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Abstract

In this manuscript we study the following optimization problem with volume constraint:

min

⎧⎨
⎩ 1

p

∫
�

|∇v|pdx −
∫

∂�

gv dH N−1 : v ∈ W1,p (�) , and LN({v > 0}) ≤ α

⎫⎬
⎭ .

Here � ⊂ RN is a bounded and smooth domain, g is a continuous function and α is a fixed constant such 

that 0 < α < LN(�). Under the assumption that 
∫

∂�

g(x)dH N−1 > 0 we prove that a minimizer exists and 

satisfies
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⎧⎪⎪⎨
⎪⎪⎩

−�pup = 0 in {up > 0} ∪ {up < 0},
|∇up|p−2 ∂up

∂η
= g on ∂� ∩ ∂({up > 0} ∪ {up < 0}),

LN({up > 0}) = α.

Next, we analyze the limit as p → ∞. We obtain that any sequence of weak solutions converges, up 
to a subsequence, lim

pj →∞upj (x) = u∞(x), uniformly in �, and uniform limits, u∞, are solutions to the 

maximization problem with volume constraint

max

⎧⎨
⎩
∫

∂�

gv dH N−1 : v ∈ W1,∞ (�) ,‖∇v‖L∞(�) ≤ 1 and LN({v > 0}) ≤ α

⎫⎬
⎭ .

Furthermore, we obtain the limit equation that is verified by u∞ in the viscosity sense. Finally, it turns out 
that such a limit variational problem is connected to the Monge-Kantorovich mass transfer problem with 
the involved measures are supported on ∂� and along the limiting free boundary, ∂{u∞ �= 0}. Furthermore, 
we show some explicit examples of solutions for certain configurations of the domain and data.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Motivation and historic overview

In shape optimization theory an Optimal Design Problem under a volume constraint reads as 
follows: For an � ⊂RN (smooth and bounded domain) and 0 < α < LN(�) a fixed amount, we 
would like to find a best configuration O ⊂ � such that minimizes a functional (cost) associated 
to a certain process, under the prescription of the maximum volume to be used. Mathematically 
this can be written as

min
{
Jα[u�] : u� ∈X(�,R) (admissible class), � ⊂ � such that u� > 0 in � and

0 < LN(�) ≤ α
}
.

In several situations the functional Jα[u�] admits a variational representation, whose involved 
extremal functions are linked to the competing configuration � via a prescribed PDE. Some 
examples of such models appear as elliptic PDEs (eigenvalue problems with geometric con-
straints, shape optimization problems with constrained perimeter or volume), optimal design of 
semiconductor devices and problems in structural optimization, optimization problems with free 
boundaries, just to mention a few (cf. [7] for a large number of illustrative examples).

Concerning free boundary optimization problems under volume constraint, its beginning dates 
back to the middle 80s. In the seminal work [1] the authors study existence, regularity and geo-
metric properties for minimizers of the optimization problem
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min

{∫
�

|∇v|2dx : v ∈ W 1.,p(�), �v = 0 in {v > 0} ∩ �, u = g on ∂� and

LN({v = 0}) = α

}
.

In the same direction, we also quote [16] and [24], where optimal design problems gov-
erned by quasi-linear operators of p-Laplace type were studied (the associated functional is 

Jα[v�] =
∫
�

|∇v�|pdx). See also [30–32] and references therein concerning shape optimization 

problems in heat conduction, in this case u represents the temperature in � of a heated body with 
non-constant prescribed temperature distribution g on the boundary.

We finish this quick overview by commenting the limiting (as p → ∞) optimization problem 
treated in [27] (cf. [28] for a corresponding problem in the two-phase scenery and [10] for a 
nonlocal counterpart). There it is considered the following limiting problem:

min

⎧⎪⎨
⎪⎩ sup

x,y∈�
x �=y

|v(x) − v(y)|
|x − y| : v ∈ W 1,∞(�), v = g ≥ 0 on ∂� and LN({v > 0}) ≤ α

⎫⎪⎬
⎪⎭ . (1.1)

In particular, in [27] extremals for (1.1) are obtained as limit points of minimizers (up)p≥2 of 
the following free boundary optimization problem:

min

{∫
�

|∇up|p : up ∈ W 1,p(�), �p up = 0 in {up > 0}, up = g ≥ 0 on ∂� and

LN({u > 0}) ≤ α

}
.

Furthermore, such limit solutions verify

{
�∞u∞(x) = 0 in {u∞ > 0},

u∞(x) = g(x) on ∂�,

in the viscosity sense (Section 2 for such a concept), where

�∞ v(x) := ∇vT (x)D2v(x)∇v(x) =
N∑

i,j=1

∂v

∂xj

(x)
∂2v

∂xj ∂xi

(x)
∂v

∂xi

(x)

is the nowadays well-known ∞-Laplace operator, which is naturally associated to Absolutely 
Minimizing Lipschitz Extensions (cf. [4] and [5] for comprehensive surveys about this subject). 
Notice that, the ∞-Laplacian is a degenerate elliptic operator with non-divergence structure, see 
Section 2 for more details.

With regards to nonlinear PDEs with Neumann type boundary conditions and viscosity solu-
tions involving the outer normal derivative, i.e., ∂u

∂η
, the corresponding theory is quite more recent 

and we must quote [6,8,9,20] and [21] as precursor works. In particular, such references establish 
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uniqueness, comparison theorems, Hölder and Lipschitz regularity for solutions of general fully 
nonlinear elliptic equations (under suitable structural assumptions).

On the other hand, in [17] it is studied the Neumann problem for the ∞-Laplace operator. The 
approach used there consists of analyzing the limit as p → ∞ of solutions to

{ −�pup(x) = 0 in �,

|∇up(x)|p−2 ∂up

∂η
(x) = g(x) on ∂�,

with a continuous boundary flow g verifying 
∫
∂�

g = 0. In particular, it is proved that there exist 

limit points of (up)p≥2 as p → ∞. Furthermore, such limit points are maximizers of following 
variational problem:

max

⎧⎨
⎩
∫
∂�

gv dH N−1 : v ∈ W 1,∞ (�) , ‖∇v‖L∞(�) ≤ 1 and
∫
�

v = 0

⎫⎬
⎭ . (1.2)

Another important piece of information is that limit points are viscosity solutions to
−�∞u∞(x) = 0 in � with H(x, u, ∇u) = 0 on ∂�, a boundary condition that depends only 
on the sign of g, see [17, Theorem 1.2] for more details.

1.2. Statement of the main results

Our main goal is the study of quasi-linear operators with p-Laplacian type structure with 
a volume constraint and Neumann boundary conditions and pass to the limit as p → ∞. We 
consider the following optimization problem:

Pp[α] := min

⎧⎨
⎩ 1

p

∫
�

|∇v|pdx −
∫
∂�

gv dH N−1 : v ∈ W 1,p (�) and LN({v > 0}) ≤ α

⎫⎬
⎭ .

(Pp)

This kind of model (involving the p-Laplacian operator with Neumann boundary conditions) 
appears in a number of structural optimization, shape optimization and optimal design problems 
in pure and applied mathematics, as well as in the theory of some non-Newtonian fluids, reaction 
diffusion problems, etc. From an applied point of view one can think that we are prescribing 
the flux (a balance) across the boundary and trying to find the best of all configurations which 
minimizes a certain (physical) cost within a prescribed objective (class of admissible profiles) 
and a given set of geometrical limitations (constrained volume) in our procedure (cf. [7,11] and 
references therein for nice essays about shape optimization and nonlinear PDEs theory, and com-
pare with [1,10,16,24,30,31] and [32] for optimal design problems with constrained volume and 
Dirichlet boundary condition).

For a datum g such that 
∫
∂�

g(x)dH N−1 > 0 the minimization problem admits at least one 

solution, but its existence is a non-trivial task, see Remark 2.5 for more details. In this case, 
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existence of a minimizer follows by using the direct method in calculus of variations, key tools 
comes from mathematical analysis and the construction of a suitable competitor profile in (Pp).

