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Abstract

We prove that the Stokes semigroup is a bounded analytic semigroup on L∞
σ of angle π/2 for two-

dimensional exterior domains. This result is an end point case of the Lp-boundedness of the semigroup for 
p ∈ (1, ∞), established by Borchers and Varnhorn (1993). The proof is based on the non-existence result 
of bounded steady flows (the Stokes paradox) and some asymptotic formula for the net force of the Stokes 
resolvent.
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1. Introduction

We consider the Stokes equations:

∂tv − �v + ∇q = 0, div v = 0 in � × (0,∞),

v = 0 on ∂� × (0,∞),

v = v0 on � × {t = 0},
(1.1)
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for exterior domains � ⊂Rn, n ≥ 2. It is well known that the solution operator (called the Stokes 
semigroup)

S(t) : v0 �−→ v(·, t),

forms an analytic semigroup on Lp
σ for p ∈ (1, ∞), of angle π/2 [41], [21], i.e. S(t)v0 is a 

holomorphic function in the half plane {Re t > 0} on Lp
σ . Here, Lp

σ denotes the Lp-closure 
of C∞

c,σ , the space of all smooth solenoidal vector fields with compact support in �. The Stokes 
semigroup S(t) is defined by the Dunford integral of the resolvent of the Stokes operator A = P�

for the Helmholtz projection operator P : Lp −→ L
p
σ [16], [35], [40]. See, e.g. [29] for analytic 

semigroups.
We say that an analytic semigroup on a Banach space is a bounded analytic semigroup of 

angle π/2 if the semigroup is bounded in the sector �θ = {t ∈ C\{0} | | arg t | < θ} for each 
θ ∈ (0, π/2). See, e.g. [6, Definition 3.7.3]. The boundedness in the sector implies the bounds on 
the positive real line

||S(t)|| ≤ C, ||AS(t)|| ≤ C

t
, t > 0, (1.2)

where || · || denotes an operator norm on a Banach space and A is a generator. The estimates 
(1.2) are important to study large time behavior of solutions to (1.1). In terms of the resolvent, 
the boundedness of S(t) of angle π/2 is equivalent to the estimate

||(λ − A)−1|| ≤ C

|λ| , λ ∈ �θ+π/2. (1.3)

When � is bounded, the point λ = 0 belongs to the resolvent set of A = P� and the Stokes 
semigroup is a bounded analytic semigroup on Lp

σ of angle π/2 for p ∈ (1, ∞). For a half space, 
the boundedness of the semigroup follows from explicit solution formulas [34], [44], [8].

The boundedness of the Stokes semigroup on Lp
σ for p ∈ (1, ∞) has been established for 

exterior domains in Rn for n ≥ 2. For n ≥ 3, the boundedness of S(t) on Lp
σ is proved in [10]

based on the resolvent estimate

|λ|||v||Lp + |λ|1/2||∇v||Lp + ||∇2v||Lp ≤ C||f ||Lp , 1 < p <
n

2
, (1.4)

for v = (λ − A)−1f and λ ∈ �θ+π/2 ∪ {0}. The estimate (1.4) implies (1.3) for p ∈ (1, n/2) and 
the case p ∈ [n/2, ∞) follows from a duality. Due to the restriction on p, the two-dimensional 
case is more involved. Indeed, the estimate ||∇2v||Lp ≤ C||Av||Lp for p ∈ [n/2, ∞) does not 
hold [9]. For n = 2, the boundedness of the Stokes semigroup on Lp

σ is proved in [11] based on 
layer potentials for the Stokes resolvent.

Recently, the case p = ∞ has been developed. When � is a half space, S(t) forms a bounded 
analytic semigroup on L∞

σ of angle π/2 [14], [42]. For a half space and domains with compact 
boundaries, we define L∞

σ by

L∞
σ (�) =

{
f ∈ L∞(�)

∣∣∣ div f = 0 in �, f · N = 0 on ∂�
}

.
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Here, N denotes the unit outward normal vector field on ∂�. Since S(t) is bounded on L∞
σ , the 

associated generator A = A∞ is also defined for p = ∞. For bounded domains [3] and exterior 
domains [4], analyticity of the semigroup on L∞

σ follows from the a priori estimate

||v||L∞ + t1/2||∇v||L∞ + t ||∇2v||L∞ + t ||∂tv||L∞ + t ||∇q||L∞ ≤ C||v0||L∞ , (1.5)

for v = S(t)v0 and t ≤ T . The estimate (1.5) is proved by a blow-up argument and implies that 
S(t) is analytic on L∞

σ . Moreover, by the resolvent estimates on L∞
σ [5], S(t) is analytic on L∞

σ

of angle π/2. When � is bounded, S(t) is a bounded analytic semigroup on L∞
σ of angle π/2.

In this paper, we consider the boundedness of the Stokes semigroup on L∞
σ for exterior do-

mains in Rn for n ≥ 2. For the Laplace operator or uniformly elliptic operators, a standard 
approach to prove large time L∞-estimates of a semigroup is to use a Gaussian upper bound 
for a complex time heat kernel. See [13, Chapter 3]. However, a kernel of the Stokes semigroup 
does not satisfy a Gaussian bound since S(t) is unbounded on L1. See [14], [37] for a half space. 
Even for exterior domains, S(t) is not bounded on L1 unless the net force vanishes [28], [22]. 
It seems no general method to estimate the L∞-norm of a semigroup for all time without a 
Gaussian bound.

