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Abstract

We show that finitely differentiable diffeomorphisms which are either symplectic, volume-preserving,
or contact can be approximated with analytic diffeomorphisms that are, respectively, symplectic, volume-
preserving or contact. We prove that the approximating functions are uniformly bounded on some complex
domains and that the rate of convergence, in Cr -norms, of the approximation can be estimated in terms
of the size of such complex domains and the order of differentiability of the approximated function. As
an application to this result, we give a proof of the existence, the local uniqueness and the bootstrap of
regularity of KAM tori for finitely differentiable symplectic maps. The symplectic maps considered here
are not assumed either to be written in action-angle variables or to be perturbations of integrable systems.
Our main assumption is the existence of a finitely differentiable parameterization of a maximal dimensional
torus that satisfies a non-degeneracy condition and that is approximately invariant. The symplectic, volume-
preserving and contact forms are assumed to be analytic.
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1. Introduction

It is known that finitely differentiable functions can be approximated by C∞ or analytic ones,
in such a way that the quantitative properties of the approximation are related to the order of
differentiability of the approximated function [1–4]. In view of applications to KAM theory, it
is natural to ask whether it is possible to approximate finitely differentiable diffeomorphisms
preserving a symplectic or volume form with C∞ or analytic diffeomorphisms preserving the
same form. Here we show that finitely differentiable diffeomorphisms which are either symplec-
tic, volume-preserving, or contact can be approximated with analytic diffeomorphisms that are,
respectively, symplectic, volume-preserving or contact. We prove that the approximating func-
tions are uniformly bounded on some complex domains and give quantitative relations between:
the rate of convergence in Cr -norms, the degree of regularity of the approximated function, and
the size of the complex domains where the approximating functions are uniformly bounded.
As an application we give a proof of the existence, the local uniqueness and the bootstrap of
regularity of KAM tori for finitely differentiable symplectic diffeomorphisms. The symplectic
diffeomorphisms considered here are not assumed to be either written in action-angle variables
or perturbations of integrable systems. Our main assumption is the existence of a finitely dif-
ferentiable parameterization of a maximal dimensional torus that is approximately invariant and
that satisfies a non-degeneracy condition. We emphasize that the approximately invariant torus
is not assumed to be equal to (θ,0). Besides the mentioned results, in this work we also obtain
several results which may be of independent interest. We present a detailed study of the relation
between an analytic linear smoothing operator (cf. [4], see also Definition 5) and the nonlinear
operators: composition and pull-back.

The case of approximating finitely differentiable symplectic or volume-preserving diffeomor-
phisms on a compact manifold with symplectic, respectively volume-preserving, C∞-dif-
feomorphisms has been considered in [5], where it was proved that: (i) symplectic
Ck-diffeomorphisms, with k � 1, can be approximated in the Ck-norms with symplectic C∞-dif-
feomorphisms, and (ii) volume-preserving Ck+α-diffeomorphisms, with k � 1 an integer and
0 < α < 1, can be approximated by volume-preserving C∞-diffeomorphisms in the Ck-norms.
The method used in the present work differs from that in [5], because we avoid the use of gen-
erating functions. As it is well known, generating functions may fail to be globally defined for
some maps. One advantage of not using generating functions is that the result given here can be
applied directly to non-twist maps. We are currently working on such an application [6].

The KAM results we present here are of ‘polishing’ type. More precisely, given a Diophan-
tine frequency vector ω, a finitely differentiable symplectic map f , and a finitely differentiable
parameterization of a maximal dimensional torus K , satisfying a non-degeneracy condition, we
give an explicit condition on the size of the error f ◦K −K ◦Rω, in finitely differentiable norms,
that guarantees the existence of a true invariant torus near the approximately invariant one, here
Rω represents the translation by the vector ω. One of the motivations for obtaining such KAM
result is the validation of numerical computation where the only input is a parameterization of
a maximal dimensional torus, which is often only approximately invariant and different from
(θ,0). Having a condition on the size of the error in finitely differentiable norms is useful be-
cause for some numerical methods it is easier to estimate the finitely differentiable norms than
the analytic ones, for example when using splines. The fact that we do not assume that the system
is close to integrable or written in action-angle variables makes the KAM results presented here
more applicable, because we do not have to compute local coordinates before the verification
of the size of the error. Another application of this KAM result is when studying invariant tori
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restricted to normally hyperbolic manifolds – which are only finitely differentiable. This analy-
sis occurs in some mechanisms for the study of instability. In particular, in [7,8] it is shown that
secondary tori close to resonances play an important role. The present KAM result is particu-
larly useful for this study since for these tori, the action-angle coordinates are singular and their
construction and their estimates require extra work and extra assumptions, see [8, 8.5.4]. The
present work allows to simplify the proof of some of the results in [8] and lowers the regularity
assumptions of the main result of [8]. This improvements are crucial in the higher dimensional
extensions of the model.

This paper is divided into three parts. To make the reading easier, we have included, in Sec-
tion 2, an outline of the methods used here, emphasizing the main ideas. In Section 3 we show
how to approximate finitely differentiable functions that preserve a geometric structure (exact
symplectic, volume or contact) with analytic functions preserving the same geometric structure.
In Section 4 we give an application of the symplectic smoothing result to KAM theory, proving
of the existence, the local uniqueness and the bootstrap of regularity of Diophantine invariant tori
for finitely differentiable symplectic maps. In Section 4 we also prove the bootstrap of regularity
of KAM tori for analytic exact symplectic maps. That is, we prove that given an analytic exact
symplectic map and an invariant torus with Diophantine frequency vector, if the invariant torus
is sufficiently differentiable, then it is analytic.

2. Brief description of the methodology

Even though the proofs of our results involve many technicalities, the main ideas are rather
simple. In what follows we give a brief description of the methodology used in this work
emphasizing the main ideas. First, we define an analytic linear smoothing operator St , taking
differentiable functions into analytic ones. The definition of St depends on the domain of defini-
tion of the functions we wish to smooth. We consider three situations: (i) the d-dimensional torus

Td def= Rd/Zd ; (ii) U ⊂ Rd satisfying certain conditions, specified in Section 3.1, that guarantee
the existence of a bounded linear extension operator [1] (see Definition 9) and the validity of the
Mean Value Theorem; and (iii) Tn ×U with U ⊂ Rd−n as in (ii). Following [4] we smooth func-
tions defined on Rd by an operator St defined by the convolution operator with an analytic kernel
(see Section 3.1). By defining St in this way, we obtain a linear operator which takes periodic
functions into periodic functions. Hence, by considering lifts to Rd , the universal covering of Tn,
St can be applied to differentiable functions defined on the torus Td : this is important in applica-
tions to KAM theory. It is known [1,3] that if U ⊂ Rd has smooth boundary then there exists a
bounded linear extension operator taking differentiable functions defined on U into differentiable
functions defined on Rd . Hence, for functions defined on U ⊂ Rd with smooth boundary, we de-
fine an analytic linear smoothing operator by taking extensions and then applying the operator St

described above. It is easy to check that if U ⊂ Rd−n has smooth boundary then Rn × U ⊂ Rd

also has smooth boundary. Hence functions defined on Tn × U are smoothed by considering the
universal covering Rn × U and using a linear extension operator (see Section 3.1).

Given a finite differentiable diffeomorphism f that preserves a form Ω , it is not necessar-
ily true that St [f ] preserves Ω . More generally, the form St [f ]∗Ω is not necessarily equal to
f ∗Ω . So we use Moser’s deformation method [9] to prove that, for t sufficiently large, there
is a diffeomorphism ϕt such that ϕ∗

t (St [f ]∗Ω) = f ∗Ω . Hence, given a finitely differentiable
diffeomorphism f which is either symplectic, volume-preserving, or contact, for t sufficiently
large, Tt [f ] = St [f ] ◦ ϕt gives a symplectic, respectively, volume-preserving, or contact diffeo-
morphism approximating f . Furthermore, using the calculus of deformations [10], we prove that
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if f is exact symplectic, then it is possible to construct analytic approximating functions Tt [f ]
which are also exact. The method used in the present work produces quantitative properties of
the nonlinear operators Tt in terms of the degree of differentiability of f . More precisely, for t

sufficiently large, Tt [f ] is bounded uniformly, with respect to t , on some complex domains and
the rate of convergence of Tt [f ] to f is given in terms of t and the degree of differentiability
of f . Obtaining such quantitative properties involves estimates on complex domains of the dif-
ference between: (i) smoothing a composition of two functions and composing their smoothings,
and (ii) smoothing the pulled-back form f ∗α and pulling-back the form α with the smoothed
function St [f ], for a k-form α. Estimating these differences on complex domains requires many
technicalities but, once this is done, proving the quantitative properties of Tt is rather easy as we
show in Section 3.4. An estimate, on complex domains, of the difference between smoothing a
composition of two functions and composing their smoothings was previously obtained in [11].

We emphasize that the geometric form Ω is assumed to be analytic. This is important because
in this case, if f is symplectic, respectively, volume-preserving or contact, we have that both
f ∗Ω and St [f ]∗Ω are analytic so that Moser’s deformation method produces, for t sufficiently
large, an analytic diffeomorphism ϕt such that: ϕ∗

t St [f ]∗Ω = f ∗Ω . The analyticity assumption
on Ω is of particular importance in the volume case because the existence of a diffeomorphism ϕ

such that ϕ∗α = β for two arbitrary volume forms depends on the regularity of the forms and on
their domain of definition. The existence of such a diffeomorphism for volume forms has been
studied under different hypotheses in [5,9,12–14]. Nevertheless, to the best knowledge of the au-
thors the question proposed in [5] whether C1-volume diffeomorphisms can be approximated in
C1-norm by C∞-volume diffeomorphisms on d-dimensional manifolds, with d � 3, is still open.

The existence of invariant tori for finitely differentiable symplectic maps, formulated in The-
orem 47, is a finitely differentiable version of Theorem 1 in [15] (the latter is reported as
Theorem 46 in the present work). Roughly, Theorem 46 establishes the existence of a maxi-
mal dimensional invariant torus K∗ with Diophantine rotation vector ω for a given analytic exact
symplectic map f . The main hypotheses of Theorem 46 are the existence of an analytic pa-
rameterization of an n-dimensional torus K such that (i) certain non-degeneracy conditions are
satisfied, and (ii) K is approximately invariant, in the sense that the sup norm of the error func-
tion f ◦ K − K ◦ Rω on a complex set {x ∈ Cn: |Im(x)| < ρ}, for some ρ > 0, is ‘sufficiently
small,’ where Rω represents the translation by ω. Theorem 46 also gives an estimate of the dis-
tance between the initial, approximately invariant torus K and the invariant torus K∗ in terms
of the size of the initial error. Theorem 47 is a finitely differentiable version of Theorem 46: the
analyticity hypotheses for f and K are replaced by ‘sufficiently large’ differentiability of both f

and K and by asking the norm, in suitable spaces of differentiable functions, of f ◦ K − K ◦ Rω

to be ‘sufficiently small.’ In Theorem 49 we prove that finitely differentiable invariant tori for
finitely differentiable symplectic diffeomorphisms are locally unique. Theorem 49 is a finitely
differentiable version of Theorem 2 in [15].

Moser’s smoothing technique [2,4,16] provides a method to obtain finitely differentiable ver-
sions of Generalized Implicit Function theorems from the corresponding analytic ones. Briefly,
Moser’s method goes as follows: Let F be defined on Banach spaces of analytic functions and
assume that a Generalized Implicit Function Theorem holds in these Banach spaces. Assume that
the functional equation F(f,K) = 0 has an analytic solution (f0,K0), and that there exists an
analytic smoothing operator. Then one finds, using the analytic smoothing operator, a solution
(f,Φ(f )) for f in a small neighbourhood of f0 in a space of finitely differentiable functions.
One important hypothesis of Moser’s technique is the existence of an approximate right inverse
of the linear operator D2F(f,K). The approximate right-invertibility yields a loss of differen-
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tiability: in KAM theory this is related to the so-called ‘small denominators.’ At this point it
becomes crucial to have quantitative properties of the smoothing in terms of the degree of dif-
ferentiability of the smoothed functions. For a more detailed explanation of Moser’s method see
for example [2,4,16]. Some variations of Moser’s technique have been used previously to give
proofs of the existence of KAM tori for finitely differentiable Hamiltonian vector fields. In [17]
the authors assume the existence of a finitely differentiable invariant torus, i.e. they assume the
existence of a solution of the functional equation in finitely differentiable spaces. In [18,19] the
authors assume that (θ,0) parameterizes an approximately invariant torus, i.e. they assume that
the given finitely differentiable Hamiltonian vector field and the identity form an approximate
solution of the functional equation.

To prove the existence of finitely differentiable solutions of the equation f ◦ K = K ◦ Rω

we use the following ‘modified’ smoothing technique: Rather than assuming the existence of
an analytic initial solution of the functional equation we just assume the existence of a finitely
differentiable approximate solution and find conditions under which there is an analytic solution
nearby. The analytic Generalized Implicit Function Theorem for the functional f ◦ K − K ◦ Rω

is provided by Theorem 46, which only holds for exact symplectic maps. Hence, to apply the
smoothing technique we use the nonlinear operator Tt , described above, to smooth the exact
symplectic map f . Parameterizations of approximately invariant tori are smoothed using the
operator St described at the beginning of this introduction. Then, given a finitely differentiable
approximate solution (f,K) of f ◦ K = K ◦ Rω, the existence of an analytic solution close to
(f,K) is guaranteed by: (i) a non-degeneracy condition on K , and (ii) a ‘smallness’ condition
on the sup norm on complex domains of the difference Tt [f ] ◦ St [K] − St [f ◦ K] in terms of the
size of the initial error f ◦ K − K ◦ Rω in a finite differentiable norm.

The modified smoothing technique described above has been previously used, although in a
more abstract setting, in [20]. In this reference, given a general functional F satisfying certain
hypotheses and assuming the existence of a smoothing operator, the author proves the existence
of an analytic solution near a given finitely differentiable approximate solution for F . Here we
use the same approach of [20] for the operator given by f ◦ K − K ◦ Rω. As a necessary step,
a smoothing operator is here explicitly constructed for this concrete operator. As a matter of fact,
two distinct smoothing operators are constructed: one for the parameterization K and a second
one for the symplectic map f , the last one preserving the symplectic character.

As a consequence of the fact that, under certain general conditions, near a finitely differen-
tiable solution (f,K) of the equation f ◦ K = K ◦ Rω there is an analytic solution, we obtain
the bootstrap of regularity of invariant tori with Diophantine rotation vector for exact symplec-
tic maps that are either finitely differentiable or analytic. The bootstrap of regularity is stated
in Theorem 50. To prove Theorem 50, first in Theorem 49 we prove a finitely differentiable
version of the local uniqueness of invariant tori for symplectic maps. Theorems 49 and 50 are
similar to Theorems 4 and 5 in [17]. However, while the results in [17] are stated and proved
for Hamiltonian vector fields written in the Lagrangian formalism, Theorems 49 and 50 in the
present work are stated and proved for exact symplectic maps that are not necessarily written
either in action-angle variables or as perturbation of integrable ones. Moreover, rather that as-
suming the existence of a finitely differentiable invariant torus, we assume the existence of a
finitely differentiable torus which is approximately invariant.

3. Smoothing geometric diffeomorphisms

In this section we show that finitely differentiable diffeomorphisms which are either symplec-
tic, volume-preserving or contact can be approximated by analytic diffeomorphisms having the
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same geometric property. We give quantitative properties of the approximation in terms of the
degree of differentiability of the approximated functions.

Since obtaining such geometric approximating functions involves many technicalities, we
have divided the present section as follows. In Section 3.1 we define the norms used and set the
conditions on the domain of definition of the diffeomorphism to be smoothed. In Section 3.2 the
geometric smoothing results are stated. The technical part of the proofs is given in Section 3.3
and the proofs are concluded in Sections 3.4 and 3.5.

3.1. Setting

Informally, the method we use to smooth symplectic, volume-preserving or contact diffeo-
morphism with analytic diffeomorphism having the same geometric property is the following.
First, for t � 1, we define a linear operator St that takes finitely differentiable functions into
analytic ones and such that St [f ] tends to f when t goes to infinity. Then, if f is a finitely dif-
ferentiable symplectic, volume-preserving, or contact diffeomorphism we find, for t sufficiently
large, a diffeomorphism ϕt such that ϕ∗

t (St [f ]∗Ω) = f ∗Ω . The analytic approximating func-
tions satisfying the same geometric property of f are then defined by St [f ] ◦ ϕt . In view of
the applications we are interested in symplectic, volume-preserving or contact diffeomorphisms
defined on either Td , U ⊂ Rd or Tn × U , with U ⊂ Rd−n. First, by using the convolution oper-
ator with an analytic kernel, we define St for continuous and bounded functions defined on Rd .
It turns out that, if f is a Zd -periodic (or partially periodic) continuous and bounded function
defined on Rd then St [f ] is also Zd -periodic (respectively, partially periodic). Hence to extend
the definition of St to torus maps we use lifts of torus maps to Rd (the universal covering of Td ).
To define St on functions with domain U ⊂ Rd we use a linear bounded extension operator.
Then, by taking lifts, the definition of St is extended to functions defined on the annulus Tn ×U ,
with U ⊂ Rd−n. Before making these definitions explicit, let us introduce the Banach spaces of
functions we work with.

Definition 1. Let Z+ denote the set of positive integers. Given U ⊂ Cd an open set, C0(U)

denotes the space of continuous functions f :U → R, such that

|f |C0(U)
def= sup

x∈U

∣∣f (x)
∣∣ < ∞.

For 
 ∈ N, C
(U) denotes the space of functions f :U → R with continuous derivatives up to
order 
 such that

|f |C
(U)
def= sup

x∈U|k|�


{∣∣Dkf (x)
∣∣} < ∞.

Let 
 = p + α, with p ∈ Z+ and 0 < α < 1. Define the Hölder space C
(U) to be the set of all
functions f :U → R with continuous derivatives up to order p for which

|f |C
(U)
def= |f |Cp + sup

x,y∈U, x �=y
|k|=p

{ |Dkf (x) − Dkf (y)|
|x − y|α

}
< ∞.
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For ρ > 0 and U ⊆ Rd let U + ρ denote the complex strip:

U + ρ = {
x + iy ∈ Cd : x ∈ U, |y| < ρ

}
.