Theorem 1.1 (Existence of minimizers). Let p > N , g ∈ L1(∂�) be such that

∫
∂�

g dH N−1 > 0

and 0 < α < LN(�) fixed. Then, there is at least one function up solving (Pp).
Moreover, any minimizer up is a weak solution to the following Neumann problem:

{ −�p up(x) = 0 in {up > 0} ∪ {up < 0},
|∇up(x)|p−2 ∂up

∂η
(x) = g(x) on ∂� ∩ ∂({up > 0} ∪ {up < 0}), (1.3)

and verifies

LN({u > 0}) = α.

In addition, if the domain is a ball, � = B1(0) and g is non-negative, spherically symmetric 
and strictly spherically decreasing with respect to an axis, then every minimizer is also spheri-
cally symmetric on ∂B1(0) with respect to this axis.

Notice that we don’t have |∇up(x)|p−2 ∂up

∂η
(x) = g(x) on the whole ∂�. In fact, it could 

happen that the solution vanish on some part of ∂� and the Neumann boundary condition does 
not hold there, see Remark 5.2 for a simple one-dimensional example where this phenomenon 
takes place.

It is worth to highlight that analytical and geometric features of the limiting (as p → ∞) 
free boundary problem reveal asymptotic information on the optimal design problem (Pp) for p
large. Hence, motivated by formal considerations, we consider the following limiting configura-
tion:

P∞[α] := max

⎧⎨
⎩
∫
∂�

gv dH N−1 : v ∈ W 1,∞ (�) , ‖∇v‖L∞(�) ≤ 1 and LN({v > 0}) ≤ α

⎫⎬
⎭ .

(P∞)

This problem might be called an “L∞-variational problem” because of the L∞-bound on the 
gradient, and because it arises as the limit for the constrained optimization problem (Pp) as 
p → ∞.

Under the assumption that g is such that 
∫
∂�

g(x)dH N−1 > 0, we prove here that any se-

quence of minimizers up to (Pp) converges, up to a subsequence, to a solution u∞ of the limiting 
problem (P∞).
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Theorem 1.2. Assume that 
∫
∂�

g(x)dH N−1 > 0 and let up be a minimizer to (Pp). Then, up to 

a subsequence,

up → u∞ as p → ∞,

uniformly in � and weakly in W 1,q(�) for all 1 < q < ∞. Furthermore, such a limit is an 
extremal of (P∞).

Furthermore, we find that u∞ verifies −�∞u∞(x) = 0 (in the viscosity sense) in the set 
�∞ := {u∞ > 0} ∪{u∞ < 0} (notice that we just have u∞ = 0 in � \�∞). We also compute the 
limit boundary condition.

Theorem 1.3. A uniform limit of solutions of (Pp) fulfills

F∞(x,∇u∞,D2u∞) :=

⎧⎪⎨
⎪⎩

−�∞u∞(x) = 0 in {u∞ > 0} ∪ {u∞ < 0},
u∞(x) = 0 in � \ ({u∞ > 0} ∪ {u∞ < 0}),

H(x,∇u) = 0 on ∂� ∩ ∂({u∞ > 0} ∪ {u∞ < 0}),
(1.4)

in the viscosity sense, where

H(x,∇u) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
{
|∇u| − 1, ∂u

∂η

}
if x ∈ {g > 0},

max
{

1 − |∇u|, ∂u
∂η

}
if x ∈ {g < 0},

∂u
∂η

if x ∈ {g = 0}.

In contrast with the limit optimal design problems with Dirichlet boundary condition studied 
previously in [10,27], see also [28], this Neumann counterpart does not have a point-wise bound-
ary condition. Indeed, the limiting boundary condition depends on the sign of g and must be 
understood in a more general/appropriated sense in the framework of viscosity solutions theory 
(see Definition 2.10), thus losing its variational character when compared to original problem 
(Pp).

1.3. Monge-Kantorovich type problems

Let us recall that optimal transport theory is a longstanding research subject that nowadays still 
attracts growing attention due to its wide variety of emerging applications (cf. [2,3,12,14,17–19,
25,26,33,34] and references therein). Historically, these studies began with Gaspard Monge’s 
classical works and were “rediscovered” by Kantorovich in the context of economics (matching 
problems). They also constitute important topics within the context of probability (the Wasser-
stein metric), analysis (functional inequalities), geometry (Monge-Ampère type equations) and 
PDEs (rates of decay for nonlinear evolution equations) just to name a few.

Now, we will briefly present some well-known results related to the Monge-Kantorovich mass 
transport theory which will be used throughout the article (cf. [2,3,12,14,33] and [34] for some 
surveys). Let μ ∈ M (X) and ν ∈ M (Y) be Radon measures. We say that T	μ = ν, i.e., T :
X → Y transports μ onto ν if
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ν(B) = μ
(
T −1(B)

)
for every Borel set B ⊂ Y. We also say that such a map T is a measure-preserving map with 
respect to (μ, ν) or that T pushes μ forward to ν. Finally, we define the following class

T (μ, ν) := {T : X → Y : T	μ = ν
}
.

Let us recall that the Monge problem, associated with the measures μ and ν, consist of finding 
a map T ∗ ∈ T (μ, ν) which minimizes the functional (transportation cost)

inf
T (μ,ν)

∫
|x − T (x)|dμ(x)

(
inf

T (μ,ν)

∫
c(x,T (x))dμ(x)

)
. (1.5)

Notice that if μ and ν are absolutely continuous with respect to the Lebesgue measure, μ =
f1LN�X and ν = f2LN�Y, then there exists such an optimal map T : X → Y. A map T ∗ ∈
T (μ, ν) fulfilling (1.5) is denoted an optimal transport map of μ to ν.

The Monge problem is, in general, ill-posed. To overcome such an obstacle, in the early for-
ties, Kantorovich in [22] proposed a relaxed version of the Monge problem, as well as introduced 
a dual variational formulation: Let πt(x, y) := (1 − t)x + ty and γ ∈ M (X, Y) be a Radon mea-
sure. The projections projx(γ ) := π0	γ and projy(γ ) := π1	γ are denoted marginals of γ . Under 
these concepts, the Monge-Kantorovich problem (cf. [22] and [26]), consists of considering the 
following minimization problem:

min

⎧⎨
⎩
∫

X×Y

|x − y|dγ (x, y) : γ ∈ �(μ,ν)

⎫⎬
⎭ , (1.6)

where

�(μ,ν) := {γ ∈ M (X,Y) : projx(γ ) := π0	γ and projy(γ ) := π1	γ
}
.

The elements in �(μ, ν) are denoted transport plans between μ and ν, and a minimizer to (1.6)
an optimal transport plan. It is worth stress that a minimizer to (1.6) always exists.

Another important piece of information is that the Monge-Kantorovich problem admits the 
following dual formulation, known as the Kantorovich-Rubinstein theorem, [33, Theorem 1.14]
in the literature: The following duality holds true

min

⎧⎨
⎩
∫

X×Y

|x − y|dγ (x, y) : γ ∈ �(μ,ν)

⎫⎬
⎭= max

⎧⎨
⎩
∫
X

ud(μ − ν) : u ∈ 1 − Lip(X)

⎫⎬
⎭ , (1.7)

where 1 − Lip(X) :=
{
u : X → R : sup

x,y∈X, x �=y

|u(x) − u(y)|
|x − y| ≤ 1

}
. Maximizers of (1.7) are 

called Kantorovich potentials.
Regarding the ∞-Neumann problem, the limit maximization problem (1.2) is also obtained by 

considering a dual formulation of the well-known Monge-Kantorovich mass transfer problem for 
the measures μ = g+H N−1�∂� and ν = g−H N−1�∂� supported on ∂�, where such measures 
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must fulfill the mass transfer compatibility condition μ(∂�) = ν(∂�) (cf. [2] and compare with 
[17, Theorem 1.1]).