There is a work by Maremonti [31] who proved the estimate

||S(t)v0||L∞ ≤ C||v0||L∞ , t > 0, (1.6)

for exterior domains and n ≥ 3 based on the finite time estimate in [3]. Subsequently, Hieber and 
Maremonti [23] proved the estimate t ||AS(t)v0||L∞ ≤ C||v0||L∞ for t > 0 and the results are 
extended in [7] for complex time t ∈ �θ and θ ∈ (0, π/2) based on the approach in [31]. The 
method in [31] seems a perturbation from the heat equation in Rn and excludes the case n = 2.

In the previous work [2], the author studied large time L∞-estimates of the Stokes semigroup 
for n ≥ 2 based on a Liouville theorem for the Stokes equations introduced by Jia, Seregin and 
Šverák [24], [25]. Liouville theorems are important to study regularity of solutions. See [27], 
[39] for Liouville theorems of the Navier-Stokes equations. They are also related with large time 
behavior. Following [24], [25], we say that v ∈ L1

loc(� × (−∞, 0]) is an ancient solution to the 
Stokes equations (1.1) if div v = 0 in � × (−∞, 0), v · N = 0 on ∂� × (−∞, 0) and

0∫
−∞

∫
�

v · (∂tϕ + �ϕ)dxdt = 0,

for all ϕ ∈ C
2,1
c (� × (−∞, 0]) satisfying div ϕ = 0 in � × (−∞, 0) and ϕ = 0 on ∂� ×

(−∞, 0) ∪ � × {t = 0}. The conditions div v = 0 and v · N = 0 are understood in the sense 
that

∫
�

v · ∇�dx = 0, a.e. t ∈ (−∞,0),

for all � ∈ C1
c (�). Liouville theorems for the Stokes equations have been established in [24] for 

Rn, Rn+ and bounded domains. Among others, it is proved in [24] for exterior domains in Rn for 
n ≥ 3 that bounded ancient solutions v ∈ L∞(� × (−∞, 0)) must satisfy
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v(x, t) − v∞(t) = O(|x|−n+2) as |x| → ∞,

for some constant v∞(t). Since bounded steady flows exist for n ≥ 3 [9], bounded ancient solu-
tions are non-trivial. If in addition some spatial decay condition is assumed, we can exclude such 
solutions.

Theorem 1.1 (Liouville theorem on Lp [2]). Let � be an exterior domain with C3-boundary in 
Rn, n ≥ 2. Let v be an ancient solution to the Stokes equations (1.1). Assume that

v ∈ L∞(−∞,0;Lp) for p ∈ (1,∞).

Then, v ≡ 0.

This Liouville property is based on the fact that S(t) is a bounded analytic semigroup on 
L

p
σ . Since ancient solutions are written as v(·, t) = S(t + T )v(·, −T ) for t ≥ −T and T > 0, 

the estimate (1.2) and sending T → ∞ reduce the proof to the non-existence of steady flows 
Ker A = {0} on Lp

σ . This approach is available for linear autonomous systems. We note that 
for the non-linear problem Liouville properties are studied via the large time behavior to a non-
autonomous system [38]. See [25] for a Liouville theorem of the Stokes flow on L∞ based on a 
duality argument.

Theorem 1.1 is used to prove the large time L∞-estimate (1.6). By the representation formula 
for v = S(t)v0 [36], we have

v(x, t) =
∫
�

�(x − y, t)v0(y)dy +
t∫

0

∫
∂�

V (x − y, t − s)(T N)(y, s)dH(y)ds. (1.7)

Here, T = ∇v + t∇v − qI is the stress tensor with the identity matrix I and V = (Vij ) is the 
Oseen tensor

Vij (x, t) = δij�(x, t) + ∂i∂j

∫
Rn

E(x − y)�(y, t)dy,

defined by the heat kernel �(x, t) = (4πt)−n/2e−|x|2/4t and the fundamental solutions of the 
Laplace equation E, i.e.

E(x) =

⎧⎪⎨
⎪⎩

1

n(n − 2)α(n)

1

|x|n−2 , n ≥ 3,

− 1

2π
log |x|, n = 2,

where α(n) denotes the volume of the unit ball in Rn.
For n ≥ 3, the formula (1.7) describes the asymptotic behavior of bounded Stokes flows as 

|x| → ∞ and t → ∞. Since the Oseen tensor satisfies

|V (x, t)| ≤ C

(|x| + t1/2)n
, x ∈Rn, t > 0,
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we have

∣∣∣∣∣∣v(x, t) −
∫
�

�(x − y, t)v0(y)dy

∣∣∣∣∣∣ ≤ C

|x|n−2 sup
0<s≤t

||T ||L∞(∂�)(s), |x| ≥ R, t > 0, (1.8)

for some constant R > 0. The right-hand side is decaying as |x| → ∞ uniformly for all t > 0. 
The large time estimate (1.6) for n ≥ 3 is deduced in [2] by using the asymptotic formula (1.8)
and the Liouville theorem (Theorem 1.1) by a contradiction argument. Indeed, if (1.6) were false, 
a sequence of solutions generates a non-trivial ancient solution satisfying |v(x, t)| ≤ C|x|−n+2

for |x| ≥ R, t ∈ (−∞, 0] and the Liouville theorem yields a contradiction. The boundedness of 
S(t)v0 in the sector �θ follows the same argument on the half line {arg t = θ}.

