k = Krad~!(sg + no) is well defined on kerad(mg) N im ad(so)|gx and reduces to
1 —ad(sp + ng) N(1 + Q)_1 =1 —ad(sg + ng)(1 + Q)_ll\_! when the perturbation is zero and
this reduces to 1 on kerad(mg). This in turn implies that 12,( is invertible in a neighborhood of
& =0, which means we can find a transformation generator to bring )_(,i into the normal form )_(i.

The values of ¢ for which Kj fails to be invertible are called resonances; they play a role in the
bifurcation analysis of the L4-problem, cf. Section 6.

The method we describe here does prove that it is possible to compute the transformation
explicitly and if the dimension of g is a bit higher, it may help to reduce the dimension of the
linear algebra problem, since one can restrict to kerad(my).

3. 2D nilpotent - invariant formulation
3.1. The versal normal form of the linear system

In this section, we intend to study the versal normal form of two-dimensional nilpotent sin-
gularities. We use this example to illustrate the method in great detail. This leads at times to
statements that sound a bit simplistic; these are nevertheless stated explicitly so that it is clear
what the flow of the argument is in the later examples, where the complexity of the calculation
can obscure what is going on.

Consider the following two-dimensional perturbed singular system.

(6)-Ca 252) G)-%C) o
y ma  empn J\y y

where we regard m; ; for all i, j =1, 2 as elements of a commutative ring R of functions of cer-
tain parameters taking their values in R (since we want to work with real differential equations)
and mj 1 € R* where R* denotes the invertible elements in the ring R. Invertible in this context
means that if we use asymptotic estimates, dividing by an invertible element does not produce
big numbers, which could ruin the asymptotic estimate. As a consequence one is not allowed to

divide by the noninvertible elements in the course of the normal form computation.
Since 17,1 is invertible, there exists an invertible linear transformation

~—1
e — [ M2 0
© 0o 1)

that takes (3.1) (with f(gT(%) = T, X{) to the following
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X\ _[(emy emip X\ _ efX
(y')_( -1 8m2,2)<y>_xo<y>’ G-

(where my,1 =m 1, m22=may2,and m 2 = —mi 2ma 1), so that —Xg is in Jordan normal form
(the minus sign is there to be consistent with the definitions of the A and B-families to follow
shortly).

We now rewrite Equation (3.2) to the operator form

9 3
Xg = (sml,]x +£m1,2y) a + (—x +gm2’2y) 5,

and express XS to the A and B families introduced by [4] (but with A and B interchanged) as
e _pl, & 0 _ 0 -1
Xo=Bg+ 7 (m1,1+ ma2) Ag+e(mi1 — ma2)By+emy 2By .

We now want (this is the choice of normal form style) X{ — B(l) to commute with By I a general
expression of linear vector fields commuting is B, ! + sAAg, corresponding to the differential

equation
X _ EA B XY e X
<y')_(—1 8A> <y>_X°<y>’ G

(the fact that the ep are on the diagonal and will stay there if we go to higher dimensions prompted
the interchange of A and B with respect to the definitions in [4]) and the differential operator

X5 =By + eaA) + 8By - (3.4)

We want to find the transformation that is named 7}, such that X§7}, = T(El))_( o- The necessary
condition under which such transformation exists is that the characteristic polynomials of X and
X ¢ be the same. In what follows using the characteristic polynomials of X§ and X o we find the
ea, €. The characteristic polynomials of X§ and X ¢ are given, respectively by

X(X§)=2*—¢ (mi1+ma2)d+ e*myomy | +emia,

X (X5) =22 —2eah +£a% + €5.
We define the invariants of X 8 as
X(X5) =22 — Ak 4+ Ag,

and we identify A as the trace of XS and A; as the determinant. Since the equivalent matrices
have the same characteristic polynomial then we find that

1

= -A, 35

ea= A (3.5)
1

eg =Ny — —AL. (3.6)

4
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We close this part by the following theorem (this is not much of a theorem in this particular
problem, but we formulate it as such because it is a basic step in this paper).

Theorem 3.1. There exists an invertible transformation T(El), defined by

1 0
TS = , 3.7
M (%(mz,z—ml,l) 1) 3D

which brings the matrix (3.1) to (3.3).
Proof. The transformation (3.7) is obtained using equation X T(gl) = T(sl))_(é. This is a linear
equation in T(gl) and the existence of a solution is shown here explicitly. O

3.2. Some representation theory

Following [4] we describe vector fields of arbitrary order in a bigraded infinite dimensional
Lie algebra a @ b, where a and b are bigraded Lie subalgebras and the & denotes the direct sum
of modules, not of Lie algebras, as can be seen from the Lie brackets below, and spanned by
elements A} €a,,0<n<m, Bi eby,—1<l<k+1(.e.dima, =m+1and dimb; =k + 3)
where A’ and Bi are defined as

_ 9 9
AL =x"y" "(x£+y5>, O <n=<m), (3.8)
xlyk—l 9 9
Bl := k—Il+Dx— —(+1)y— ), —1<l<k+1), 3.9
% k+2(( +)x8x (+)y8y> (—-1<l<k+1) (3.9)

with brackets

(AL ALl = (m — k)AL (3.10)