Definition 2. Let 
 � 0. Given U ⊆ Rd open, define the Banach space A(U + ρ,C
) to be the
set of all holomorphic functions f :U + ρ → C which are real-valued on U (i.e. f (x) = f (x̄)

for all x ∈ U ) and such that |f |C
(U+ρ) < ∞.

For a matrix or vector-valued function G with components Gi,j in either C
(U) or in A(U +
ρ,C
) we use the norm, respectively,

|G|C
(U)
def= max

i,j
|Gi,j |C
(U) or |G|C
(U+ρ)

def= max
i,j

|Gi,j |C
(U+ρ).

The space of all functions g = (g1, . . . , gd) :V ⊆ Cn → U ⊆ Cd such that gi ∈ C
(U), for
i = 1, . . . , d , is denoted by C
(U,V ). Since it will not lead to confusion, A(U + ρ,C
) will
also denote the set of functions g = (g1, . . . , gd) with components in A(U + ρ,C
).

Definition 3. Let U ⊂ Rm. A lift of a continuous map f , defined on the annulus Tn × U , to
Rn × U (the universal cover of Tn × U ) is a continuous map f̂ defined on Rn × U such that:

(i) f̂ (x, y) = f (x mod Zn, y), if f takes values in R.
(ii) f̂ (x, y) mod Z = f (x mod Zn, y) for (x, y) ∈ Rn × U , if f takes values in T.

It is well known that given a continuous map f defined on Tn × U , with U ⊂ Rm, any lift
f̂ : Rn × U has the following form

f̂ (x, y) = Px + u(x, y), (x, y) ∈ Rn × U, (1)

where u ∈ C0(Rn × U,Rs) is Z-periodic in the first n-variables and P is an (n × 1)-matrix with
components in Z. Furthermore, if f takes values in R then P = 0. Moreover, if f has additional
regularity, the corresponding function u has the same regularity. Even though lifts of continuous
annulus maps are not unique, they differ by a constant vector in Z. This, together with the fact that
any map of the form (1) defines an annulus map, enable us to work with lifts of torus and annulus
maps (considering torus maps as particular cases of annulus maps). For notational reasons we
use the same symbol to denote the annulus (torus) map and a lift of it.

Definition 4. For 
 � 0, denote by C
(Tn × U,V ), and A(Tn × U + ρ,C
) the set of annulus
maps with lift of the form (1) with u ∈ C
(Rn × U,V ) (in A(Rn × U + ρ,C
), respectively)
Z-periodic in the first n-variables. The corresponding norms are defined as follows:

|f |C
(Td×U)
def= |P | + |u|C
(Rd×U)

and

|f |C
(Td×U+ρ)
def= |P | + |u|C
(Rd×U+ρ).
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In the case of torus maps, denote by C
(Td,V ), and A(Td + ρ,C
) the set of torus maps with
lift of the following form:

f (x) = Px + u(x), (2)

where P is a matrix with components in Z and u ∈ C
(Rd ,V ) (u ∈A(Rd +ρ,C
), respectively)
is Zd -periodic. The corresponding norms are defined as follows:

|f |C
(Td )
def= |P | + |u|C
(Rd )

and

|f |C
(Td+ρ)
def= |P | + |u|C
(Rd+ρ).

Moreover, for r � 0 denote by Diffr (U) the set of Cr -diffeomorphisms of U, where U is either
U ⊆ Rd open, Td , or Tn × U .

For U ⊆ Rd open, denote by Λk(U) the space of real analytic k-forms in U . Let Ω ∈ Λk(U)

have the following form:

Ω(x) =
∑

1�i1<···<ik�d

Ωi(x) dxi,

where i represents the multi-index (i1, . . . , ik) and dxi
def= dxi1 ∧ · · · ∧ dxik . If |Ωi|C
(U) < ∞ for

all 1 � i1 < · · · < ik � d , define

|Ω|C
(U)
def= max

1�i1<···<ik�d
|Ωi|C
(U).

Definition 5. Let U be either U ⊆ Rd open, Td , Tn × U , with U ⊂ Rd−n an open set. We say
that the linear operator St :C
(U) → A(U + t−1,C0) is an analytic smoothing operator if the
following properties hold for any f ∈ C
(U):

(i) |St [f ]|C0(U+t−1) � c|f |C
(U) for all t � 1;
(ii) limt→∞|(St − Id)[f ]|C0(U) = 0;

(iii) |St − Sτ [f ]|C0(U+τ−1) � c|f |C
(U)t
−
, for τ � t � 1,

for some constant c depending on 
 and U, but independent of t .

Now we define the smoothing operator St we work with. First we define St [f ] for f ∈
C0(Rd).

Definition 6. Let u : Rd → R be C∞, even, identically equal to 1 in a neighbourhood of the ori-
gin, and with support contained in the ball with center in the origin and radius 1. Let û : Rd → R
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be the Fourier transform of u and denote by s the holomorphic continuation of û. Define the
linear operator St as

St [f ](z) def= td
∫
Rd

s
(
t (y − z)

)
f (y)dy, for f ∈ C0(Rd

)
. (3)

Applying obvious modifications, Definition 6 can be extended to functions in C0(Rn,Rd). In
the sequel these latter operators are denoted by the same symbol St . We now summarize some
elementary properties of St that follow from Definition 6.

Remark 7.

(i) St transforms functions in C0(Rd) into entire functions on Cd .
(ii) Using the change of variables ξ = t Re(y − z) = ty − t Re(z), one has for f ∈ C0(Rd)

St [f ](z) =
∫
Rd

s
(
ξ − it Im(z)

)
f

(
Re(z) + ξ/t

)
dξ. (4)

(iii) St commutes with constant coefficient differential operators.
(iv) St acts as the identity on polynomials.
(v) From (4) one has that St takes (partially) periodic functions into (partially) periodic func-

tions.
(vi) From (4) we have that St [f ](x) ∈ R for all x ∈ Rd .

Remark 8. In the applications of Moser’s smoothing method to KAM theory it is of particular
importance to know how to define St for functions defined on the d-dimensional torus Td as
well as functions defined on Tn × Rm. Notice that since St in Definition 6 acts as the identity on
polynomials and it takes partially periodic functions into partially periodic functions, we have
that for any annulus map f , with lift of the form (1) St [f̂ ] is also of the form (1):

St [f̂ ](x, y) = Px + St [u](x, y).

Hence to extend the definition of St to torus maps as well as to maps defined on Tn × Rm, we
apply St in Definition 6 to any lift of it. This is well defined because two lifts of the same torus
map (respectively annulus map) differ by a constant vector with components in Z.

Definition 9. Let 
 > 0 be not an integer. A bounded linear extension operator is a linear op-
erator EU :C
(U) → C
(Rd) such that EU(f )|U = f for all f ∈ C
(U) and |EU(f )|C
(Rd ) �
cU |f |C
(U).

In order to extend the definition of the linear operator St to functions defined on U ⊂ Rd and
to the annulus Tn ×U , it suffices to have a linear bounded linear extension operator from C
(U)

to C
(Rd). The sufficient condition we adopt here to have such extension operator is that given
in Theorem 14.9 in [1]. It amounts to the regularity of the boundary of U .
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Definition 10. Let � : Rd → R be a function with continuous derivatives up to order m, for some
m ∈ N, and assume that grad�(x) �= 0 for all x ∈ {x: �(x) = 0}. The set U = {x ∈ Rd : �(x) � 0}
is called a closed domain with Cm-boundary. An open domain is defined by {x ∈ Rd : �(x) < 0}.

The following result guarantees the existence of a bounded extension operator for functions
with domain of definition U ⊂ Rd provided that U has smooth boundary. For a proof we refer
the reader to [1,3].

Theorem 11. If 0 < 
 < m ∈ N with 
 /∈ N, and U ⊂ Rd has Cm-boundary, then there is a linear
extension operator E 


U :C
(U) → C
(Rd) such that

∣∣E 

U (f )

∣∣
C
(Rd )

� cU |f |C
(U), (5)

for some constant cU , depending on U .

Hence, for functions that are defined on a subset of Rd with regular boundary we have the
following

Definition 12. Let 0 < 
 < m, with m ∈ N and 
 /∈ N. Let U ⊂ Rd be an open domain with
Cm-boundary and E 


U a linear extension operator as in Theorem 11. For f ∈ C
(U) and for any
x ∈ Cd we define

Ŝt [f ](x)
def= St

[
E 


U (f )
]
(x), (6)

where St is as in (3).

The following remark is related to Remark 7.

Remark 13. Notice that the operator Ŝt , defined in Definition 12 for functions in C
(U), satisfies
the following properties:

(i) Ŝt is linear.
(ii) Ŝt transforms functions in C
(U) into entire functions on Cd .

Remark 14. Notice that if U ⊂ Rd−n is an open domain with Cm-boundary then U = Rn ×
U ⊂ Rd also is an open domain with Cm-boundary. Moreover, it follows from Remark 8
and Definition 12 that, if u(x, y) is defined for (x, y) ∈ U = Rn × U and Zn-periodic on the
x-variable and Ŝt is as in Definition 12, then Ŝt [u] is also Zn-periodic on the x-variable. Indeed,
since E 


U
(u)(x, y) = u(x, y) for all (x, y) ∈ Rn × U , we have that E 


U
(u) is Zn-periodic in the

x-variable, where E 

U

is as in Theorem 11. Therefore, any map defined on the annulus Tn × U

with U as in Theorem 11 and lift given by (1), is smoothed by

Ŝt [f ](x, y) = Px + St

[
E 


U
(u)

]
(x, y),

where St is as in Definition 6 and E 
 is as in Theorem 11.

U
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Since it will not lead to confusion, the operator Ŝt defined in (6) will be denoted (dropping
the hat) as the operator St in (3).

Remark 15. Summarizing, a function f is smoothed, depending on its domain of definition as
follows:

(i) If f ∈ C0(Rd), St [f ] is given by (3).
(ii) If f ∈ C
(U), with U ⊂ Rd an open domain with Cm-boundary, we define

St [f ] = St

[
E 


U
(f )

]
,

where E 

U

is as in Theorem 11 and St on the right-hand side is defined by (3).
(iii) If f ∈ C0(Td), with lift as in (2), where u ∈ C0(Rd) is Zd -periodic, and P a (d × 1)-matrix

with components in Z, then

St [f ](x)
def= Px + St [u](x),

where St on the right-hand side is defined by (3).
(iv) For U ⊂ Rd−n an open domain with Cm-boundary and f ∈ C
(Tn × U), with lift given

by (1) where u ∈ C
(Rn × U) Z-periodic on the first n-variables, and P an (n × 1)-matrix
with components in Z, we define

St [f ](x, y)
def= Px + St

[
E 


U
(u)

]
(x, y),

where U = Rn ×U , E 

U

is as in Theorem 11, and St on the right-hand side is defined by (3).

To define an analytic smoothing operator such that it takes finitely differentiable diffeomor-
phisms preserving either an exact symplectic, volume or contact form into analytic diffeomor-
phisms preserving the same structure, we need to estimate the C
-norm of the composition of
two functions in terms of the C
-norms of the composed functions. We use an estimate given
in [21], which is guaranteed to hold for functions defined on domains satisfying a geometric
condition that is established in the following definition.

Definition 16. Given U ⊆ Cn, for x, y ∈ U denote by dU(x, y) the minimum length of arcs
inside U joining x and y. We say that U is compensated if there exists a constant cU such that
dU(x, y) � cU |x − y|, for all x, y ∈ U .

We finish this section recalling some geometric definitions.

Definition 17.

(i) Given a k-form Ω on a d-dimensional manifold, denote by IΩ the application X → iXΩ ,

sending the vector field X into the inner product iXΩ
def= Ω(x)(X(x), ·). A k-form Ω is

non-degenerate if IΩ is an isomorphism.
(ii) A volume element on a d-dimensional manifold is a d-form which is non-degenerate.

(iii) A symplectic form on a 2n-dimensional manifold is a non-degenerate closed 2-form.
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(iv) A contact form on a (2n + 1)-dimensional manifold is a 1-form Ω , such that Ω ∧ (dΩ)n is
a volume element.

(v) A diffeomorphism f of a contact manifold (M,Ω) is a contact diffeomorphism if there
exists a nowhere zero function λ :M → R such that f ∗Ω = λΩ .

(vi) Let Ω = dα be an exact symplectic form on a symplectic manifold. The diffeomorphism f

is exact symplectic if f ∗α − α is an exact 1-form.

3.2. Statement of results

In this section we formulate the results guaranteeing the existence of an analytic smoothing
operator that preserves the prescribed geometric structure. In Theorem 18 the symplectic and
volume cases are considered; the contact case is considered in Theorem 20.

Theorem 18. Let 2 < 
 < m, with m ∈ N and 
 /∈ N, and let C,β > 0 and 1 < μ < 
 − 1 be
given. Assume that the following hypotheses hold:

H1. U is either: (i) Td , (ii) a compensated bounded open domain in Rd with Cm-boundary
(see Definitions 10 and 16), or (iii) Tn × U , with U ⊂ Rd−n a compensated bounded open
domain with Cm-boundary and n < d .

H2. V is Cm-diffeomorphic to U and such that U ⊆ V. Ω = dα is either a real analytic exact
symplectic form (with d = 2n) or volume element on V such that |Ω|C
(V+ρ) < ∞ for some
ρ > 0.

H3. Let IΩ be as in Definition 17 and let I −1
Ω denote the inverse of IΩ . Let k = 2 if Ω is a

symplectic form, and k = d if Ω is a volume form and assume that for any θ ∈ Λk−1(U),
satisfying |θ |C0(U+ρ′) < ∞, with ρ′ � 0, the following holds

∣∣I −1
Ω θ

∣∣
C0(U+ρ′) � MΩ |θ |C0(U+ρ′).

Then, there exist two constants t∗ = t∗(d, 
,V,C,μ,β,MΩ, |Ω|C
(U+ρ)) and κ = κ(d, 
,C,

β,μ, k,MΩ) and a family of nonlinear operators {Tt }t�t∗ , taking functions belonging to

{
f ∈ Diff
(U): |f |C
(U) � β, f ∗Ω = Ω, closure of f (U) ⊆ V

}
into real analytic functions. Moreover, if Ut is defined as follows:

Ut
def=

⎧⎨
⎩

Td, U = Td,

{x ∈ U: B̄(x, t−1) ⊂ U}, U ⊂ Rd,

Tn × {x ∈ U : B̄(x, t−1) ⊂ U}, U = Tn × U,

(7)

where B̄(x, t−1) represents the closed ball with center at x and radius t−1, then the following
properties hold:

T0. Tt [f ] is a diffeomorphism on Ut .
T1. Tt [f ]∗Ω = f ∗Ω .
T2. |Tt [f ]|C1(Ut+Ct−1) � κMf .
T3. |Tt [f ] − St [f ]|C0(Ut+Ct−1) � κMf t−μ+1.
T4. If 2 < μ < 
 − 1, then |Tt [f ]|C2(U +Ct−1) � κMf .
t
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T5. |(Tt − Id)[f ]|Cr (Ut ) � κMf t−(μ−r−1), for all 0 � r � μ − 1.
T6. |(Tτ − Tt )[f ]|C0(Ut+Ct−1) � κMf t−μ+1, for all τ � t � t∗.
T7. If f is exact symplectic so is Tt [f ].

Here Mf depends on 
, k, |Ω|C
(U+ρ), and β , but it is independent of t .

Remark 19. We remark that, in hypothesis H2 of Theorem 18, if U = Td then V can be chosen
to be also Td . Actually, we asked Ω to be defined on a neighbourhood of U that contains the
closure of f (U), to guarantee that St [f ](U) is contained in the domain of definition of Ω , for t

sufficiently large. And so St [f ]∗Ω is defined on U. If Ω is defined only on U and it cannot be
extended to a neighbourhood of U, then St [f ]∗Ω is defined on St [f ]−1(U). By modifying the
definition of Ut in (7), the proof of Theorem 18 given in Section 3.4 also works in this latter case.
However this just yields a more complicated notation and does not change the proof of Theo-
rem 18. To avoid this notational complication we assume that Ω is defined on a neighbourhood
of U as in H2 in Theorem 18.

Theorem 20. Let m, 
, V, and U be as in Theorem 18. Let Ω be a contact form on V such
that |Ω|C
(V+ρ), |dΩ|C
(V+ρ) < ∞, for some ρ > 0. Assume that for any θ ∈ IdΩ(Ker(Ω)),
satisfying |θ |C0(U+ρ′) < ∞, the following holds:

∣∣(IdΩ |Ker(Ω))
−1θ

∣∣
C0(U+ρ′) � MΩ |θ |C0(U+ρ′).

Then, given N,C,β > 0 and 1 < μ < 
− 1, there exist two constants κ ′ = κ ′(d, 
,C,β,μ,MΩ)

and t∗∗ = t∗∗(d, 
,V,C,β,μ,MΩ, |Ω|C
(U+ρ), |dΩ|C
(U+ρ)), and a family of – nonlinear –
operators {Tt }t�t∗∗ , taking contact diffeomorphisms belonging to the set of diffeomorphisms
f ∈ Diff
(U) such that: (i) |f |C
(U) � β and (ii) V contains the closure of f (U) into real analytic
functions such that properties T0–T6 in Theorem 18 hold.

3.3. Analytic smoothing

This section contains the technical part of our proof of Theorem 18 and Theorem 20. We begin
by collecting the properties of the operator St defined in Section 3.1 (see Remark 15). First we
prove that St is a linear smoothing operator (see Definition 5) and then, using the fact that St is a
linear smoothing operator, we show that given a k-form Ω , the C0-norm of the k-form given by

St [f ]∗Ω − f ∗Ω (8)

goes to zero as t goes to infinity. However, to prove Theorem 18 we need more accurate estimates.
Actually, as we will see in Section 3.4, we need an estimate for the C0-norm of (8) on complex
strips, which is given in Proposition 29. To obtain such an estimate we extend the definition of
St to k-forms and prove several analytic estimates which are given in Section 3.3.1. Estimates
of particular importance are those given in Proposition 31, and in Proposition 37. Proposition 31
contains an estimate of the norm of St [f ]∗Ω − St [f ∗Ω] on complex strips of width Ct−1 for
arbitrary C � 0. In Proposition 37 we give an estimate of the difference between smoothing a
composition of two functions and composing their smoothings.

