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Abstract

We prove that the Stokes semigroup is a bounded analytic semigroup on LS° of angle 7 /2 for two-
dimensional exterior domains. This result is an end point case of the L?-boundedness of the semigroup for
p € (1, 00), established by Borchers and Varnhorn (1993). The proof is based on the non-existence result
of bounded steady flows (the Stokes paradox) and some asymptotic formula for the net force of the Stokes
resolvent.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction
We consider the Stokes equations:

ov—Av+Vg=0, divv=0 in 2 x (0, c0),
v=0 on 02 x (0, 00), (1.1)

v =1 on Q x {t =0},
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for exterior domains 2 C R”, n > 2. It is well known that the solution operator (called the Stokes
semigroup)

S(t) :vg— v(-, 1),

forms an analytic semigroup on L% for p € (1,00), of angle /2 [41], [21], i.e. S(f)vg is a
holomorphic function in the half plane {Re 7 > 0} on L%. Here, L denotes the L”-closure
of CZ%,, the space of all smooth solenoidal vector fields with compact support in 2. The Stokes
semigroup S(#) is defined by the Dunford integral of the resolvent of the Stokes operator A =P A
for the Helmholtz projection operator P : L? — LP 1161, [35], [40]. See, e.g. [29] for analytic
semigroups.

We say that an analytic semigroup on a Banach space is a bounded analytic semigroup of
angle /2 if the semigroup is bounded in the sector Xy = {r € C\{0} | |arg?| < 0} for each
0 € (0,7/2). See, e.g. [6, Definition 3.7.3]. The boundedness in the sector implies the bounds on
the positive real line

C
SO =€, [IASOI = — 1>0, (1.2)

where || - || denotes an operator norm on a Banach space and A is a generator. The estimates
(1.2) are important to study large time behavior of solutions to (1.1). In terms of the resolvent,
the boundedness of S(¢) of angle /2 is equivalent to the estimate

_ C
I — A) ]"SW’ € T (1.3)

When € is bounded, the point A = 0 belongs to the resolvent set of A = P A and the Stokes
semigroup is a bounded analytic semigroup on L of angle 7 /2 for p € (1, 0o0). For a half space,
the boundedness of the semigroup follows from explicit solution formulas [34], [44], [8].

The boundedness of the Stokes semigroup on LY for p € (1, 00) has been established for
exterior domains in R” for n > 2. For n > 3, the boundedness of S(¢) on LY is proved in [10]
based on the resolvent estimate

n
Illee + Y21Vl e + 11Vl < ClIflle, 1<p< > (1.4)

forv=(Gh—A)"'fand A e Y9472 U {0}. The estimate (1.4) implies (1.3) for p € (1,n/2) and
the case p € [n/2, co) follows from a duality. Due to the restriction on p, the two-dimensional
case is more involved. Indeed, the estimate ||V2v||zr < C||Av||rr for p € [n/2, 00) does not
hold [9]. For n = 2, the boundedness of the Stokes semigroup on LY is proved in [11] based on
layer potentials for the Stokes resolvent.

Recently, the case p = oo has been developed. When €2 is a half space, S(¢) forms a bounded
analytic semigroup on LJ° of angle 7r/2 [14], [42]. For a half space and domains with compact
boundaries, we define Lg° by

Lg"({z):ifeLoo(Q)‘divfzomﬂ, f-N:OonaQ}.

338



K. Abe Journal of Differential Equations 300 (2021) 337-355

Here, N denotes the unit outward normal vector field on 9€2. Since S(¢) is bounded on L3°, the
associated generator A = A is also defined for p = co. For bounded domains [3] and exterior
domains [4], analyticity of the semigroup on LJ° follows from the a priori estimate

vl zoe + £ /2| Vol oo + 1] V20]| Lo + 1]18,0] |1 + £]| Vgl < Cllvollze,  (1.5)

for v = S(#)vp and ¢t < T. The estimate (1.5) is proved by a blow-up argument and implies that
S(t) is analytic on LZ°. Moreover, by the resolvent estimates on L3° [5], S(¢) is analytic on Lg°
of angle 7 /2. When  is bounded, S(¢) is a bounded analytic semigroup on LS° of angle 7 /2.

In this paper, we consider the boundedness of the Stokes semigroup on LZ° for exterior do-
mains in R” for n > 2. For the Laplace operator or uniformly elliptic operators, a standard
approach to prove large time L°°-estimates of a semigroup is to use a Gaussian upper bound
for a complex time heat kernel. See [13, Chapter 3]. However, a kernel of the Stokes semigroup
does not satisfy a Gaussian bound since S(¢) is unbounded on L. See [14], [37] for a half space.
Even for exterior domains, S(¢) is not bounded on L! unless the net force vanishes [28], [22].
It seems no general method to estimate the L°-norm of a semigroup for all time without a
Gaussian bound.