I mm—+1) (n [+1 I s

B Al = g2 U~ ) i — KB 310
n+1 [+1

[B’,B;]z(k+m+2)<m+2—m)sﬁm. (3.12)

We can now write an arbitrary order s vector field as

K s+1
. I Al I n!
Xg 1= ZasAs + Z bsBs'
=0

I=—1

A general element of order s in kerad(B;, 1) can be written as

Xs =a’Al + b8! (3.13)
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3.3. Nonlinear normal form reduction

We now have to solve the equation (in t)

ad(B; ") (ad(X§)t: — X;) =0, (3.14)
where
s s+1
€= oA+ > BBl (3.15)
=0 I=—1
Recall that
s s+1
X, = alA + b, 'B; Xs =) A+ D biBL.
=0 I=—1

‘We have to solve

s+1 s
alA) +b;'B7 = > BB+ > dlAl
I=—1 =0

sps+l s+lgs+l | s—1 s 5 A
+ BB — 25enBSTIBIT + i TIAY — 2580 AS

-y (—(s +2- KB + 25eapt — (k+2)epp ) BE
k=0

s—1
-3 (—(s +1— K)ok~ + 25enck — (k + 1)eBa§+‘) Ak
k=1

— (2S8A,3S_1 — 85,3?) BS_1 - (2S8A(¥? — 8304) A?.
Thus we find, if we look at the Bi“-term, that
BS =2seafSt — bSH1, (3.16)

where ﬂj“ is a free parameter, to be determined later at our convenience.
Similarly, looking at the A terms we find

a7t =2sep0f —a?, (3.17)

where o is the free parameter. For 0 < k <s we find, looking at the B’S‘,
(s +2— k)BT =25eaBr — (k +2)epFH! — bt (3.18)

For 1 <k <s — 1 we find, looking at the A’;,
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(s + 1 — k)ak =t =2sepak — (k4 1)egatt! — ak. (3.19)
Then
Xo = (b7 —2senp ! +eaB?) B! + (af — 25600 + et} ) AL, (3.20)
Let us now specialize to s = 1. We find
a? = 2£Aoef — all,

Bl =2eap? — b2,

1 1
=2 (453\ - 383) BT — 5b1 — eab.

-1 1 2 1
By I= A (48% — 785) BT + 5(85 —ep)bi — 3 (€Ab} + b?) ,

and
Xi = (b7" = 2eap;" + 2680 BT + (af — 26a0? + cgal ) AY
2 4 1 7 4
-1 0 2 1 2 2
= (bl + §8Ab1 - (_§8A + €B)§b1 + g(sB - agA)gAlﬁ
+ (?SASB — §8A — ESB),BIZ B,
+ (a? +2epa) + (—4dex + aB)a}) AY.

Choosing ,312 =0and oe} =0 (in accordance with the sl;-costyle) we find

_ 2 1 4 7 4 _
X, = (bl L+ Seabl = (= 5er+ealb] + S(ea— §Si)£Ab%> B! + (a? + 28Aa11) A0

1 11
- (b;l + 3 (Tr X5)bY + (T 2X5 + Det X§)b!

+ %(%Tr 2X5 — Det X&)(Tr Xg)b%) B,
+ (a?+ (Tr Xg)a}) A, 3.21)

See also [4, Equation 4.2].

4. 3D irreducible nilpotent

4.1. The versal normal form of the linear system

In this section, we discuss versal deformation of three-dimensional nilpotent singularities.
Consider the deformed nilpotent system
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X emy,1 emiy €mM13 X
y]|=| ma1 empn ennj yl=X5l>y|. 4.1)
2 b4

£m3 1 M32 €33 Z

where the elements 712 1, 113 2 € R*. By applying the following invertible transformation

ma,1 0 0
e _ _ 2
e =| o i, o, 4.2)
0 —8n~13,1n~121 o
where
1, - . .. 1. 2 . ..
o= —58 ms3 | (8 mp 3ms3;1 +ma | m2,2) + Emz,l (8 ms3 1m33 +ma | m3,2> )

the system (4.1) transforms to the following system

X emy,1 e€mp2 €mM13 X X
y]=| -1 emy emy3 y]I=X5ly]-: 4.3)
Z 0 -2 em33 z Z
in which
my =my,J,
2~ ~ ~ ~
myp=—&"M|3M31 — My 1 ENM 2,
mi 3
mp3=-——,
ma 1
& (emp3ms,1 +ma 1 ma )
my = = ,
ma,
my 3o
my3=———,
m;
& (—emo3ms,1 +mo1m33)
m3’3 = .

ma,|

Remark 4.1. Note that due to the assumption 71 1, 13,2 € R* the transformation given by (4.2)
when ¢ = 0 is invertible.