Our next result enables us to find a Kantorovich potential for the optimal mass transport 
problem via uniform convergence of a subsequence of the family of solutions to (Pp).

Theorem 1.4. Let g ≥ 0. There exists a non-negative measure ν = ν∞ such that a uniform limit 
of solutions of (Pp), i.e., u∞(x) = lim

p→∞up(x), is a Kantorovich potential for the optimal mass 

transport problem between μ = gH N−1�∂� and ν∞ (supported on the limiting free boundary).

Finally, this limit gives the maximum possible transport cost between μ = gH N−1�∂� and 
any nonnegative measure ν with transport set of measure less or equal than α. Notice that the in-
fimum of such costs is zero (just consider νn a sequence of measures converging to gH N−1�∂�

with supports converging to ∂�).

Theorem 1.5. Suppose that the assumptions of Theorem 1.4 are in force. Then,

∫
∂�

u∞gdH N−1 = max
ν∈M (�), ω∈1−Lip(�),

LN(T(ω))≤α

⎧⎪⎨
⎪⎩
∫
�

ωd(μ − ν)

⎫⎪⎬
⎪⎭ .

Our manuscript is organized as follows: in Section 2 we collect some preliminary results that 
will be used throughout the article and analyze the problem for a finite (fixed) p. In Section 3
we show how to pass to the limit as p → ∞. Section 4 is devoted to explain how our limiting 
free boundary optimization problem links with the Monge-Kantorovich mass transfer problem. 
Finally, in Section 5 we include some examples in which limit solutions can be computed explic-
itly.

2. Analysis for finite p

Throughout this manuscript � ⊂ RN will denote an open and bounded domain with Lips-
chitz boundary with a unitary outward normal vector field η : ∂� → SN−1 that is defined for 
H N−1-almost every point of ∂�, where H N−1 states the standard (N − 1)-dimensional Haus-
dorff measure.

Now we specify the different notions of solutions which we will use throughout this article. 
For a fixed value of N < p < ∞ we consider weak solutions. On the other hand, in the limiting 
setting, as p → ∞, we will use the concept of viscosity solutions.

Definition 2.1 (Weak solution). Let p > N . A u ∈ W 1,p(�) is said a weak solution to (1.3) if 
there holds ∫

�\{u=0}
|∇u|p−2∇u · ∇φdx =

∫
∂�

gφ dH N−1

for every φ ∈ W 1,p(� \ {u = 0}) with φ ≡ 0 in {u = 0}.
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Now, our aim is to show that there is a minimizer of the functional

Jp[v] := 1

p

∫
�

|∇v|pdx −
∫
∂�

gv dH N−1

over

Kp
α :=

{
v ∈ W 1,p (�) : LN({v > 0}) ≤ α

}
.

Note that, following [17], we can show that any minimizer of Jp[·] over Kp
α is a weak solution 

to (1.3).
Let us recall an important inequality.

Theorem 2.2 (Morrey’s inequality). Let N < p ≤ ∞ and � ⊂Rn be a regular domain. Then for 
all u ∈ W 1,p(�) such that {u = 0} �= ∅, there exists a constant C(N, p, �) > 0 such that

‖u‖
C

0,1− N
p (�)

≤ C(N,p,�)‖∇u‖Lp(�),

where the constant C(N, p, �) > 0 can be assumed uniform in p.

We now prove existence of minimizers for our minimization problem. Taking into account 
that we are interested in the asymptotic limit as p → ∞, we will assume that p > N .

Theorem 2.3 (Existence of minimizers). Let p > N , g ∈ L1(∂�) be such that∫
∂�

g dH N−1 > 0

and 0 < α < LN(�), fixed. Then there is at least one function up ∈ Kp
α solving

Jp[up] = min
{
Jp[v] : v ∈Kp

α

}
.

In addition, if u is minimizer of Jp[·] over Kp
α then

LN({u > 0}) = α.

Proof. First, we claim that

inf
{
Jp[v] : v ∈Kp

α

}
< 0. (2.1)

To see this, we take a > 0 such that LN({x ∈ � : dist(x, ∂�) ≤ a}) = α, ε > 0, and v ∈ W 1,p(�)

the weak solution of⎧⎪⎨
⎪⎩

−�pu = 0 in �a = {x ∈ � : dist(x, ∂�) ≤ a},
u = ε on ∂�,

u = 0 on {x ∈ � : dist(x, ∂�) = a}.
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Then

ψ(x) :=
{

u(x) if x ∈ �a,

0 if x ∈ � \ �a,

belongs to Kp
α and Jp[ψ] < 0 provided ε is small enough. Thus (2.1) follows.

Now, we consider a minimizing sequence for (Pp), i.e., (uj )j∈N ⊂ W 1,p(�) such that

LN({uj > 0}) ≤ α and Jp[uj ] ↘ inf
{
Jp[v] : v ∈Kp

α

}
.

Next, we assert that we can assume that for each j ∈ N there exists at least one xj ∈ �

such that uj (xj ) = 0. To verify this claim, first note that {uj > 0} �= �. On the other hand, if 
{uj > 0} �= ∅ then uj must change sign and then there exists xj ∈ � such that uj (xj ) = 0. Now, 
if {uj < 0} = �, then for each j ∈ N we could select an εj > 0 such that LN({uj + εj > 0}) ≤ α

with {uj + εj ≥ 0} ∩ � �= ∅. From our assumption on g we get

inf
{
Jp[v] : v ∈Kp

α

} ≤ Jp[uj + εj ]

= Jp[uj ] − εj

∫
∂�

g(x)dH N−1

< Jp[uj ] → inf
{
Jp[v] : v ∈ Kp

α

}
,

and then we can just take uj + εj as our minimizing sequence. Notice that there exists at least 
one point xj ∈ � such that uj (xj ) + εj = 0. Hence, our claim is proved.

In what follows, we will still call uj the minimizing sequence with uj (xj ) = 0. Next, using 
Morrey’s inequality, we get

∫
∂�

gujdH N−1 ≤
∫
∂�

|g(x)||uj (x) − uj (xj )|dH N−1

≤ C(N,p,�)‖∇uj‖Lp(�)

∫
∂�

|g(x)||x − xj |1− N
p dH N−1

≤ C(N,p,�)‖g‖L1(∂�)diam(�)
1− N

p ‖∇uj‖Lp(�).

Therefore,

Jp[uj ] ≥ 1

p
‖∇uj‖p

Lp(�) − C
(
N,p,‖g‖L1(∂�),�

)‖∇uj‖Lp(�). (2.2)

We now claim that (uj )j∈N must fulfill

‖∇uj‖Lp(�) ≤ C(N,p,�)

uniformly in p. Otherwise, if for some subsequence ‖∇ujk
‖Lp(�) → ∞ as k → ∞. Then we 

would conclude from (2.2) that
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Jp[ujk
] → ∞,

which contradicts (2.1).
Furthermore, for xj ∈ � such that uj (xj ) = 0 (whose existence we already assured) we obtain

|uj (x)| = |uj (x) − uj (xj )| ≤ C(N,p,�)‖∇uj‖Lp(�)|x − xj |1− N
p ≤ C(N,p,�)diam(�)

1− N
p .

Therefore,

‖uj‖L∞(�) ≤ C(N,p,�).

Hence, (uj )j∈N is uniformly bounded and equicontinuous. From compact embedding, converges 

(up to a subsequence) to a function up strongly in C0,1− N
p (�). Thus, from the previous conver-

gence we obtain

LN({up > 0}) ≤ lim inf
j→∞ LN({uj > 0}) ≤ α, −

∫
∂�

gujdH N−1 → −
∫
∂�

gup dH N−1,

and ∫
�

|∇up|pdx ≤ lim inf
j→∞

∫
�

|∇uj |pdx.

Therefore, we conclude that

Jp[up] ≤ lim inf
j→∞ Jp[uj ],

which assures that up is a minimizer. Observe that (2.1) up �≡ 0.
Finally, we show that if u is minimizer of Jp[·] over Kp

α then

LN({u > 0}) = α.