There is a work by Maremonti [31] who proved the estimate

IIS(@vollL= = Cllvollz>, >0, (1.6)

for exterior domains and n > 3 based on the finite time estimate in [3]. Subsequently, Hieber and
Maremonti [23] proved the estimate #||AS(¢)vg||re < C||vg||r> for t > 0 and the results are
extended in [7] for complex time t € ¥y and 6 € (0, 7/2) based on the approach in [31]. The
method in [31] seems a perturbation from the heat equation in R” and excludes the case n = 2.
In the previous work [2], the author studied large time L°°-estimates of the Stokes semigroup
for n > 2 based on a Liouville theorem for the Stokes equations introduced by Jia, Seregin and
Sverdk [24], [25]. Liouville theorems are important to study regularity of solutions. See [27],
[39] for Liouville theorems of the Navier-Stokes equations. They are also related with large time
behavior. Following [24], [25], we say that v € LlloC (€ x (—00, 0]) is an ancient solution to the

Stokes equations (1.1) if div v =01in Q x (—00,0), v- N =0 on 92 x (—o0,0) and

0
/ / v-(0rp + Agp)dxdr =0,

—00 Q

for all ¢ € Cf’l(ﬁ X (—00, 0]) satisfying div ¢ =0 in Q x (—00,0) and ¢ =0 on 9Q x
(—00,0) U Q x {t = 0}. The conditions div v =0 and v - N = 0 are understood in the sense
that

/v -Vodx =0, ae.te(—00,0),

Q
forall ® e C Cl (Q). Liouville theorems for the Stokes equations have been established in [24] for
R™, ]Rﬁ and bounded domains. Among others, it is proved in [24] for exterior domains in R” for

n > 3 that bounded ancient solutions v € L>° (2 x (—o0, 0)) must satisfy
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V(x, 1) — Voo (t) = O(Ix|™"™2)  as |x| — oo,

for some constant v (f). Since bounded steady flows exist for n > 3 [9], bounded ancient solu-
tions are non-trivial. If in addition some spatial decay condition is assumed, we can exclude such
solutions.

Theorem 1.1 (Liouville theorem on LP [2]). Let Q be an exterior domain with C3-b0undary in
R™ n > 2. Let v be an ancient solution to the Stokes equations (1.1). Assume that

ve L®(—00,0; L) for pe(1,00).
Then, v =0.

This Liouville property is based on the fact that S(¢) is a bounded analytic semigroup on
L?. Since ancient solutions are written as v(-,#) = S(t + T)v(-, —T) for t > —T and T > 0,
the estimate (1.2) and sending 7' — oo reduce the proof to the non-existence of steady flows
Ker A = {0} on LJ. This approach is available for linear autonomous systems. We note that
for the non-linear problem Liouville properties are studied via the large time behavior to a non-
autonomous system [38]. See [25] for a Liouville theorem of the Stokes flow on L based on a
duality argument.

Theorem 1.1 is used to prove the large time L°°-estimate (1.6). By the representation formula
for v = S(¢)vg [36], we have

t
o(x. 1) = / (= y. vo(y)dy + / f Vi — ot — )TNy, )dHds.  (1.7)

Q 0 0Q

Here, T = Vv + Vv — g1 is the stress tensor with the identity matrix I and V = (V; ) is the
Oseen tensor

Vij(x, 1) =8i;(x, 1) + 9;0; / E(x —y)I(y,0)dy,
er
defined by the heat kernel I'(x, ) = 4ty 2= ¥/4 and the fundamental solutions of the
Laplace equation E, i.e.
1 1

3 >3
EG) = { 7= D) |12 "=
—2—log|x|, n=2,
g

where o (n) denotes the volume of the unit ball in R”.
For n > 3, the formula (1.7) describes the asymptotic behavior of bounded Stokes flows as
|x| = oo and t — oo. Since the Oseen tensor satisfies

C
[V(x, )| < m, xeR", t>0,
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we have

sup [|T||Le@pe)(s), |x|=R, t>0, (1.8)

v(r. 1) — / I =y, Dv0()dy| < ——
5 |x| O<s<t

for some constant R > 0. The right-hand side is decaying as |x| — oo uniformly for all # > 0.
The large time estimate (1.6) for n > 3 is deduced in [2] by using the asymptotic formula (1.8)
and the Liouville theorem (Theorem 1.1) by a contradiction argument. Indeed, if (1.6) were false,
a sequence of solutions generates a non-trivial ancient solution satisfying |v(x, #)| < Clx|™"+2
for |x| > R, t € (—o0, 0] and the Liouville theorem yields a contradiction. The boundedness of
S(t)vp in the sector Xy follows the same argument on the half line {arg r = 6}.