For n = 2, there is a restriction on the net force since the right-hand side of (1.8) might diverge. 
Indeed, we have

∣∣∣∣∣∣v(x, t) −
∫
�

�(x − y, t)v0(y)dy −
t∫

0

V (x, t − s)F (s)ds

∣∣∣∣∣∣
≤ C

|x| sup
0<s≤t

||T ||L∞(∂�)(s), |x| ≥ R, t > 0,

(1.9)

with the net force

F(s) =
∫
∂�

T N(y, s)dH(y).

Since | ∫ t

0 V (x, s)ds| � log (1 + t/|x|2), the decay as |x| → ∞ of the third term in (1.9) is not 
uniform for t > 0 in contrast to (1.8) for n ≥ 3. If the net force vanishes, the situation is the same 
as n = 3 and we are able to prove (1.6) for t ∈ �θ . For example, when �c is a disk and initial data 
has some discrete symmetry (called Cm-covariance), the net force vanishes [22], i.e. F(s) ≡ 0. 
The following result includes the case n = 2.

Theorem 1.2 (Boundedness on L∞ for n ≥ 3 and n = 2 with zero net force [2]). (i) For n ≥ 3, 
the Stokes semigroup is a bounded analytic semigroup on L∞

σ of angle π/2.

(ii) For n=2, the estimate (1.6) holds for t ∈ �θ and v0 ∈ L∞
σ for which the net force vanishes 

(e.g. Cm-covariant vector fields when �c is a disk.)

In this paper, we prove that the assertion (ii) of Theorem 1.2 holds for any bounded initial 
data v0 ∈ L∞

σ . Perhaps the most important vector fields with non-vanishing net force are asymp-
totically constant solutions of the steady Navier-Stokes flows as |x| → ∞ such as D-solutions 
or PR-solutions. See [17]. They are bounded and with finite Dirichlet integral. The situation is 
subtle even for bounded initial data with finite Dirichlet integral for which the fractional power 
estimate

||∇v||L2 = ||(−A)1/2v||L2 ,
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is available. This estimate holds only for n = 2, i.e. the estimate ||∇v||Lp ≤ C||(−A)1/2v||Lp for 
p ∈ [n, ∞) and n ≥ 3 does not hold [9]. The fractional power estimate implies a uniform bound 
in the homogeneous L2-Sobolev space Ḣ 1 and S(t)v0 is merely bounded in BMO even if v0 is 
with finite Dirichlet integral, i.e.

[S(t)v0]BMO ≤ C||v0||L∞∩Ḣ 1, t > 0.

To prove the large time L∞-estimate (1.6) for n = 2 and any bounded initial data v0 ∈ L∞
σ , we 

analyze the corresponding Stokes resolvent problem:

λv − �v + ∇q = f, div v = 0 in �,

v = 0 on ∂�.
(1.10)

Existence and uniqueness of the problem (1.10) for f ∈ L∞
σ have been studied in [5]. In particu-

lar, the solution operator

R(λ) : f �−→ v(·, λ),

is a bounded operator on L∞
σ for λ ∈ �θ+π/2 and for each δ > 0, the estimate ||R(λ)|| ≤ Cδ|λ|−1

holds for |λ| ≥ δ with the operator norm || · || on L∞
σ . The operator R(λ) is resolvent of some 

closed operator A = A∞ on L∞
σ , i.e. R(λ) = (λ − A)−1. The behavior of R(λ) as λ → 0 corre-

sponds to the behavior of S(t) as t → ∞. Instead of proving the boundedness of S(t) in �θ , we 
shall prove the equivalent estimate (1.3) with the operator norm on L∞

σ . The main result of this 
paper is the following:

Theorem 1.3 (Boundedness on L∞ for n = 2). Let � be an exterior domain with C3-boundary 
in R2.

(i) For θ ∈ (0, π/2), there exists a constant C such that

||R(λ)f ||L∞ ≤ C

|λ| ||f ||L∞ , λ ∈ �θ+π/2, f ∈ L∞
σ . (1.11)

(ii) The Stokes semigroup is a bounded analytic semigroup on L∞
σ of angle π/2.

There is a difference on the large time behavior for n = 2 and n ≥ 3. By Theorems 1.2 and 
1.3, we obtain

||S(t)v0||L∞ + t ||AS(t)v0||L∞ ≤ C||v0||L∞ , t > 0, v0 ∈ L∞
σ , (1.12)

for exterior domains in Rn for n ≥ 2. The estimate (1.12) implies that S(t)v0 is uniformly 
bounded and approaches a steady flow as t → ∞. For n = 2, any bounded solutions of

−�v + ∇q = 0, div v = 0 in �,

v = 0 on ∂�,
(1.13)
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must be trivial (the Stokes paradox) [12] and therefore S(t)v0 converges to zero locally uniformly 
in � as t → ∞. On the other hand, for n ≥ 3, bounded steady flows of (1.13) exist and must be 
asymptotically constant as |x| → ∞. Hence the solution S(t)v0 converges to such a stationary 
solution as t → ∞. See Remarks 3.3 for rigorous proofs.

If initial data v0 is decaying as |x| → ∞, S(t)v0 vanishes as t → ∞ for all dimensions n ≥ 2, 
i.e. for v0 ∈ C0,σ , S(t)v0 uniformly converges to zero in � as t → ∞. Here, C0,σ is the L∞-
closure of C∞

c,σ , characterized by

C0,σ (�) =
{
f ∈ C(�)

∣∣∣∣ div f = 0 in �, f = 0 on ∂�, lim|x|→∞f (x) = 0

}
.