Now, we writing down (4.3) in terms of vector fields from #, 8B, C given in [8] to find the
following

e _nl 2, 1 -1 | o 1 1
0= BO,O + 8m1,3C0)0 + 58 (mm — 2m2,3) CO,O — 58 mz,QCO’O + 4_18 (M1,2 + 2m2,3) BO,O

1
+ 7€ (2mi,1 +map) 88,0 +e& (mi,1 +mao +m3,3)A8,0~
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Due to slp-style normal form, in order to find the versal normal form of Xf) we seek the vector
fields which belong to kerad(B,, E)). Hence the following special structure constants associated to

-1 .
the By,  are given

[Bg.0 Biel = ¢+ DBIY,

[By o, AL 1= lAﬁgj,

_ (+2)Qi+3-1) ;4 .
B\, cl 1= cl-1. for [ <2i + 1.
[ 0,0 ikl Qi+ D) ik or [ <2i+
[B(;,(l)v Ci,k] =0, for [ =2i +1,
[By.o. Cl = (2i +HCHF!,  for [=2i+2.
Therefore we obtain that
X5 =Bg, + £aA) o + £8By ) + £cCq o 4.4)
and the correspondence differential equation of )_(8 is
X EA 2eB  &c X B X
)} =1 —1 EA B y | = X(g) y (45)
Z' O —2 EA V4 z

Now we are ready to find the versal parameters €, g and ec. As before by computing the
characteristic polynomials of X and X we get

X()_(g) =23 —3eal + (38% +485) A— sf\ —4epep —2¢c,
x(X§) =2 —¢ (mi,1 +map+m33) A te (emiiman+emyim33+€20m33

+mio+2my3)h—¢ (82m1,1m2,2m3,3 +2emyma3+emyom3 3+ 2m1,3) .
These define the invariants A;,i = 1,2, 3 by
X(X5) =23 — A1a% + Aok — As.

Hence we find

IA
ea= Ay,
A 3 1

1 1,

IA AA+1A3
S — A - - - .
C ) 3 6 182 27 1
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Theorem 4.2. There exists invertible transformation T(‘?l) as

1 ey et
Tiy=10 1 e, (4.6)
0 0 1
in which
1
h=3 (m33+ma2—2my1),
n= isml 1(miy—may—m33) — i811122(11122—714133) — ismzzz
36 36 36
+ 1 1
5 M23 = M2,
1 1 1
I3 = 3 m33 = 5Mma2—gmi ),
which brings the matrix (4.3) to (4.5).
Proof. The transformation T(sl) is obtained using equation X{ T(gl) = T(sl)X |

4.2. Quadratic nonlinear versal normal form of triple-zero

In this part we shall compute the nonlinear normal form of the following parametric vector
fields with triple zero bifurcation point

X5+ X1, 4.7)

where

Za, o"’ Z b;Bj 0+ Z Cl St Z COCI 0’ (4.8)

Jj=-1 j== j==2
or equivalently
) @ 3) k0
Z a; /kx1x2x3 o, + Z a; /kx1x2x3 o2 + Z a ka1x2x3a . 4.9
i+j+k=2 i+j+k=2 i+j+k=2

The coefficients of (4.8) and (4.9) are related by these relations:

(1 -2 ) 1 5 M 5 2

G0.02= 1 ao0=5batcotan  ayzp=bo—c;"+ 30,

(2 -1 1 @) 1 (3)

4pp0=C; —Cotart a0, =b- 1= 7% 0.0 =30¢.

3) lb 14 M _yp 1 ) 1, lb 5
402 = Ty 00 pco a0, dyyg =01t tan, djg =gt So0tdota
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5 1 5 1 _ 2 2 1
a}i0=——b2—4cg+a2, aigl=——c(1)—cll, a6{1=——08+—b0~|—a0,
s Ly 2 »YU, 2 IR 3 2
1 _
aﬂ,o =-2b3 +20c8, af())’l = —3 by +26(2)+a2+2a(1), C(()H,l =2b_1+¢, 1,
a((),3i,1 =-b +a +c(1), a((),3%,() =—by — 26(1) +4c(2), CS()),O =—b3 — SCS.

Theorem 4.3. The normal form of (4.7) is given by
X5 =B o + eah o + 8By + £cCip +EC 2 + &0 C22 | +bIBT L +ajA),  (4.10)
or equivalently
X = (xgec +2x06g + x16a + E(l)x32 + E(ll (X1X3 — x22> + 2[5{x2x3 + Ez(l)xpcl) Bi)q

_ . 9 _
+ (—xl +eaxa + epx3 +bixs? + aéxsm) — (—sz +eax3 + aéx?)