For n = 2, there is a restriction on the net force since the right-hand side of (1.8) might diverge.
Indeed, we have

t

vix,t) — / 'x —y,t)ve(y)dy — / Vix,t —s)F(s)ds
Q 0 (1.9)

C
< — sup [|[T|lLx@e)(s), [x|=R, >0,
x|0<x§t

with the net force

F(s):/TN(y,s)dH(y).
Q

Since |f(; V(x,s)ds| <log(1+1/|x|?), the decay as |x| — oo of the third term in (1.9) is not
uniform for # > 0 in contrast to (1.8) for n > 3. If the net force vanishes, the situation is the same
as n = 3 and we are able to prove (1.6) for t € ¥g. For example, when Q€ is a disk and initial data
has some discrete symmetry (called C,,-covariance), the net force vanishes [22], i.e. F(s) =0.
The following result includes the case n = 2.

Theorem 1.2 (Boundedness on L™ for n > 3 and n = 2 with zero net force [2]). (i) For n >3,
the Stokes semigroup is a bounded analytic semigroup on L3 of angle /2.

(ii) For n=2, the estimate (1.6) holds for t € X9 and vy € L3° for which the net force vanishes
(e.g. Cy-covariant vector fields when Q€ is a disk.)

In this paper, we prove that the assertion (ii) of Theorem 1.2 holds for any bounded initial
data vop € LS. Perhaps the most important vector fields with non-vanishing net force are asymp-
totically constant solutions of the steady Navier-Stokes flows as |x| — oo such as D-solutions
or PR-solutions. See [17]. They are bounded and with finite Dirichlet integral. The situation is
subtle even for bounded initial data with finite Dirichlet integral for which the fractional power
estimate

IVoll2 = 1(=A)?v]]2,
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is available. This estimate holds only for n =2, i.e. the estimate ||Vv||z» < C||(—A)"/?v]||.» for

p € [n,00) and n > 3 does not hold [9]. The fractional power estimate implies a uniform bound
in the homogeneous L?-Sobolev space H Uand S(t)v is merely bounded in BMO even if vy is
with finite Dirichlet integral, i.e.

[S@volemo = Cllvollpoongrs 1> 0.

To prove the large time L°°-estimate (1.6) for n =2 and any bounded initial data vp € L, we
analyze the corresponding Stokes resolvent problem:

MW—Av+Vg=f divv=0 in,
v=0 onodf.

(1.10)

Existence and uniqueness of the problem (1.10) for f € L3 have been studied in [5]. In particu-
lar, the solution operator

R(A) : f—v(, M),

is a bounded operator on L3° for A € X2 and for each § > 0, the estimate [|R(1)|| < Cs|a|~!
holds for |A| > & with the operator norm || - || on L5°. The operator R(1) is resolvent of some
closed operator A = Ao on LY, i.e. R(A) = (A — A)~L. The behavior of R(%) as A — O corre-
sponds to the behavior of S(¢) as t — oo. Instead of proving the boundedness of S(¢) in Xy, we
shall prove the equivalent estimate (1.3) with the operator norm on LS°. The main result of this
paper is the following:

Theorem 1.3 (Boundedness on L™ for n = 2). Let Q be an exterior domain with C3-boundary
in R,

(i) For 6 € (0, w/2), there exists a constant C such that

C
||R()\)f||L°°§m||f||L°c» A€ Zoinp, fELS. (1.11)

(ii) The Stokes semigroup is a bounded analytic semigroup on L° of angle 1 /2.

There is a difference on the large time behavior for n =2 and n > 3. By Theorems 1.2 and
1.3, we obtain

I1S@vollLo +t[|AS@)vollLe < Cllvollre, >0, vo € L, (1.12)

for exterior domains in R” for n > 2. The estimate (1.12) implies that S(#)vg is uniformly
bounded and approaches a steady flow as t — co. For n = 2, any bounded solutions of

—Av+Vg=0, divv=0 in£,
v=0 onodQ,

(1.13)
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must be trivial (the Stokes paradox) [12] and therefore S(¢)vg converges to zero locally uniformly
in Q as + — 0o. On the other hand, for n > 3, bounded steady flows of (1.13) exist and must be
asymptotically constant as |x| — oo. Hence the solution S(¢)vg converges to such a stationary
solution as t — co. See Remarks 3.3 for rigorous proofs.