See [4]. Since S(t)v0 vanishes as t → ∞ for v0 ∈ C∞
c,σ , this property follows from the density in 

C0,σ .
There is some issue on the large time behavior of Navier-Stokes flows. By a perturbation 

argument from the Stokes flow, we are able to construct a unique global-in-time solution of the 
two-dimensional Navier-Stokes equations for bounded initial data with finite Dirichlet integral 
[1] satisfying the integral form

u(t) = S(t)u0 −
t∫

0

S(t − s)Pu · ∇u(s)ds. (1.14)

This solution is asymptotically constant if u0 is, cf. [32]. The large time behavior of this solution 
is an interesting question since the space L∞ ∩ Ḣ 1 includes steady Navier-Stokes flows. See 
[30] for stability of PR-solutions. It is a question whether solutions of (1.14) remain bounded 
for all time. The estimate (1.12) implies that the Stokes flow remains bounded for all time and 
converges to zero locally uniformly in � as t → ∞ for any bounded initial data.

The question is non-trivial even for the Cauchy problem for which solutions remain bounded 
in Ḣ 1 by an a priori estimate of vorticity. This solution is merely bounded in BMO. But a uniform 
L∞-bound seems unknown. The problem has been studied for merely bounded initial data u0 ∈
L∞

σ and a polynomial growth bound on the L∞-norm is derived in [45]. It is known that global-
in-time solutions satisfy the upper bound ||u||L∞ = O(t) as t → ∞ [19]. See also [20].

We sketch the proof of Theorem 1.3. Our proof is based on the representation formula for the 
Stokes resolvent v = R(λ)f :

v(x) =
∫
�

Eλ(x − y)f (y)dy +
∫
∂�

V λ(x − y)T N(y)dH(y), (1.15)

for T = ∇v + t∇v − qI . Here,

Eλ(x) = 1

2π
K0(

√
λ|x|) (1.16)

is the kernel of the resolvent (λ −�)−1 and Km(κ) is the modified Bessel function of the second 
kind of order m. For λ ∈ �θ+π/2, 

√
λ denotes the square-root of λ with positive real part, i.e. 

Re
√

λ > 0. The tensor V λ = (V λ
ij ) is the kernel of λ(λ − �)−1P for the Helmholtz projection 

operator P = I + ∇(−�)−1div. This tensor has the explicit form [11, p. 281],
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V λ
ij (x) = 1

2π

(
δij e1

(√
λ|x|

)
+ xixj

|x|2 e2

(√
λ|x|

))
, (1.17)

where

e1(κ) = K0(κ) + κ−1K1(κ) − κ−2,

e2(κ) = −K0(κ) − 2κ−1K1(κ) + 2κ−2, κ > 0.

The function e1(κ) has a logarithmic singularity as κ → 0 and decaying as κ → ∞. The function 
e2(κ) is bounded for κ > 0, i.e.

∣∣∣∣e1(κ) + 1

2
logκ

∣∣∣∣ + |e2(κ)| ≤ C, 0 < κ ≤ d,

|e1(κ)| + |e2(κ)| ≤ Cκ−2, κ ≥ d,

(1.18)

for any d > 0 with some constant C. Hence

V λ(x) = − 1

4π

(
log

√
λ + log |x|

)
I + Ṽ λ(x), (1.19)

with a bounded function Ṽ λ for |λ|1/2|x| ≤ d . For |λ|1/2|x| ≥ d , V λ is bounded.
We shall suppose that λv is uniformly bounded on L∞ and observe the asymptotic behavior 

of |λ| ||v||L∞ as λ → 0. We take a point xλ ∈ � such that

||v||L∞ ≈ |v(xλ)|.

The behavior of λv as λ → 0 is related with the behavior of f as |x| → ∞. For simplicity of the 
explanation, we shall consider positive λ > 0 and asymptotically constant vector fields f → f∞
as |x| → ∞ for which λ(λ − �)−1f → f∞ as λ → 0.

We first observe that λv converges to zero locally uniformly in � as λ → 0. Indeed, since 
u = λv is uniformly bounded on L∞ and satisfies

λu − �u + ∇p = λf, div u = 0 in �,

u = 0 on ∂�,
(1.20)

for p = λq , by elliptic regularity, u converges to a limit locally uniformly in � together with ∇u

and p. This pressure p is unique up to constant. Since any bounded solutions of (1.13) must be 
trivial by the Stokes paradox, it turns out that u, ∇u and p converge to zero locally uniformly in 
�. This in particular implies that the stress tensor T = ∇u + t∇u −pI vanishes on ∂� as λ → 0.

The behavior of |λ| ||v||L∞ = |u(xλ)| depends on that of the points {xλ}. If the points {xλ}
remain bounded, u(xλ) converges to zero as λ → 0, i.e. limλ→0 |u(xλ)| = 0. If the points {xλ} di-
verge, according to the logarithmic singularity of e1(κ) as κ → 0, we consider two cases whether 
lim infλ→0 |λ|1/2|xλ| > 0 or lim infλ→0 |λ|1/2|xλ| = 0. If lim infλ→0 |λ|1/2|xλ| > 0, the kernel 
V λ(xλ) remains bounded by (1.18). Substituting x = xλ into
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u(x) = λ(λ − �)−1f +
∫
∂�

V λ(x − y)T N(y)dH(y), (1.21)

and sending λ → 0 implies lim supλ→0 |u(xλ)| ≤ ||f ||L∞ .
If lim infλ→0 |λ|1/2|xλ| = 0, the kernel V λ(xλ) can be singular as λ → 0. By (1.19),

u(x) = λ(λ − �)−1f − 1

4π
log

√
λ

∫
∂�

T N(y)dH(y)

− 1

4π

∫
∂�

log |x − y|T N(y)dH(y) +
∫
∂�

Ṽ λ(x − y)T N(y)dH(y).