The proof is by contradiction. Suppose that there exists a minimizer u and a constant 0 < ε � 1
such that

LN({u > 0}) = α − ε.

Notice that, arguing as before, we can show that u �≡ 0 and {u > 0} �= ∅.
Now, for x0 ∈ ∂{u > 0} ∩ � fixed, select

0 < r < min

{
1

2
dist(x0, ∂�), n

√
ε

2ωN

}
,

where ωN = LN(B1(0)). Next, we solve the following minimization problem:
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min

⎧⎪⎨
⎪⎩

1

p

∫
Br(x0)

|∇v|pdx : v ∈ W 1,p (Br(x0)) , v = u on ∂Br(x0)

⎫⎪⎬
⎪⎭ .

Such minimizers, let us call them v0, are p-harmonic functions in Br(x0). Moreover, notice that 
u competes with v0 in the minimization problem in u, that is

1

p

∫
Br(x0)

|∇v0|pdx <
1

p

∫
Br(x0)

|∇u|pdx, (2.3)

where the strict inequality comes from the fact that u is p-harmonic in {u �= 0} ∩ Br(x0), but it 
is not p-harmonic across the free boundary. Now, setting

ψ(x) :=
{

v0(x) in Br(x0),

u(x) in � \ Br(x0),
(2.4)

we obtain a profile such that v ∈ W 1,p(�) and

LN({ψ > 0}) ≤ LN({u > 0} \ Br(x0)) +LN({u > 0} ∩ Br(x0))

≤ LN({u > 0}) +LN(Br(x0))

< (α − ε) + ε = α.

Finally, using (2.3) and (2.4) we conclude that

Jp[ψ] < Jp[u] = inf
{
Jp[v] : v ∈ Kp

α

}
,

contradicting the minimality of u. This completes the proof. �
Remark 2.4. If u and v are two minimizers of Jp[·] such that LN({u + v > 0}) ≤ α then u ≡ v. 
This is due to the fact that Jp[·] is strictly convex.

Remark 2.5 (Assumption on the boundary datum). In this part we will discuss about the assump-
tion on g. Remind that we have assumed the condition:

∫
∂�

g dH N−1 > 0.

However, we could also consider two other possibilities:

1.
∫
∂�

g(x)dH N−1 = 0. In this case, our minimization problem reduces to

infJp[v] = inf
{
Jp[v] : v ∈Kp

}
.
α
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In fact, for any constant c > 0 and any admissible function u ∈Kp
α we have that v = u − c ∈

Kp
α and

Jp[v] = Jp[u] − c

∫
∂�

gdH N−1 = Jp[u].

Therefore, in this case the volume constraint does not play any significant role in the mini-
mization problem (compare with [17]).

2.
∫
∂�

g dH N−1 < 0. In this case, by consider any sequence 0 < ak → ∞ as k → ∞, the con-

stant functions uk = −ak ∈Kp
α satisfy

Jp[uk] = ak

∫
∂�

g dH N−1 → −∞ as k → ∞,

which implies that our minimization problem does not admit a minimizer.

Remark 2.6. It is straightforward to verify that when the boundary datum g is a non-negative 
function, then any minimizer u0 to (Pp) will also be non-negative in the whole �. This remark 
will be crucial in the symmetry results and in the optimal transportation argument.

2.1. A spherical symmetrization result

Next, we will look at our optimization problem when the domain is a ball, � = B1(0), and g
is spherically symmetric and strictly decreasing with respect to some axis. For that purpose, an 
essential tool is played by the spherical symmetrization.

Given a measurable set E ⊂ RN , the spherical symmetrization E ∗ of E with respect to an 
axis given by a unit vector ek is constructed as follows: For each positive number r , take the 
intersection E ∩ ∂Br(0) and replace it by the spherical portion of the same H N−1-measure and 
center rek . The union of these caps is E ∗. Now, the spherical symmetrization u∗ of a measurable 
function u : � → R is constructed by symmetrizing the super-level sets so that, for all t

{u∗ ≥ t} = {u ≥ t}∗.

We recommend to the reader references [23] and [29] for more details. We will use the following 
result.

Theorem 2.7.

a) Let u ∈ W 1,p(B1(0)) be non-negative. Then, u∗ ∈ W 1,p(B1(0)), and

∫
B1(0)

|u∗|p dx =
∫

B1(0)

|u|p dx, and
∫

B1(0)

|∇u∗|p dx ≤
∫

B1(0)

|∇u|p dx.
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b) If u is a non-negative mensurable function in B1(0) and v is a non-negative mensurable 
function in ∂B1(0) then

∫
∂B1(0)

uv dH N−1 ≤
∫

∂B1(0)

u∗v∗ dH N−1. (2.5)

Proof. We first show (a). By [23, (C) page 22],

∫
B1(0)

|f |pdx =
∫

B1(0)

|f ∗|pdx. (2.6)

for any non-negative function f ∈ Lp(B1(0)). Therefore, we only need to show that if u ∈
W 1,p(B1(0)) is non-negative then

∫
B1(0)

|∇u∗|p dx ≤
∫

B1(0)

|∇u|p dx.

In [29], the author show that if v ∈ C∞(RN) and is non-negative then

∫
B1(0)

|∇v∗|p dx ≤
∫

B1(0)

|∇v|p dx. (2.7)

Whereas in [23, (M7) page 21], it is proven that

‖f ∗ − g∗‖L1(B1(0)) ≤ ‖f − g‖L1(B1(0)) (2.8)

for every non-negative functions f, g ∈ L1(B1(0)).
Given a non-negative function u ∈ W 1,p(B1(0)), we take

ū(x) =
{

u(x) if x ∈ B1(0),

0 if x ∈RN \ B1(0),

and set vn = ρn � ū (where ρn is a sequence of mollifiers). Then vn ∈ C∞(RN) is nonnegative 
and vn → u strongly in W 1,p(�). Moreover, using (2.6), (2.7), and (2.8), we have that v∗

n → u∗
weakly in W 1,p(�). Therefore

∫
B1(0)

|∇u∗|p dx ≤ lim inf
n→∞

∫
B1(0)

|∇v∗
n|p dx ≤ lim

n→∞

∫
B1(0)

|∇vn|p dx =
∫

B1(0)

|∇u|p dx.

To finish the proof, we prove (b). In first step, we show that (2.5) holds for characteristic 
function. Let A ⊂ B1(0) and B ⊂ ∂B1(0) be two mensurable sets and u(x) = χA(x) and v(x) =
χB(x). Observe that, by definition, u∗(x) = χA∗(x) and v�(x) = χB∗(x) and A∗ ∩ ∂B1(0) ⊆ B∗
or B∗ ⊆ A∗ ∩ ∂B1(0). Thus
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u(x)v(x) =
{

1 if x ∈ A ∩ B,

0 if x ∈RN \ A ∩ B,
and

u∗(x)v∗(x) =
{

u∗(x) if A∗ ∩ ∂B1(0) ⊆ B∗,
v∗(x) if B∗ ⊆ A∗ ∩ ∂B1(0),

Then,

∫
∂B1(0)

uv dH N−1 = H N−1(A ∩ B)

≤
{

H N−1(A ∩ ∂B1(0))

H N−1(B)

=
{

H N−1(A∗ ∩ ∂B1(0))

H N−1(B∗)

=
∫

∂B1(0)

u∗v∗ dH N−1.

