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1. Introduction

Consider the control system
x=fx)+ugx), uel, ey

where f, g :R" — R”" are two analytic vector fields, and I/ is the set of measurable functions
u(-):R — [0, 1]. Given an initial condition x(0) = xo, and an admissible control u, we use
x(t; u, xp) to denote the solution of (1) at time 7.

For a subset of admissible controls V C U, let

R(;V,xp) := {x(t; V,X0): VE V},

that is, the reachable set at time ¢ > 0 using controls from V. An important problem in the
analysis of control systems can be stated as follows. Find conditions guaranteeing that

R(T;U,x0) =R(T;V, xp),

where V C U is some subset of “nice” controls. In other words, any point that can be reached
at time 7" using a control u € U can also be reached, at the same time, using a “nice” control
v € V. This property, sometimes referred to as reachability with nice controls, is important for
both theoretical and practical reasons.

The main result of this paper is that a certain Lie-algebraic condition implies

R(@t;U,x0) = R(t; PCy4, x0), VYt=0, VxgeR", 2)

where PC; C U is the set of piecewise constant controls with no more than j discontinuities on
their domain of definition. Note that (2) has an important practical application. It implies that
any point-to-point control problem is reduced to the problem of determining a (small) set of
parameters: the four switching times and the five control values between each two consecutive
switchings.

An interesting feature of (2) is that the bound on the number of discontinuities is uniform over
all + > 0 and all x¢ € R". In this respect, the result is global. Many other reachability with nice
controls results are local in the sense that either (1) they hold only for sufficiently small final
time T, or (2) the complexity of the set V increases with 7'. A typical example of case (2) is the
celebrated bang—bang theorem of linear control systems.

Theorem 1 (Bang—bang theorem [2—4]). Consider the system (1) with f(x) = Ax and g(x) = b.
Then, for any T > O there exists an integer j = j(T) such that

R(T;U,x0) = R(T; BBj,x0), VYxoeR".
Here BB C PC; is the set of bang—bang controls with no more than j discontinuities.

This is a local result in the sense that the number of required switches, j(7T), increases
with 7.!

1 An exception is when all the eigenvalues of the matrix A are real [3, Chapter 15].
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Our main result was motivated by an open problem on the stability analysis of switched sys-
tems with a nilpotent Lie algebra. We now briefly review the relevant issues.

1.1. Stability analysis of switched systems
Two vector fields f, f; give rise to the switched system
x=f,(x), 3)
where o : [0, 00) — {0, 1} is a piecewise constant function of time, called a switching signal.

We say that (3) is globally uniformly asymptotically stable (GUAS) if there exists a class KL
function? B such that for every initial condition x (0) every solution of (3) satisfies

()] < B(|x(0)

1), V0. @

The difficulty in analyzing the stability of (3) is that the switched system admits an infinite
number of solutions for each initial condition. It is well known that the global asymptotic stability
of the individual subsystems x = f; (x) is necessary but not sufficient for GUAS of the switched
system (3). An important problem is identifying conditions for the individual subsystems—
apart from the obviously necessary requirement as to their global asymptotic stability—which
guarantee GUAS of (3). This problem has received considerable attention in the literature; see
[5, Chapter 2], [6] for some available results.

For the special case of linear switched systems (that is, when f; = A;x, A; € R"*") deter-
mining a necessary and sufficient condition for GUAS is equivalent to solving one of the oldest
open problems in the theory of control: the problem of absolute stability (see, e.g., [7]). Pyat-
nitskiy and Rapoport [8] developed a variational approach, based on characterizing the “most
unstable” solution of the switched system, to tackle the absolute stability problem (for a survey
on the variational approach, see [9]). They applied the maximum principle to derive many power-
ful results on this worst-case solution [10]. For the case of second-order systems, it is possible to
solve their optimal control problem using dynamic programming techniques [11] (see also [9]).
This provides a necessary and sufficient condition for GUAS of switched linear systems in the
plane [12] (see also [13]).