(1.22)

For fixed x ∈ �, sending λ → 0 implies the asymptotic formula for the net force:

0 = f∞ − 1

4π
lim
λ→0

log
√

λ

∫
∂�

T N(y)dH(y). (1.23)

The formula (1.23) has been derived for the Oseen approximation by Finn and Smith [15]. It 
implies that the net force is asymptotically pure drag, i.e. the direction of the net force is asymp-
totically same as the uniform flow f∞ as λ → 0. By choosing a subsequence, we may assume 
that |λ|1/2|xλ| → 0. We substitute x = xλ into (1.22) and send λ → 0. Since |xλ| ≤ |λ|−1/2 for 
small λ > 0, we have

1

4π

∣∣∣∣∣∣
∫
∂�

log |xλ − y|T N(y)dH(y)

∣∣∣∣∣∣ ≤ − 1

4π
log |λ|1/2

∣∣∣∣∣∣
∫
∂�

T N(y)dH(y)

∣∣∣∣∣∣ + o(1) as λ → 0.

By (1.23), lim supλ→0 |u(xλ)| ≤ ||f ||L∞ . Hence in all cases, the sup-norm of λv = u is controlled 
by that of f .

Based on this observation, we apply a contradiction argument to obtain the desired estimate 
(1.11). We suppose that (1.11) were false and obtain sequences {fm} and {λm} ⊂ �θ+π/2 such 
that

sup
λ∈�θ+π/2

|λ| ||R(λ)fm||L∞ = 1, ||fm||L∞ <
1

m
,

|λm| ||R(λm)fm||L∞ ≥ 1

2
, λm → 0.

We set um = λmR(λm)fm and take a point xm ∈ � such that |um(xm)| ≥ 1/4. Since um satisfies 
the Stokes resolvent equations (1.20) for λm with the associated pressure pm, um converges 
to zero locally uniformly in � together with ∇um and pm. Then, there are two cases whether 
lim infm→∞ |λm|1/2|xm| > 0 or lim infm→∞ |λm|1/2|xm| = 0. Since ||fm||L∞ → 0, in all cases 
we will see that 1/4 ≤ |um(xm)| → 0 as m → ∞. This is a contradiction.

This paper is organized as follows. In Section 2, we prove the representation formula (1.15)
for solutions of (1.10) for bounded data f ∈ L∞

σ and non-existence of bounded solutions of 
(1.13). In Section 3, we prove Theorem 1.3. After the proof of Theorem 1.3, we note large time 
behavior of S(t)v0 for v0 ∈ L∞.
σ
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2. Stokes resolvent on L∞
σ

We recall some existence and uniqueness result for the Stokes resolvent equations (1.10) for 
bounded data f ∈ L∞

σ . To state a result, let Lp

ul(�) denote the uniformly local Lp-space in �

for p ∈ (1, ∞) and W 2,p

ul (�) denote the space of all uniformly local Lp-functions up to second 
orders. Let L∞

d (�) denote the space of all functions f ∈ L1
loc(�) such that df ∈ L∞(�) with 

the distance function d(x) = infy∈∂� |x − y|.

Lemma 2.1 (Resolvent estimates for large λ). (i) For p > 2, δ > 0 and θ ∈ (0, π/2), there exists 
a constant C such that for f ∈ L∞

σ and λ ∈ �θ+π/2 satisfying |λ| ≥ δ, there exists a unique 
solution (v, ∇q) ∈ W

2,p
ul (�) × (L

p
ul(�) ∩ L∞

d (�)) of (1.10) satisfying

|λ|||v||L∞ + |λ|1/2||∇v||L∞ + |λ|1/p sup
x∈�

{
||∇2v||Lp(�

x,|λ|−1/2 ) + ||∇q||Lp(�
x,|λ|−1/2 )

}

≤ C||f ||L∞ , (2.1)

for �x,r = � ∩ B(x, r), where B(x, r) denotes an open ball centered at x with radius r .

(ii) The solution operator R(λ) : f �−→ v is a bounded operator on L∞
σ and satisfies

||R(λ)|| ≤ C

|λ| , λ ∈ �θ+π/2, |λ| ≥ δ, (2.2)

with the constant C depending on δ, where || · || denotes the operator norm on L∞
σ .

Proof. See [5, Theorems 1.1 and 1.3]. �
The a priori estimate (2.1) is obtained by applying the localization technique of Masuda [33]

and Stewart [43] by using the L∞-estimate of the pressure. See (2.5) below. The uniqueness 
follows the same argument. The existence is based on the following approximation lemma for 
f ∈ L∞

σ .

Lemma 2.2 (Approximation). (i) There exists a constant C such that for f ∈ L∞
σ there exists a 

sequence {fm} ⊂ C∞
c,σ such that

||fm||L∞ ≤ C||f ||L∞

fm → f a.e. in � as m → ∞.
(2.3)

(ii) The resolvent R(λ)fm converges to R(λ)f locally uniformly in � as m → ∞ for each λ ∈
�θ+π/2.