To describe the behaviour of St we find it very useful to write St [f ] in terms of the Taylor
expansion of f , for f ∈ C
(Rd). This is done in the following:
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Lemma 21. For any f ∈ C
(Rd), with 
 not an integer, we have

St [f ](z) = Pf,


(
Re(z), i Im(z)

) + R̂f,
(z, t), (9)

where

Pf,
(x, y)
def=

∑
|k|1<


1

k!D
kf (x)yk

and ∣∣R̂f,
(z, t)
∣∣ � c̃|f |C
(Rd )t

−
et |Im(z)|, (10)

where c̃ = c̃(
, d).

Proof. Following [4,19], we apply Taylor’s Theorem to f :

f (x + y) = Pf,
(x, y) + Rf,
(x;y),

where Rf,
 is the remainder. Then, using (4) and since St acts as the identity on polynomials, we
have (9) with

R̂f,
(z, t)
def=

∫
s
(
ξ − it Im(z)

)
Rf,


(
Re(z); ξ/t

)
dξ.

We note that from the properties of s in Definition 6, for any r,N > 0 there exists a constant
c = c(r,N) > 0 such that for all k ∈ Nd with |k|1 � r then

∣∣Dks(z)
∣∣ � c

(
1 + ∣∣Re(z)

∣∣)−N
e|Im(z)|.

Then, from Taylor’s Theorem we have

∣∣R̂f,
(z, t)
∣∣ � ct−
|f |C
(Rd )

∫
Rd

∣∣s(ξ − it Im(z)
)∣∣|ξ |
 dξ

� t−
|f |C
(Rd )ce
|t Im(z)|

∫
Rd

|ξ |

(1 + |ξ |)N dξ

� c̃|f |C
(Rd )t
−
e|t Im(z)|,

where we have fixed N > 
 + d . �
Remark 22. The constants appearing in our estimates depend on certain quantities. In particular
if f ∈ C
(U), with U an open domain with smooth boundary, these constants also depend on U.
In what follows we do not write explicitly this dependence and represent a generic constant by κ .

The following result ensures that St is an analytic linear smoothing operator in the sense of [4].
The case in which St is applied to functions in C0(Rd) is proved in [4].
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Proposition 23. Let 1 < 
 < m with 
 /∈ N, m ∈ N and let U be either Rd or as in H1 in
Theorem 18. Assume that St is as in Remark 15. Then, for any C � 0, there exists a constant
κ = κ(d, 
,C) such that for all t � 1 and f ∈ C
(U) the following holds:

(i) |(St − Id)[f ]|Cr(U) � κ|f |C
(U)t
−
+r , 0 � r < 
.

(ii) |St [f ]|C0(U+Ct−1) � κ|f |C0(U).
(iii) |(Sτ − St )[f ]|C0(U+τ−1) � κ|f |C
(U)t

−
, for all τ � t .
(iv) |Im(St [f ])|C0(U+Ct−1) � κCt−1|f |C
(U).

Proof. We first prove Proposition 23 for functions in C
(U), with U ⊂ Rd a compensated open
domain with Cm-boundary. In this case St is defined by Eq. (6). The linearity of St follows from
the linearity of the extension operator E 


U in Theorem 11 and from the linearity of the convolution
operator. To prove part (i), first notice that if f ∈ C
(U) and x ∈ U then E 


U
(f )(x) = f (x), then

using the fact that part (i) holds for functions in C0(Rd) and estimate (5) we have

∣∣(St − Id)[f ]∣∣
Cr(U)

= ∣∣(St − Id)
[
E 


U
(f )

]∣∣
Cr(U)

� κ ′∣∣E 

U
(f )

∣∣
C
(Rd )

t−
+r

� κ|f |C
(U)t
−
+r .

To prove part (ii) we use (4) and Theorem 11 to obtain

∣∣St [f ]∣∣
C0(Rd+Ct−1)

�
(

sup
0�η<C

∫
Rd

∣∣s(ξ − iη)
∣∣dξ

)∣∣E 

U (f )

∣∣
C0(Rd )

� κ|f |C0(U).

Part (iii) is a consequence of Lemma 21 and Theorem 11. To prove part (iv) we use the Mean
Value Theorem and the fact that the convolution commutes with the derivative to obtain

∣∣Im(
St [f ])∣∣

C0(Rd+Ct−1)
� Ct−1

∣∣DSt [f ]∣∣
C0(Rd+Ct−1)

� Ct−1
∣∣DE 


U
(f )

∣∣
C0(Rd )

� Ct−1
∣∣E 


U
(f )

∣∣
C
(Rd )

.

To prove Proposition 23 for f ∈ C
(Td) we use a lift of f . Let f ∈ C
(Td) with lift (see Defini-
tion 3) given by Px + u(x), where P is a (d × 1)-matrix with components in Z and u ∈ C
(Rd)

is a Zd -periodic function. Then (see part (iii) in Remark 15):

(St − Id)[f ](x) = Px + St [u](x) − (
Px + u(x)

) = (St − Id)[u]. (11)

Moreover from Definition 4 one has

∣∣St [f ]∣∣
C0(Td+Ct−1)

� |P | + ∣∣St [u]∣∣
C0(Rd+Ct−1)

,

(St − Sτ )[f ] = (St − Sτ )[u],∣∣Im(
St [f ])∣∣ 0 d −1 � |P |Ct−1 + ∣∣Im(

St [u])∣∣ 0 d −1 ,

C (T +Ct ) C (R +Ct )
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where St on the right-hand side is given by (3). Hence properties (i)–(iv) of Proposition 23 follow
from the same properties for u ∈ C
(Rd) and the fact that St [u] is Zd -periodic. The annulus case
U = Tn ×U , with U ⊂ Rd−n a bounded compensated open domain with Cm-boundary, is proved
in a similar way. �
Remark 24. From (11) we have that in the case that U = Td , a better estimate holds than that
given in part (i) of Proposition 23:

∣∣(St − Id)[f ]∣∣
C0(U)

� κ|u|C0(Rd )t
−
,

where u is the periodic part of a lift of f . A similar result holds for f ∈ C
(Tn × U), with U a
compensated open domain in Rd−n with Cm-boundary for some 
 < m ∈ N.

Remark 25. From the proof of Proposition 23 one notices that, if U ⊂ Rd is an open domain
with Cm-boundary, then the estimates in parts (ii)–(iv) in Proposition 23 also hold if one replaces
U + Ct−1 with Rd + Ct−1.

Remark 26. Let U be either Rd or as in H1 in Theorem 18 and let V ⊆ Rp be open, and
assume that f ∈ C
(U,V). Then for any Ω ∈ Λk(V) one has f ∗Ω ∈ Λk(U). Notice that
since the domain of definition of Ω ◦ St [f ] is St [f ]−1(V), and since we know an estimate of
|St [f ](x) − f (x)| only when x ∈ U, to estimate the norm of the difference between St [f ]∗Ω(x)

and f ∗Ω(x) we have to restrict x to be in St [f ]−1(V) ∩ U ⊆ U. It is not difficult to see that

U =
⋃
t�1

(
St [f ]−1(V) ∩ U

)
.

Furthermore,

St [f ](U) ⊆ V ⇐⇒ St [f ]−1(V) ∩ U = U.

We consider functions f : U → V, with U either Rd or as in H1 in Theorem 18, and V either
Rp or H2 in Theorem 18. In Lemma 27 we prove that if moreover V contains the closure of
f (U) then, for t sufficiently large, St [f ]∗Ω ∈ Λk(U).

Lemma 27. Let 1 < 
 < m with 
 /∈ N and m ∈ N. Let U be either Rd or as in Theorem 18,
let V be either V ⊆ Rp an open subset, or Tp , or Ts × V , with V ⊂ Rp−s an open sub-
set. Let f ∈ C
(U,V), and assume that V contains the closure of f (U). Then there exists
t̄ = t̄ (
, d, |f |C
(U),V) such that for all t � t̄ the following holds:

(i) St [f ](U) ⊆ V.
(ii) St [f ](U + Ct−1) ⊆ V + (Cβκ)t−1.

Proof. To prove part (i) of Lemma 27 first, notice that from Remark 15 and part (vi) of Remark 7,
one has that St [f ](x) is real if x is real. Hence, if V = Rp , or V = Tp , we have St [f ](U) ⊆ V.
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Now, assume that V � Rd is open. Then from part (i) in Proposition 23 we have that for t � 1,
the following holds:

St [f ](U) ⊂
{
y ∈ Rd : sup

x∈U

∣∣y − f (x)
∣∣ � κ|f |C
(U)t

−

}
. (12)

Hence, if V � Rd is open and the closure of f (U) is contained in V, one has from (12) that for
t sufficiently large St [f ](U) ⊂ V. By taking coordinate functions, the case V = Ts × V , with
V ⊂ Rp−s an open subset, follows from the previous two cases.

Part (ii) of Lemma 27 follows from part (i) of Lemma 27 and part (iv) of Proposition 23. �
A consequence of Proposition 23 is the following.

Proposition 28. Let 1 < 
 /∈ N and let U be either Rd or as in H1 in Theorem 18. Let V be as in
Lemma 27, and let Ω ∈ Λk(V) be such that |Ω|C1(V+ρ) < ∞, for some ρ > 0. Let f ∈ C
(U,V),
and assume that V contains the closure of f (U). Then there exist two positive constants κ =
κ(d, 
, k, |Ω|C1(V+ρ)) and ¯̄t = ¯̄t(d, 
, ρ, |f |C
(U),V) such that for all t � ¯̄t the following holds:

(i) |St [f ]∗Ω − f ∗Ω|C0(U) � κ(t−k(
−1)|f |k
C
(U)

+ t−
|f |C
(U)).

(ii) |St [f ]∗Ω|C0(U+t−1) � κ|f |k
C
(U)

.

Proof. Assume that Ω has the following form:

Ω(x) =
∑

1�i1<···<ik�p

Ωi(x) dxi.

Since V contains the closure of f (U), we have that part (i) of Lemma 27 implies that, for index
i = (i1, . . . , ik) with 1 � i1 < · · · < ik � p, Ωi ◦ St [f ] is defined on U for all t � t̄ , where t̄ is as
in Lemma 27. Hence for t � t̄ the following holds:

(
St [f ]∗Ω)

(x) =
∑

1�i1<···<ik�p

Ωi
(
St [f ](x)

)
St [f ]∗ dxi, ∀x ∈ U. (13)

Then part (i) follows from Proposition 23 and the following equality

(
St [f ]∗Ω − f ∗Ω

)
(x) =

∑
1�i1<···<ik�p

[
Ωi

(
f (x)

){
St [f ] − f

}∗
dxi

+ {
Ωi ◦ St [f ] − Ωi ◦ f

}
(x)St [f ]∗ dxi

]
,

for x ∈ U, where we have used the equality {f ∗ − g∗}dxi = {f − g}∗ dxi, which is true because
the k-form dxi does not depend on the base point.

Let us prove part (ii) of Proposition 28. From part (iv) of Proposition 23 and Lemma 27 we
have that

St [f ](U + t−1) ⊆ St [f ](U) + κt−1|f |C
(U) ⊆ V + κt−1|f |C
(U).
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Hence, if t � t̄ is sufficiently large so that t−1κ|f |C
(U) < ρ, then for any multi-index
i = (i1, . . . , ik) with 1 � i1 < · · · < ik � p, the following holds:∣∣Ωi ◦ St [f ]∣∣

C0(U+t−1)
� |Ωi|C0(St [f ](U+t−1)) � |Ωi|C0(V+ρ). (14)

Hence, part (ii) of Proposition 28 follows from (13) and (14). �
To prove Theorems 18 and 20 we need more accurate estimates than those given in Proposi-

tion 28. Actually (see Sections 3.4 and 3.5) we need an estimate for∣∣St [f ]∗Ω − f ∗Ω
∣∣
C0(U+Ct−1)

,

with C � 0, in the case that both Ω and f ∗Ω are real analytic k-forms. This is given in the
following.

Proposition 29. Let 1 < 
 < m, with 
 /∈ N and m ∈ N. Let U be either Rd or as in H1 in
Theorem 18 and let V be either Rp , Tp , or Ts ×V , V ⊂ Rp−s a compensated open domain with
Cm-boundary, or V ⊂ Rp a compensated open domain with Cm-boundary.

Assume that Ω ∈ Λk(V) and Ω̃ ∈ Λk(U) are two real analytic k-forms such that |Ω|C
(V+ρ),

|Ω̃|C
(U+ρ) < ∞, for some ρ > 0. Then, for each C � 0, β > 0, and 0 < μ < 
 − 1, there
exist two constants κ = κ(d,p, 
,C,β,μ, k) and t̂ = t̂ (d,p, 
,V,C,β,μ) such that for all
f ∈ C
(U,V) satisfying: (i) the closure of f (U) is contained in V, (ii) |f |C
(U) � β , and

(iii) f ∗Ω = Ω̃ , the following holds:∣∣St [f ]∗Ω − Ω̃
∣∣
C0(U+Ct−1)

� κM̂f t−μ, ∀t � t̂ ,

where M̂f depends on k, |Ω|C
(U+ρ), |Ω̃|C
(U+ρ), and β , but is independent of t .

To prove Proposition 29 we extend the definition of the analytic smoothing operator St to
k-forms in the following way. Let U be either Rd or as in H1 in Theorem 18. Let Ω̃ ∈ Λk(U) be
of the form

Ω̃(x) =
∑

1�i1<···<ik�d

Ω̃i(x) dxi,

with Ω̃i ∈ C
(U) for all 1 � i1 < · · · < ik � d , define the k-form St [Ω̃] ∈ Λk(U) by

St [Ω̃] def=
∑

1�i1<···<ik�d

St [Ωi]dxi. (15)

Notice that

St [f ]∗Ω − Ω̃ = {
St [f ]∗Ω − St [f ∗Ω]} + (St − Id)[Ω̃], (16)

so to prove Proposition 29 it suffices to estimate the norm of the differences on the right-hand
side of (16). An estimate of the norm of the second difference on the right-hand side of (16)
follows from the following lemma and (15).



A. González-Enríquez, R. de la Llave / J. Differential Equations 245 (2008) 1243–1298 1261
Lemma 30. Let 1 < 
 /∈ N and let U be either Rd or as in H1 in Theorem 18. Then, there exists
a constant κ = κ(d, 
,C) such that if g ∈A(U + Ct−1,C
) then the following holds:

∣∣(St − Id)[g]∣∣
C0(U+Ct−1)

� κ|g|C
(U+Ct−1)t
−
. (17)

Proof. First one proves Lemma 30 in the case that U ⊆ Rd is either Rd or a compensated
open domain with Cm-boundary. Then the cases g ∈ A(Td + Ct−1,C
) and g ∈ A(Tn × U +
Ct−1,C
), with U a compensated open domain in Rd−n with Cm-boundary, follow by taking a
lift of g and using that (17) holds for the periodic (respectively partially periodic) part of the lift
of g (see Remarks 8, 14, and 15).

We prove Lemma 30 in the case that U ⊂ Rd is a compensated open domain with Cm-
boundary. The case U = Rd is proved in the same way. From Lemma 21 and Theorem 11 we
have that if z ∈ U + Ct−1 then

∣∣St [g](z) − Pg,


(
Re(z), i Im(z)

)∣∣ � eCc̃cU |g|C
(U)t
−
. (18)

Moreover, from the Taylor Theorem we have for all z ∈ U + Ct−1

∣∣g(z) − Pg,


(
Re(z), i Im(z)

)∣∣ � ĉ|g|C
(U+Ct−1)

∣∣Im(z)
∣∣
, (19)

for some constant ĉ. Therefore Lemma 30 follows from (18) and (19). �
Giving an estimate for the norm of the first difference on the right-hand side of (16) is more

intricate. In Section 3.3.1 we give several results from which the following proposition follows
easily (see Section 3.3.2).

Proposition 31. Assume that 
,m, U, V and Ω ∈ Λk(V) are as in Proposition 29. Then, for
each C � 0, β > 0, and 0 < μ < 
 − 1, there exist two constants κ = κ(d,p, 
,C,β,μ, k) and
t̃ = t̃ (d,p, 
,V,C,β,μ) such that for all f ∈ C
(U,V) satisfying (i) and (ii) in Proposition 29,
and for all t � t̃ , the following holds:

∣∣St [f ∗Ω] − St [f ]∗Ω∣∣
C0(U+Ct−1)

� κM̃f t−μ,

where M̃f depends on |Ω|C
(V+ρ) and |f |C
(U), but is independent of t .

3.3.1. Analytic estimates
In this section we give analytic estimates of certain quantities that enable us to estimate the

norm on complex strips of the difference between St [f ]∗Ω and St [f ∗Ω]: Since the pull-back in-
volves the composition and the multiplication of functions, the quantities to be estimated depend
on the norm of the difference between:

(i) smoothing a multiplication of two functions and multiplying their smoothings (see
Lemma 33),

(ii) smoothing a composition of two functions and composing their smoothings (see Proposi-
tion 37).
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Let us start by estimating the C
-norms on complex strips of the product and composition of
functions in terms of the C
-norms of the original functions.

Lemma 32.

(i) Let U be either Rd or as in Theorem 18. Assume that g1, . . . , gk belong to Cr(U + ρ), for
some ρ � 0. Then, the following holds:

|g1g2|Cr(U+ρ) � κ
(|g1|Cr(U+ρ)|g2|C0(U+ρ) + |g1|C0(U+ρ)|g2|Cr(U+ρ)

)
(20)

and

|g1g2 · · ·gk|Cr(U+ρ) � κ

k∑
i=1

(
|gi |Cr(U+ρ)

∏
j∈{1,...,k}

j �=i

|gj |C0(U+ρ)

)
. (21)

(ii) Let W ⊂ Cn and Z ⊂ Cp be compensated domains (Definition 16), s, σ � 0, and h ∈
A(Z,Cs). Assume that f ∈A(W,Cσ ) is such that f (W) ⊂ Z, then:
(a) If max(s, σ ) < 1, then h ◦ f ∈ A(W,Csσ ) and

|h ◦ f |Csσ (W) � |h|Cs(Z)|f |sCσ (W) + |h|C0(Z).

(b) If max(s, σ ) � 1, then h ◦ f ∈A(W,C
), with 
 = min(s, σ ). Moreover:
(i) If 0 � s < 1 � σ , then

|h ◦ f |Cs(W) � κ|h|Cs(Z)|f |s
C1(W)

+ |h|C0(Z).

(ii) If 0 � σ � 1 � s, then

|h ◦ f |Cσ (W) � κ|h|C1(Z)|f |Cσ (W) + |h|C0(Z).