Another promising approach for addressing the GUAS problem is based on studying the com-
mutation relations between the two vector fields using Lie-algebraic techniques. The Lie bracket
of two vector fields is another vector field defined by

afolx)
ox

af1(x)

0x

[fo. f11(x) == Solx) —

f1(x). )
The Lie-algebra spanned by f and g is

{(f gl :=span{f, g, [f. g [f.1f. 2l] [g.1f gl]....}

2 Recall that a function a : [0, 00) — [0, 00) is said to be of class K if it is continuous, strictly increasing, and «(0) = 0.
A function 8:[0, 00) x [0, 00) — [0, 00) is said to be of class KL if B(-, 1) is of class K for each fixed 7 > 0 and B(s, t)
decreases to 0 as t — oo for each fixed s > 0.
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where the dots indicate all iterated Lie brackets. We say that { f, g}14 is kth-order nilpotent if all
iterated Lie brackets containing k 4 1 terms vanish (and there exists a Lie bracket containing k
terms that does not vanish).

Gurvits [14] showed that first- and second-order nilpotency is a sufficient condition for GUAS
of the switched system. Liberzon, Hespanha and Morse [15] showed that a sufficient condition
for GUAS is that the Lie-algebra is solvable (see also [16]). This includes the special case of
nilpotent Lie-algebras (of any order).

Nonlinear switched systems are much less thoroughly understood. In particular, the methods
used to tackle nilpotent linear switched systems do not seem to apply. These issues are explained
in [1] where the question whether nilpotency implies GUAS for nonlinear switched systems is
posed as an open problem. Mancilla-Aguilar [17] showed that the answer is affirmative for the
case of first-order nilpotency (that is, when the vector fields commute).

It is well known that there is a strong connection between the maximum principle (MP) of op-
timal control and { f, g}14 (see, e.g., [3,18]). This suggests that the variational and Lie-algebraic
approaches are actually related. Indeed, Margaliot and Liberzon [19] showed that if { f, g}14 is
second-order nilpotent, then the worst-case solution of the switched system contains no more
than two switches. The proof is based on a Lie-algebraic analysis of the switching function
defined in the MP. In particular, this implies that second-order nilpotency implies GUAS for
nonlinear switched systems.

An analysis of the arguments in [19] shows that their approach cannot be used to address the
case of third-order nilpotency, that is, when

[fi[fj Ui £O]]) =0, Vi, jok, 1€ {0, 1) ©)

Our main result is that if { f, g}4 is third-order nilpotent then (2) holds. To prove this, we apply
a new approach based on (1) a product expansion for the Chen series derived by Sussmann [20];
and (2) a second-order MP (see, e.g., [21-23]).

Note that setting u =0 [u = 1] in (1) yields x = f(x) [* = f(x) + g(x)]. Hence, for fo= f
and f| = f + g, every trajectory of the switched system (3) is also a solution of (1). Using
this we derive, as a corollary of our main result, a new sufficient condition for the stability of
nonlinear switched systems.

The remainder of the paper is organized as follows. Our main result is stated in Section 2.
Section 3 reviews several known results that are used later on. These allow reducing the proof
to the analysis of time-optimal controls for a specific control system. Section 4 is devoted to the
analysis of the regularity properties of these time-optimal controls. The proof of our main result
is completed in Section 5. Section 6 demonstrates the ideas using an example. Section 7 contains
some concluding remarks.

2. Main result

Fix an arbitrary point xo € R". We use x (-; u, x¢) to denote the solution of the system (1) with
initial condition x (0) = x¢ corresponding to a control u € U/. Since the right-hand side of (1) is
bounded on every bounded ball in R”, there exists a largest time Tax € (0, oo] (that depends on
|x0|) such that x (-; u, x¢) is well defined for all u € ¢/ and all ¢ € [0, Tihax). We are now ready to
state our main result.
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Theorem 2. If { f, g}14 is third-order nilpotent then
R(l‘;u,x()):R(t;PC4,x0), vVt e [Oa Tmax)~

The next result will allow us to apply Theorem 2 to the stability analysis of (1). We say that
the control system (1) is GUAS if there exists a class JCL function 8 such that for any u € U

|x(t;u,x0)| < B(Ixol. 1), V¥1>0. )

In other words, the bound (7) holds for every solution of the control system.
For ¢ € [0, 1], we use x(t; ¢, xp) to denote the solution of (1) corresponding to the constant
control u(t) = c.

Proposition 1. Suppose that (1) there exists function B € KL such that for any ¢ € [0, 1]
|x(t; c, x0)| < B(Ixol. ), Vi =0 (8)
and (2) for any ty < Tmax there exists a finite integer d (that does not depend on t¢) such that
R(ty;U, x0) = R(tf; PCa, X0). 9
Then the control system (1) is GUAS.