If initial data v is decaying as |x| — 0o, S(¢)vg vanishes as t — oo for all dimensions n > 2,
i.e. for vg € Cp 5, S(t)vp uniformly converges to zero in Q as t — oo. Here, Co.s is the L*°-

closure of C(??U, characterized by

CO,J(Q)z{fec@’divfzomsz, f=00ondQ, lim f(x):O}.

See [4]. Since S(¢)vg vanishes as t — oo for vy € Cffj,, this property follows from the density in
Coo-

There is some issue on the large time behavior of Navier-Stokes flows. By a perturbation
argument from the Stokes flow, we are able to construct a unique global-in-time solution of the
two-dimensional Navier-Stokes equations for bounded initial data with finite Dirichlet integral
[1] satisfying the integral form

t
u(t) =Sug — / St —s)Pu - Vu(s)ds. (1.14)
0

This solution is asymptotically constant if ug is, cf. [32]. The large time behavior of this solution
is an interesting question since the space L% N H' includes steady Navier-Stokes flows. See
[30] for stability of PR-solutions. It is a question whether solutions of (1.14) remain bounded
for all time. The estimate (1.12) implies that the Stokes flow remains bounded for all time and
converges to zero locally uniformly in  as t — oo for any bounded initial data.

The question is non-trivial even for the Cauchy problem for which solutions remain bounded
in H' by an a priori estimate of vorticity. This solution is merely bounded in BMO. But a uniform
L®°-bound seems unknown. The problem has been studied for merely bounded initial data uo €
L2° and a polynomial growth bound on the L®-norm is derived in [45]. It is known that global-
in-time solutions satisfy the upper bound ||u|| .~ = O(t) as t — oo [19]. See also [20].

We sketch the proof of Theorem 1.3. Our proof is based on the representation formula for the
Stokes resolvent v = R(}) f:

v(x) = / E*x —y) f(y)dy + / Vi (x — )TN ()dH (y), (1.15)

Q Q2

for T = Vv +'Vv —gl. Here,
1
E*(x) = EKO(\/XlxD (1.16)

is the kernel of the resolvent (. — A)~! and K, () is the modified Bessel function of the second
kind of order m. For A € Xg4 /2, V) denotes the square-root of A with positive real part, i.e.

Re /A > 0. The tensor V* = (Vi)]‘.) is the kernel of (A — A)~!'P for the Helmholtz projection
operator P = I + V(—A)~!div. This tensor has the explicit form [11, p. 281],
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Vi (x) = % (51',‘61 (x/)_»lxl) + X, (ﬁlxl)) , 1.17)

x|

where

e1(k) = Ko(c) + kK1 (1) — 72,
er(k) = —Ko(k) — 2 'K (k) + 272, k> 0.

The function e («) has a logarithmic singularity as « — 0 and decaying as k — co. The function
e2(x) is bounded for k > 0, i.e.

1
e1(k) + s logk| +|e2(k)| < C, 0<«k=<d,
2 (1.18)
le1 (k)| + le2 (k)| < Ck 2, Kk =>d,
for any d > 0 with some constant C. Hence
1 5
VA == (1ogﬁ+log|x|)1+vl(x), (1.19)
T

with a bounded function V* for |A|'/2|x| < d. For |A|"/?|x| > d, V* is bounded.
We shall suppose that Av is uniformly bounded on L°° and observe the asymptotic behavior
of |A| ||v]|Le as A — 0. We take a point x; € €2 such that

llvllzee = Jv(x)].

The behavior of Av as A — 0 is related with the behavior of f as |x| — oo. For simplicity of the
explanation, we shall consider positive A > 0 and asymptotically constant vector fields f — fo
as |x| — oo for which A(A — A)~! f — foo as A — 0.

We first observe that Av converges to zero locally uniformly in € as A — 0. Indeed, since
u = A is uniformly bounded on L*° and satisfies

Au—Au+Vp=Arf, divu=0 inQ,
u=0 ono<2,

(1.20)

for p = Ag, by elliptic regularity, u converges to a limit locally uniformly in Q together with Vu
and p. This pressure p is unique up to constant. Since any bounded solutions of (1.13) must be
trivial by the Stokes paradox, it turns out that u, Vu and p converge to zero locally uniformly in
Q. This in particular implies that the stress tensor T = Vu +/Vu — pI vanishes on Q2 as A — 0.