Thus, it is easy to see that (2.5) holds for non-negative steps function. Finally, as any measur-
able function can be approximate by steps functions, we can prove the assertion by an approxi-
mation argument. �
Remark 2.8. Notice that, if v = v∗ ≥ 0 is spherically strictly decreasing, then equality in (b),

∫
∂B1(0)

uv∗ dH N−1 ≤
∫

∂B1(0)

u∗v∗ dH N−1,

for a non-negative u implies that also u is spherically symmetric, u = u∗. In fact, we have

∫
∂B1(0)

uv∗ dH N−1 =
∫

∂B1(0)

∞∫
0

∞∫
0

χ{u(x)>s}χ{v∗(x)>t} ds dt dH N−1

=
∞∫

0

∞∫
0

H N−1({u(x) > s} ∩ {v∗(x) > t}) ds dt

=
∞∫

0

∞∫
0

H N−1({u∗(x) > s} ∩ {v∗(x) > t}) ds dt

=
∫

u∗v∗ dH N−1.
∂B1(0)
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Therefore, u and v∗ have the same family of level sets, and hence u = u∗. Note that we are using 
here that when v = v∗ is strictly spherically decreasing its family of level sets covers the whole 
family of spherical caps, from {ek} to the whole ∂B1(0).

Finally, we prove our symmetry result. This ends the proof of Theorem 1.1.

Theorem 2.9. Let � = B1(0) and up be a minimizer of Jp[·] over Kp
α . Suppose that 0 ≤ g = g∗. 

Then, there is a minimizer, u∗
p, that is spherically symmetric.

In addition, when 0 ≤ g = g∗ is spherically strictly decreasing, every minimizer is spherically 
symmetric on ∂B1(0).

Proof. Theorem 2.3 assures that there exists a profile up ∈ W 1,p(�) such that

LN({up > 0}) = α and Jp[up] = inf
{
Jp[v] : v ∈Kp

α

}
.

Now, let u∗
p be the spherical symmetrization of up. Notice that u∗

p is an admissible profile in the 
optimization process of Jp[·]. In fact, by Remark 2.6, since g ≥ 0 then up ≥ 0 and therefore 
one can apply the results in Theorem 2.7 to obtain that

u∗
p ∈ W 1,p(�), LN({u∗

p > 0}) = LN({up > 0}) = α and

−
∫
∂�

upg dx ≥ −
∫
∂�

u∗
pg∗ dx = −

∫
∂�

u∗
pg dx.

Hence, once again by Theorem 2.7,

inf
{
Jp[v] : v ∈Kp

α

}≤ Jp[u∗
p] ≤ Jp[up] = inf

{
Jp[v] : v ∈ Kp

α

}
.

Therefore,

inf
{
Jp[v] : v ∈Kp

α

}= Jp[u∗
p].

Hence, we conclude the existence of a minimizer that is spherically symmetric.
Now, let us assume that 0 ≤ g = g∗ is spherically strictly decreasing and let up be a minimizer. 

From our previous calculations we must have

∫
∂B1(0)

upg∗ dH N−1 ≤
∫

∂B1(0)

u∗
pg∗ dH N−1,

and then, from Remark 2.8, we obtain that up = u∗
p on ∂B1(0), as we wanted to show. �

As a byproduct of this result we obtain that there is a minimizer such that its null set {up = 0}
is spherically symmetric.



5886 J.V. da Silva et al. / J. Differential Equations 267 (2019) 5870–5900
2.2. Viscosity solutions

Let us present a brief introduction to the theory of viscosity solutions for second order fully 
nonlinear elliptic equations. Recall that a continuous function F : � × RN × Sym(N) → R is 
called degenerate elliptic if

F(x, ξ,X) ≤ F(x, ξ,Y) whenever Y ≤ X in the sense of matrices.

Along this paper we will use:

1. F(x, ∇u, D2u) = −∇uT D2u∇u = −�∞u;
2. F(x, ∇u, D2u) = − 

[|∇u|p−2Tr(D2u) + (p − 2)|∇u|p−4∇uT D2u∇u
]
.

Taking into account general boundary data, let us recall the appropriate definition of viscos-
ity solutions in our context. Concerning general theory of viscosity solutions to fully nonlinear 
elliptic equations we refer the reader to the surveys [6,8,20,21].

Definition 2.10 (Viscosity solution). Consider the following boundary value problem:

{
F(x,∇u,D2u) = 0 in A,

H(x,u,∇u) = 0 on ∂A,
(2.9)

where F ∈ C(A ×RN × Sym(N)) is a degenerate elliptic function and H ∈ C(∂A ×R ×RN).

1. A lower semi-continuous function u is said a viscosity supersolution to (2.9) if for every 
φ ∈ C2(A) such that u − φ has a strict minimum at the point x0 ∈ A with u(x0) = φ(x0) we 
have:
� If x0 ∈ ∂A the inequality holds

max
{
F(x0,∇φ(x0),D

2φ(x0)),H(x0, φ(x0),∇φ(x0))
}

≥ 0.

� if x0 ∈ A then we require

F(x0,∇φ(x0),D
2φ(x0)) ≥ 0.

2. An upper semi-continuous function u is said a viscosity subsolution to (2.9) if for every 
φ ∈ C2(A) such that u − φ has a strict maximum at the point x0 ∈ A with u(x0) = φ(x0) we 
have:
� If x0 ∈ ∂A the inequality holds

min
{
F(x0,∇φ(x0),D

2φ(x0)),H(x0, φ(x0),∇φ(x0))
}

≤ 0.

� if x0 ∈ A then we require

F(x0,∇φ(x0),D
2φ(x0)) ≤ 0.
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Finally, a continuous function u is said a viscosity solution to (2.9) if it is simultaneously a 
viscosity supersolution and a viscosity subsolution.

When F is not continuous we need to consider the lower semicontinous F∗, H∗ and upper 
semicontinous F ∗, H ∗ envelopes of F and H respectively. In 1. of the previous definition we 
ask for

max
{
F ∗(x0,∇φ(x0),D

2φ(x0)),H
∗(x0, φ(x0),∇φ(x0))

}
≥ 0 or

F ∗(x0,∇φ(x0),D
2φ(x0)) ≥ 0.

While in 2. we ask for

min
{
F∗(x0,∇φ(x0),D

2φ(x0)),H∗(x0, φ(x0),∇φ(x0))
}

≤ 0 or

F∗(x0,∇φ(x0),D
2φ(x0)) ≤ 0.

From now on we assume that g ∈ C(∂�). We will use the following notations:

Fp(x, ξ,X) := −
[
|ξ |p−2Tr(X) + (p − 2)〈Xξ, ξ 〉

]
and

Hp(x, ξ) := |ξ |p−2〈ξ, η(x)〉 − g(x).

Notice that these two functions are continuous (and hence F ∗ = F∗ = F and H ∗ = H∗ = H ).

Remark 2.11. We need to highlight that since Hp is monotone in the variable ∂u
∂η

, then Defi-
nition 2.10 admits a simpler form (cf. [6]). To be precise, if u is a viscosity supersolution and 
φ ∈ C2(�) is such that u − φ has a strict minimum at x0 with u(x0) = φ(x0), then

� If x0 ∈ �, then

−
[
�∞φ(x0) + |∇φ(x0)|2�φ(x0)

p − 2

]
≥ 0.

� If x0 ∈ ∂�, then

Hp(x0, φ(x0)) ≥ 0,

and the opposite inequalities for the case in which u − φ has a strict maximum at x0.
Observe that the limit boundary condition (1.4) does not fulfill such a monotonicity condition 

and hence to understand sub and super solutions in the viscosity sense at boundary points one 
needs to take min or max between the equation and the boundary condition as in Definition 2.10.

The next result gives that continuous weak solutions to (1.3) are also viscosity solutions.

Lemma 2.12. Let p > 2, g ∈ C(∂�) and u be a continuous weak solution of (1.3). Then u is a 
viscosity solution of
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{
Fp(x,∇u,D2u) = 0 in {u > 0} ∪ {u < 0},

Hp(x,∇u) = 0 on ∂�.

Proof. Let us proceed for the case of super-solutions. Fix x0 ∈ �. We will divide the analysis 
into two cases:

1) If x0 ∈ � ∩ ({u > 0} ∪ {u < 0}). In this case, let φ ∈ C2(�) be a test function such that 
u(x0) = φ(x0) and u − φ has a strict minimum at x0. Our goal is to show that:

Fp(x0,∇φ(x0),D
2φ(x0)) ≥ 0.