Note that (8) implies in particular that for any fixed ¢ € [0, 1] the system x = f(x) 4+ cg(x)
is GAS.

Proof. Fix an arbitrary ¢y < Tyax. Consider the problem of finding a control u € U that maxi-
mizes J (u) := |x(tf) 2. Such a control exists, and we use u*, x* to denote an optimal control and
the corresponding trajectory, respectively. It follows from (9) that we may assume, without loss
of generality, that u* € PCy. The interval [0, ¢¢] is thus divided into a maximum of d + 1 subin-
tervals: [fo, 1), [t1, 1), ..., [ta, tay1], with to = 0 and 1411 =17, on each of which x* satisfies
X = f(x) +cjg(x) for some c; € [0, 1]. Using (8) yields

|x*@p)| <B(-- BBB(Ixol.11), .2 —11), 13 —t2 —11), ... Lag1 — ta — -+ — 11).

Lemma 2.2 in [17] implies that there exists 8 € KL such that

B(-—-BBBr.t), ta—11),13—t2—11),....tax1 —ta — - —11) < B(r, tag1)
forallr >0andallt; >0, >1#,...,t541 =1 +--- +t4. Hence,
lx* ()| < B(1xol, 17)- (10)

In view of the bound B(|xgl, ) < B(|xol,0) and the fact that xo and ¢y < Tyax were arbi-
trary, we conclude that x*(z) is bounded for all ¢ and so exists globally in time. In other words,
Timax = 00, and ¢ could be an arbitrary positive number. By the definition of x*, we conclude
that all solutions of (1) satisfy the bound (10). O
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Loosely speaking, Proposition 1 states that to obtain instability in a control system that
“switches” between GAS subsystems, we must never stop switching. Combining Theorem 2
and Proposition 1 yields the following.

Corollary 1. Suppose that (1) there exists a function p € KCL such that for any c € [0, 1]

|x(t: ¢, x0)| < B(Ix0l.1), V=0

and 2) { f, g}14 is third-order nilpotent. Then the control system (1) is GUAS, and, in particular,
the switched system (3) with fo= f and f{ = f + g is GUAS.

The remainder of this paper is devoted to the proof of Theorem 2.
3. Preliminaries

In this section, we review two results that will be used later on.
3.1. The Hall-Sussmann system

The first result shows that the study of a general third-order nilpotent system can be reduced
to the study of a specific third-order nilpotent system.

We use the notation exp(z f)(xo) for the solution at time ¢ of the differential equation x =

f(x), x(0) =xo.

Proposition 2. If { f, g}14 is third-order nilpotent, then the solution of (1) satisfies

x(t;u,x0) = exp(C1(1; u) f) o exp(Ca(t; u)g) o exp(C3(1; u)[ f . g1)
oexp(Ca(t; ) f . LS. g1]) o exp(Cs(t: w)[g. [ f, £1]) (x0), (1)
where the C;s are the solution of
C)y=p+ug(Ct)), €0 =0, (12)
with p=(1,0,0,0,0)7 and g = (0, 1, C, C?/2,C:C2)T.
Proof. Note that if { f, g}14 is third-order nilpotent, then the set of vector fields {f, g, [f, g],
[f.[f,g]l,[g,[f,gll} is a P. Hall basis of { f, g}14. Hence, Proposition 2 is a special case of

the main theorem in [20]. O

We refer to (12) as the Hall-Sussmann system.3 It is easy to see that its solutions C(¢; u) € R
exist for any u € U and all + € R. A direct calculation yields

[¢.[p.q1]=(0,0,0,0,D",  [p.[p.q1]=(0,0,0,1,0)",

3 For more details on the Hall-Sussmann system and its applications, see [24,25].
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and all higher-order brackets vanish. Hence, {p, g¢}14 is also third-order nilpotent. Note also that
the vector ¢ is polynomial in the C;s (see [26] for some related considerations).

3.2. Reachability and time-optimality

It will be useful to define another control system by introducing the variables y(¢) :=
Ci(t) —t,and y; (t) :=C;(¢t) fori =2, ...,5. Using (12) yields y; () =0 and

V2 =u, y2(0) =0,
V3 =ut, y3(0) =0,
ya=ur?/2,  y4(0) =0,
V5 = utys, y5(0) =0. (13)

Note that this is a time-varying driftless control system.
The next result is a special case of a construction introduced by Sussmann in [27]. It will
allow us to study the reachable set of (12) using variational principles.