(iii) If 
 = min(s, σ ) � 1, then

|h ◦ f |C
(W) � κ|h|C
(Z)

(
1 + |f |


C
(W)

)
.

Proof. To prove estimate (20) use the Leibniz’s rule to write the derivative of the product func-
tion h = g1g2 in terms of the derivatives of g1 and g2 and use the interpolation estimates [4,21].
Estimate (21) follows from (20). Part (ii) follows from Theorem 4.3 in [21]. �

In the following lemma we give an estimate for the norm of the difference between smoothing
a multiplication of two functions and multiplying their smoothings.

Lemma 33. Let 1 < 
 < m, with m ∈ N and 
 /∈ N, and let U be either Rd or as in H1 in
Theorem 18. Then for each C � 0, 0 � μ < 
 and r ∈ (0,1), with 0 < r + μ < 
, there exists a
constant κ = κ(d, 
,C,μ, r), such that for all t � e1/r satisfying

t−1(C + r log(t)
)
� 1, (22)
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the following holds:

(i) |St [g]|Cμ(U+Ct−1) � κ|g|C
(U), for g ∈ C
(U).
(ii) For g1, g2 ∈ C
(U)∣∣St [g1]St [g2]

∣∣
Cμ(U+Ct−1)

� κ
(|g1|C0(U)|g2|C
(U) + |g1|C
(U)|g2|C0(U)

)
.

(iii) For g1, g2 ∈ C
(U)∣∣St [g1g2] − St [g1]St [g2]
∣∣
C0(U+Ct−1)

� κ
(|g1|C0(U)|g2|C
(U) + |g1|C
(U)|g2|C0(U)

)
t−μ.

Proof. To prove part (i) of Lemma 33, one first proves that it holds for g ∈ C
(U), when U is
either Rd or an open domain with Cm-boundary. That part (i) of Lemma 33 holds for g ∈ C
(U),
when U is either Td or Tn × U , with U ⊂ Rd−n an open domain with Cm-boundary, follows by
taking a lift of g, applying part (i) of Lemma 33 to the periodic (respectively, partially periodic)
part of the lift of g, and using the norms introduced in Definition 4 (see Remarks 8, 14, and 15).

We only prove part (i) of Lemma 33 in the case that U is an open domain with Cm-boundary.
The case U = Rd is proved in the same way. For t � 1, define ρ(t) = t−1(C + r log(t)) and let k

be such that 2k � t < 2k+1. Using Lemma 21 and Theorem 11 one proves that if g ∈ C
(U) then
the following estimates hold:

∣∣(S2t − St )[g]∣∣
C0(Rd+ρ(2t))

� κ|g|C
(U)t
−
+r ,∣∣(St − S2k )[g]∣∣

C0(Rd+ρ(t))
� κ|g|C
(U)2

−k
tr .

Then part (i) of Lemma 33 in the case that U is an open subset of Rd with Cm-boundary, follows
using Cauchy’s estimates and the following inequality:

∣∣St [g]∣∣
Cμ(Rd+t−1C)

�
∣∣(St − S2k )[g]∣∣

Cμ(Rd+t−1C)
+

k∑
j=1

∣∣(S2j − S2j−1)[g]∣∣
Cμ(Rd+t−1C)

+ ∣∣S1[g]∣∣
Cμ(Rd+t−1C)

.

Part (ii) of Lemma 33 follows from estimate (20), and part (i) of Lemma 33. To prove part (iii)
of Lemma 33 write

St [g1g2] − St [g1]St [g2] = St

[
(Id − St )[g1]g2

] + St

[
St [g1](Id − St )[g2]

]
+ (St − 1)

[
St [g1]St [g2]

]
. (23)

Parts (ii) and (i) of Proposition 23 imply

∣∣St

[
(1 − St )[g1]g2

]∣∣
C0(U+Ct−1)

� κ
∣∣(1 − St )[g1]g2

∣∣
C0(U)

� κ|g2|C0(U)

∣∣(1 − St )[g1]
∣∣
C0(U)

� κ|g2|C0(U)|g1|C
(U)t
−
 (24)

and
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∣∣St

[
St [g1](1 − St )[g2]

]∣∣
C0(U+Ct−1)

� κ
∣∣St [g1](1 − St )[g2]

∣∣
C0(U)

� κ
∣∣St [g1]

∣∣
C0(U)

∣∣(1 − St )[g2]
∣∣
C0(U)

� κ|g1|C0(U)|g2|C
(U)t
−
. (25)

Moreover, because of part (ii) of Lemma 33 we have that St [g1]St [g1] belongs to A(Rd +
Ct−1,Cμ), then Lemma 30 and part (ii) of Lemma 33 imply

∣∣(St − 1)
[
St [g1]St [g2]

]∣∣
C0(U+Ct−1)

� κ
∣∣St [g1]St [g2]

∣∣
Cμ(Rd+Ct−1)

t−μ

� κ
(|g1|C0(U)|g2|C
(U) + |g1|C
(U)|g2|C0(U)

)
t−μ. (26)

Hence part (iii) of Lemma 33 follows from equality (23) and estimates (24), (25), and (26). �
We emphasize that the proof of Lemma 33 is based on the linearity of St . As a consequence

of Lemma 33 we have the following.

Lemma 34. Let 
 and U be as in Lemma 33. Let k,n be two non-negative integers such that
0 � n + k � d . For each 0 � μ < 
, C � 0 and r ∈ (0,1), with 0 < r + μ < 
, there exists a
constant κ = κ(d, 
,C,μ, r, k, n), such that for all ϑ ∈ Λn(U) and α ∈ Λk(U) with

|ϑ |C
(U) < ∞ and |α|C
(U) < ∞,

and for all t � e1/r satisfying (22) the following holds:∣∣St [ϑ] ∧ St [α] − St [ϑ ∧ α]∣∣
C0(U+Ct−1)

� κ
(|ϑ |C0(U)|α|C
(U) + |ϑ |C
(U)|α|C0(U)

)
t−μ.

Proof. Let ϑ ∈ Λn(U) and α ∈ Λk(U) be given by

ϑ(x) =
∑

1�i1<···<in�d

ϑi(x) dxi, α(x) =
∑

1�j1<···<jk�d

αj(x) dxj,

with ϑi, αj ∈ C
(U) for all i = (i1, . . . , in), with 1 � i1 < i2 < · · · < in � d , and j = (j1, . . . , jk),
with 1 � j1 < · · · < jk � d . Then, performing some simple computations one obtains

St [ϑ] ∧ St [α] − St [ϑ ∧ α](x)(ξ1, . . . , ξm+k)

=
∑

σ∈S(n,k)

∑
1�i1<···<in�d
1�j1<···<jk�d

ci,j(x) dxi(ξσ(1), . . . , ξσ(n)) dxj(ξσ(n+1), . . . , ξσ(n+k)),

where S(n, k) represents the set of all permutations σ of {1,2, . . . , n + k} such that σ(1) <

σ(2) < · · · < σ(n) and σ(n + 1) < · · · < σ(n + k), and

ci,j(x)
def= (

St [ϑi]St [αj] − St [ϑiαj]
)
(x).

Hence the proof is finished applying part (iii) of Lemma 33. �
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The following lemma is the same result as Proposition 31, applied to the components of Λk(V)

with respect to the basis: dxi = dxi1 ∧ · · · ∧ dxik , with 1 � i1 < · · · < ik � p.

Lemma 35. Let 
, U and V be as in Lemma 27. For each natural number 1 � k � p, and all real
numbers 0 � μ < 
 − 1, C � 0, and r ∈ (0,1), satisfying 0 < r + μ < 
 − 1, there exist two con-
stants κ = κ(d, 
,C,μ, r, k) and t0 = t0(d, 
,β,V, r) such that for any f ∈ C
(U,V) satisfying
(i) the closure of f (U) is contained in V, (ii) |f |C
(U) � β , and any multi-index i = (i1, . . . , ik),
with 1 � i1 < · · · < ik � p, the following holds for all t � t0 satisfying (22)

∣∣St [f ∗ dxi] − St [f ]∗ dxi
∣∣
C0(U+Ct−1)

� κ|f |k
C
(U)

t−μ.

Proof. Let i = (i1, . . . , ik) be a multi-index with 1 � i1 < · · · < ik � p, and let f ∈ C
(U,V) be
such that the closure of f (U) is contained in V and |f |C
(U) � β . Performing some computations
and using the linearity of St one obtains

St [f ∗ dxi] − St [f ]∗ dxi =
k−1∑
n=1

αn ∧ ϕn, (27)

where, for n ∈ {1, . . . , k − 1},

ϕn
def=

{
St [f ∗ dxin+2] ∧ · · · ∧ St [f ∗ dxik ], n ∈ {1, . . . , k − 2},
1, n = k − 1,

and

αn
def= St [ϑn ∧ f ∗ dxin+1] − St [ϑn] ∧ St [f ∗ dxin+1], (28)

where

ϑn
def= f ∗(dxi1 ∧ · · · ∧ dxin). (29)

Notice that, because of part (ii) of Proposition 23, for all n ∈ {1, . . . , k−2} the following estimate
holds:

|ϕn|C0(U+Ct−1) � κ
(∣∣St [Df ]∣∣

C0(U+Ct−1)

)k−(n+1)

� κ
(|Df |C0(U)

)k−(n+1)
.

Hence using (27) one has

∣∣St [f ∗ dxi] − St [f ]∗ dxi
∣∣
C0(U+Ct−1)

� |αk−1|C0(U+Ct−1)

+ κ

k−2∑
|αn|C0(U+Ct−1)|Df |k−(n+1)

C0(U)
, (30)
n=1
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where we assumed, without loss of generality, that κ � 1. Moreover, from (21) and (29) we have
for all n ∈ {1, . . . , k − 1}

|ϑn|C
−1(U) � κn|Df |n−1
C0(U)

|Df |C
−1(U) < ∞

and

|f ∗ dxin+1 |C
−1(U) � κ|Df |C
−1(U) < ∞,

for some constant κ . Hence, using (28) and Lemma 34, we have that given 0 � μ < 
−1, C � 0,
and r ∈ (0,1), with 0 < r < 
 − 1 − μ, there exists a constant κ = κ(d, 
,μ, r,C), such that

|αn|C0(U+Ct−1) � κ|ϑn|C
−1(U)

(|f ∗ dxin+1 |C
−1(U) + |f ∗ dxin+1 |C0(U)

)
t−μ

� κ(n + 1)|Df |n
C0(U)

|Df |C
−1(U)t
−μ. (31)

Hence Lemma 35 follows from (30) and (31). �
In order to prove Proposition 31 for an arbitrary k-form we need an estimate for the norm of

the difference between the composition of the smoothing and the smoothing of the composition.
This was considered in [11] for functions in C
(Rd). We use the following.

Lemma 36. Let 
, m, U and V be as in Proposition 29. Given 0 < μ < 
 and C � 0, β > 0
there exist two constants κ = κ(d,p, 
,C,μ,β) and t1 = t1(p, 
,V,C,β,μ) such that for
each h ∈ C
(V) and f ∈ C
(U,V), satisfying (i) the closure of f (U) is contained in V and
(ii) |f |C
(U) � β , the following holds for all t � t1:

∣∣St [h] ◦ St [f ]∣∣
Cμ(U+Ct−1)

� κ|h|C
(V)

(
1 + |f |τ

C
(U)

)
, (32)

where

τ is any number in (μ,1), if 0 < μ < 1 < 
,

τ = μ, if 1 � μ < 
.

Proof. Let 0 � s, σ < 
, fix r1, r2 ∈ (0,1) in such a way that 0 � s + r1 < 
, and 0 � σ + r2 < 


(e.g. r1 = min(1/2, (
 − s)/2), r2 = min(1/2, (
 − σ)/2)). Let κ be as in Proposition 23 and
assume that t � max(e1/r1 , e1/r2) is sufficiently large such that

t−1 max
(
C + r2 log(t),Cκβ + r1 log(t)

)
� 1.

Then Lemma 33 implies for h ∈ C
(V) and f ∈ C
(U,V),

∣∣St [f ]∣∣
Cσ (U+Ct−1)

� κ(d, 
,C,σ, r2)|f |C
(U), 0 � σ < 
,∣∣St [h]∣∣
Cs(V+(Cβκ)t−1)

� κ(p, 
,C, s, r1)|h|C
(V), 0 � s < 
. (33)

Hence for all 0 � s, σ < 
 there exists t̃1 = t̃1(p, 
,C,β, s, σ ) such that, for all t � t̃1,
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St [h] ∈A
(
V + (Cβκ)t−1,Cs

)
,

St [f ] ∈A
(
U + Ct−1,Cσ

)
. (34)

Inclusions in (34) and part (ii) of Lemma 27 enable us to apply part (ii) of Lemma 32 to the
composition St [h] ◦ St [f ] as follows. If 1 � μ < 
, estimate (32) follows from estimates (33),
and part (b)(iii) of Lemma 32. Finally, if 0 < μ < 1 < 
, write μ = σs with s ∈ (μ,1) ⊂ [0, 
)

and σ = μ/s ∈ (0,1) ⊂ [0, 
), then estimate (32) follows from estimates (33), and part (a) of
Lemma 32 with

t1(p, 
,C,β,μ)
def= t̃1

(
p,
,C,β, s(μ),σ (μ)

)
. �

Proposition 37. Let 
, m, U and V be as in Proposition 29. Given the real numbers C � 0,
β > 0, and 0 < μ < 
, there exist two positive constants κ = κ(p,d, 
,C,μ,β) and t2 =
t2(p, 
,V,C,μ,β) such that for every h ∈ C
(V) and f ∈ C
(U,V), satisfying (i) the closure of
f (U) is contained in V and (ii) |f |C
(U) < β , the following holds for all t � t2:

∣∣St [h] ◦ St [f ] − St [h ◦ f ]∣∣
C0(U+Ct−1)

� κM1t
−μ, (35)

where

M1
def= |h|C
(V)

(
1 + |f |τ

C
(U)

) + |h|C
(V)|f |C
(U),

and

τ is any number in (μ,1), if 0 < μ < 1 < 
,

τ = μ, if 1 � μ < 
.

Proof. That the composition h ◦ f belongs to C
(U) follows from part (ii) of Lemma 32 (the
torus and annulus cases this is obtained by using lifts). To prove estimate (35), first write

St [h] ◦ St [f ] − St [h ◦ f ] = (1 − St )
[
St [h] ◦ St [f ]]

+ St

[
St [h] ◦ St [f ]] − St

[
St [h] ◦ f

]
+ St

[
St [h] ◦ f − h ◦ f

]
. (36)

Let us estimate the first term on the right-hand side of (36). Let C � 0, β > 0, and 0 < μ < 


be given and let κ and t1 be as in Lemma 36. Then from Lemmas 36 and 30 one obtains for all
t � t1

∣∣(Id − St )
[
St [h] ◦ St [f ]]∣∣

C0(U+Ct−1)
� κ

∣∣St [h] ◦ St [f ]∣∣
Cμ(U+Ct−1)

t−μ

� κ|h|C
(V)

(
1 + |f |τ

C
(U)

)
t−μ, (37)

where τ is as in Lemma 36. Now we consider the third term on the right-hand side of (36). Using
again part (ii) of Proposition 23 we have
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∣∣St

[
St [h] ◦ f − h ◦ f

]∣∣
C0(U+Ct−1)

� κ
∣∣St [h] ◦ f − h ◦ f

∣∣
C0(U)

� κ
∣∣(St − 1)[h]∣∣

C0(V)

� κ|h|C
(V)t
−
, (38)

where in the last inequality we have used part (i) of Proposition 23. To estimate the second term
on the right-hand side of (36), we first consider the case U ⊂ Rd is a compensated open domain
with Cm-boundary. Notice that from Remark 15 one has

St

[
St [h] ◦ St [f ]] − St

[
St [h] ◦ f

] = St

[
St [h] ◦ St [f ] − E 


U

(
St [h] ◦ f

)]
. (39)

Moreover, if x ∈ U, then

E 

U

(
St [h] ◦ f

)
(x) = (

St [h] ◦ f
)
(x). (40)

Then, from Proposition 23, and equalities (39) and (40) we have

∣∣St

[
St [h] ◦ St [f ]] − St

[
St [h] ◦ f

]∣∣
C0(U+Ct−1)

� κ|h|C
(U)|f |C
(U). (41)

In the same way, one proves that estimate (41) also holds in the case U = Rd . Indeed, if U = Rd

then (compare with (39))

St

[
St [h] ◦ St [f ]] − St

[
St [h] ◦ f

] = St

[
St [h] ◦ St [f ] − St [h] ◦ f

]
.

Furthermore, taking lifts, using the norms introduced in Definition 4, and using that (41) holds
when U is either Rd or a compensated open domain in Rd with Cm-boundary, one proves that
estimate (41) also holds in the following cases: (i) U = Td , V = Tp , (ii) U = Td and V ⊂ Rp is
a compensated open domain with Cm-boundary, (iii) U = Tn × U , with U ⊂ Rd a compensated
open domain with Cm-boundary, and V = Tp , (iv) U = Tn × U , with U ⊂ Rd a compensated
open domain with Cm-boundary, and V is a compensated open domain with Cm-boundary.
Hence, estimate (41) holds for U and V as in the hypotheses of Proposition 37.

Proposition 37 follows from equality (36) taking t2 sufficiently large such that estimates (37),
(38), and (41), holds for all t � t2. �
3.3.2. Smoothing and pull-back (Proof of Proposition 31)

We now have all the ingredients to prove Proposition 31. Let U, V, and Ω ∈ Λk(V) be as
in Proposition 29. Throughout this section we assume that C � 0, β > 0, and 0 < μ < 
 − 1
are given. Fix r ∈ (0,1) in terms of 
 and μ in such a way that 0 < μ + r < 
 − 1 (e.g. r =
min(1/2, (
 − 1 − μ)/2)) so that the constants depending on r will actually depend on μ and 
.
Let f ∈ C
(U,V) be such that the closure of f (U) is contained in V, then Lemma 27 implies
St [f ]∗Ω ∈ Λk(U) for t � t̄ . Hence, to have St [f ]∗Ω defined on U we assume from now on that
t � t̄ . To prove Proposition 31 we first write

St [f ]∗Ω − St [f ∗Ω] = {
St [f ]∗Ω − St [f ]∗(St [Ω])}
+ {

St [f ]∗(St [Ω]) − St [f ∗Ω]}. (42)
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Let us estimate the first term in brackets on the right-hand side:

(
St [f ]∗Ω − St [f ]∗(St [Ω]))(x) =

∑
1�ii<···<ik�d

(1 − St )[Ωi]
(
St [f ](x)

)
St [f ]∗ dxi. (43)

From Lemma 27 we have

St [f ](U + Ct−1) ⊆ V + (Cβκ)t−1 ⊆ V + ρ, ∀t � max
(
ρ−1βCκt̄

)
.