Assume, for sake of contradiction that such a conclusion does not hold. Then, by continuity 
should exist a radius � > 0 such that

Fp(x,∇φ(x),D2φ(x)) < 0 for all x ∈ B� = B�(x0).

Taking � smaller if necessary we can assume that B� ⊂ {u > 0} when u(x0) > 0 and Bρ ⊂ {u <
0} if u(x0) < 0.

Now, consider ι := inf
∂B�

(u − φ)(x) and �(x) := φ(x) + ι
10 . Notice that such a function fulfills

−div(|∇�|p−2∇�) < 0 (pointwisely) in B� and u(x0) < �(x0).

Multiplying the previous inequality by (� − u)+ (extended by zero outside B�) we obtain:

∫
{�>u}∩B�

|∇�|p−2∇� · ∇(� − u)dx < 0. (2.10)

On the other hand, by taking (� −u)+ as test function in the weak formulation of (1.3) we obtain

∫
{�>u}∩B�

|∇u|p−2∇u · ∇(� − u)dx = 0. (2.11)

Next, subtracting (2.10) from (2.11) we get

∫
{�>u}∩Bρ

(
|∇�|p−2∇� − |∇u|p−2∇u

)
· ∇(� − u)dx < 0. (2.12)

Finally, since the left hand side in (2.12) is bounded by below by

C(N,p)

∫
{�>u}∩B�

|∇� − ∇u|pdx ≥ 0,

this obligates � ≤ u in B� . Such a contradiction proves the desired result.
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2) If x0 ∈ ∂�. Our goal now will be to show that:

max
{
Fp(x0,∇φ(x0),D

2φ(x0)),Hp(x0,∇φ(x0))
}

≥ 0.

Once again let us assume that such a conclusion is not true. Then, proceeding as before, we 
conclude that ∫

{�>u}∩B�

|∇�|p−2∇� · ∇(� − u)dx <

∫
∂({�>u}∩B�)∩∂�

g(� − u)dH N−1,

and ∫
{�>u}

|∇u|p−2∇u · ∇(� − u)dx ≥
∫

∂({�>u}∩B�)∩∂�

g(� − u)dH N−1.

Therefore,

C(N,p)

∫
{�>u}∩B�

|∇�−∇u|pdx ≤
∫

{�>u}∩B�

(
|∇�|p−2∇� − |∇u|p−2∇u

)
· ∇(�−u)dx < 0,

which again yields a contradiction. This proves that u is a viscosity supersolution.
Similarly, one can prove that a continuous weak subsolution is a viscosity subsolution. �

3. The asymptotic analysis as p → ∞

Our first goal in this section is to obtain some (uniform in p) estimates on sequence of solu-
tions to (1.3). Taking into account that we are interested in the asymptotic behavior as p → ∞, 

we may assume that p > N and, for this reason up ∈ C
0,1− N

p (�) according to Sobolev embed-
ding theorem.

Lemma 3.1. Let g ∈ C(∂�) be such that

∫
∂�

g(x)dH N−1 > 0,

and (up)p>N be a sequence such that up is a minimizer of Jp[·] over Kp
α . Then, up to a subse-

quence,

up → u∞ as p → ∞,

uniformly in � and weakly in W 1,q(�) for all q > 1.
Furthermore, any possible limit u∞ is Lipschitz continuous with

‖∇u∞‖L∞(�) ≤ 1.
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Proof. By multiplying the equation by up and integrating we obtain via Hölder inequality the 
following

∫
�

|∇up|pdx =
∫
∂�

gupdH N−1 ≤ ‖g‖
Lp′

(∂�)
‖up‖Lp(∂�). (3.1)

Now, let us recall the trace inequality from [13, Theorem 1, page 258]

‖up‖Lp(∂�) ≤ p
√

pC0‖up‖W 1,p(�),

where C0 is a constant that does not depend on p. By substituting such estimate in (3.1) we 
obtain ∫

�

|∇up|pdx ≤ p
√

pC0‖g‖
Lp′

(∂�)
‖up‖W 1,p(�). (3.2)

On the other hand, since LN({up > 0}) = α < LN(�) (see Theorem 2.3), for p > N we get 
from Theorem 2.2 the following

‖up‖Lp(�) ≤ C(N,p,�)‖∇up‖Lp(�), (3.3)

where C(N, p, �) is uniformly bounded in p.
Connecting the estimate (3.3) with (3.2) we conclude that

∫
�

|∇up|pdx ≤ p
√

pC0C(n,p,�, )‖g‖
Lp′

(∂�)
‖∇up‖Lp(�),

which implies that

‖∇up‖Lp(�) ≤ Cp

⎛
⎝∫

∂�

|g|p′
⎞
⎠

1
p

,

where Cp → 1 as p → ∞. Now, fix q > N , and take p > q . Thus, we have

‖∇up‖Lq(�) ≤ LN(�)
1
q
− 1

p ‖∇up‖Lp(�) ≤ CpLN(�)
1
q
− 1

p

⎛
⎝∫

∂�

|g|p′
⎞
⎠

1
p

. (3.4)

Since CpLN(�)
1
q
− 1

p → LN(�)
1
q as p → ∞, we get that, up to a subsequence,

up → u∞ as p → ∞,

uniformly in � and weakly in W 1,q(�). Notice that, by (3.4),
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‖∇u∞‖Lq(�) ≤ LN(�)
1
q .

Since that the previous inequality holds for every q > N , we conclude that u∞ ∈ W 1,∞(�). 
Furthermore, taking the limit as q → ∞ we get ‖∇u∞‖L∞(�) ≤ 1. �

As a consequence, we obtain the following corollary.

Corollary 3.2. If g ≥ 0, then ‖∇u∞‖L∞(�) = 1.

Proof. One more time by multiplying the equation by up, integrating, and using Lemma 3.1 we 
obtain

lim
p→+∞

∫
�

|∇up|pdx = lim
p→+∞

∫
∂�

gupdH N−1 =
∫
∂�

gu∞dH N−1. (3.5)

Now, if we multiply the equation by a test function �, we have by using the Hölder inequality 
(for p � 1 large enough) the following (for ε(p) = o(1) as p → ∞)

∫
∂�

g�dH N−1 ≤
⎛
⎝∫

�

|∇�|pdx

⎞
⎠

1
p
⎛
⎝∫

�

|∇up|pdx

⎞
⎠

p−1
p

≤
⎛
⎝∫

�

|∇�|pdx

⎞
⎠

1
p
⎛
⎝∫

∂�

gu∞dH N−1 + ε(p)

⎞
⎠

p−1
p

.

Passing to the limit as p → ∞ we conclude that

∫
∂�

g�dH N−1 ≤ ‖∇�‖L∞(�).

∫
∂�

gu∞dH N−1.

Finally, by taking as test function u∞ itself and using once again Lemma 3.1 we obtain as a 
consequence the desired conclusion. �

Now, we supply the proof of Theorem 1.2.

Proof of Theorem 1.2. By Lemma 3.1, up to a subsequence,

up → u∞ as p → ∞,

uniformly in � and weakly in W 1,q(�) for all q > 1.
On the other hand, using a test function � with ‖∇�‖Lp(�) ≤ 1, in the variational minimiza-

tion problem solved by up we obtain

1

p

∫
|∇�|pdx −

∫
g�dH N−1 ≥ 1

p

∫
|∇up|pdx −

∫
gupdH N−1 ≥ −

∫
gupdH N−1.
� ∂� � ∂� ∂�
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Passing to the limit as p → ∞ we get that∫
∂�

g�dH N−1 ≤
∫
∂�

gu∞dH N−1.

Therefore, the limit function u∞ is a solution to the maximization problem∫
∂�

gu∞dH N−1

= max

⎧⎨
⎩
∫
∂�

gvdH N−1 : v ∈ W 1,∞ (�) ,‖∇v‖L∞(�) ≤ 1 and LN({v > 0}) ≤ α

⎫⎬
⎭ .