Proposition 3. Fix an arbitrary T > 0 and u € U. There exists a time T' € [0, T and a control

w*(t), te€[0,T),

0, te[T',T] (14)

v(t) = {

such that: (1) w* is a time-optimal control for the system (13); and (2) C(T; v) = C(T; u).

In other words, the control v, which is a concatenation of a time-optimal control and the zero
control, steers the Hall-Sussmann system to the same point as the control u# does at the same
final time T.

Proof. Note that C{(T; u) = C1(T; v) =T, so we only need to prove the result for Cy, ..., Cs.
Clearly, it is enough to prove that y(7'; u) = y(T; v) where y := (y2, ..., y5)T. Denote y" :=
¥(T; u), and consider the problem of finding a time-optimal control w* € U that steers (13)
to y* in minimal time. It follows from [28, §7, Theorem 3] that such a control does exist, so
there exists 7’ € [0, T'] such that y(T’; w*) = y*. Now (13) and (14) yield y(T; v) = y(T’; v) =
y(T'5w)=y" 0O

In the next section, we analyze the properties of time optimal controls of (13).

4. Time optimal controls

To apply the MP, we introduce the adjoint vector A(f) = (A2(?), ..., A5(t))T and the Hamil-
tonian

H(t, M u, y) i=u(ho + A3t + hat? /2 + Astys). (15)

Applying the MP yields the following result.
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Proposition 4. Suppose that u*: [0, T'] — [0, 1] is a time-optimal control for (13), and let y*
denote the corresponding trajectory. Then there exist absolutely continuous functions A;(t), i =

2,...,5, such that A(t) # 0 for all t,

Xz = —Astu,
A3 =hg=his=0, (16)
and
co={1 5050 )
where
@ = hy + A3t + Aat? )2+ Astyi. (18)

Note that (16), combined with the absolute continuity of A, implies that A3, A4, and A5 are
constants. It follows from (18) that ¢ is absolutely continuous, and differentiating it yields

@(t) = A3 + Aat + Asy; (1) (19)

for almost all 7. It follows from (19) that ¢ is also absolutely continuous and differentiating again
yields

(1) = rg + Asu™(1). (20)

We use Z(gp, [0, T']) to denote the set of zeros of ¢ on [0, T']. It is well known that this set
can be, in general, very complex (see, e.g., [29,30] and the references therein). We now analyze
the possible cases.

4.1. Bang arcs

If ¢ () = 0 holds only on discrete points, then (17) implies that u*(¢) € {0, 1} for almost all 7,
that is, u™ is a bang—bang control.

Proposition 5. Suppose that Z is a discrete set of points. Then any time-optimal control
u*:[0,T'] — [0, 1] is bang—bang and either: (1) u* is periodic; or (2) u* contains no more
than three switches on [0, T'].

Proof. It is sufficient to prove that any bang—bang control ™ with more than three switches is
periodic. Suppose that u™ has exactly four switches at times 7| < 73 < 73 < 4. For notational
convenience, we set o = 0 and 5 = T’. We assume, without loss of generality, that u*(¢) = 0
for ¢ € (19, 71), so u™(¢t) =1 for ¢t € (1, 12), and so on.

We use ¢; (¢) to denote the restriction of the absolutely continuous function ¢ on the interval
(ti, Tix+1). It follows from (20) that ¢ (t) = (A4 + )\5)t2 + c1t + ¢ for some constants ¢y and c;.
Combining this with the fact that ¢; must vanish on 71, 77 yields ¢1(f) = (A4 + A5)(t — 71) X
(t — 12). Since u(t) =1 on (1, 1) it follows from (17) that A4 + A5 < 0. Analyzing the next
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interval, we find that ¢ (t) = A4(t — 72)(t — 13), and that A4 > 0. Similarly, ¢3(¢) = (A4 + As5) X
(1 —13)(t — T4).
The absolute continuity of ¢ implies that ¢ (t2) = ¢2(t2) and ¢2(73) = ¢3(73). This yields

(A +25) (2 — 1) =M(12—13) and A4(13 — 72) = (Mg + A5) (T3 — Ta). 2n
Hence, 75 — 7] = t4 — 13 50 ¢ is periodic. It now follows from (17) that u* is periodic. O

The analysis based on the classical, first-order, MP provides considerable information on any
time optimal control u*. However, the fact that u* might be periodic implies that the number of
switches can increase with the final time 7”. In order to rule out this possibility, we need to apply
a more accurate analysis.