Assume that Ω ∈ A(V + ρ,C
), then for all i = (i1, . . . , ik), with 1 � ii < · · · < ik � p and
t � max(ρ−1βCκ, t̄), Lemma 30 implies

∣∣(Id − St )[Ωi] ◦ St [f ]∣∣
C0(U+Ct−1)

�
∣∣(Id − St )[Ωi]

∣∣
C0(V+ρ)

�
(
κ|Ωi|Cσ (V+ρ)

)
t−σ , (44)

for all 0 � σ � 
. Hence, part (ii) of Proposition 23, estimate (44), and equality (43), yield for all
t � max(ρ−1βCκ, t̄),

∣∣St [f ]∗Ω − St [f ]∗(St [Ω])∣∣
C0(U+Ct−1)

� κ|Ω|Cμ(V+ρ)|f |k
C
(U)

t−μ, (45)

where κ = κ(p,d, 
,C,μ,β, k).
Now write the second term on the right-hand side of (42) in the following way:

St [f ]∗(St [Ω]) − St [f ∗Ω] =
∑

1�ii<···<ik�d

{(
St [Ωi] ◦ St [f ] − St [Ωi ◦ f ])St [f ]∗ dxi

+ St [Ωi ◦ f ](St [f ]∗ dxi − St [f ∗ dxi]
)

+ St [Ωi ◦ f ]St [f ∗ dxi] − St

[
(Ωi ◦ f )f ∗ dxi

]}
. (46)

In what follows we give estimates for the three terms on the right-hand side of (46). The first
term is estimated as follows: Let t2 be as in Proposition 37, then Proposition 37 and part (ii) of
Proposition 23 yield for all t � t2:

∣∣(St [Ωi] ◦ St [f ] − St [Ωi ◦ f ])St [f ]∗ dxi
∣∣
C0(Rd+Ct−1)

� κ|f |k
C
(U)

{|Ωi|C
(U)

(
1 + |f |τ

C
(U)

) + |Ωi|C
(U)|f |C
(U)

}
t−μ, (47)

where κ = κ(p,d, 
,C,μ,β, k) and τ is as in Proposition 37.
An estimate for the second term on the right-hand side of (46) follows from part (ii) of Propo-

sition 23 and Lemma 35:

∣∣St [Ωi ◦ f ](St [f ]∗ dxi − St (f
∗ dxi)

)∣∣
C0(U+Ct−1)

� κ|Ωi|C0(V)|f |k
C
(U)

t−μ, (48)

where t � t0, with t0 as in Lemma 35, and κ = κ(d, 
,C,μ, k).
Finally, applying Lemma 34 to the 0-form Ωi ◦f and the k-form f ∗ dxi and using Lemma 32,

one has that there exists a constant κ = κ(d, 
,C,μ, k) such that, for all t � e1/r satisfying (22),
the following holds:
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∣∣St [Ωi ◦ f ]St [f ∗ dxi] − St

[
(Ωi ◦ f )f ∗ dxi

]∣∣
C0(U+Ct−1)

� κ
(|Ωi ◦ f |C0(U)|f ∗ dxi|C
−1(U) + |Ωi ◦ f |C
−1(U)|f ∗ dxi|C0(U)

)
t−μ

� κ
{|Ωi|C0(V)|Df |k−1

C0(U)
|f |C
(U) + |Ωi|C
(V)

(
1 + |f |


C
(U)

)|Df |k
C0(U)

}
t−μ, (49)

where we have used the inequality |Ωi ◦f |C
−1(U) � |Ωi ◦f |C
(U) and part (b)(iii) of Lemma 32.
Define

t̃
def= max

(
Cβκρ−1, e1/r , t2, t̄

)
,

where κ = κ(d,C) is as in Proposition 23, t̄ is as in Lemma 27, and t2 is as in Proposition 37.
Let t � t̃ satisfy (22), then equality (46) and estimates (47), (48) and (49) imply∣∣St [f ]∗(St [Ω]) − St [f ∗Ω]∣∣

C0(U+Ct−1)
� κM2t

−μ, (50)

where κ is a constant depending on d , 
, k, r , μ, and C, and M2 is defined by

M2
def= |f |k

C
(U)
|Ω|C
(U)

{
1 + |f |τ

C
(U)
+ |f |


C
(U)
+ |f |C
(U)

}
.

Hence Proposition 31 follows from estimates (45) and (50). �
3.4. The symplectic and volume cases (Proof of Theorem 18)

Let 
 and U be as in Theorem 18 and let f ∈ Diff
(U). We prove Theorem 18 in several
lemmas. First in Lemma 39 we prove that if Ω is a non-degenerate form, then for sufficiently
large t , the form defined by

Ωε
t

def= Ω + ε
(
St [f ]∗Ω − Ω

)
, (51)

is also non-degenerate for all ε ∈ [0,1]. We also give explicit estimates for the norm of I −1
Ωε

t
θ

on complex strips in terms of the corresponding norm of θ . In Lemma 41 we use the defor-
mation method [9] to prove that, for t sufficiently large, there exists a diffeomorphism such
that (φε

t )
∗Ωε

t = Ω . Moreover, in Lemma 41 we also give quantitative properties of φε
t . More

precisely, using Lemma 39 we prove that the diffeomorphism φε
t is real analytic, close to the

identity and with first and second derivatives bounded on the complex strips Ut + Ct−1, with Ut

defined in (7). In Lemma 42 we prove that if ϕt
def= φ1

t , then Tt [f ] def= St [f ] ◦ϕt satisfies properties
T1–T6 of Theorem 18. Property T7 is proved in Section 3.4.1.

Remark 38. Notice that if f ∈ Diff
(U) then from part (i) of Proposition 23 we have that, for t

sufficiently large, St [f ] is a diffeomorphism on U.

Lemma 39. Let 
, U, V, Ω and IΩ satisfy the hypotheses of Theorem 18. Then, given C � 0
and β > 0 there exists a constant t3, depending on d , 
, V, C, β , MΩ , and |Ω|C
(U+ρ), such

that for all t � t3 and for all f ∈ Diff
(U) satisfying (i) |f |C
(U) < β , (ii) V contains the closure
of f (U), and (iii) f ∗Ω = Ω , the k-form defined by (51) is non-degenerate for all ε ∈ [0,1].
Furthermore, for any real analytic θ ∈ Λk−1(U), satisfying |θ |C0(U+ρ) < ∞, and any t � t3, the
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application taking (ε, x) into I −1
Ωε

t
(θ)(x) is continuous on (ε, x) ∈ [0,1] × U + Ct−1 and real

analytic with respect to x. Moreover∣∣I −1
Ωε

t
(θ)

∣∣
C0(U+Ct−1)

� 2MΩ |θ |C0(U+Ct−1), ∀ε ∈ [0,1].

Proof. This follows from Proposition 29. Indeed, first notice that for all t � 1 and ε ∈ [0,1] the
following equality holds:

IΩε
t
= IΩ + εI(St [f ]∗Ω−Ω) = (

Id + εI(St [f ]∗Ω−Ω) ◦ I −1
Ω

) ◦ IΩ, (52)

where Id represents the identity map on Λk−1(U). Let κ = κ(d, d, 
,C,β, (
 − 1)/2, k),
t̂ = t̂ (d, d, 
,V,C,β, (
 − 1)/2), and M̂f be as in Proposition 29, then for all t � max(t̂ ,C)

and for any θ ∈ Λk−1(U), satisfying |θ |C0(U+ρ) < ∞, the following estimate holds:

∣∣I(St [f ]∗Ω−Ω)

(
I −1

Ω θ
)∣∣

C0(U+Ct−1)
� κM̂f t−(
−1)/2MΩ |θ |C0(U+Ct−1). (53)

Assume that t3 is sufficiently large so that for all t � t3 estimate (53) holds and moreover

t−(
−1)/2κM̂f MΩ � 1/2.

Then for all t � t3, ε ∈ [0,1], the application (Id − εISt [f ]∗Ω−Ω ◦ I −1
Ω ) is an isomorphism on

Λk−1(U), and moreover the following holds for any θ ∈ Λk−1(U), satisfying |θ |C0(U+ρ) < ∞:

∣∣(Id − εISt [f ]∗Ω−Ω ◦ I −1
Ω

)−1
θ
∣∣
C0(U+Ct−1)

� 2|θ |C0(U+Ct−1).

Hence from (52) we have that for all t � t3, and ε ∈ [0,1], the application IΩε
t

is invertible with
inverse given by

I −1
Ωε

t
= I −1

Ω ◦ (
Id + εISt [f ]∗Ω−Ω ◦ I −1

Ω

)−1
,

from which Lemma 39 follows. �
Lemma 40. Let 
, U, V, Ω and IΩ satisfy the hypotheses of Theorem 18. Then, given
C � 0, β > 0 and 1 < μ < 
 − 1, there exist two constants κ = κ(d, 
,C,β,μ, k,MΩ) and
t4 = t4(d, 
,V,C,β,μ,MΩ, |Ω|C
(U+ρ)), such that for all t � t4 and for all f ∈ Diff
(U) sat-
isfying (i) |f |C
(U) < β , (ii) V contains the closure of f (U), and (iii) f ∗Ω = Ω , there exists a
vector field uε

t satisfying

diuε
t

(
Ωε

t

) = −(
St [f ]∗Ω − f ∗Ω

)
, (54)

where d represents the exterior derivative and Ωε
t is defined in (51). Furthermore, the vector field

uε
t is continuous on (ε, x) ∈ [0,1] × U + 2Ct−1, real analytic with respect to x on U + 2Ct−1,

and it satisfies the following estimates:∣∣uε
t

∣∣
C0(U+2Ct−1)

� κM̂f t−μ, ∀ε ∈ [0,1], (55)

where M̂f is as in Proposition 29.
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Proof. First notice that since Ω = dα is exact and analytic, then the right-hand side of (54) is
also exact and analytic. Then, the Poincaré’s formula implies the existence of an analytic 1-form
γt such that: dγt = St [f ]∗Ω − Ω and

|γt |U+2Ct−1 � κ̂
∣∣St [f ]∗Ω − Ω

∣∣
U+Ct−1 � κM̂f t−μ,

where we have used Proposition 29 and the fact that U is bounded. Lemma 40 follows from
Lemma 39 by solving the following equation:

iuε
t
Ωε

t = −γt . �
Lemma 41. Let 
, U, V, Ω and IΩ satisfy the hypotheses of Theorem 18. Then, given C � 0,
β > 0 and 1 < μ < 
 − 1, there exist two constants κ = κ(d, 
,C,β,μ, k,MΩ) and t5 =
t5(d, 
,V,C,β,μ,MΩ, |Ω|C
(U+ρ)), such that for any f ∈ Diff
(U) satisfying (i) |f |C
(U) < β ,
(ii) V contains the closure of f (U), and (iii) f ∗Ω = Ω , any t � t5, and any ε ∈ [0,1], there
exists an analytic diffeomorphism φε

t on Ut , with Ut defined in (7), such that the following hold:

(i) (φε
t )

∗Ωε
t = Ω .

(ii) φ0
t = id.

(iii) |φ1
t − id|C0(Ut+Ct−1) � κM̂f t−μ, where id represents the identity map.

(iv) |Dφ1
t |C0(Ut+Ct−1) � exp(C−1κM̂f t−μ+1).

(v) |D2φ1
t |C0(Ut+Ct−1) � C−2κM̂f t−μ+2 exp(3C−1κM̂f t−μ+1).

Proof. Following the proof of Theorem 2 in [9], we determine φε
t by solving the differential

equation

d

dε
φε

t = uε
t ◦ φε

t , 0 � ε � 1, (56)

with φ0
t the identity mapping, where the vector field uε

t is as in Lemma 40. Notice that, in the
case U = Td , the properties of uε

t given in Lemma 40 imply the existence of a unique solution
φε

t of (56) for all ε ∈ [0,1] and all x in the closure of Td + Ct−1. To guarantee a solution of (56)
for all ε ∈ [0,1] in the non-compact cases: (i) U ⊂ Rd a compensated bounded open domain
with Cm-boundary, and (ii) U = Tn × U with U ⊂ Rd−n a compensated bounded open domain
with Cm-boundary, we solve (56) for initial conditions in the closure of Ut +Ct−1, with Ut ⊂ U

defined in (7). Notice that if t4 as in Lemma 40 and t � t4 is sufficiently large so that

κM̂f t−μ+1 < 1, (57)

which is possible because 1 < μ < 
 − 1, then (55) and (57) imply the existence of a unique
solution φε

t of (56) for all ε ∈ [0,1] and all x in the closure of Ut + Ct−1, with Ut ⊂ U defined
in (7).

Hence, if U and Ut are as in Theorem 18 and t � t4 satisfies (57), then Eq. (56) has a unique
solution φε

t (x), defined for ε ∈ [0,1], and x in the closure of Ut +Ct−1. Moreover, the following
holds:
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∣∣φ1
t − id

∣∣
C0(Ut+Ct−1)

= sup
x∈Ut+Ct−1

∣∣∣∣∣
1∫

0

us
t

(
φs

t (x)
)
ds

∣∣∣∣∣ � sup
s∈[0,1]

∣∣us
t

∣∣
C0(U+Ct−1)

� κM̂f t−μ,

from which part (iii) of Lemma 41 follows.
Part (i) follows from (54), (56) and the E. Cartan’s formula for the Lie derivatives (cf. [22]):

d

dε

((
φε

t

)∗
Ωε

t

) = (
φε

t

)∗
{
d
(
iuε

t
Ωε

t

) + iuε
t

(
dΩε

t

) + d

dε
Ωε

t

}
= 0.

Parts (iv) and (v) follow from the Gronwall’s and Cauchy’s estimates, and (55) as follows:
From (56) we have for t � t4 satisfying (57) and x in the closure of Ut + Ct−1

∣∣Dφε
t (x)

∣∣ � 1 +
ε∫

0

∣∣Dus
t

∣∣
C0(U+Ct−1)

∣∣Dφs
t (x)

∣∣ds, ε ∈ [0,1],

then the Gronwall’s and Cauchy’s estimates and (55) imply

∣∣Dφε
t

∣∣
C0(Ut+Ct−1)

� exp
(

sup
s∈[0,1]

∣∣Dus
t

∣∣
C0(U+Ct−1)

)
� exp

(
C−1κM̂f t−μ+1).

Similarly

∣∣D2φ1
t

∣∣
C0(Ut+Ct−1)

�
1∫

0

∣∣D2us
t

∣∣
C0(U+Ct−1)

∣∣Dφs
t

∣∣2
C0(Ut+Ct−1)

ds

+
1∫

0

∣∣Dus
t

∣∣
C0(U+Ct−1)

∣∣D2φs
t

∣∣
C0(Ut+Ct−1)

ds

� sup
ε∈[0,1]

∣∣uε
t

∣∣
C2(U+Ct−1)

exp
(
2C−1κM̂f t−μ+1)

+ ∣∣uε
t

∣∣
C1(U+Ct−1)

1∫
0

∣∣D2φs
t

∣∣
C0(Ut+Ct−1)

ds

� κC−2M̂f t−μ+2 exp
(
2C−1κM̂f t−μ+1)

+ κC−1M̂f t−μ+1

1∫
0

∣∣D2φs
t

∣∣
C0(Ut+Ct−1)

ds,

from which part (v) of Lemma 41 follows. �
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Lemma 42. Assume that the hypotheses of Theorem 18 hold. Let t5 and φ1
t be as in Lemma 41,

define for t � t5

ϕt
def= φ1

t .

Then, given C � 0, β > 0 and 1 < μ < 
 − 1, there exist two constants κ = κ(d, 
,C,β,μ,

k,MΩ) and t∗ = t∗(d, 
,V,C,μ,β,MΩ, |Ω|C
(U+ρ)), such that if the elements of the family

of – nonlinear – operators {Tt }t�t∗ are defined for f ∈ Diff
(U) satisfying (i) |f |C
(U) < β ,
(ii) V contains the closure of f (U), and (iii) f ∗Ω = Ω , by

Tt [f ](x)
def= St [f ](ϕt (x)

)
, x ∈ Ut ,

where Ut is as in Theorem 18, then Tt [f ] satisfies T0, T1, T2, T4 of Theorem 18 and the following
properties:

T3′. |Tt [f ] − St [f ]|C0(Ut+Ct−1) � κMf t−μ.

T5′. |(Tt − Id)[f ]|Cr(Ut ) � κMf t−(μ−r), for all 0 � r � μ.
T6′. |(Tτ − Tt )[f ]|C0(Ut+Ct−1) � κMf t−μ, for all τ � t � t∗.

Proof. That Tt [f ] is a diffeomorphism on Ut follows from Remark 38 and Lemma 41. Notice
that property T1 of Theorem 18 follows from part (i) of Lemma 41. Now, assume that t∗ � t5 is
sufficiently large so that for all t � t∗ the following holds:

κM̂f t−(μ−1) < C log(2), (58)

which is possible because 1 < μ < 
 − 1. Then using (58) and parts (iii) and (iv) of Lemma 41
one has for all t � t5

|ϕt − id|C0(Ut+Ct−1) � κM̂f t−μ < Ct−1 (59)

and

|Dϕt |C0(Ut+Ct−1) � exp
(
C−1κM̂f t−(μ−1)

)
< 2. (60)

Notice that if 2 < μ < 
 − 1 then it is possible to choose t∗ sufficiently large such that (compare
with (58))

κM̂f t−(μ−2) < min
(
C2,C log(2)

)
, ∀t � t∗.

Then part (v) of Lemma 41 implies for such t that∣∣D2ϕt

∣∣
C0(Ut+Ct−1)

< 23. (61)

A consequence of (60) is that we can control the domain of the composition St [f ]◦ϕt on complex
strips because of the following estimate:∣∣Im(ϕt )

∣∣
0 −1 � Ct−1|Dϕt |C0(U +Ct−1) < 2Ct−1,
C (Ut+Ct ) t
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from which we have

ϕt

(
Ut + Ct−1) ⊂ U + 2Ct−1. (62)

Now property T2 of Theorem 18 follows easily. First, using (62) and part (ii) of Proposition 23
one has

∣∣Tt [f ]∣∣
C0(Ut+Ct−1)

= ∣∣St [f ] ◦ ϕt

∣∣
C0(Ut+Ct−1)

�
∣∣St [f ]∣∣

C0(U+(2Ct−1))
� κ|f |C0(U).