Proof. The assertion (i) is proved in [4, Lemma 5.1] by using the Bogovskiı̆ operator. Since 
R(λ)fm is resolvent of the Stokes operator on Lp

σ , i.e. R(λ)fm = (λ − A)−1fm for A = P�, the 
assertion (ii) follows by applying the a priori estimate (2.1) and uniqueness of (1.10) [5]. �
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Remarks 2.3. (i) The associated pressure q of the problem (1.10) is a solution of the Neumann 
problem

−�q = 0 in �,

N · ∇q = −N · ∇⊥ω on ∂�,
(2.4)

for ω = ∂1v
2 − ∂2v

1, v = t (v1, v2) and ∇⊥ = t (∂2, −∂1). Since −�v = ∇⊥ω, this boundary 
condition follows by taking the normal trace of (1.10). The problem (2.4) has a unique solution 
satisfying

sup
x∈�

d(x)|∇q(x)| ≤ C||ω||L∞(∂�), (2.5)

[3], [4], [26] and by using the solution operator K : ω �−→ ∇q , the associated pressure gradient 
is represented by ∇q = Kω for v = R(λ)f and f ∈ L∞

σ .

(ii) The operator R(λ) is pseudo-resolvent on L∞
σ with the trivial kernel, i.e. Ker R(λ) = {0}. 

Indeed, if v = R(λ)f = 0, we have ∇q = Kω = 0 and f = 0. Hence by the open mapping 
theorem, there exists a closed operator A such that R(λ) = (λ − A)−1. We call A the Stokes 
operator on L∞

σ .

We shall prove the representation formula (1.15) for solutions of (1.10) with the kernels (1.16)
and (1.17).

Lemma 2.4 (Representation formula). The solution v = R(λ)f and ∇q = Kω for λ ∈ �θ+π/2
and f ∈ L∞

σ is represented by

v(x) =
∫
�

Eλ(x − y)f (y)dy +
∫
∂�

V λ(x − y)T N(y)dH(y), x ∈ �, (2.6)

for T = ∇v + t∇v − qI .

Proof. We denote by f the zero extension of f to R2\�. Observe that (v, q) is a weak solution 
of the problem

λv − �v + ∇q = f + μ, div v = 0 in R2, (2.7)

for a measure μ satisfying

(μ,ϕ) =
∫
∂�

T N(y) · ϕ(y)dH(y), ϕ ∈ C0(R
2), (2.8)

where C0(R2) denotes the space of all continuous functions in R2 vanishing at space infinity and 
(·, ·) denotes the pairing between C0(R2) and its adjoint space. Indeed, multiplying ϕ ∈ C∞

c (R2)

by (1.10) and integration by parts imply (2.7) in a weak sense. The formula (2.6) formally follows 
by multiplying (λ − �)−1P by (2.7). We set v1 = (λ − �)−1f and v2 = v − v1 to see that
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λv2 − �v2 + ∇q = μ, div v2 = 0 in R2.

By the mollifications v2,ε = v2 ∗ ηε , qε = q ∗ ηε and με = μ ∗ ηε with the standard mollifier ηε, 
(v2,ε, qε) satisfies the above problem for με ∈ Lp for p ∈ [1, ∞]. By multiplying (λ − �)−1P
by the equation, we have

v2,ε(x) = (λ − �)−1Pμε =
∫

R2

V λ(x − y)με(y)dy = ηε ∗
⎛
⎝∫

∂�

V λ(x − y)T N(y)dH(y)

⎞
⎠ .

Sending ε → 0 yields (2.6). This completes the proof. �
The Stokes paradox follows a similar argument using the fundamental tensor of the Stokes 

equations. The following result is due to Chang and Finn [12, Theorem 3].

Lemma 2.5 (Stokes paradox). Let (v, ∇q) ∈ W
2,p
loc (�) × L

p
loc(�), p ∈ (1, ∞), satisfy (1.13). 

Assume that

v(x) = o(log |x|) as |x| → ∞. (2.9)

Then, v ≡ 0 and ∇q ≡ 0.

Proof. We give a proof for completeness. Observe that the zero extension (v, q) is a solution of 
the problem

−�v + ∇q = μ, div v = 0 in R2, (2.10)

for a measure μ defined by (2.8). By the fundamental tensor of the Stokes equations V = (Vij )

and Q = (Qj ) [18, p.239],

Vij (x) = 1

4π

(
−δij log |x| + xixj

|x|2
)

, Qj (x) = 1

2π

xj

|x|2 ,

we set (ṽ, q̃) by

ṽ(x) =
∫
∂�

V (x − y)T N(y)dH(y), q̃(x) =
∫
∂�

Q(x − y) · T N(y)dH(y).

The functions ṽ and q̃ are locally integrable in R2 and ṽ = O(log |x|), ∇ṽ = O(|x|−1) as |x| →
∞. Observe that u = v − ṽ and p = q − q̃ is a weak solution of

−�u + ∇p = 0, div u = 0 in R2. (2.11)

Since u and p are locally integrable in R2, by mollification we may assume that they are smooth 
in R2. Since ω = ∂1u

2 −∂2u
1 is bounded in R2 and satisfies −�ω = 0 in R2, ω is constant by the 
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Liouville theorem. By −�u = 0 in R2 and u = O(log |x|) as |x| → ∞, u and p are constants. 
Hence by shifting the pressure up to constant

v(x) = v∞ +
∫
∂�

V (x − y)T N(y)dH(y), q(x) =
∫
∂�

Q(x − y) · T N(y)dH(y), (2.12)

for some constant v∞. This implies

v(x) = v∞ + V (x)

∫
∂�

T N(y)dH(y) + O(|x|−1),

q(x) = Q(x) ·
∫
∂�

T N(y)dH(y) + O(|x|−2) as |x| → ∞.