4.1.1. Second-order analysis
In this section, we apply a second-order analysis to prove that any bang—bang control with
more than three switches is not optimal.

Proposition 6. Suppose that Z is a discrete set of points. Then any time-optimal control
u*:[0, T'1— [0, 1] is bang—bang and contains no more than three switches on [0, T'].

Proof. Assume that u* is a time-optimal control with exactly four switches on [0, T']. We use
0 <11 <1 < 13 < 14 < T’ to denote the switching times, and assume, without loss of generality,
that u*(t) =0 on ¢ € [0, 71). Let y* denote the corresponding trajectory. Using (13) yields

BT =u—-1u+10n—1,
Vi = (4 -3+ —1f)/2,
ViT) = (5~ +1 —17)/6,
YET) = (o — )% (11 +20) + G311 =30+ 13) +3(n — 11 — )77 +273) /6. (22)

For & € R* and s > 0, define a new control ii(t; e, s) by perturbing the switching times of u*
toT; ;=1 +sa;,i =1,...,4. In other words, u(¢) =0 for t € (0, 1), u(t) = 1 for t € (71, 1),
and so on.

It is clear that for any « € R*, there exists a sufficiently small so > O such that u(s, &):
[0, T'] — [0, 1] is an admissible control for all s € [0, sg]. Let ¥(T”’; s, o) denote the value of
the corresponding trajectory at time 7'. It is easy to obtain an explicit expression for y(7’) by
substituting 7; for 7; in (22).

Let z(T';s,a) := y(T'; s, ) — y*(T'). Note that the definition of #; implies that z(7’;
0, ) = 0. We now expand z as a Taylor series about s = 0. A calculation yields

2(T'; s, o) =sAa + o(s) (23)
where
-1 1 -1 1
A —T1 (%) —13 T4
| -2 13/2 —13/2 t3/2 ’

a nn—-—1)—-b nmi—-n)+h (-—T+u—13)14
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with a = (112 — 1:22 + r32 — rf)/Z, b= (132 — rf)/Z, and o(e) denotes terms that satisfy
2@ _
. .

Let Q :={Aa: a € R*}. Then, every r € Q is a tangent direction for the difference y(7') —
y*(T"). Recall that the proof of the MP is based on the fact that if u* is optimal then there exists a
direction v such that v’ r < 0 for any r € Q. This v is actually the value of the adjoint at the final
time 7. Thus, it is possible to choose a function A(-) satisfying all the conditions in Proposition 4
such that

lim._.¢

AT(THAx <0, VaeR*. (24)

If AT(T")Aa® < 0 for some a® € R*, then AT (T")A(—a®) > 0 and this contradicts (24).
Hence, AT (T")Aac = 0, Vo € R?, s0

AL(THA=0. (25)

A calculation yields det(A) = (t; — 12) (12 — 1) (13— (11— — 13+ 74) /4. If det(A) #0
then (25) yields A(T") = 0 which is a contradiction of the MP (Proposition 4). Hence,

4=T3+7T7— 1] (26)

(which, not surprisingly, is the result we already derived using the MP). Substituting (26) in
the expression for A, we find that A has a single eigenvalue that is zero. The corresponding
eigenvector is

V=m-152t-n-1,2uu-—n-1u,n-15).

It follows from (25) that A(T”) is an eigenvector of AT corresponding to the zero eigenvalue.
This yields

(o —t)(t1 —213) (11 — T2 — 13)
(11 —)Ct + 12— 13)
2(p —11) ’
2(t1 — 3)

MT)=c

for some constant c. Hence, A4 = 2c(12 — 11), but we already know that A4 > 0 so ¢ > 0. Thus,
A is uniquely defined up to multiplication by a positive scalar.

We now analyze the effect of the specific perturbation o = v!, that is, we consider i =
ii(s, v!). For this perturbation the first term in (23) vanishes and a calculation using (22) yields

2(T's5,v") = 5% (1 — 1) (13 — ©)(0,0, 271 — 70 — 73, 2(71 — rz))T +o(s?).
Hence,

A(THz(T55,0") =52 (12 — 1) (13 — 1) (M 2T1 — T2 — 73) + 245(71 — 2)) + 0(s?)