Now, using (62), part (i) of Lemma 33, and estimate (60) one has

∣∣DTt [f ]∣∣
C0(Ut+Ct−1)

�
∣∣St [f ]∣∣

C1(U+2Ct−1)

∣∣Dϕt(x)
∣∣
C0(Ut+Ct−1)

� κ|f |C
(U).

To prove T3′ use (62), (59) and part (i) of Lemma 33 to obtain

∣∣(Tt − St )[f ]∣∣
C0(Ut+Ct−1)

�
∣∣St [f ]∣∣

C1(U+2Ct−1)
|ϕt − id|C0(Ut+Ct−1) � κM̂f |f |C
(U)t

−μ.

Furthermore, if 2 < μ < 
−1, then the chain rule, (62), part (i) of Lemma 33, and estimates (60)
and (61) imply

∣∣D2Tt [f ]∣∣
C0(Ut+Ct−1)

� 22
∣∣St [f ]∣∣

C2(U+2Ct−1)
+ 23

∣∣St [f ]∣∣
C1(U+2Ct−1)

� κ|f |C
(U).

This proves property T4 of Theorem 18.
Finally, properties T5′ and T6′ of Lemma 42 follow from Proposition 23, property T3′ of

Lemma 42, Cauchy’s estimates, and the following inequalities

∣∣(Tt − 1)[f ]∣∣
Cr(Ut )

�
∣∣(Tt − St )[f ]∣∣

Cr(Ut )
+ ∣∣(St − 1)[f ]∣∣

Cr(U)
,

and for τ � t

∣∣(Tτ − Tt )[f ]∣∣
C0(Ut+Cτ−1)

�
∣∣(Tτ − Sτ )[f ]∣∣

C0(Ut+Cτ−1)
+ ∣∣(St − Tt )[f ]∣∣

C0(Ut+Ct−1)

+ ∣∣(Sτ − St )[f ]∣∣
C0(U+Cτ−1)

. �
3.4.1. Exactness considerations

In this section we show that in the case that the diffeomorphism f is exact symplectic, then it
is possible to construct analytic approximating functions Tt [f ] which are also exact symplectic,
as claimed in part T7 of Theorem 18. Here use the calculus of deformations, similar constructions
are obtained in [10].

Let U be as in Theorem 18. Of course, exactness is a problem only in the case that U =
Tn × U . In the other cases, Poincaré’s Lemma shows that all symplectic maps are exact. Hence,
throughout this section we assume that U = Tn × U .

Let Tt [f ] be as in Lemma 42, we show that for t sufficiently large, there exists a diffeomor-
phism ht such that ht ◦ Tt [f ] is exact and satisfies properties T1–T6 of Theorem 18. Notice that
since Tt [f ]∗Ω = Ω we have that the form (Tt [f ]∗α − α) is closed. Recall that if Ω = dα, then
ht ◦ Tt [f ] is exact if and only if the form (ht ◦ Tt [f ])∗α − α is exact. Equivalently[

Tt [f ]∗(h∗
t α − α

)] = −[
Tt [f ]∗α − α

]
, (63)
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where [β] represents the de Rham cohomology class of the closed form β . The existence of
a diffeomorphism ht satisfying (63) is proved in the following lemma where, moreover, we
estimate the distance between ht and the identity.

Lemma 43. Let Ω = dα be an exact symplectic form and 2 < 
 /∈ Z. Assume that the hypotheses
of Theorem 18 hold. Let Ut be defined by (7). Then, given C � 0, β > 0 and 1 < μ < 
− 1, there
exist two constants κ = κ(d, 
,C,β,μ,MΩ) and t∗ = t∗(d, 
,V,C,μ,β,MΩ, |Ω|C
(U+ρ)),

such that for any t � t∗ and any f ∈ Diff
(U) satisfying (i) |f |C
(U) < β , (ii) V contains the
closure of f (U), and (iii) f is exact, there exists a diffeomorphism ht satisfying equality (63)
and such that the following holds:

|ht − id|C0(U+ρ) � κM̂f t−μ+1, (64)

|ht |C1(U+ρ) � κ. (65)

Proof. Let H 1(M,R) denote the first de Rham cohomology group of the manifold M . Let V be
as in Theorem 18 and let Ut be as in (7). We note that if U = Tn ×U , and if V diffeomorphic to U,
then H 1(Ut ,R) = Rn and H 1(V,R) = Rn. For t sufficiently large, let Tt [f ] be as in Lemma 42.
Consider

Tt [f ]# :H 1(V,R) → H 1(Ut ,R),

[γ ] → [
Tt [f ]∗γ ]

.

Notice that since Tt [f ] is a diffeomorphism on Ut and since the pull-back commutes with the
exterior derivative one has: (a) Tt [f ]# is well defined, (b) Tt [f ]# at zero is equal to zero, and
(c) Tt [f ]# is differentiable with invertible derivative at zero. If moreover, f is exact we have

∣∣[Tt [f ]∗α − α
]∣∣ = ∣∣[Tt [f ]∗α − f ∗α

]∣∣ � κ̂
∣∣(Tt − Id)[f ]∣∣

C1(Ut )
� κMf t−μ+1,

where we have used the fact that Tt [f ] satisfies property T5′ of Lemma 42. Hence a finite di-
mensional version of the Implicit Function Theorem implies that, for t sufficiently large, there
exists [γt ] ∈ H 1(V,R) such that

Tt [f ]#
([γt ]

) = −[
Tt [f ]∗α − α

]
(66)

and

∣∣[γt ]
∣∣ � κMf t−μ+1. (67)

Let γ1, . . . , γn be closed forms, analytic on V+ρ, and such that {[γj ]}nj=1 is a basis of H 1(V,R).

For t sufficiently large, let ηt = (η1
t , . . . , η

n
t ) ∈ Rn be such that

[γt ] =
n∑

η
j
t [γi].
j=1
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Then estimate (67) implies

|ηt | � κ̃Mf t−μ+1. (68)

Following [23], we construct, for t sufficiently large, a diffeomorphism ht satisfying

[
h∗

t α − α
] =

n∑
j=1

η
j
t [γi]. (69)

The non-degeneracy of Ω implies the existence of a vector field Xt such that

iXt (Ω) =
n∑

j=1

η
j
t γj . (70)

From (68) and (70) we have

|Xt |C0(V+ρ) � κ ′|η| � κMf t−μ+1. (71)

Let hε
t be the flow generated by Xt :

d

dε
hε

t = Xt ◦ hε
t , h0

t = id. (72)

The existence of hε
t for all ε ∈ [0,1] is obtained by assuming that t is sufficiently large and

using (70). Using Proposition I.1.3. in [23] we have

(
hε

t

)∗
α − α =

ε∫
0

d

ds

(
hs

t

)∗
α ds = ε

n∑
j=1

ηjγj + dβε
t , (73)

with

βε
t =

ε∫
0

( s∫
0

(
hr

t

)∗
iXt

(
n∑

j=1

ηjγj

)
dr

)
ds +

ε∫
0

(
hs

t

)∗
iXt (α) ds,

where we have used the Cartan’s formula and the fact that the right-hand side of (70) is closed.
From (73) one has that, for all for ε ∈ [0,1], hε

t preserves the exact symplectic form Ω = dα.

Define ht
def= h1

t , then considering the first cohomology class in (73) we have that ht satisfies (69).
Finally notice that (69) and (66) imply (63).

Estimate (64) follows from (71) and (72). Now taking t sufficiently large, using (71), (72),
and Gronwall’s inequality we obtain, for t sufficiently large, the following estimate:

|Dht |C0(U+ρ) < 2,

from which and (64) estimate (65) follows, for t sufficiently large. �
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It is clear from Lemma 43 that the composition T̃t [f ] def= ht ◦ Tt [f ] is exact symplectic on Ut .
The verification of properties T1–T6 of Theorem 18 for the diffeomorphism T̃t [f ] is performed
by using Lemmas 43, 42, and the following estimates

∣∣ht ◦ Tt [f ]∣∣
C1(Ut+Ct−1)

� κ|ht |C1(U+ρ)

(
1 + ∣∣Tt [f ]∣∣

C1(Ut+Ct−1)

)
,∣∣ht ◦ Tt [f ]∣∣

C2(Ut+Ct−1)
� κ|ht |C2(U+ρ)

(
1 + ∣∣Tt [f ]∣∣

C2(Ut+Ct−1)

)
,∣∣ht ◦ Tt [f ] − f

∣∣
C0(Ut )

� κ|ht − id|C0(U) + κ
∣∣Tt [f ] − f

∣∣
C0(Ut )

,∣∣ht ◦ Tt [f ] − St [f ]∣∣
C0(Ut+Ct−1)

� κ|ht |C1(U+ρ)

∣∣Tt [f ] − St [f ]∣∣
C0(Ut+Ct−1)

+ κ|ht − id|C0(U+ρ).

3.5. The contact case (Proof of Theorem 20)

Theorem 20 is proved following the same steps of the proof of Theorem 18 given in Sec-
tion 3.4. Here we just mention the necessary modifications. Let 
, U, V, and Ut be as in
Theorem 18. Let Ω be a contact form on V, f ∈ Diff
(U) a contact diffeomorphism, and let
λ be a nowhere zero function such that f ∗Ω = λΩ. Define for t � 1 and ε ∈ [0,1]

Ωε
t

def= λΩ + ε
(
St [f ]∗Ω − λΩ

)
.

Notice that, since the 2-form dΩ is a symplectic form on the fibres of the 2n-dimensional sub-
bundle Ker(Ω) ⊂ T (U), with the obvious modifications, Lemma 39 holds for the isomorphism
IdΩ |Ker(Ω). Roughly speaking, this means that, for t sufficiently large, IdΩε

t
|Ker(Ωε

t ) is also an
isomorphism. Hence, for t sufficiently large and ε ∈ [0,1], there exists a vector field uε

t satisfying

uε
t = −(IdΩε

t
|Ker(Ωε

t ))
−1

(
∂

∂ε
Ωε

t

)
, uε

t ∈ Ker
(
Ωε

t

)
,

equivalently,

iuε
t

(
dΩε

t

) = −(
St [f ]∗Ω − λΩ

)
,

iuε
t

(
Ωε

t

) = 0. (74)

Applying Proposition 29 to the 1-forms Ω and λΩ we obtain, for t sufficiently large,

∣∣St [f ]∗Ω − λΩ
∣∣
C0(U+(2Ct−1))

� κM̂f t−μ.

Then, following the same steps of the proof of Lemma 39 we obtain that the solution uε
t (x)

of (74), is continuous on (ε, x) ∈ [0,1]×U+2Ct−1, real analytic with respect to x ∈ U+2Ct−1,
and moreover

∣∣uε
t

∣∣
C0(U+2Ct−1)

� 2MΩ

∣∣St [f ]∗Ω − λΩ
∣∣
C0(U+2Ct−1)

� κM̂f t−μ. (75)

Now, for t sufficiently large, let φε be the solution of the following differential equation
t
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d

dε
φε

t = uε
t , φ0

t = id,

then (74) and the Cartan’s formula for the Lie derivative imply

d

dε

((
φε

t

)∗
Ωε

t

) = (
φε

t

)∗
[
d
(
iuε

t
Ωε

t

) + iuε
t

(
dΩε

t

) + d

dε
Ωε

t

]
= 0.

Hence

(
φε

t

)∗
Ωε

t = λΩ, ∀ε ∈ [0,1].

Moreover, following the proof of Lemma 41 and using (75) one obtains that φ1
t satisfies esti-

mates (iii)–(v) of Lemma 41. The proof of Theorem 20 is finished by following the same steps
in the proof of Lemma 42. �
4. An application: KAM theory without action-angle variables for finitely differentiable
symplectic maps

Let (U,Ω = dα) be a 2n-dimensional analytic exact symplectic manifold and let f ∈
Diff
(U) be an exact symplectic map. The study of the existence of n-dimensional invariant
tori with quasi-periodic motion is based on the study of the equation

F(f,K) = 0, (76)

where

F(f,K)(θ)
def= (f ◦ K)(θ) − K(θ + ω), (77)

K : Tn → U is the function to be determined, and ω ∈ Tn satisfies a Diophantine condition.
In [15] it is proved that if f is a real analytic diffeomorphism and if there exists a real analytic
parameterization of an n-dimensional torus K , satisfying a non-degeneracy condition, such that
(f,K) is an approximate solution of (76) in the sense that |F(f,K)|C0(Tn+ρ) is ‘sufficiently
small,’ with respect to the Diophantine and non-degeneracy conditions, then there exists a true
real analytic solution of (76), which moreover is close to the approximate solution. In Theorem 46
we give the rigorous formulation of this result. We emphasize that in Theorem 46 we do not
assume the symplectic map is written either in action-angle variables or as perturbation of an
integrable one. Moreover, the proof of Theorem 46 produces an algorithm to compute invariant
tori for exact symplectic maps.

In this section we show that a finitely differentiable version of Theorem 46 also holds, see
Theorem 47 for the formulation. The proof of Theorem 47 we present here is a slightly mod-
ified Moser’s analytic smoothing method. We remark that, since Theorem 46 holds for exact
symplectic maps, then the symplectic map f is smoothed using the operator Tt of Theorem 18.
Moreover, rather than assuming the existence of an analytic approximate solution of (76) we
assume the existence of a finitely differentiable initial approximate solution of (76) and give con-
ditions guaranteeing the existence of an analytic solution, which is close to the approximately
invariant one in finitely differentiable norms. This is achieved by using the estimates given in
Theorem 18 and Proposition 37.
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In this section we also prove the bootstrap of regularity of invariant tori with Diophantine
rotation vector for exact symplectic diffeomorphisms. To obtain the bootstrap of regularity first,
we prove the local uniqueness of finitely differentiable invariant tori for finitely differentiable
symplectic maps. We remark that the uniqueness result stated in Theorem 49 is the finitely dif-
ferentiable version of Theorem 2 in [15].

The local uniqueness and the bootstrap of regularity are stated in Theorems 49 and 50, re-
spectively. Theorems 49 and 50 are similar to Theorems 4 and 5 in [17], respectively. However,
while the latter are stated and proved for Hamiltonian vector fields written in a Lagrangian for-
malism, Theorems 49 and 50 are stated for symplectic maps that are not assumed either to be
written in action-angle variables or to be perturbations of integrable systems, and proved using
the symplectic formalism rather than the Lagrangian one.

The existence of the operator Tt in Theorem 18, in the exact symplectic case, enables us to
obtain analytic approximate solutions of Eq. (76) close to a given finitely differentiable one. This
together with the uniqueness argument yield the bootstrap of regularity for solutions of (76).

Let U be either an open subset of R2n or Tn × U , with U ⊂ Rn. In addition to the notation
introduced in Section 3.1 we use the following notation. For each x ∈ U let J (x) :TxU → TxU

be linear isomorphism satisfying

Ω(x)(ξ, η) = ξ� · J (x)η, (78)

where · is the Euclidean scalar product on R2n. The average of a mapping K ∈ C0(Tn,U) is
defined by

avg{K}θ def=
∫
Tn

K(θ) dθ.

Definition 44. Given γ > 0 and σ � n, we define D(γ,σ ) as the set of frequency vectors ω ∈ Tn

satisfying the Diophantine condition:

|
 · ω − m| � γ |
|−σ
1 , ∀
 ∈ Zn \ {0}, m ∈ Z,

where |
|1 = |
1| + · · · + |
n|.

Definition 45. Given a symplectic diffeomorphism f ∈ Diff1(U) and ω ∈ D(γ,σ ), let N denote
the set of functions in K ∈ C1(Tn,U) satisfying the following conditions:

N1. There exists an (n × n)-matrix-valued function N(θ) such that

N(θ)
(
DK(θ)�DK(θ)

) = In,

where In is the n-dimensional identity matrix.
N2. The average of the matrix-valued function

A(θ)
def= P(θ + ω)�

[
Df

(
K(θ)

)
J
(
K(θ)

)−1
P(θ) − J

(
K(θ + ω)

)−1
P(θ + ω)

]
, (79)

with J defined in (78) and
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P(θ)
def= DK(θ)N(θ),

is non-singular.

By the Rank Theorem, condition N1 guarantees that dimK(Tn) = n. For the KAM theo-
rems 46 and 47, the main non-degeneracy condition is N2, which is a twist condition. Note that
N1 only depends on K whereas N2 depends on both K and f .

From now on we assume that Ω = dα is analytic exact symplectic form as in Theorem 18. Let
J be the isomorphism defined by (78), and let J−1 denote its inverse. The following Theorem 46
is the main theorem from [15].

Theorem 46. Let U be either a compensated open domain in R2n or Tn × U , with U ⊂ Rn a
compensated open domain. Let f be an exact symplectic diffeomorphism on U and ω ∈ D(γ,σ ),
for some γ > 0 and σ > n. Assume that the following hypotheses hold:

A1. K ∈ N ∩A(Tn + ρ,C1) (see Definitions 45 and 4).
A2. The map f is real analytic and it can be holomorphically extended to B, a complex

neighbourhood of K(Tn + ρ), such that dist(K(Tn + ρ), ∂B) > η > 0. Furthermore,
|f |C2(B) < ∞.

A3. |J |C1(B), |J−1|C1(B), |α|C2(B) < ∞.

Then, there exists a constant c > 0 depending on σ , n, |f |C2(B), |α|C2(B), |J |C1(B), |J−1|C1(B),
|DK|C0(Tn+ρ), |N |C0(Tn+ρ), |(avg{A}θ )−1| (where N and A are as in Definition 45) such that,
if

cγ −4ρ−4σ
∣∣F(f,K)

∣∣
C0(Tn+ρ)

< min(1, η),

then there exists K∗ ∈ N ∩A(Tn + ρ/2,C1) such that F(f,K∗) = 0. Moreover,

|K∗ − K|C0(Tn+ρ/2) � cγ −2ρ−2σ
∣∣F(f,K)

∣∣
C0(Tn+ρ)

(80)

and

|DK∗ − DK|C0(Tn+ρ/2) � cγ −2ρ−(2σ+1)
∣∣F(f,K)

∣∣
C0(Tn+ρ)

.

The finitely differentiable version of Theorem 46 we present here is the following. For addi-
tional smoothness results see Theorem 50.