This finishes the proof. �
Remark 3.3. Notice that it is not immediate that a maximizer of

max

⎧⎨
⎩
∫
∂�

gvdH N−1 : v ∈ W 1,∞ (�) ,‖∇v‖L∞(�) ≤ 1 and LN({v > 0}) ≤ α

⎫⎬
⎭

verifies

LN({u∞ > 0}) = α.

Now, we prove Theorem 1.3:

Proof of Theorem 1.3. First of all, let us verify that

−�∞u∞ = 0 in {u∞ > 0} ∪ {u∞ < 0}
in the viscosity sense.

We start proving that it is a subsolution. To this end, fix x0 ∈ {u∞ > 0} ∪ {u∞ < 0} and let 
φ ∈ C2(Bε(x0)) (for 0 < ε � 1) be a test function such that u∞ − φ has a strict maximum at x0. 
From uniform convergence, up to a subsequence, up → u∞, we get that for each p ≥ N , up − φ

has a maximum at some point xp ∈ ({u∞ > 0} ∪ {u∞ < 0}) ∩Bε(x0), where xp → x0. Since that 
up is a weak subsolution (resp. viscosity subsolution according to Lemma 2.12) of

−�pup = 0 in {up > 0} ∪ {up < 0}
we get that

Fp

(
xp,∇φ(xp),D2φ(xp)

)
≤ 0.

Now, if |∇φ(x0)| = 0 then trivially we get −�∞φ(x0) ≤ 0. On the other hand, if |∇φ(x0)| �=
0, then we have that |∇φ(xp)| �= 0 for large values of p. Consequently
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−∇φ(xp)T D2φ(xp) · ∇φ(xp) ≤ 1

p − 2
|∇φ(xp)|2�φ(xp).

Finally, taking the limit as p → ∞ in the above inequality we conclude that

−�∞φ(x0) ≤ 0,

showing u∞ is a viscosity subsolution, as desired.
Similarly one can prove that u∞ is a viscosity supersolution. We omit this part here.
Next, let us verify the limit profile at free boundary points. We will need the lower and upper 

semi-continuous envelopes, since the limit operator is discontinuous across the phase transitions.
Fixed x0 ∈ ∂{u∞ = 0} ∩ �, let φ ∈ C2(Bε(x0)) be such that u∞(x0) = φ(x0) = 0 and 

u∞(x) < φ(x) holds for x �= x0 in Bε(x0). We would like to prove the following

F∗(x0,∇φ(x0),D
2φ(x0)) ≤ 0,

where

F∗(x0,∇φ(x0),D
2φ(x0)) := min{φ(x0),−�∞φ(x0)}

is the lower semi-continuous envelope of F∞ in Bε(x0). As before, there exists a sequence 
Bε(x0) � xp → x0 such that up − φ has a local maximum at xp . If ∇φ(x0) = 0, then there is 
nothing to proof. Now, if |∇φ(x0)| �= 0 we must consider two possibilities:

Case 1. If upj
(xpj

) < 0 or upj
(xpj

) > 0 for a subsequence (pj )j≥1. In this case, since upj
is 

a weak sub-solution (resp. viscosity super-solution) to (1.3), we have that

Fpj

(
xpj

,∇φ(xpj
),D2φ(xpj

)
)

≤ 0.

Finally, passing to the limit as pj → ∞ we obtain

−�∞φ(x0) ≤ 0.

Case 2. If upj
(xpj

) = 0 for a subsequence (pj )j≥1. In this case the conclusion is immediate 
since using continuity we get φ(x0) = 0.

For the super-solution case fix x0 ∈ ∂{u∞ = 0} ∩ � and φ ∈ C2(Bε(x0)) such that u∞(x0) =
φ(x0) = 0 and u∞(x) > φ(x) holds for x �= x0 in Bε(x0). This time we would like to prove the 
following:

F ∗(x,∇φ(x0),D
2φ(x0)) ≥ 0,

where

F ∗(x,∇φ(x0),D
2φ(x0)) := max{φ(x0),−�∞φ(x0)}

is the upper semi-continuous envelope of F∞ in �. The analysis for this case runs similarly to 
previous one.
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Next, we deal with the boundary condition. First, let φ ∈ C2(�) be a test function and assume 
that u∞ −φ has a strict minimum at x0 ∈ ∂� with u∞(x0) = φ(x0) �= 0 and g(x0) > 0. One more 
time, from uniform convergence upj

→ u∞ we obtain that upj
−φ has a minimum at some point 

xpj
∈ �, where xpj

→ x0. Now, if xpj
∈ � for infinitely many values of j , then by arguing as 

before we conclude that

−�∞φ(x0) ≥ 0 (resp. max{−�∞φ(x0),φ(x0)} ≥ 0 at free boundary points).

However, if xpj
∈ ∂�, then we have, from Remark 2.11, that

Hpj
(xpj

,∇φ(xpj
)) ≥ 0.

Taking into account that g(x0) > 0, then ∇φ(x0) �= 0, and we obtain

|∇φ(x0)| ≥ 1 and ∇φ(x0) · η(x0) ≥ 0.

In conclusion, if u∞ − φ has a strict minimum at x0 ∈ ∂� with g(x0) > 0, then we have the 
following inequality

max

{
−�∞φ(x0), min

{
|∇φ(x0)| − 1,

∂φ

∂η
(x0)

} }
≥ 0,

(
resp. max

{
max{−�∞φ(x0),φ(x0)}, min

{
|∇φ(x0)| − 1,

∂φ

∂η
(x0)

} }
≥ 0

at free boundary points

)
.

For the next case, let us assume that u∞ − φ has a strict maximum at x0 ∈ ∂� with u∞(x0) =
φ(x0) �= 0 and g(x0) > 0. With the same notations as before, if xpj

∈ � for infinitely many j , 
then we conclude that

−�∞φ(x0) ≤ 0 (resp. min{−�∞φ(x0),φ(x0)} ≤ 0 at free boundary points).

On the other hand, when xpj
∈ ∂�, using

Hpj
(xpj

,∇φ(xpj
)) ≤ 0,

we get that, if ∇φ(x0) − 1 > 0, then ∂φ
∂η

(x0) ≥ 0. We have that the following inequality holds

min

{
−�∞φ(x0), min

{
|∇φ(x0)| − 1,

∂φ

∂η
(x0)

} }
≤ 0,

(
resp. min

{
min{−�∞φ(x0),φ(x0)}, min

{
|∇φ(x0)| − 1,

∂φ

∂η
(x0)

} }
≤ 0

at free boundary points

)
.
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The case in which u∞ − φ has a strict maximum / minimum at x0 ∈ {g < 0} with u∞(x0) =
φ(x0) �= 0 can be handled similarly.

Now, if u∞ −φ has a strict minimum at x0 ∈ ∂� with u∞(x0) = φ(x0) �= 0 and x0 ∈ {g = 0}◦
then we have

Hpj
(xpj

,∇φ(xpj
)) ≥ 0.

Thus, by passing to the limit we obtain ∂φ
∂η

(x0) ≥ 0. Therefore, the following inequality holds

max

{
−�∞φ(x0),

∂φ

∂η
(x0)

}
≥ 0

(
resp. max

{
max{−�∞φ(x0),φ(x0)}, ∂φ

∂η
(x0)

}
≥ 0 at free boundary points

)
.

Now, if u∞ −φ has a strict maximum at x0 ∈ ∂� with u∞(x0) = φ(x0) �= 0 and x0 ∈ {g = 0}◦
then we have

Hpj
(xpj

,∇φ(xpj
)) ≤ 0.

Thus, by taking the limit as pj → ∞ we obtain ∂φ
∂η

(x0) ≤ 0. Therefore, the following inequality 
holds

min

{
−�∞φ(x0),

∂φ

∂η
(x0)

}
≤ 0,

(
resp. min

{
min{−�∞φ(x0),φ(x0)}, ∂φ

∂η
(x0)

}
≤ 0 at free boundary points

)
.