Since v = o(log |x|) as |x| → ∞, by dividing v by log |x| and sending |x| → ∞,

∫
∂�

T N(y)dH(y) = 0.

Hence v−v∞ = O(|x|−1) and ∇v, q = O(|x|−2) as |x| → ∞. By multiplying v−v∞ by (1.13)
and integration by parts in � ∩ B(0, R),

∫
�∩B(0,R)

|∇v|2dx =
∫

∂B(0,R)

(T N) · (v − v∞)dH(x) → 0 as R → ∞.

By v = 0 on ∂�, v ≡ 0 and ∇q ≡ 0 follow. This completes the proof. �
Remark 2.6. For n ≥ 3, the fundamental tensor of the Stokes equations (2.11) is V = (Vij ), 
Q = (Qj ) for

Vij (x) = 1

2n(n − 2)α(n)

(
δij

|x|n−2 + (n − 2)
xixj

|x|n
)

, Qj (x) = 1

nα(n)

xj

|x|n .

In the same way as the proof of Lemma 2.5, we see that any bounded solution v of (1.13) is of 
the form (2.12) for some constant v∞.

3. The resolvent estimate

We prove the estimate (1.11). By the approximation for f ∈ L∞
σ (Lemma 2.2), it suffices to 

show (1.11) for f ∈ C∞
c,σ .

Proposition 3.1.

sup
λ∈�

|λ| ||R(λ)f ||L∞ < ∞, f ∈ C∞
c,σ . (3.1)
θ+π/2
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Proof. Since C∞
c,σ ⊂ L

p
σ for p ∈ (1, ∞), R(λ)f = (λ − A)−1f for A = P� and the Helmholtz 

projection operator P . The domain D(A) = W 2,p ∩ W
1,p
0 ∩ L

p
σ is equipped with the graph-

norm and D(A) ⊂ W 2,p with continuous injection [21]. Here, W 2,p denotes the Sobolev space 
and W 1,p

0 denotes the space of all trace zero functions in W 1,p. By the Lp-resolvent estimate 
|λ| ||R(λ)f ||Lp ≤ C||f ||Lp [11] and the Sobolev embedding for p ∈ (2, ∞),

||R(λ)f ||L∞ ≤ C||R(λ)f ||W 2,p ≤ C′ (||R(λ)f ||Lp + ||AR(λ)f ||Lp) ≤ C′′
(

1

|λ| + 1

)
||f ||Lp .

Hence |λ| ||R(λ)f ||L∞ is bounded for |λ| ≤ 1. Since |λ| ||R(λ)f ||L∞ ≤ C||f ||L∞ for |λ| ≥ 1 by 
(2.2), (3.1) follows. �
Lemma 3.2. There exists a constant C such that (1.11) holds for f ∈ C∞

c,σ and λ ∈ �θ+π/2.

Proof. We argue by contradiction. Suppose that (1.11) were false. Then, for m ≥ 1 there exists 
f̃m ∈ C∞

c,σ such that

Mm = sup
λ∈�θ+π/2

|λ| ||R(λ)f̃m||L∞(λ) > m||f̃m||L∞ .

By setting fm = f̃m/Mm,

sup
λ∈�θ+π/2

|λ| ||R(λ)fm||L∞(λ) = 1, ||fm||L∞ <
1

m
.

We set vm = R(λ)fm and take a point λm ∈ �θ+π/2 such that

|λm| ||vm||L∞ ≥ 1

2
.

We may assume that λm → 0 by (2.2). Observe that um = λmvm satisfies

λmum − �um + ∇pm = λmfm, div um = 0 in �,

um = 0 on ∂�,

with some associated pressure pm. We take a point xm ∈ � such that

|um(xm)| ≥ 1

4
.

We normalize the pressure pm so that 
∫
∂�

pmdH(y) = 0. Since um − �um + ∇pm = λm(fm −
um) + um, applying the resolvent estimates (2.1) for p > 2 implies

||um||W 1,∞ + sup
x∈�

{
||∇2um||Lp(�∩B(x,1)) + ||∇pm||Lp(�∩B(x,1))

}

≤ C(||λm(fm − um)||L∞ + ||um||L∞)

≤ C′, for all m ≥ 1.
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Hence {um} is equi-continuous in �. By choosing a subsequence (still denoted by {um}), um

converges to a limit u locally uniformly in � together with ∇um and pm. Then the limit u is a 
bounded solution of

−�u + ∇p = 0, div u = 0 in �,

u = 0 on ∂�,

with the associated pressure p. Applying Lemma 2.5 implies that u ≡ 0 and ∇p ≡ 0. Since ∫
∂�

pdH(y) = 0, p ≡ 0. Hence we have

um → 0 locally uniformly in �, (3.2)

together with ∇um and pm. In particular, Tm = ∇um + t∇um − pmI → 0 uniformly on ∂� as 
m → ∞.