Theorem 47. Let ω ∈ D(γ,σ ), for some γ > 0 and σ > n. Let m ∈ N, 
 /∈ N be such that 4σ +
3 < 
 < m. Let U be either a compensated open domain in R2n with Cm-boundary, or Tn × U ,
with U ⊂ Rn a compensated open domain with Cm-boundary. Let f ∈ Diff
(U) be an exact
symplectic diffeomorphism and let K ∈ C
(Tn,U) be a parameterization of an n-dimensional
torus. Assume that the following hypotheses hold:

S1. |DK|C0(Tn) < β and K(Tn) ⊂ U, with η
def= 2−1 dist(K(Tn), ∂U) > 0.

S2. K ∈ N (see Definition 45).
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S3. Ω = dα is real analytic on U+ρ, and |J |C
(U+ρ), |α|C
(U+ρ) < ζ , and |J−1|C1(U+ρ) < MΩ ,
for some ρ, ζ > 0.

Then, given 4σ + 2 < μ < 
 − 1 there exist two positive constants c and ρ∗ < 1, depending
on μ, n, 
, σ , ζ , β , MΩ , |f |C
(U), |K|C
(Tn), |N |C0(Tn), and |(avg{A}θ )−1|, such that: given
0 < ρ1 � ρ∗, if μ − 2σ /∈ Z and

cγ −4ρ
−(4σ+1)
1

∣∣F(f,K)
∣∣
C0(Tn)

� min(1, κβ,η), (81)

where κ = κ(n, 
,1) is as in Proposition 23, then there exists a parameterization of an
n-dimensional torus, K∗ ∈ Cμ−(2σ+1)(Tn,U) such that F(f,K∗) = 0 and

|K − K∗|Cν(Tn) � c̃γ −2ρ
−(2σ+ν)
1

(
ρ

μ−1
1 + ∣∣F(f,K)

∣∣
C0(Tn)

)
,

for all 0 � ν < μ − (2σ + 1), where F is as in (77) and c̃ is a constant depending on the same
quantities as c.

Remark 48. Let f and K be as in Theorem 47. Notice that since |f |C
(U) and |K|C
(Tn) are
bounded we have that |F(f,K)|C
(Tn) is also bounded. If moreover assumption (81) holds then
there is a constant κ such that

∣∣F(f,K)
∣∣

C
(Tn)

� κ and
∣∣F(f,K)

∣∣
C0(Tn)

� κρ4σ+1
1 .

Thus, by using the interpolation estimates [4,21], we have for any 0 � s � 


∣∣F(f,K)
∣∣
Cs(Tn)

� κ
∣∣F(f,K)

∣∣s
C
(Tn)

∣∣F(f,K)
∣∣1−s/


C0(Tn)
� κ̂ρ

(4σ+1)(1−s/
)

1 .

Hence assumption (81) implies that all the intermediate norms |F(f,K)|Cs(Tn) with 0 � s < 


are also small. We therefore have that hypothesis (81) is equivalent to assuming that the Cs -norms
of the error function are small, for 0 � s < 
.

The local uniqueness is stated in the following

Theorem 49. Let ω ∈ D(γ,σ ) for some γ > 0 and σ > n. Let 
 > 2σ be such that 
, 
−2σ /∈ Z.
Let f ∈ Diff
+2(U) be a symplectic diffeomorphism. Assume that (f,K1) and (f,K2) sat-
isfy (76), with K1,K2 ∈ C
+1(Tn,U) satisfying N1 and N2 in Definition 45. Then, there exists a
constant κ , depending on n, |J−1|C0(U), |f |C
+2(U), |K2|C
+1(Tn), |K1|C
+1(Tn), and |N2|C0 , with
N2 defined as in N1 in Definition 45 by replacing K with K2, such that if

κγ −2|K1 − K2|C
(Tn) < 1,

then K1 ◦ R
θ̂

= K2 on Tn, for some constant θ̂ ∈ Rn.

The bootstrap of regularity is stated in the following theorem.
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Theorem 50. Let ω ∈ D(γ,σ ), for some γ > 0 and σ > n and let � > 0. Let 4σ + 3 < 
1 < m,
with m ∈ N and 
1 /∈ N. Let U be as in Theorem 47. Let (K,f ) be a solution of (76), with
f ∈ Diff
1(U) an exact symplectic diffeomorphism and K ∈ C
1(Tn,U) satisfying N1 and N2 in
Definition 45. Let 
 ∈ [
1,m) be not an integer and assume that f ∈ Diff
(U), and that hypothe-
ses S1–S3 in Theorem 47 hold (replacing ρ with � in S3). Then, for any 4σ +2 < μ < 
−1 satis-
fying μ−(2σ +1) /∈ Z we have that K ∈ Cμ−(2σ+1)(Tn). Moreover if m = ∞ and f ∈ Diff∞(U)

then K ∈ C∞(Tn,U). Furthermore, if f ∈ A(U + �,C
1), then K ∈ A(Tn,C1).

4.1. Existence (Proof of Theorem 47)

Throughout this section we assume that the hypotheses of Theorem 47 hold. As we already
mentioned, the proof of Theorem 47 given here is based on Moser’s technique of analytic smooth-
ing [2,4]. What we do is the following:

Step 1: Obtain an analytic approximate solution (f1,K1) of (76), with f1 exact symplectic map
and K1 satisfying properties N1–N2 of Definition 45.

Step 2: Apply Moser’s smoothing technique and Theorem 46 to construct a sequence of an-
alytic solutions of (76) converging to a finitely differentiable solution (f,K∗). More
concretely, starting with (f1,K1), we assume that we have computed (fm,Km) an
analytic solution of (76) and verify that, if Tt is as in Theorem 18 then, for a suit-
able tm, (Ttm [f ],Km) is the approximate solution of (76) that satisfies the hypotheses
of Theorem 46, so that one obtains a new analytic solution (fm+1,Km+1) of (76), with
fm+1 = Ttm [f ]. The convergence of the method is obtain by using (80) in Theorem 46.

In order to perform Step 1 we use pairs of functions of the form (Tt [f ], St [K]), where Tt is as
in Theorem 18, and St is as in Definition 6. Notice that since St takes periodic functions into peri-
odic functions then St [K] ∈ A(Tn + t−1,C1) is an analytic parameterization of an n-dimensional
torus that is close to K (see Remark 8).

To prove that St [K] satisfies properties N1–N2 of Definition 45, since condition N2 in Defi-
nition 45 depends on both the parameterization and the map, it is necessary to fix the constants
appearing in Theorem 18 and verify that St [K](Tn + t−1) belongs to the domain of Tt [f ]. This
is done in the following

Lemma 51. Let K ∈ C
(Tn,U) satisfy hypothesis S1 of Theorem 47. Let κ be as in Proposi-

tion 23, define r
def= κβ , then

∣∣DSt [K]∣∣
C0(Tn+t−1)

< r, for all t � 1. (82)

Moreover, if Ut is defined by (7), then there exists t6 � 1, depending on n, 
, |K|
, and η such
that for all t > t6, St [K](Tn) ⊂ Ut , and

∣∣St [K] − K
∣∣
C0(Tn)

<
1

2
η. (83)

Furthermore, if 2 < μ < 
 − 1 is given, let t∗ = t∗(d, 
,V,2r,μ, |f |C
(U),MΩ, ζ ) be as in The-
orem 18, then for all t � max(t∗, t6), the components of the symplectic map Tt [f ] belong to
A(Ut + 2rt−1,C2) and properties T0–T7 of Theorem 18 hold.
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Proof. Part (ii) of Proposition 23 implies (82), from which we have

∣∣Im(
St [K])∣∣

C0(Tn+t−1)
� t−1

∣∣DSt [K]∣∣
C0(Tn+t−1)

� rt−1.

Let t6 > 1 be sufficiently large so that for any t � t6 the following holds:

max
(
κ|K|C
(Tn)t

−
, t−1) < 2−1η,

then part (i) of Proposition 23 implies (83). So we have St [K](Tn + t−1) ⊂ Ut + rt−1. Now
apply Theorem 18 to the constants C = 2r , and β = |f |C
(U). �

Now we prove that, for t sufficiently large, St [K] satisfies N1–N2 of Definition 45.

Lemma 52. Let r and t6 be as in Lemma 51, and let 2 < μ < 
 − 1 be fixed. Assume that
K ∈ C
(Tn,U) satisfies the hypothesis of Theorem 47 and let N and A be as in Definition 45.
Then, there exists t7 � t6, depending on n, 
, 2r , μ, η, MΩ , |K|C
(Td ), |N |C0(Td ), |avg{A}−1

θ |,
|f |C
(B) and Mf , with Mf as in Theorem 18, such that St [K] ∈ A(Tn + t−1,C1) ∩ N , for all
t � t7. Moreover, if

Nt(θ)
def= (

DSt [K](θ)�DSt [K](θ)
)−1

and

At(θ)
def= Pt (θ + ω)�DTt [f ](St [K](θ)

)
J
(
St [K](θ)

)−1
Pt(θ)

− Pt (θ + ω)�J
(
St [K](θ + ω)

)−1
Pt (θ + ω),

where Pt (θ)
def= St [DK](θ)Nt (θ), then the following hold

|Nt |C0(Tn+t−1) � 2|N |C0(Tn)

(
1 + κM̂K,f |N |C0(Tn)t

−1) (84)

and

∣∣avg{At }−1
θ

∣∣ �
∣∣avg{A}−1

θ

∣∣(1 + κM̂K,f

∣∣avg{A}−1
θ

∣∣t−μ+2),
where κ is a constant depending on n and 
 and M̂K,f depends on |K|C
(Tn), |N |C0(Tn), |f |C
(B)

and Mf .

Proof. Notice that the conditions N1–N2 in Definition 45 deal with invertibility of matrices,
hence Lemma 52 is a consequence of the openness of the invertibility of matrices. In what follows
we obtain explicit estimates for the size of t . Performing some simple computations and using
Proposition 23 one has

∣∣DSt [K](θ)�DSt [K](θ) − N(θ)−1
∣∣
C0(Tn)

� κ|K|2
C
(Tn)

t−
+1.

Hence if t is sufficiently large such that
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κ|K|2
C
(Tn)

|N |C0(Tn)t
−
+1 � 1/2,

the Neuman’s series theorem implies that, DSt [K](θ)�DSt [K](θ) is invertible, for all θ ∈ Rd ,
and its inverse, denoted by Nt , satisfies

|Nt − N |C0(Tn) � 2κ|K|2
C
(Tn)

|N |2
C0(Tn)

t−
+1 � |N |C0(Tn). (85)

Now, let θ ∈ Rn + t−1, then part (i) of Lemma 33 implies, for t sufficiently large,

∣∣DSt [K](θ) − DSt [K](Re(θ)
)∣∣ �

∣∣D2St [K]∣∣
C0(Tn+t−1)

∣∣Im(θ)
∣∣ � κ|K|C
(Tn)t

−1,

κ is a constant depending on n, and 
. So one obtains

∣∣DSt [K]�(θ)DSt [K](θ) − N−1
t

(
Re(θ)

)∣∣ � κ|K|2
C
(Tn)

t−1.

Then, if t is sufficiently large so that

2κ|K|2
C
(Tn)

|N |C0(Tn)t
−1 � 1/2,

we have from (85)

κ|K|2
C
(Tn)

|Nt |C0(Tn)t
−1 � 1/2.

Hence, Neuman’s series theorem implies that DSt [K](θ)�DSt [K](θ) is invertible for all
θ ∈ Rn + t−1 and

|Nt |C0(Tn+t−1) � |Nt |C0(Tn) + 2|Nt |2C0(Tn)
κ|K|2

C
(Tn)
t−1,

from which and (85) estimate (84) follows.
It is clear that, for t sufficiently large, At is a perturbation of A defined in (79). In what follows

we give an estimation of the size of |At − A|C0(Tn). Let P(θ) = DK(θ)N(θ), then using (85)
and Proposition 23 we have

|Pt − P |C0(Tn) � κMKt−
+1, (86)

where κ depends on n and 
, and MK is a constant depending on |K|C
(Tn) and |N |C0(Tn).
Moreover, performing some simple computations and using Theorem 18, Proposition 23, and
the Cauchy’s estimates we have∣∣DTt [f ](St [K](θ)

) − Df
(
K(θ)

)∣∣
C0(Tn)

� κt−μ+2, (87)

where κ is a generic constant independent of t . Finally, using again Proposition 23 we have∣∣J ◦ St [K] − J ◦ K
∣∣
C0(Tn)

� |J |C1(U)κ|K|C
(Tn)t
−
+2. (88)

Performing some computations and using (86), (87), and (88) one gets
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|At − A|C0(Tn) � κMf,Kt−μ+2,

where κ is a constant depending on n, 
, C−1, κ , κ , |J |C1(U), and Mf,K is a constant depending
on |K|C
(Tn), |N |C0(Tn), |f |C
(B) and Mf . Hence the proof of Lemma 52 is finished by applying
Neuman’s series theorem and taking t is sufficiently large so that

∣∣avg{A}−1
θ

∣∣κMf,Kt−μ+2 � 1/2. �
From Lemmas 51 and 52 we have that, for t sufficiently large, (Tt [f ], St [K]) is a candidate

for an analytic approximate solution of Eq. (76). In the following lemma we summarize the
results of Lemmas 51 and 52 and give an estimate of |F(Tt [f ], St [K])|C0(Tn+t−1).

Lemma 53. Let t7 be as in Lemma 52, and let 2 < μ < 
 − 1. Assume that K ∈ C
(Tn), f ∈
Diff
(U) and that hypotheses of Theorem 47 hold. Then there exists t8 � t7, depending on n, 
,
β , μ, ζ , MΩ , η, |K|C
(Td ), |avg{A}−1

θ |, |N |C0(Tn), |f |C
(U), and Mf , with Mf as in Theorem 18,
such that for all t � t8 the following hold:

(i) St [K] ∈A(Tn + t−1,C1), and |DSt [K]|C0(Tn+t−1) � r , r = r(n,β) as in Lemma 51.
(ii) St [K](Tn) ⊂ Ut , with |St [K] − K|C0(Tn) < η/2.

(iii) Tt [f ] ∈A(Ut + 2rt−1,C2) with |Tt [f ]|C2(Ut+(2rt−1)) � κMf .

(iv) St [K] ∈N and if Nt and At are as in Lemma 52, then

|Nt |C0(Tn+t−1) � 3|N |C0 ,
∣∣avg{At }−1

θ

∣∣ � 3

2

∣∣avg{A}−1
θ

∣∣.
(v) There is a constant κ , depending on n, 
, C, μ, MΩ , and |Df |C0(U) such that

∣∣F (
Tt [f ], St [K])∣∣

C0(Tn+t−1)
� κM̂K,f t−μ+1 + κ

∣∣F(f,K)
∣∣
C0(Tn)

,

where

M̂K,f = max
(
Mf , |f |C
(U)

(
1 + |K|μ

C
(Tn)
+ |K|C
(Tn)

))
,

with Mf as in Theorem 18.

Proof. Parts (i)–(iii) are stated in Lemma 51. Part (iv) is consequence of Lemma 52. Part (v)
is a consequence of property T3 in Theorem 18, Proposition 37, and part (ii) in Proposition 23.
Indeed, let t2 be as in Proposition 37, and let t∗ and {Tt }t�t∗ be as in Lemma 51. Then part (v)
follows by taking t8 = max(t2, t

∗, t7) and using the following equality

F
(
Tt [f ], St [K]) = {(

Tt [f ] − St [f ]) ◦ St [K]} + {
St [f ] ◦ St [K] − St [f ◦ K]}

+ St

[
F(f,K)

]
. �

Now we give some sufficient conditions that ensure that we can construct a sequence of ana-
lytic solutions (fj ,K

∗) of Eq. (76):
j
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Lemma 54. Let r = r(n,β) be as in Lemma 51. Let 2 < μ < 
 − 1 be given and assume that
for fixed m � 1 there is a τm � 1 such that (fm,Km) = (Tτm [f ], Sτm [K]) satisfies the following
conditions:

A1(m) Km ∈ A(Tn + ρm,C1), and |DKm|C0(Tn+ρm) � rm, with ρm
def= τ−1

m and rm =
r
∑m−1

j=0 2−j .

A2(m) Km(Tn) ⊂ Uτm , with |Km − K|C0(Tn) < ηm where ηm
def= η

∑m
j=1 2−j .

A3(m) fm ∈ A(Uτm + (2rmρm),C2) with |fm|C2(Uτm+2rmρm) � κMf .

A4(m) If Nm and Am are defined as in Lemma 52, by replacing St [K] with Km, then

|Nm|C0(Tn+ρm) � 2|N |C0(Tn)

m∏
j=1

(
1 + 2−j

)
,

∣∣avg{Am}−1
θ

∣∣ �
∣∣avg{A}−1

θ

∣∣ m∏
j=1

(
1 + 2−j

)
,

where N and A are as in Definition 45.

Then there exist two constants λ̃ and λ, depending on σ , n, η, MΩ , |f |C
(U), |K|C
(Tn),
|N |C0(Tn), |(avg{A}θ )−1|, such that, if

γ −4λ̃ρ−(4σ+1)
m

∣∣F(fm,Km)
∣∣
C0(Tn+ρm)

< min(1, r, η), (89)

then there exists a parameterization Km+1 ∈ A(Tn + ρm+1,C
1) ∩ N , with ρm+1 = ρm/2, such

that F(fm,Km+1) = 0,

|Km+1 − Km|C0(Tn+ρm+1)
� γ −2λ̃ρ−2σ

m

∣∣F(fm,Km)
∣∣
C0(Tn+ρm)

, (90)

and

|DKm+1 − DKm|C0(Tn+ρm+1)
� λ̃γ −2ρ−(2σ+1)

m

∣∣F(fm,Km)
∣∣
C0(Tn+ρm)

. (91)

Furthermore, if fm+1
def= T2τm [f ] and

2m+1λ
(
ρμ−1

m + γ −2ρ−(2σ+1)
m

∣∣F(fm,Km)
∣∣
C0(Tn+ρm)

)
< min(1, r, η), (92)

then (fm+1,Km+1) satisfies properties A1(m+ 1)–A4(m+ 1) and the following estimate holds:

∣∣F(fm+1,Km+1)
∣∣
C0(Tn+ρm+1)

� κMf ρμ−1
m , (93)

where κ and Mf are as in Theorem 18.
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Proof. From properties A1(m)–A4(m) and Theorem 46 there exists a constant λm depending on
σ , n, γ −4, ζ , MΩ , |fm|C2(Uτm+(2rmρm)), |DKm|C0(Tn+ρm), |Nm|C0(Tn+ρm), |(avg{Am}θ )−1| such
that, if

γ −4λmρ−(4σ+1)
m

∣∣F(fm,Km)
∣∣
C0(Tn+ρm)

< min(1, rm), (94)

then there exists Km+1 ∈ A(ρm/2,C1) ∩N such that F(fm,Km+1) = 0,

|Km+1 − Km|C0(Tn+ρm+1)
� λmγ −2ρ−2σ

m

∣∣F(fm,Km)
∣∣
C0(Tn+ρm)

,

and

|DKm+1 − DKm|C0(Tn+ρm+1)
� λmγ −2ρ−(2σ+1)

m

∣∣F(fm,Km)
∣∣
C0(Tn+ρm)

.