0x) E’

where

-0 ._ o, () 3) (2 (1) 5 3) )
ScCy=3ayy —2a50, a5, —20y50— (5 apioTt 6“2,0,0) ec

) 3 3) (2 L) (2) @) (3)
- (2‘12,0,0 —3ajo1+2a55, +a1,1,0)85 - (5 ai1,0 ~ 4020t 4arp + “0,1,1) 2

+ (4";,2()),0 + 3“?%,0) €BEA

5 3 L o 3 3 3) Y2, (3 06 @ \.3
T 5 %2,0,06CEA 5“1,1,0‘5“1,0,1"‘a0,2,0+“2,o,o ea+ Z“1,1,0+“2,o,0 En

G 2,303 4
+3ay0¢B8A + 7 92.0.08A>

_ 1 1 2 3 2 5 3
10a} = (a3 + afy, + 303+ 64 ,) + (200 + 3ol )

1) @ 3) 3) 3w @ @ 3>
+ (6"2,0,0 +3a.0+agr0+ al,O,l) eg+2 (Zal,l,o tagr0taiort Z“o,m)e"\

5 3 2 3 2 1 3
+ 5 aé,g),ogch + (_lzaé,()),o + a;,i,o) €aéB + _3a§,()),0 + 2 ai,i,o 8/?\ + aéy())’oeies

3) _4
T 74,0088

pl._ () (2) ! (1 2 (3) (3) &) (3)
6by = ag 1,1 +4ag02 + 15 (4“2,0,0 T a0+ 20~ 5“1,0,1) ec + (“1,1,0 - aO,l,l) €8

1/ qa 1 2 3 1 2 3
+ 5 (“é,%,o + “E,()),l + a((),{,l - 2“((),()),2) EA — 12 (28a§,()),0 + 19”“,0) £CeA

10 3 @ 3 .2
~ 3 %2.00886C (4az,o,o + 5’1,1,0) €B
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5 ) (2) (3) 3 L (3) 2
% (2“2,0,0 ~ 40~ 920 “1,0,1)8ASB T2 (al,l,o - 00,1,1> €a
2 2 3 4 3
3 (4‘1;,()),0 + a%,i,o) EAce — 9 aé,()),ogAng

i 3) 3

O] (3) 3
5 (2“2,0,0 —bir10—ag50— al,O,l) €A

25 3 2 53 3 1 @ V4 1 3 s
BT a5 0,06A€C — 6 a3 0,06A¢B — By <4az,o,o + al,l,O) €A ﬁaz,o,ogm
20._ (D) Lo @ @ 3) ) @
€1 i=ap0,t+ 12 (al,l,O +2a550—10ayy, — 3‘10,1,1) ec+ 3 (5“0,1,1 — dpo,2 ) €A
1 1
(3) 2 [€)) () 2 (3)
~3%00%" T3 (“0,2,0 +ajo—2ag7,;+ “0,0,2) €8

I o 1 @3 2 0 m @ @ 3)
+ (__a 00T g0 ) e88C T 1o (“1,1,0 —2ap50—2a10,1+ “0,1,1) €ntB

1 (D (D 2) 3) 2
+ % (“0,2,0 +ajg,— 2“0,1,1 + a0,0,2> ea

1 M @) 3) 3) Low @) 3)
T35 (_az,o,o —10a;7 o —13a55 0+ 11"1,0,1) éagc + g(“z,o,o —2a;50% 4500

3 1 @ 3
+ a}’()),l)EBZ + % aé,gyosAegsc + aé,é’oeg‘%

T m @ 3 3 \ o
+ 20 (“2,0,0 —2a; 0t apr0t a1’0’1> EAEB

1 7 11
&) (2 2 (3) 3 (2 3) 2
T 150 (‘11,1,0 —2ap,50—2a0; + ‘10,1,1) eat (‘@ %00F 75 a1,1,o> EAEC

1 S TN 1 S 1
+= (_ “é,()),o +5 “%,1),0 £ath + 9 _aé,()),o + _ag,%,o £ea + _aé,()),ogf\EC

15 2 2 72
34 3 o0, 1 @ 3) 3 .4
T 15 42005488 T 34 (‘12,0,0 —2ay59tdgp0t “1,0,1) En

1 5 1
(2 (3) 5 (3) 4 3 _6
+ 720 (‘2“2,0,0 + 01,1,0) eat 75 92.0,0688A + 720%2.0.06A"

Proof. In order to find the transformation the following linear system should be solved
ad(By ) (ad(X§)t; — X2) =0, (4.11)
where

2 3 0 4
_ A r/ JnJ JnJ
t€—§ :“1A1,0+ § : BiBio+ 2 : yiCL+ § : ¥ C1.0-
j=0 '

j=—1 j=—2 j=-2

or in the different basis it equals to
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e_ (1) @ 0
t = Z Q; ]kx1x2x3 + Z al]kx1x2x3 o1 (4.12)
i+j+k=2 i+j+k=2
3) k0
+ Z Q; Js kx1x2x3 9x
i+j+k=2

By solving Equation (4.11) one can find the coefficients of transformation t{ as are given in
Appendix A, see Equation (A.1). On the other hand, by solving the equation below

_]A?,0++B}Blo+clc 0+C 1C_21 —ad(XS)tg X2,
(3) (2) (3)

we find the coefficients of normal form which has four free parameters as 0.0 %.0.0° %0.2.0 and

océ ()) o- In accordance to the sl;-costyle we can take all of them zero and we get the coefficients

as given in the theorem. These coefficients with those free parameters are given in Appendix A,
see equations (A.2)-(A.3). O

5. An example on sp(4, R)

In [15, Equation (48)] the versal deformation problem is studied using formal power series.
We refer to this paper for more references to the literature and a general introduction of the
importance of the versal deformation in applied mathematics. We mention that to keep things
simple, we use an almost symplectic map to obtain the versal normal form, a trade-off we have
discussed in Section 2.