The behavior of |A| |[v]|re = |u(xy)| depends on that of the points {x;}. If the points {x;}
remain bounded, u(x;) converges to zero as A — 0, i.e. limy ¢ |u(x; )| = 0. If the points {x, } di-
verge, according to the logarithmic singularity of e (k) as x — 0, we consider two cases whether
liminfy o |A|"/?|x5| > O or liminfy_o |A|'/?|xx| = 0. If liminfy_o|A|'/?|xx| > 0, the kernel
V*(x;) remains bounded by (1.18). Substituting x = x;_into
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u(x)zm—A)*lH/vl(x—y)TN(y)dH(yx (121
Q2

and sending A — 0 implies limsup; _, ¢ [u(x3)| < || f||Loo.
If liminf,_q [A|"/2|x,| = 0, the kernel V*(x;) can be singular as A — 0. By (1.19),

ux)=r(h— A" f — ﬁlogﬁ/ TN (y)dH (y)
IQ

(1.22)
1 -
- / log |x — y|T N (y)dH (y) +/ V*(x — y)TN(y)dH (y).
a0 a0
For fixed x € 2, sending A — 0 implies the asymptotic formula for the net force:
1.
0= foo — — lim 1ogﬁ/ TN(y)dH (y). (1.23)
4w 2—0
a0

The formula (1.23) has been derived for the Oseen approximation by Finn and Smith [15]. It
implies that the net force is asymptotically pure drag, i.e. the direction of the net force is asymp-
totically same as the uniform flow f, as A — 0. By choosing a subsequence, we may assume
that [A|'/2|x;| — 0. We substitute x = x;, into (1.22) and send A — 0. Since |x;| < |A|~1/? for
small A > 0, we have

47
Q Q

1 1
— /log|x1—y|TN<y)dH(y> f—aloglkl”z /TN(y)dH(y) +o(l) asi—0.

By (1.23), limsup; _, o |u(x3)| < || f||L~. Hence in all cases, the sup-norm of Av = u is controlled
by that of f.

Based on this observation, we apply a contradiction argument to obtain the desired estimate
(1.11). We suppose that (1.11) were false and obtain sequences {f,} and {A,} C Zg4r/2 such
that

1
sup AR fmlleoe =1, [ fmllLoe < -,

AEXYtn/2
1
(Al [IR(Am) finllLoe = X Am — 0.

We set u,,, = Ay R(A) fin and take a point x,, € Q such that |u,, (x,,)| > 1/4. Since u,, satisfies
the Stokes resolvent equations (1.20) for A,, with the associated pressure p,, u, converges
to zero locally uniformly in Q together with Vu,, and p,,. Then, there are two cases whether
liminf,— o0 [Am |2 || > 0 or liminfy,_ o0 [Am|/?xm| = 0. Since || fu|lze — 0, in all cases
we will see that 1/4 < |u,, (x,,,)] = 0 as m — oo. This is a contradiction.

This paper is organized as follows. In Section 2, we prove the representation formula (1.15)
for solutions of (1.10) for bounded data f € L° and non-existence of bounded solutions of
(1.13). In Section 3, we prove Theorem 1.3. After the proof of Theorem 1.3, we note large time
behavior of S(¢)vg for vg € L:°.

345



K. Abe Journal of Differential Equations 300 (2021) 337-355

2. Stokes resolvent on L°

We recall some existence and uniqueness result for the Stokes resolvent equations (1.10) for
bounded data f € LS. To state a result, let Lfl(Q) denote the uniformly local L”-space in €2

for p € (1, 00) and Wuzl’p () denote the space of all uniformly local L”-functions up to second
orders. Let Lzo(Q) denote the space of all functions f € LlloC () such that d f € L*®(Q2) with
the distance function d(x) = infycyq |x — y|.

Lemma 2.1 (Resolvent estimates for large 1). (i) For p > 2, 6 > 0 and 6 € (0, w/2), there exists
a constant C such that for f € LY and ) € Xoyz/2 satisfying |A| > 8, there exists a unique

solution (v, Vq) € WP (Q) x (L?(Q) N LY (Q)) of (1.10) satisfying

ATl 2o + 22Vl o + ] /P sup {||v2v||m<gx_w,.,2> + ||Vf1|ILP(szX_W|/z)}

< ClIfllLee, 2.1

for Q. , =Q N B(x,r), where B(x, r) denotes an open ball centered at x with radius r.

(ii) The solution operator R(X) : f ——> v is a bounded operator on L° and satisfies
C
IIR(/\)IISW, A€ Xoqn, A =6, (22)

with the constant C depending on 8, where || - || denotes the operator norm on L3°.
Proof. See [5, Theorems 1.1 and 1.3]. O

The a priori estimate (2.1) is obtained by applying the localization technique of Masuda [33]
and Stewart [43] by using the L*-estimate of the pressure. See (2.5) below. The uniqueness
follows the same argument. The existence is based on the following approximation lemma for
feLy®.