= S2(‘L'2 —11)(13 — ‘Ez)z)u; + 0(S2)
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where the second equation follows from (21). We already know that A4 > 0 so AT(T)Hz(T':
s,v') > 0 for all sufficiently small s > 0.
To complete the proof, we need the following result, which is an immediate corollary of

Theorems 1 and 2 in [22] (see also [21,31]). We use the notation z(k)(T’; 0,a) := % |s=0-
Corollary 2. Suppose that u*:[0,T'] — [0, 1] is a time-optimal control for (13), and y* is
the corresponding trajectory. Suppose that there exists ag € R* such that: zV(T'; 0, ) = 0
and z(T'": 0, ag) # 0 for some j > 0. Let q¢ := z(k)(T’; 0, a9) where k > 0 is the smallest
integer for which the derivative does not vanish. Then, there exists an absolutely continuous
A(t) # 0 on [0, T'] which satisfies the conditions in Proposition 4 such that: (1) XT(T’)qO <0
and ) AT (T)zD(T7;0, @) <0, Vo € RY.

We already showed that for the specific perturbation ag = v', Corollary 2 does not hold.
Summarizing, we conclude that in the bang—bang case, any bang—bang control with exactly four
switches is not time optimal.

Suppose now that u* is a bang—bang control with j switches for some j > 4. It is easy to
verify that perturbing the first four switching times, and reasoning exactly as above, leads to
similar results, namely, that #™ cannot be optimal. We conclude that in the bang—bang case u*
BB(T’, 3). This completes the proof of Proposition 6. O

We note that it is possible to apply a similar analysis directly on the nilpotent control sys-
tem (1) using a powerful second-order MP developed by Agrachev and Gamkrelidze [23] (see
also [31]). This is the approach we used in the abridged version of this paper [32]. However,
Propositions 2 and 3 allow us to reduce the general case to the study of the specific system (13)
and this makes it possible to derive the simpler proof presented above.

4.2. Singular arcs

Consider now the case where ¢(¢) =0 on an interval I C [0, T’]. In thiscase g = ¢ =0on I,
s0 (20) yields A4 4+ uis = 0. If A5 = 0 then (18)—(20) yield A(¢) = 0 which is a contradiction of
the MP. Hence, A5 # 0 and u = —A4/As. Recalling that A4 and As are constants, we conclude
that on a singular arc u(¢) is constant.

4.3. Junctions

In this section, we show that every optimal trajectory is composed of a finite concatenation of
bang—bang and singular arcs.

Proposition 7. If u*: [0, T'] — [0, 1] is a time-optimal control for the system (13) then

u* e PC(T', 3). 27
Proof. We consider several cases.
Case 1. Suppose that u™* contains no bang arcs. The (absolute) continuity of ¢ implies that in this

case g is identically zero on [0, T']. Tt follows from the discussion in Section 4.2 that u* = ¢ on
[0, T'] and, in particular, (27) holds.
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Case 2. Suppose that u* contains a bang arc. Without loss of generality, we may assume that
there exist 0 < 7] <, < T’ such that ¢(t) <O fort e J := (11, 1p).

Case 2.1. J is strictly contained in (0, T"). It follows from (17) that u*(¢) =0 on J and ¢(¢) =
(1) = 0. Now (20) implies that ¢ is a second-order polynomial on J, so ¢(t) = a(t —t1)(t —12)
with a # 0. Differentiating yields ¢(t1) = a(t; — 12) and ¢(t2) = a(t; — t1). Both derivatives are
different from zero, and since ¢ is absolutely continuous, we conclude that #; (#2) is the upper
(lower) bound of another bang arc. Thus, u* is composed of a concatenation of bang-arcs, and
Proposition 6 implies that in this case u* € BB(T’, 3) and, in particular, (27) holds.

Case 2.2. Suppose that no bang arc is strictly contained in [0, 7']. Thus, if (¢, ;) is a bang arc
then either 1; = 0 or 1 = T’. The most general case possible is that we have two bang arcs: one
on (0,1;) and the second on (2, T'), with 0 < #; < t, < T’, and the interval (#1, ;) does not
contain any bang arc. It follows from the discussion above that u*(¢) = ¢ for ¢ € (¢1, t2). Hence,
we conclude that in this case u* € PC(T’, 2).