In this section we shall find the near identity transformation 7°¢ as discussed in the previous
section to bring the symplectic matrices given by [15, Equation (48)], describing oscillations of
a simply supported elastic pipe conveying fluid, to its versal normal form. Set

1
=Z\/(4+8p1)(3+48172),

where p1, p2 are two real parameters. Define

0 o 1 0
6. —p 0 0 1
Xo:= epr—p>+3 0 0 »p CRY
0 depi—p> —p O
Set p := @ and define np = Xg and apply the Jacobson-Morozov construction as discussed

before Remark 2.1 to find sl,-triple (ng, hg, mg). Let zg be an element from kerad(sgp) N go
which is as

—m33 —m43 M3 M3
—m34 —M44 mM23 M4
m3, | ma1  M33 M34
myq | mq4p M43 M44

) =

Z( is a solution to 2ng — adz(no)zo =0if
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7
mi3z=—4,m31=—11,m34= —3 V3,m43=+/3,

and we take the remaining parameters to be zero. Then we put hg = [ng, zg] which is equal to the
following

0 0 0 -iv3
N 2 =3J3 0
' 0 -v3 0 0
-3J3 0 0 -2

Let yo be an general element in kerad(sg) N kerad(ng) N go, that is,

0 —% V3nas —% n4. 0
_ —%ﬁm,z—%ﬁnm 0 0 —%6ﬂ4,2—%n3,1
= na. 0 0 4\Bnaa+ 2V
0 n4,n %x/glu,z 0

Then by solving

[ho, Yo — 201 = 2(yo — z0),

we find
35 9
n =M=
Finally, put
0 -Iv3 1 0
V30 0 -3
Mo =Yo — 20 = 9 1
7 0 0 —3v3
0 T V30

One can see that mg = ng = (. The normal form of Xg consists of those elements which are in
kerad(mg); in fact

o %L -1 o0 0% 3 o
£ 0 o I o 0 0 0
Vi= N Al V2=
99 o & o 0 0 0
81 9v3
o -3 =L o0 0 7 - 0

Hence the normal form is given by
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)_(8 =ngp+&1Vi+eV,.
The characteristic polynomial of X given in the (5.1) and X ; are as
e 4 Tep1 | 2
XX)=A"+ |\ ——— FeTmpataepy AT +4pie(epi +3).
X(X5) =2t 4106122 +9&1% + 54 ¢,.

Therefore we obtain

Uy 1Y s
g1 =—¢ - — — &,
1 3 P2 3 P1 10 pip2
2
— 2 48 pr) (131 py — 4
£2= g0t (29 p1 +48 p2) (131 p1 — 48 p2)
L <6£3p1p22 —5162p py+48e%py? — 800).
3600

With x (X3) = A+ AxA2 + Ay, we see that

17 )
Ay =——epi+e pipy+4epa,

Ay :4£2p12 + 12¢ p;.
To go from p1, pa to Az, Ay is less simple than in the earlier examples.

Theorem 5.1. There exists invertible transformation T¢ such that brings (5.1) to (5.2),

1 0 0 0
I I TaEEN — sk eh 0
0 Loty 1+ et 0 ’
e €S 0 0 1+ 71535506

in which
t1 =32029 p1 +48 po) + (1079 p12 + 11296 py p» — 2304 p22) £

+8p1p2(233 p1 — 144 pr) €2 — 144 €3 pr? pi 2,
1 =1920 3p; + 16p2) + (1079 P12+ 15136 p1 pr — 2304 p22) P

+ 8 p1p2 (233 p1 — 144 pp) e — 1446° pr? py 2,
13 = 12800 p; + (6519 P12 +2336 p1 pr — 2304 p22) &

+ 8 p1p2 (73 p1 — 144 pp) e — 1446° pr? py 2,

5.2)

(5.3)
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14 =960 (17p; — 16ps) — (6519 P12 46176 p1 pr — 2304 p22) &

—8p1p2 (73 p1 — 144 py) e® + 14467 py? py 2,
ts =320 (17p; — 16p2) — (331 212+ 12704 py ps — 5376p22> ¢

—168 p1p2 (17 p1 — 16 p2) € +3366° p2* p1 .
t6 =960 3p1 + 16 p2) + (331 pi2 + 15264 pi pr — 5376p22) ¢
+168 p1p2 (17 p1 — 16 p2) €2 — 33663 po2 pi 2.
Proof. The transformation (5.3) is obtained using equation X7¢ =T* )_(8. |
Remark 5.2. In this example, we did not put the X8 into the symplectic normal form.
6. Three body problem
6.1. The versal normal form at Ly
In the theory of the restricted three-body problem, the Langrange equilibria play a very prac-
tical role, since they are used to park satellites in orbit, as has been the case for L1 and L,. The
Trojan points L4 and L5 are considered as positions for space colonies, since they are stable,

unlike L3 which only made it into science fiction sofar.
Consider (cf. [6, Equation 1.8]) the four-dimensional L4-singularity