Lemma 2.2 (Approximation). (i) There exists a constant C such that for f € L° there exists a

sequence {fn} C CZ%, such that

| fmllLoe = CllfllLee

fm— f aein Q asm— oo.

2.3)

(ii) The resolvent R(}) f, converges to R(L) f locally uniformly in Q as m — oo for each A €
Xo4r/2-

Proof. The assertion (i) is proved in [4, Lemma 5.1] by using the Bogovskii operator. Since
R(}) f, is resolvent of the Stokes operator on LY, i.e. R(A) fiy = (A — A)~! f,, for A=TPA, the
assertion (ii) follows by applying the a priori estimate (2.1) and uniqueness of (1.10) [5]. O
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Remarks 2.3. (i) The associated pressure g of the problem (1.10) is a solution of the Neumann
problem

~Ag=0 ing,

n 2.4)
N-Vg=—-N-V-o onaf,

for w = 8;v> — dv!, v ="(v',v?) and VL =7(3;, —9;). Since —Av = V', this boundary
condition follows by taking the normal trace of (1.10). The problem (2.4) has a unique solution
satisfying

sup d(x)|Vq(x)| < Cllol[L=@e). (2.5)

xeQ

[31, [4], [26] and by using the solution operator K : w — Vg, the associated pressure gradient
is represented by Vg =Ko forv=R(A)f and f € L.

(ii) The operator R()) is pseudo-resolvent on L3° with the trivial kernel, i.e. Ker R(1) = {0}.
Indeed, if v = R(A) f =0, we have Vg = Kw =0 and f = 0. Hence by the open mapping
theorem, there exists a closed operator A such that R(A) = (A — A)~l. We call A the Stokes
operator on L>°.

We shall prove the representation formula (1.15) for solutions of (1.10) with the kernels (1.16)
and (1.17).

Lemma 2.4 (Representation formula). The solution v = R(X) f and Vg =Ko for A € Loy 52
and f € L3 is represented by

v(x)=/E*(x—y)f(y)dy+/VA(x—y)TN(y)dH(y), x €L, (2.6)
Q o
forT=Vv+'Vv—gql.

Proof. We denote by f the zero extension of f to R*\ Q. Observe that (7, 7) is a weak solution
of the problem

AM—AT+Vg=f+pu, divi=0 inR? (2.7)

for a measure p satisfying

(M,¢)=/TN(y)-</>(y)dH(y), ¢ € Co(R?), (2.8)
o

where Co(R?) denotes the space of all continuous functions in R? vanishing at space infinity and
(-, -) denotes the pairing between Co(R?) and its adjoint space. Indeed, multiplying ¢ € C o0 R?)
by (1.10) and integration by parts imply (2.7) in a weak sense. The formula (2.6) formally follows
by multiplying (A — A)~'P by (2.7). We set vy = (A — A)~ ' f and vo =7 — vy to see that

347



K. Abe Journal of Differential Equations 300 (2021) 337-355

Ay —Avy+Vg=pu, divvp=0 in RZ.
By the mollifications va ¢ = v2 * 1¢, e = g * 1 and (e = W * . with the standard mollifier 7.,

(v2.¢, g¢) satisfies the above problem for p, € L? for p € [1, oo]. By multiplying (A — A)’lP
by the equation, we have

v2e(r) = (h— A) P = / VAGr = y)pe(y)dy = e # / VA(x = )TN ()AH()
R2 0 Q2

Sending ¢ — 0 yields (2.6). This completes the proof. O

The Stokes paradox follows a similar argument using the fundamental tensor of the Stokes
equations. The following result is due to Chang and Finn [12, Theorem 3].

Lemma 2.5 (Stokes paradox). Let (v, Vq) € Wf)f () x LY (Q), p e (1, 00), satisfy (1.13).
Assume that

v(x) =o(log|x|) as|x|— oo. 2.9)
Then, v=0and Vq =0.

Proof. We give a proof for completeness. Observe that the zero extension (v, g) is a solution of
the problem

—AT+Vg=pu, divi=0 inR? (2.10)

for a measure p defined by (2.8). By the fundamental tensor of the Stokes equations V = (V;;)
and Q = (Q;) [18, p.239],

I x;
2 |x|2°

1 XiXi
Vij() = (—ai,- log |x| + —’) . 0j(x)=

|x|2
we set (v, g) by
5(X)=fV(x—y)TN(y)dH(y), é(X)=/Q(x—y)-TN(y)dH(y)-
Q2 Q2

The functions ¥ and § are locally integrable in R? and ¥ = O (log |x|), Vi = O(jx|™!) as |x| —
00. Observe that u =v — v and p =g — ¢ is a weak solution of

—Au+Vp=0, divu=0 inR% (2.11)