Finally, we just observe that we can handle the cases in which u∞(x0) = φ(x0) �= 0 and 
x0 ∈ ∂{g > 0} with g(x0) = 0, x0 ∈ ∂{g < 0} with g(x0) = 0 or x0 ∈ ∂{g > 0} ∩ ∂{g < 0} with 
g(x0) = 0 considering that the involved sequence xpj

can be such that g(xpj
) > 0, g(xpj

) < 0 or 
g(xpj

) = 0. Notice that in these cases we find the upper (or lower) semicontinuous envelope of 
H that involve that max or the min of the previous cases. We leave the details to the reader. �
4. Proof of the Monge-Kantorovich type results

In this short section we include the proof of our Monge-Kantorovich type results. The datum 
g is assumed to be nonnegative, and therefore the same property holds true for the solutions up

(see Remark 2.6).

Proof of Theorem 1.4. Following [14] we define the transport set for a maximizer u∞ of (P∞):

T(u∞) := {x ∈ � : ∃ y ∈ ∂� with |u∞(x) − u∞(y)| = |x − y|} .

Moreover, we define a transport ray by

Rx := {w ∈ T(u∞) : |u∞(x) − u∞(w)| = |x − w|}.
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Observe that any two transport rays cannot intersect in �, unless they are identical. In fact, 
assume w ∈ T(u∞), and that there exist x, y ∈ � such that

u∞(x) − u∞(w) = |x − w| and u∞(w) − u∞(y) = |w − y|.

Hence, from Lipschitz continuity for u∞ we obtain

|x − y| ≤ |x − w| + |w − y| = u∞(x) − u∞(y) ≤ |u∞(x) − u∞(y)| ≤ |x − y|,

which is impossible, unless that x, y and w are collinear points.
Now, we observe that for each up there exists a sequence εj → 0+ as j → +∞ such that 

the set Sj := {up > εj } has finite perimeter for every j ∈ N (cf. [15, Theorem 1, §5.5]). Hence, 
there is a measure supported on the set

∂{up > εj } ∩ �

defined by

νp,εj
= |∇up|p−2 ∂up

∂η
,

where η is the unit outer normal to ∂{up > εj } ∩ �. Moreover, this measure is non-negative and 
verifies ∫

�

dνp,εj
=

∫
∂�∩{up>εj }

gdH N−1.

In fact, to show this identity one just have to recall that �pup = 0 in {up > εj }.
Now to obtain the measure ν∞ we just have to take the limit (along a subsequence if necessary) 

of νp,εj
(first we take εj → 0+ and then p → ∞). This limit measure ν∞ is supported on

∂{u∞ > 0} ∩ �

and verifies the compatibility condition

∫
∂{u∞>0}∩�

dν∞ =
∫
∂�

gdH N−1.

As the transport rays do not intersect, using our previous results, we obtain that

∫
∂�

u∞gdH N−1 =
∫
�

u∞(gdH N−1 − dν∞) = max
ω

⎧⎪⎨
⎪⎩
∫
�

ω(gdH N−1 − dν∞)

⎫⎪⎬
⎪⎭ .

where the maximum is taken in the set of 1-Lipschitz functions:
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1 − Lip(�) :=

⎧⎪⎪⎨
⎪⎪⎩� : � → R : sup

x,y∈�,
x �=y

|�(x) − �(y)|
|x − y| ≤ 1

⎫⎪⎪⎬
⎪⎪⎭ .

Finally, we notice that, since LN({u∞ > 0}) ≤ α, we get that the transport set associated to this 
optimal transport problem has the property LN(T(u∞)) ≤ α. �

Finally, we supply the proof of Theorem 1.5.

Proof of Theorem 1.5. Now, our aim is to compute the maximum among every possible trans-
port costs of μ = gH N−1�∂� to ν with the restriction that the transport set has measure less or 
equal than α, that is,

W1
α(μ, ν) := max

ν∈M (�), ω∈1−Lip(�),

LN(T(ω))≤α

⎧⎪⎨
⎪⎩
∫
�

ωd(μ − ν)

⎫⎪⎬
⎪⎭ .

To this end, we just notice that ν∞ (our limit measure) is a competitor in this maximization 
problem and hence the total cost for the limit problem verifies

∫
∂�

u∞gdH N−1 =
∫
�

u∞(gdH N−1 − dν∞) ≤ max
ν∈M (�), ω∈1−Lip(�),

LN(T(ω))≤α

⎧⎪⎨
⎪⎩
∫
�

ωd(μ − ν)

⎫⎪⎬
⎪⎭ .

Now, notice that, since we have that the total mass of ν is equal to 
∫
∂�

gdH N−1, we can add a 

constant to ω (if necessary) and assume that inf
T(ω)

ω = 0. Hence,

max
ν∈M (�), ω∈1−Lip(�),

LN(T(ω))≤α

⎧⎪⎨
⎪⎩
∫
�

ωd(μ − ν)

⎫⎪⎬
⎪⎭ = max

ω∈1−Lip(�),

LN(T(ω))≤α

max
ν∈M (�)

⎧⎪⎨
⎪⎩
∫
�

ωd(μ − ν)

⎫⎪⎬
⎪⎭

≤ max
ω∈1−Lip(�),

LN(T(ω))≤α

⎧⎨
⎩
∫
∂�

ωgdH N−1

⎫⎬
⎭

=
∫
∂�

u∞gdH N−1.

Therefore, we conclude that the obtained limit cost (the total cost of the transport of gH N−1�∂�

to ν∞) gives the maximum possible among transport costs to nonnegative measures ν with mea-
sure of the involved transport set less or equal than α. �
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5. Examples

Example 5.1. Consider the domain � = (−1, 1) and the boundary datum such that g(1) =
g(−1) = A > 0. Thus, for fixed α ∈ (0, 2) and t ∈ (0, 1) the weak solution of

⎧⎨
⎩

−(|u′
p(x)|p−2u′

p(x))′ = 0 in (−1, tα − 1) ∪ (1 − (1 − t)α, 1),

up = 0 in [tα − 1, 1 − (1 − t)α] ,
|u′

p(±1)|p−2u′
p(±1)η(±1) = A,

(notice that up satisfies the volume constraint LN({up > 0}) = α) is given by

up(x) =

⎧⎪⎨
⎪⎩

A
1

p−1 [(tα − 1) − x] if x ∈ (−1, tα − 1),

0 if x ∈ [tα − 1, 1 − (1 − t)α] ,

A
1

p−1 {x − [1 − (1 − t)α]} if x ∈ (1 − (1 − t)α,1).

Letting p → ∞, we obtain the limiting profiles, for t ∈ (0, 1),

u∞(x) =
⎧⎨
⎩

(tα − 1) − x if x ∈ (−1, tα − 1)

0 if x ∈ [tα − 1, 1 − (1 − t)α]
x − [1 − (1 − t)α] if x ∈ (1 − (1 − t)α, 1).

Notice that in this example we do not have uniqueness of a limit profile. Also note that the limit 
profiles are independent of A.

−1

A
1

(p−1) tα

A
1

(p−1) (1 − t)α

1tα (1 − t)α

up with t > 1
2

−1

tα

(1 − t)α

1tα (1 − t)α

u∞ with t > 1
2

Example 5.2. We could also consider in the previous example the case in which g(−1) >
g(1) > 0. In this case, we obtain a unique minimizer

up(x) = g(−1)
1

p−1 [(α − 1) − x]+
and

u∞(x) = [(α − 1) − x]+
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as the unique limit as p → ∞ (remark that this function is also the unique solution to our limiting 
optimization problem). Note that in this case we have uniqueness of the limit profiles.

Also notice that in this case the boundary condition |u′
p(x)|p−2u′

p(x) = g(x) holds only at 
x = −1 since at x = 1 we have up(1) = 0 and |u′

p(1)|p−2u′
p(1) = 0 �= g(1).
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