)
[N

0 -z Z 9
1 1
1 0 0o —-L1
X3 =x04+@v2-38| L 6.1)
0 0 1 0 —-L
16y2 8y 2
2 2
0o -z z 9
where y = (1 — 4)% and
1
0 —3v2 0 0 o 0 0 0
w2 o0 0 ot o 0 00| _ .
0: 1 _ :0 0_
o0 0 e 01 —01 8 8
0 0 V2 0
ThebifurcationpointofXg is 8 =&y :=¥.Set8=80+sto find
R R R R NI’

RO B SR B R £
Xg=Xxo+¢e| 5 % 2 (6.2)
—3— 76 V2 0 0 7+3V2
3 3 3 3
0 R 1V2 —3+3V2 0
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The normal form of (6.1) is given by
)_(8 = X8 — V26580 + enno,

where ey, s are obtained as follows. The characteristic polynomial of X7 is

x4+x2—%(38+6+4\/§)(3e—6+4ﬁ). (6.3)

Comparing the characteristic polynomial of X§ with characteristic polynomial of X o as

(28N+283 —2\/_854-1))»2 ( 265> +2\/_83+28N—1) . (6.4)

Then equations (6.3) and (6.4) imply that
2es («/E - as) —2en, (6.5)
(48N—1)2=—%<38—6+4\/§)(38+6+4\/§>. (6.6)

Now, by solving Equation (6.6) respect to ey we find two solutions. The negative root is the right
solution, since for ¢ = 0 we have

EN =

3;/_84—3—2824-0(83),

hence,

\/—(35—6+4\/§) (3a+6+4ﬁ) |

EN = — 3 +Z

Now substitute ey into (6.5) and solve for g to get

£s ::% «/5—%\/44—2\/— (38—6—{-4\/5) (38+6+4\/§)

Here also we choose the negative root, since from ¢ = 0 we obtain

E&s=—-&+ ——¢

39942
4 64 2+0<)

Note that to have a real normal form we should make this restriction:

—6—4y2 — 42
—3.885618082 ~ 6%[ <e< % ~0.114381918.
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6.2. Finding the transformation generator t;

Let ; € GL(4,R)

151 5] 13 —%t4
o1 ts 6 1t t3 67
"7 (a1 +6) | —1lt gl—ztlo —giztll Tt .
—8%113 ét14 %HS —%21‘16
We solve the following equation
(I +eth) Xy = X5 +etf), (6.8)

for {#;,i = 1---16}. The solutions of above equation respect to four free parameters t1, t3, f5, ¢
are given in Appendix B. Now we should find parameters #1, 2, t5, 5. By substituting parameters
in t;; and Taylor expansion around & = 0 we find

n ) 0 0
Is t 0 0 .
to= _ V2(t+ts) V2(4 1 —415—9) 0 0 + 0(&").
3e 2¢
_ V241419 _ V2(trtts) 0 0
12¢ 3¢

Due to Equation (6.8) transformation 7°¢ should be near identity. Hence, it requires t, =
—t5, t] =16 + 49_1' We have two free parameters s, g which can be taken as t5 = 0,15 = —%
Hence t; =, = 0. Thereby we find

+ 0(&Y).

|
< O-PI\OO

o O o O
o O o O
S © o O

Theorem 6.1. The following transformation takes XS to its versal normal from }_(8 through of
equation (I + et§) X§ = X&(1 + &t).

—1
O 0 O 8_£t4
=9 1
. ! 0 7T &b 0

th=——
0 1 1
2(64ay) 0 65_2“0 ml]] 0
=1 e
e2is 0 0 2802116

where

o =/— (38—6+4ﬁ) (3s+6+4f2), wr = A+ 2a1,
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and

ty=4 (ﬁ—z) (2ﬁa2—4ﬁ—a1 +2a2—6)
+3 («/5—2) («/Eoz2~|—12\/§—|—3(x1 +2(¥2+14)8+<27\/§—54)82,
= — (2+J§) (2ﬁa2+4ﬁ—a1 —2042—6)

(36«/5— 12) (—17a2+ 16 + 14ﬁ)s
17

+ 27 &%a,
tio=—4 (2—1—\/5) (4\/§a1 +4\/§O(2 — a0 +8\/§—4011 —6an _8)

(36ﬁ+ 12) (Sﬁa2—24ﬁ— 17a) +4as —26)8

_ = + (=27 & — 270) €2,

1 =—160 (@) —2) + (48ﬁa1 +36ara; —96+/2 — T2 as — 384) P
+ (—144«/5 —36as — 288) ¢

+810[283,
3 =4 (ﬁ—z) (4ﬁa1 — 420y — iy + 82 + 4o —6a2+8)

—3 (fz—z) (2ﬁa1 — 12322 — 3asa; +20V2 + day — 14a2+40)e
+27 (ﬁ— 2) e,
te=—4ap (o] —2) — 12\/5(011 —2—|—4\/§)8

+g (fz—z) (fzaz+24ﬁ+6a1 +2a2+28)82+ (81ﬁ— 162)83-

Note that t4, t7 are in order € and t19, t11, 113, t1¢ are in order &2,
7. Concluding remarks

We have shown that the correct implementation of versal normal form in normal form com-
putations is possible. It does give, and this was to be expected, an added level of complexity. In
any practical computation, this will have to be balanced against the added level of correctness.