Since u and p are locally integrable in R%, by mollification we may assume that they are smooth
in R2. Since w = d;u* — du' is bounded in R? and satisfies —Aw = 0 in R?, w is constant by the
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Liouville theorem. By —Au =0 in R? and u = O(log |x|) as |x| — oo, u and p are constants.
Hence by shifting the pressure up to constant

v(X) = Voo +_/V(x —WTN()AH(y), q(x)= / Q(x —y)-TN(y)dH(y), (2.12)
30 a0
for some constant vy,. This implies
v(x) = Voo + V(x) / TN(y)dH(y) + 0(x|™),
02

4(x) = O(x) - / TNOAH ) + 0(x|™2)  as x| — oo.
02

Since v = o(log |x]) as |x| — oo, by dividing v by log |x| and sending |x| — oo,
/ TN(y)dH(y)=0.
Q

Hence v —voe = O(|x|™") and Vv, ¢ = O(|x|72) as |x| — oo. By multiplying v — veo by (1.13)
and integration by parts in 2 N B(0, R),

/ |Vv|?dx = / (TN)- (v —voo)dH(x) > 0 as R — oo.
QNB(0,R) dB(0,R)

By v=00n 0%, v=0 and Vg = 0 follow. This completes the proof. O

Remark 2.6. For n > 3, the fundamental tensor of the Stokes equations (2.11) is V = (V;;),
0 =(Q;) for

1 xj~

Ve () = 1 ( dij n _2))6[)6./'
T = = 2am) \xp—2 T T e

>, Qjx)=

no(n) x|

In the same way as the proof of Lemma 2.5, we see that any bounded solution v of (1.13) is of
the form (2.12) for some constant vo.

3. The resolvent estimate

We prove the estimate (1.11). By the approximation for f € LS° (Lemma 2.2), it suffices to
show (1.11) for f € C5,.

Proposition 3.1.

sup A [IRQ) fllze <00,  feCCy. (3.1

AEXg4r/2

349



K. Abe Journal of Differential Equations 300 (2021) 337-355

Proof. Since CZ5, C LY for p e (1,00), R(A) f = (L — A)~! f for A=PA and the Helmholtz
projection operator P. The domain D(A) = WP N Wé’p N LY is equipped with the graph-
norm and D(A) C WP with continuous injection [21]. Here, W? denotes the Sobolev space

and Wol’p denotes the space of all trace zero functions in W17, By the LP-resolvent estimate
M TR fllLe < ClIf]lLr [11] and the Sobolev embedding for p € (2, 00),

1
IR fllLee < CIIRG) fllw2p < C"(IRG) fllr +IARG) flILe) < C” (I?»_I + 1) IIfllLe.

Hence |A| [|R(A) f|| Lo is bounded for |[A| < 1. Since [A| ||R(A) fllLe < C|| f]|L for [A| > 1 by
(2.2), (3.1) follows. O

Lemma 3.2. There exists a constant C such that (1.11) holds for f € CS’OG and ) € Xg45)2.

Proof. We argue by contradiction. Suppose that (1.11) were false. Then, for m > 1 there exists
fm € CZ5, such that

My = sup [A|[[RG) fullree(R) > m| fnll oo

AEXgtn/2

By setting f,,, = fm/Mm,
1
sup A [|RQ) finllLe (W) =1, |l fnllLee < —.
AeZgin)2 m

We set v;; = R(A) fin and take a point A, € Xg15/2 such that

N =

[Am | [vm]Loe >
We may assume that A,,, — 0 by (2.2). Observe that u,, = A, v, satisfies

Al — Dty +V py = Ay fin,  divu, =0 in Q,
U, =0 onoa,

with some associated pressure p,,. We take a point x,, € 2 such that

1
[t (X )| = Z

We normalize the pressure p,, so that f3§2 pmdH (y) =0. Since u;;, — Ay, + Vpm = Ay (fin —
Um) + um, applying the resolvent estimates (2.1) for p > 2 implies

[lttm ] w1.00 + Sup {||V2um||Ln(mB(x,1)) + IIVPmIILP(mB(x,l))}
xeQ

= C1Am (fn — um)llree + llum!lze)

<(C', forallm>1.

350



K. Abe Journal of Differential Equations 300 (2021) 337-355

Hence {u,,} is equi-continuous in Q. By choosing a subsequence (still denoted by {un}), um
converges to a limit « locally uniformly in €2 together with Vu,, and p,,. Then the limit « is a
bounded solution of

—Au+Vp=0, divu=0 in <,
u=0 ono<2,

with the associated pressure p. Applying Lemma 2.5 implies that # =0 and Vp = 0. Since
J3q PdH (y) =0, p = 0. Hence we have

um — 0 locally uniformly in €, (3.2)

together with Vu,, and p,,. In particular, T,, = Vu,;, +'Vu,;, — pyI — 0 uniformly on 92 as
m — 00.