This completes the proof of Proposition 7. O
5. Proof of Theorem 2

We are now ready to prove our main result. Fix 7y < Tyyax and u € U. It follows from Propo-
sition 3 that we can find a control v in the form (14) such that C(zf; v) = C(¢f; u), and by
Proposition 7 that v € PCy4. Applying Proposition 2 yields x (¢7; u, xo) = x(¢f; v, X0). This com-
pletes the proof of Theorem 2. O

6. An example

As noted above, Theorem 2 has an important practical implication as any point-to-point
control problem is reduced to the problem of determining a small set of parameters. This is
demonstrated by the following example.

Example 1. Consider the control system (1) with n =2, f(x) = (-1, —xlz)T, g(x)=2,07,

and x(0) = p := (0,2)7 . It is easy to verify that { f, g}74 is third-order nilpotent. Consider the

following optimal control problem: find a control u* € U that maximizes J (u) := |x(1; u, P2
Applying the MP to this optimal control problem yields that the adjoint satisfies

(1) = 2x1(1)22(0),

() =0 (28)
with A(1) = x(1). Hence, X, is constant. Furthermore, since |x1| < 1 and x, = —x12, we see that
x(0) = p implies x2(1) > 0, so Ap > 0.

The switching function is ¢ (f) = 211(t) so ¢(t) = 4x(t)A2 and ¢ = —4Ay + 8Aru. Since
g > 0, we see that on a singular arc u(¢) = 1/2.

In the bang-bang case, u € {0, 1} for almost all # and has no more than three switches.
However, since A, > 0 it is easy to see that on a bang-bang arc starting with x1(0) = 0,
sgn(e(t)) = sgn(¢(t)), so there cannot be any more switches. Thus, u(¢) = v, Vr € [0, 1], where



148 Y. Sharon, M. Margaliot / J. Differential Equations 233 (2007) 136—150

v is either zero or one. For v = 0, the resulting trajectory satisfies x (1) = (—1,5/3)7, and for
v=1x(1)=(1, 5/3)T. Thus, in the bang—bang case,

le(D)|* =34/9. (29)

If a singular arc exists, then it follows from the analysis above that the general form of the
optimal control is

vy, tel0,1),
u(t)=11/2, telr,n), (30)
V2, 1t e [‘Ez, 1],

where vy, v2 € {0,1} and 0 < 71 < 1p < 1. If 71 > O then ¢(t1) = 4x1(71)12 # 0 so u can-
not be singular on [t1, 72]. Hence, the singular case is only possible if 71 = 0. For v, = 0, the
corresponding trajectory satisfies x(1) = (1o — 1,2 — (I — ©)3/3)7, and for v» =1, x(1) =
1—1,2—-—0- t2)3/3)T. In both cases, the maximal value of |x(1)|2 is obtained for p =7,
where r is the smallest real root of the equation =473 4+672427—2=0(r ~0.4886). Then

(M == 1D+ (2= (1 —r)*/3)> ~ 4.08519.
Comparing this to (29), we conclude that there are exactly two optimal controls

1/2, tel0,r],

v, telr1]. @31

u*(t)={
withv=0orv=1.

It is interesting to note that in the second-order nilpotent case there always exists an opti-
mal control that is bang—bang [19]. Example 1 demonstrates that this is no longer true in the
third-order nilpotent case. In this case, there exist points in R(7';{) that can be reached using
piecewise constant controls, but cannot be reached using bang—bang controls. Another example
that demonstrates this phenomena can be found in [33].

7. Conclusions

We considered a nonlinear control system that is affine in the control. We showed that if
the Lie-algebra spanned by the vector fields is third-order nilpotent, then any point that can be
reached at time 7' using a measurable control can also be reached, at the same time 7', using
a piecewise constant control with no more than four switches. The bound on the number of
switches is uniform over any final time 7.

As a corollary, we derived a new sufficient condition for global uniform asymptotic stability
of the control system and, therefore, of the corresponding switched system. This is a promising
step toward a solution of the open problem described in [1].

Interesting topics for further research include the following. First, the study of reachability
with nice controls for higher orders of nilpotency. Second, the combination of our results with the
approach of feedback-nilpotentization. The key idea is that some systems that are not nilpotent
can be made nilpotent by means of a feedback transformation [34]. Third, there are methods for
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approximating nonnilpotent control systems using nilpotent ones [34,35]. Further study of the
implications of our results in this context may be of interest.
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