It will be interesting to see whether these considerations can also be applied in practice to the
theory of unique normal form. This would, after all, be the holy grail of normal form theory:
unique versal normal forms!
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Appendix A. The coefficients of normal form and transformation of triple-zero

3107

The coefficients of transformation t{ given in the Equation (4.12) respect to four free param-

eters are as follows:

(3) (2) (3) 3)
a1 0=20,00F 500 T %, 08A

(1 2) 2) 2) 3)
2,00 =91 1,0 92,00~ %,0,08A T % B>

@ _ @ (3) (2) (2 (2) ) 2 2
¥11,0 = 92,00 T %2,0,06C 20‘200"95"'("‘110 a200>5A+0‘20085£A @,0,08A"

3) o 1 o 3) 3) o 1 @ L 3 2
@01 = %1071 54, 0_“020+2“2,0,085+<“200+2“200>5A+§“2008Av

@ _ 3 (1 o _1 o @ @ 13 13
3ag50=0ay01ta00+a 10— 5 90.2,0 (3“1,10 9200 T 53910~ 3%.20 ¢
3 3 3 3 3
+“£<))080_a§())058+2“&())08/§+§a§,3,05A£B+§“§())0f\’

(3) (D) ?2) 3) 3) 3) 1 3) (2) 2)
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Appendix B. The coefficients of t; in the L4-problem

The coefficients of transformation given in Equation (6.7) with free parameters ?1, t2, s, #5 are
as follows:

=2 (ﬁ—z) (a1t5 + 615+ 4215 + 2/ 2012 +2a2t2)
+ (—6\/§t5+3a2t2+12t5> e
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+ % (V2-2) (V20211 +3V20s — 163216 — 411 +Betats + 6 — 2416 — 12) e

+ (—6 \/§t6 —3aot) + 121‘6) 82,



3112 F. Mokhtari, J.A. Sanders / J. Differential Equations 267 (2019) 3083-3113

f=—2 <2+f2) (2ﬁa2 142 —ay —20{2—6)
— % (2+ ﬁ) (8 V2016 — 3320 + 1611v/2 — 4110y — Sante + 6y — 241 + 12) ¢
+ (—6:1\/5 —3ante — 12t1) &2,
tg =2 <2+ «/5) <a1t2 + 61 — 42t + 2200185 — 2t5a2> + (—6\/§t2 +3ts0p — 12t2> e,
tg=— (2 + «/5) ((xlotztz + 600tr — 4200t + 4~/ 2tsa; — dayts + 8/ 2ts — 8t5)
+ (3 V20 + 3aits + 6artr + 30r5) e,
tm:—(2+«/§) (4ﬁa1 4200 — aran + 82 — 4 —60{2—8)
— % (2+ \/5) (8 \605116 + Sﬁaztl —2a1ant] +3x/§a1 + 16\/§t6 —8tga; — 12021y
+3072 — 6a; +6ay — 1615 — 60)e + (—3 V2arty + 3tga — 6anty +3Ot6> &2,
1 =—4ay () —2) + (—4a1a2t6 124201 + 8 aats — 24\/5—96)5
n % (2+«/§) (3J§a2 —3211v2 + 81101 — 6z + 481y —24)82
n (—36t1«/§ — 9atg — 72t1) £,
1y = dants (] —2) — 12 (2+ ﬁ) (—oq —6 +4J§) e + (—36 V2t + 915y — 72r2) £2,
s = (ﬁ—z) (4«/%1 — 420y — ayon + 82 + day —6a2+8)
+ % (ﬁ -~ 2) (8 V2a111 — 82016 — 2 1ate — 33201 + 16112 + 8111 — 120t
— 302~ 60 — 62 + 1611 — 60)e + (=3 2ants + 31101 + 6auat + 301 ) &2,
ta = (\/E— 2) (a1a2t5 + 615000 + 4~ 20085 + 420112 + daitr + 8421 + 81‘2)
" (3 V2ats + 3ty — 6tsas + 30r2) e,
ts = 4anty (] —2) — 12 (ﬁ — 2) (al +6 +4ﬁ) tse + (—36\/§t5 + 9t + 72t5) £2,
fe = —4ay () — 2) + (—4a1a2t1 12201 + 8oty +24J§—96)g
+