Suppose that limsup,,_, ., |xn| < 00. By choosing a subsequence, we may assume that {x,,}
converges to some point in . This implies that 1/4 < |u,,(x,,)| — 0, a contradiction. We
may assume that limsup,,_, ., [x,| = co. By choosing a subsequence, we may assume that
lim,,— o0 |Xm| = 00. We consider two cases depending on whether |A,,|'/2|x,,| vanishes or not.
Case 1. iminf,_, o0 |Am| 2| > 0.

We may assume that |A,,|'/?|x,,| > d for some constant d > 0 by choosing a subsequence. By
the representation formula (2.6),

o (¥) = O — B Do fn + f Vi (x — )T N)AH (),
082

BY [Am|"/?|x| > d and (1.18),

sup |V (x, — y)| < C, forallm> 1.
yeo

By the L>-estimate |Ay| [|(An — A) 7! finllroe < Cll finll oo,

1 1
1= [m (x| <C | — +/ |TwN(Y)IdH(y) | = 0 asm — oo.
m
Q
Thus Case 1 does not occur.

Case 2. liminfy, _ o0 [Am|'/?xm| = 0.
We may assume that limy,;,_, oo [As | 121 %, = 0. By the representation formula (2.6) and (1.19),

1
U () = G — A) "o frn — Elogm / TN (y)dH (y)
02

(3.3)
1 .
- Efloglx — Y| T N(y)dH (y) + / VA (x — )T, N (y)dH ().
Q2 Q2
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By (3.2), sending m — oo for fixed x € €2 implies

0= lim log|i,|"? f TN ()dH ()| . (34)
m—0oQ0
Q

We substitute x = x,;, into (3.3). By (1.18),

sup |V " (xy —y)| <C, forallm> 1.
yeo2

1/2

Since |An|/?|x,| < 1 for sufficiently large m, log |x,,| < —log |A,,|'/? and

/ log [xm — yITN(AH (3)
Q

]

<c f T NIAH (y) — log [A]"/2 f TuNO)AH ()|
C Q

log

|7 | |x m|

‘IT N()|dH (y) + log |xp| /T N(y)dH (y)
Q

By (3.4) and the dominated convergence theorem,

-lkl»—‘

C 1
=l (om)| = — = —log | '/ fT N(y)dH (y) +Cf|T N()|dH (y)
Q

—0 asm — oo.

We obtained a contradiction. Thus Case 2 does not occur.
We conclude that both Case 1 and Case 2 do not occur. The proof is now complete. O

Proof of Theorem 1.3. For f € L3°, we take a sequence {f,;} C CZ%, satisfying (2.3) by
Lemma 2.2 (i). Since |)\| ||R(k)fm||Lm < C||f]lLe for all m > 1 and R(A) f;, converges to
R(%) f locally uniformly in © by Lemma 2.2 (ii), the limit satisfies the desired estimate. Hence
the assertion (i) holds. The assertion (ii) follows from the Dunford integral of the resolvent by
using (1.11). O

Remarks 3.3. (i) Besides the estimate (1.12), we obtain estimates for spatial derivatives,

IVS(©)vollL + || V2S@)vol | < Cllvollz, =1, woe LY. (3.5

This follows from (1.12) and the finite time estimate '/2[[VS()uol 1 + 1l V2S (ol 1 =
Cllvo||L~ for 0 <t < T [4].
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(ii) For n > 2 and vg € LS°, Lemma 2.5 implies that

S(t)vg — 0 locally uniformly in  as t — oo. (3.6)

In fact, suppose that (3.6) were false. Then, there exists a sequence {t,} such that #,, — oo
and (3.6) does not hold. By (1.12), (3.5) and choosing a subsequence (still denoted by {¢,,})
v (1) = S(t 4 t,,)vo converges to a limit v locally uniformly in Q x [0, 00). Since the limit v is
bounded and independent of ¢, v =0 by Lemma 2.5 and S(t,,)vg — 0 locally uniformly in €.
This is a contradiction.

(iii) For n > 3 and vg € LZ°,
S(t)vp — v locally uniformly in Q as t — oo, 3.7

for some solution v of the stationary Stokes equations (1.13). Since any bounded solutions of
(1.13) for n > 3 must be asymptotically constant as |x| — oo by Remark 2.6, S(#)vg is asymp-
totically constant as  — oo and |x| — oo for any bounded initial data vg € L°.
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