Suppose that lim supm→∞ |xm| < ∞. By choosing a subsequence, we may assume that {xm}
converges to some point in �. This implies that 1/4 ≤ |um(xm)| → 0, a contradiction. We 
may assume that lim supm→∞ |xm| = ∞. By choosing a subsequence, we may assume that 
limm→∞ |xm| = ∞. We consider two cases depending on whether |λm|1/2|xm| vanishes or not.

Case 1. lim infm→∞ |λm|1/2|xm| > 0.
We may assume that |λm|1/2|xm| ≥ d for some constant d > 0 by choosing a subsequence. By 

the representation formula (2.6),

um(x) = (λm − �)−1λmfm +
∫
∂�

V λm(x − y)TmN(y)dH(y).

By |λm|1/2|xm| ≥ d and (1.18),

sup
y∈∂�

|V λm(xm − y)| ≤ C, for all m ≥ 1.

By the L∞-estimate |λm| ||(λm − �)−1fm||L∞ ≤ C||fm||L∞ ,

1

4
≤ |um(xm)| ≤ C

⎛
⎝ 1

m
+

∫
∂�

|TmN(y)|dH(y)

⎞
⎠ → 0 as m → ∞.

Thus Case 1 does not occur.

Case 2. lim infm→∞ |λm|1/2|xm| = 0.
We may assume that limm→∞ |λm|1/2|xm| = 0. By the representation formula (2.6) and (1.19),

um(x) = (λm − �)−1λmfm − 1

4π
log

√
λm

∫
∂�

TmN(y)dH(y)

− 1

4π

∫
∂�

log |x − y|TmN(y)dH(y) +
∫
∂�

Ṽ λm(x − y)TmN(y)dH(y).

(3.3)
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By (3.2), sending m → ∞ for fixed x ∈ � implies

0 = lim
m→∞ log |λm|1/2

∣∣∣∣∣∣
∫
∂�

TmN(y)dH(y)

∣∣∣∣∣∣ . (3.4)

We substitute x = xm into (3.3). By (1.18),

sup
y∈∂�

|Ṽ λm(xm − y)| ≤ C, for all m ≥ 1.

Since |λm|1/2|xm| ≤ 1 for sufficiently large m, log |xm| ≤ − log |λm|1/2 and

∣∣∣∣∣∣
∫
∂�

log |xm − y|T N(y)dH(y)

∣∣∣∣∣∣

≤
∫
∂�

∣∣∣∣log

∣∣∣∣ xm

|xm| − y

|xm|
∣∣∣∣
∣∣∣∣ |TmN(y)|dH(y) + log |xm|

∣∣∣∣∣∣
∫
∂�

TmN(y)dH(y)

∣∣∣∣∣∣

≤ C

∫
∂�

|TmN(y)|dH(y) − log |λm|1/2

∣∣∣∣∣∣
∫
∂�

TmN(y)dH(y)

∣∣∣∣∣∣ .

By (3.4) and the dominated convergence theorem,

1

4
≤ |um(xm)| ≤ C

m
− 1

2π
log |λm|1/2

∣∣∣∣∣∣
∫
∂�

TmN(y)dH(y)

∣∣∣∣∣∣ + C

∫
∂�

|TmN(y)|dH(y)

→ 0 as m → ∞.

We obtained a contradiction. Thus Case 2 does not occur.
We conclude that both Case 1 and Case 2 do not occur. The proof is now complete. �

Proof of Theorem 1.3. For f ∈ L∞
σ , we take a sequence {fm} ⊂ C∞

c,σ satisfying (2.3) by 
Lemma 2.2 (i). Since |λ| ||R(λ)fm||L∞ ≤ C||f ||L∞ for all m ≥ 1 and R(λ)fm converges to 
R(λ)f locally uniformly in � by Lemma 2.2 (ii), the limit satisfies the desired estimate. Hence 
the assertion (i) holds. The assertion (ii) follows from the Dunford integral of the resolvent by 
using (1.11). �
Remarks 3.3. (i) Besides the estimate (1.12), we obtain estimates for spatial derivatives,

||∇S(t)v0||L∞ + ||∇2S(t)v0||L∞ ≤ C||v0||L∞ , t ≥ 1, v0 ∈ L∞
σ . (3.5)

This follows from (1.12) and the finite time estimate t1/2||∇S(t)v0||L∞ + t ||∇2S(t)v0||L∞ ≤
C||v0||L∞ for 0 < t ≤ T [4].
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(ii) For n ≥ 2 and v0 ∈ L∞
σ , Lemma 2.5 implies that

S(t)v0 → 0 locally uniformly in � as t → ∞. (3.6)

In fact, suppose that (3.6) were false. Then, there exists a sequence {tm} such that tm → ∞
and (3.6) does not hold. By (1.12), (3.5) and choosing a subsequence (still denoted by {tm}) 
vm(t) = S(t + tm)v0 converges to a limit v locally uniformly in � × [0, ∞). Since the limit v is 
bounded and independent of t , v ≡ 0 by Lemma 2.5 and S(tm)v0 → 0 locally uniformly in �. 
This is a contradiction.

(iii) For n ≥ 3 and v0 ∈ L∞
σ ,

S(t)v0 → v locally uniformly in � as t → ∞, (3.7)

for some solution v of the stationary Stokes equations (1.13). Since any bounded solutions of 
(1.13) for n ≥ 3 must be asymptotically constant as |x| → ∞ by Remark 2.6, S(t)v0 is asymp-
totically constant as t → ∞ and |x| → ∞ for any bounded initial data v0 ∈ L∞

σ .
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