(ﬁ— 2) (3 V2o — 32215 — 8tgay + 6y — 4816 — 24) g2

+

AN N W

—-36 \/§t6 —Qapt) + 72t6) &3,



F. Mokhtari, J.A. Sanders / J. Differential Equations 267 (2019) 3083-3113 3113

References

[1] V.I. Arnol’d, On matrices depending on parameters, Russ. Math. Surv. 26 (2) (1971) 29-43.
[2] V.I. Arnol’d, Lectures on bifurcations in versal families, Russ. Math. Surv. 27 (5) (1972) 54.
[3] J. Baez, J. Huerta, G, and the rolling ball, Trans. Am. Math. Soc. 366 (10) (2014) 5257-5293.
[4] A. Baider, J.A. Sanders, Further reduction of the Takens-Bogdanov normal form, J. Differ. Equ. 99 (2) (1992)
205-244.
[5] R.H. Cushman, The uniform normal form of a linear mapping, Linear Algebra Appl. 512 (2017) 249-255.
[6] R.H. Cushman, A. Kelley, H. Kocak, Versal normal form at the Lagrange equilibrium L4, J. Differ. Equ. 64 (3)
(1986) 340-374.
[7] R.H. Cushman, J.A. Sanders, Nilpotent normal forms and representation theory of sly(R), in: M. Golubit-
sky, J. Guckenheimer (Eds.), Multiparameter Bifurcation Theory, in: Contemporary Mathematics, vol. 56, 1986,
pp. 353-371.
[8] M. Gazor, F. Mokhtari, J.A. Sanders, Vector potential normal form classification for completely integrable
solenoidal nilpotent singularities, J. Differ. Equ. 267 (1) (2019) 407—442.
[9]1 M. Gerstenhaber, The cohomology structure of an associative ring, Ann. Math. (2) 78 (1963) 267-288.
[10] J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1972.
[11] A.W. Knapp, Lie Groups Beyond an Introduction, vol. 140, Springer Science & Business Media, 2013.
[12] H. Kocak, Normal forms and versal deformations of linear Hamiltonian systems, J. Differ. Equ. 51 (3) (1984)
359-407.
[13] J. Kuipers, T. Ueda, J.A.M. Vermaseren, J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (5) (2013)
1453-1467.
[14] R.H. Lewis, Computer algebra system Fermat, 2008.
[15] A.A. Mailybaev, Transformation to versal deformations of matrices, Linear Algebra Appl. 337 (1-3) (2001) 87-108.
[16] J.A. Sanders, Versal normal form computations and representation theory, in: Computer Algebra and Differential
Equations, Cambridge University Press, Cambridge, 1994, pp. 185-210.
[17] J.A. Sanders, Normal form theory and spectral sequences, J. Differ. Equ. 192 (2) (2003) 536-552.
[18] J.A. Sanders, F. Verhulst, J. Murdock, Averaging Methods in Nonlinear Dynamical Systems, second edition, Applied
Mathematical Sciences, vol. 59, Springer, New York, 2007.


http://refhub.elsevier.com/S0022-0396(19)30153-6/bib61726E6F6C64313937316D61747269636573s1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib303033362D303237392D32372D352D413032s1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib6261657A323031344732s1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib6261696465723139393266757274686572s1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib6261696465723139393266757274686572s1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib637573686D616E32303137756E69666F726Ds1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib637573686D616E3139383676657273616Cs1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib637573686D616E3139383676657273616Cs1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib637573686D616E35366E696C706F74656E74s1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib637573686D616E35366E696C706F74656E74s1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib637573686D616E35366E696C706F74656E74s1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib67617A6F7232303137766563746F72s1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib67617A6F7232303137766563746F72s1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib4D5230313631383938s1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib4D5230333233383432s1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib6B6E617070323031336C6965s1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib6B6F6363616B313938346E6F726D616Cs1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib6B6F6363616B313938346E6F726D616Cs1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib466F726D3030s1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib466F726D3030s1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib6D61696C7962616576323030317472616E73666F726D6174696F6Es1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib73616E646572733139393476657273616Cs1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib73616E646572733139393476657273616Cs1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib73616E64657273323030336E6F726D616Cs1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib53564D32303037s1
http://refhub.elsevier.com/S0022-0396(19)30153-6/bib53564D32303037s1

	Versal normal form for nonsemisimple singularities
	1 Introduction
	2 The algorithm
	2.1 Nonlinear nilpotent versal normal form
	2.2 Nonsemisimple versal normal form

	3 2D nilpotent - invariant formulation
	3.1 The versal normal form of the linear system
	3.2 Some representation theory
	3.3 Nonlinear normal form reduction

	4 3D irreducible nilpotent
	4.1 The versal normal form of the linear system
	4.2 Quadratic nonlinear versal normal form of triple-zero

	5 An example on sp(4,R)
	6 Three body problem
	6.1 The versal normal form at L4
	6.2 Finding the transformation generator t ε0

	7 Concluding remarks
	Appendix A The coefﬁcients of normal form and transformation of triple-zero
	Appendix B The coefﬁcients of tε0 in the L4-problem
	References