It turns out that λm depends in a polynomial way of the following quantities (see Remark 15
in [15]):

|fm|C2(Uτm+(2rmρm)), |DKm|C0(Tn+ρm), |Nm|C0(Tn+ρm),
∣∣(avg{Am}θ

)−1∣∣. (95)

Let λ̃ be the constant obtained by replacing in the definition of λ̃m the quantities in (95), respec-
tively, by

κMf , 2r, 2e|N |C0(Tn), e
∣∣(avg{A}θ

)−1∣∣.
Assume that

λ̃γ −4ρ−(4σ+1)
m

∣∣F(fm,Km)
∣∣
C0(Tn+ρm)

< min(1, r, η),

then using the estimates in A2(m) and A3(m) and r < rm < 2r , we have that (94) holds. In
particular estimates (90) and (91) hold. Now we prove properties A(m + 1). First from (91) we
have that if

2mλ̃γ −2ρ−(2σ+1)
m

∣∣F(fm,Km)
∣∣
C0(Tn+ρm)

< r,

then

|DKm+1|C0(Tn+ρm+1)
� rm + λ̃γ −2ρ−2σ+1

m

∣∣F(fm,Km)
∣∣
C0(Tn+ρm)

� rm + 2−mr.

Hence A1(m + 1) holds. Property A2(m + 1) follows from (90) by assuming the following
estimate

2m+1γ −2λ̃ρ−2σ
m

∣∣F(fm,Km)
∣∣
C0(Tn+ρm)

< η.

Notice that A1(m + 1) and A2(m + 1) imply

Km+1
(
Tn + ρm+1

) ⊂ Uτm+1 + 2rρm,

so the composition fm+1 ◦ Km+1 is well defined on Tn + ρm+1.
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Property A3(m + 1) follows from Theorem 18. Now we prove A4(m + 1). Using |DKm| �
rm < 2r and (91) we have

∣∣DKm+1(θ)�DKm+1(θ) − N−1
n

∣∣
C0(Tn+ρm+1)

� 2(2r + 1)λ̃γ −2ρ−(2σ+1)
m

∣∣F(fm,Km)
∣∣
C0(Tn+ρm)

,

then if λ̂
def= λ̃23e(2r + 1)|N |C0(Tn) and

2m+1γ −2λ̂ρ−(2σ+1)
m

∣∣F(fm,Km)
∣∣
C0(Tn+ρm)

� 1, (96)

then we have that Nm+1 exists and

|Nm+1 − Nm|C0(Tn+ρm+1)
� |Nm|C0(Tn+ρm)λ̂γ −2ρ−(2σ+1)

m

∣∣F(fm,Km)
∣∣
C0(Tn+ρm)

, (97)

where we have used |Nm|C0(Tn+ρm) < 2e|N |C0(Tn), which follows from A4(m). Then using (96)
we have

|Nm+1|C0(Tn+ρm+1)
� |Nm|C0(Tn+ρm) + |Nm+1 − Nm|C0(Tn+ρm+1)

� |Nm|C0(Tn+ρm)

(
1 + 2−(m+1)

)
,

from which the first estimate in A4(m + 1) holds. Let us now prove the second one. Define

Pm+1
def= DKm+1Nm+1,

then estimates (91) and (97) imply

|Pm+1 − Pm|C0(Tn+ρm+1)
� λ̂′γ −2ρ−2(σ+1)

m

∣∣F(fm,Km)
∣∣ (98)

and

∣∣J (Km+1)
−1 − J (Km)−1

∣∣
C0(Tn+ρm+1)

� λ̂′γ −2ρ−2σ
m

∣∣F(fm,Km)
∣∣, (99)

where λ̂′ depends on r , |N |C0(Tn), |J−1|C1(U), λ̃ and λ̂. Moreover, using property T6 of Theo-
rem 18 we have

|fm+1 − fm|C0(U+2rρm+1)
� κMf ρμ−1

m . (100)

From estimates (90) and (100) and property T4 of Theorem 18 we have that

�m
def= Dfm+1

(
Km+1(θ)

) − Dfm

(
Km(θ)

)
satisfies

|�m|C0(Tn) � ˜̂
λ
(
ρμ−2

m + γ −2ρ−(2σ+1)
m

∣∣F(fm,Km)
∣∣

0 n

)
, (101)
C (T +ρm)
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where we have used the Cauchy’s estimates. Performing some computations and using (98), (99),
and (101) we have that there exists a constant λ̄, depending on σ , n, γ −4, η, MΩ , μ, |f |C
(U),

β , |N |C0(Tn), |avg{A}−1
θ |, and Mf , such that

|Am+1 − Am|C0(Tn) � λ̄
(
ρμ−2

m + γ −2ρ−(2σ+1)
m

∣∣F(fm,Km)
∣∣
C0(Tn+ρm)

)
,

from which we have that if λ
def= λ̄|avg{A}−1

θ |e and

2m+1λ
(
ρμ−2

m + γ −2ρ−(2σ+1)
m

∣∣F(fm,Km)
∣∣
C0(Tn+ρm)

)
� 1,

then, since |avg{Am}−1
θ | � |avg{A}−1

θ |e (which follows from A4(m)), we have that avg{Am+1}θ
is invertible and

∣∣avg{Am+1}−1
θ

∣∣ � avg{Am+1}θ
(
1 + 2−(m+1)

)
,

this proves A4(m + 1). Finally using the equality F(fm,Km+1) = 0 and (100) we have

∣∣F(fm+1,Km+1)
∣∣
C0(Tn+ρm+1)

= |fm+1 ◦ Km+1 − fm ◦ Km+1|C0(Tn+ρm+1)

� κMf ρμ−1
m . �

Summarizing, from Lemma 53 we have that (Tt [f ], St [K]) is an analytic approximate so-
lution of the functional equation (76), for t sufficiently large. Lemma 54 provides the iterative
scheme to construct a sequence of analytic solutions (fj ,Kj+1) of Eq. (76). Hence we have all
the ingredients to apply the Moser’s smoothing technique to prove Theorem 47.

Lemma 55. Assume that the hypotheses of Theorem 47 hold. Let 4σ +2 < μ < 
−1, with 
 /∈ N,
then there exist two positive constants c and ρ∗ < 1, depending μ, n, 
, σ , ζ , β , Mω, |f |C
(U),
|K|C
(Tn), |N |C0(Tn), and |(avg{A}θ )−1|, such that: given 0 < ρ1 � ρ∗, if

cγ −4ρ
−(4σ+1)
1

∣∣F(f,K)
∣∣
C0(Tn)

� min(1, r, η), (102)

then there exist two sequences of functions {fm}m�1 ⊂ A(U + 2rρm,C2) and {Km}m�1 ⊂
A(Tn + ρm,C1), with ρm

def= 2−(m−1)ρ1, satisfying properties A(m) of Lemma 54, and such
that fm = Tτm[f ], with τm = ρ−1

m , and for m � 2

|Km+1 − Km|C0(Tn+ρm+1)
� c̃γ −2ρμ−(2σ+1)

m , (103)

where c̃ is a constant depending on the same variables as c. Furthermore if μ − (2σ + 1) /∈ N,
then the sequence {Km}m�1 converges to a function K∗ ∈ Cμ−(2σ+1)(Tn,U) such that

F(f,K∗) = 0

and
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|K − K∗|Cν(Tn) � Mγ −2ρ
−(2σ+ν)
1

(
ρ

μ−1
1 + ∣∣F(f,K)

∣∣
C0(Tn)

)
,

for all 0 � ν < μ − (2σ + 1), where M is a constant depending on the same variables as c.

Proof. Let λ, λ̃ be as in Lemma 54, let Mf and κ be as in Theorem 18, and let κ and M̂K,f be
as in part (v) of Lemma 53, define

c
def= 2μκ max(4λ, λ̃)max(1, M̂K,f , κMf ). (104)

Let t8 be as in Lemma 53 and let 0 < ρ∗ < 1 be sufficiently small such that ρ∗ � t−1
8 and such

that following inequality holds:

cγ −4(ρ∗)μ−(4σ+2) < min(1, r, η). (105)

Let 0 < ρ1 < ρ∗ and define τ1
def= ρ−1

1 and f1
def= Tτ1[f ], and K1

def= Sτ1[K], then, because of
Lemma 53, (f1,K1) satisfies properties A1(1)–A4(1) of Lemma 54. Moreover if (102) holds,
then part (v) of Lemma 53, Eq. (104), and estimate (105) imply conditions (89) and (92) in
Lemma 54 for m = 1. Therefore, if f2 = T2τ1 [f ], Lemma 54 implies the existence of K2 ∈
A(ρ2,C

1), with ρ2 = ρ1/2, such that (f2,K2) satisfies properties A1(m + 1)–A4(m + 1) and
estimate (93) in Lemma 54 for m = 1. Moreover, estimate (90) and part (v) of Lemma 53 imply

|K2 − K1|C0(Tn+ρ2)
< cγ −2ρ−2σ

1

(
ρ

μ−1
1 + ∣∣F(f,K)

∣∣
C0(Tn)

)
.

Now assume that, for m � 2 we have (fm,Km) satisfying properties A1(m)–A4(m) and es-
timate (93) in Lemma 54 for (m − 1). Performing some simple computations and using the
definition of c in (104), and estimates (102), (105) one obtains that estimates (89) and (92) hold
for m. Hence Lemma 54 can be iterated to obtain an analytic invariant torus Km for fm. More-
over, using estimates (90) and (93) one obtains (103).

The convergence of the sequence {Km}m�1 follows from the Inverse Approximation Lemma

(see, for example, Lemma 2.2 in [4] or Lemma 6.14 in [24]). Indeed, define um
def= Km −K1, then

the following properties hold:

(i) um ∈ A(ρm,C1), for all m � 1 and u1 = 0.
(ii) supm�2 ρ

−μ+(2σ+1)
m |um+1 − um|C0(Tn+ρm+1)

� c̃.
(iii) If 0 � ν < μ − (2σ + 1), then

|um|Cν(Tn) �
m−1∑
j=1

ρν
j+1|Kj+1 − Kj |C0(Tn+ρj+1)

� cγ −22νρ
−(ν+2σ)
1

(
ρ

μ−1
1 + ∣∣F(f,K)

∣∣
C0(Tn)

)
,

where ĉ
def= c̃2μ−2σ

∑∞ 2−(μ−(2σ+1)−α).
j=2
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The Inverse Approximation Lemma implies the existence of a function u∗ in
Cμ−(2σ+1)(Tn,U) such that

lim
m→∞|u∗ − um|Cν(Tn) = 0,

for any ν < μ − (2σ + 1). The proof of Lemma 55 is finished by defining K∗ def= u∗ + u1. �
4.2. Local uniqueness (Proof of Theorem 49)

Throughout this section we assume that the hypotheses of Theorem 49 hold. The proof of
Theorem 49 we give here is rather standard, as it is proved in [4] it suffices to show that the
operator D2F(f,K), with F defined in (77), has an approximate left inverse for each f fixed.
In our context the existence of the approximate left inverse amounts to the uniqueness of the
solutions of the following linear equation

D2F(f,K)� = Df
(
K(θ)

)
� − � ◦ Rω = g(θ). (106)

The uniqueness of Eq. (106) depends on the arithmetic properties of ω because the so-called
small divisors are involved. The following result is well known in KAM theory, for completeness
we state it here, for a proof see [25–27].

Lemma 56. Let ω ∈ D(γ,σ ), for some γ > 0 and σ > n and let r > σ be not an integer. Let
h ∈ Cr(Tn) be such that avg{h}θ = 0, and assume that r − σ /∈ Z, then the linear difference
equation

u − u ◦ Rω = h

has a unique zero average solution u ∈ Cr−σ (Tn). Moreover, the following holds:

|u|Cr−σ (Tn) � κγ −1|h|Cσ (Tn),

where κ is a constant depending on n, σ , and r .

Now we prove the uniqueness of the solution of (106).

Lemma 57. Let ω ∈ D(γ,σ ) for some γ > 0 and σ > n. Let 
 > 2σ be such that 
, 
 − 2σ /∈ Z.
Let f ∈ Diff
+1(U) be symplectic. Assume that (f,K) is a solution of (76), with K ∈ N ∩
C
+1(Tn,U) (see Definition 45). Then, for any g ∈ C
(Tn,U) satisfying

avg
{
DK(θ)�J

(
K(θ)

)
g(θ − ω)

}
θ

= 0, (107)

the linear equation (106) has a unique solution � ∈ C
−2σ (Tn), satisfying

avg
{
T (θ)�(θ)

} = 0,

θ
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where

T (θ)
def= N(θ)�DK(θ)�

{
In − J

(
K(θ)

)−1
DK(θ)N(θ)DK(θ)�J

(
K(θ)

)}
, (108)

with N defined as in N1 in Definition 45. Furthermore, the following estimate holds:

|�|C
−2σ (Tn) � κγ −2|g|C
(Tn),

where κ is a constant depending on n, σ , 
, |N |C
(Tn), |K|C
+1(Tn), and |avg{A}−1
θ |, with A

defined by (79).

Proof. Let M(θ) be the (2n × 2n)-matrix-valued function defined by

M(θ) = (
DK(θ)

∣∣ J
(
K(θ)

)−1
DK(θ)N(θ)

)
.

It is clear that the components of M belong to C
(Tn). In Section 4.2 of [15] it is proved that if
K is a parameterization of an invariant torus for the symplectic map f , then:

(i) M is invertible with inverse given by

M(θ)−1 =
(

T (θ)

DK(θ)�J (K(θ))

)
.

(ii) If � = Mξ , then in the variable ξ the linear equation (106) becomes

ξ1 − ξ1 ◦ Rω = T (θ + ω)g(θ) − A(θ)ξ2,

ξ2 − ξ2 ◦ Rω = DK(θ + ω)�J
(
K(θ + ω)

)
g(θ). (109)

Notice that, by Lemma 56 and the assumption (107), there exists a unique zero average func-
tion ξ̃2 satisfying

ξ̃2 − ξ̃2 ◦ Rω = DK(θ + ω)�J
(
K(θ + ω)

)
g(θ).

The proof of Lemma 57 is finished by using Lemma 56 to find a unique solution of the triangular
system (109) satisfying:

avg{ξ1}θ = 0,

avg{ξ2}θ = avg{A}−1
θ avg

{
T (θ + ω)g(θ) − A(θ)ξ̃2(θ)

}
θ
. �

Lemma 58. Let ω ∈ D(γ,σ ), for some γ > 0 and σ > n. Let f ∈ Diff
+1(U) be symplectic. As-
sume that (f,K1) and (f,K2) satisfy (76), with K1,K2 ∈N ∩ C
+1(Tn,U) (see Definition 45).
Then, there exists a constant κ , depending on n, 
, |J−1|C0(U), |K1|C2(Tn), |K2|C1(Tn), |N2|C0 ,
with N2 defined as in N1 in Definition 45 by replacing K with K2, such that if

κ|K1 − K2|C1(Tn) < 1, (110)
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then there exists θ0 ∈ Rn such that

avg
{
T2(θ)(K1 ◦ Rθ0 − K2)

}
θ

= 0, (111)

where T2 is defined by replacing K with K2 in (108). Moreover, the following estimate holds:

|K1 ◦ Rθ0 − K2|C
(Tn) � κ̃|K1 − K2|1−α

C0(Tn)
+ κ̃|K1 − K2|C
(Tn), (112)

where 0 � α < 1 is such that 
 − α ∈ N and κ̃ is a constant depending on the same variables as
κ and on |K1|C
+1(Tn).

Proof. Lemma 58 is consequence of the Implicit Function Theorem. Indeed, let Mn×n(R) rep-
resent the space of n × n matrices with components in R. Define

Φ : Rn × C1(Tn
) → Mn×n(R),

(x,K) → avg
{
T2(K ◦ Rx − K2)

}
θ
,

where T2 is defined by (108) by replacing K with K2. Notice that

Φ(0,K2) = 0,

D1Φ(x,K)�x = avg
{
T2(θ)DK(θ + x)

}
θ
�x.

Moreover, since K2(T
n) is Lagrangian [15], from the definition of T2 one easily verifies that

T2(θ)DK2(θ) = In, this implies

D1Φ(x,K)|(x,K)=(0,K2) = In.

Hence the Implicit Function Theorem guarantees the existence of a constant κ as in Lemma 58
such that if (110) holds, then there is a θ0 ∈ Rn satisfying (111) and such that

|θ0| � κ
∣∣Φ(0,K1)

∣∣ � κ|T2|C0(Tn)|K1 − K2|C0(Tn). (113)

It is not difficult to prove the following estimate (see [21])

|K1 ◦ Rθ0 − K1|C
(Tn) � κ̃|K1|C
+1(Tn)|θ0|1−α, (114)

where 0 < α < 1 is such that 
−α ∈ N. Finally, estimate (112) follows from (113) and (114). �
The proof of Theorem 49 is concluded using Lemmas 57, 58 and Taylor’s Theorem as follows.

Assume that |K1 − K2|C
(Tn) is sufficiently small such that Lemma 58 holds, let θ0 be as in
Lemma 58. Define

�(θ)
def= K1 ◦ Rθ0 − K2.

Using that (f,K1 ◦ Rθ ) and (f,K2) satisfy (76) and Lemma 58 we have
0
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D2F(f,K2)� = R(K1 ◦ Rθ0 ,K2),

avg
{
T2(θ)�(θ)

}
θ

= 0,

where F is as in (77), T2 is as in Lemma 58, and

R(K1 ◦ Rθ0 ,K2)(θ) = f ◦ K1 ◦ Rθ0 − f ◦ K2(θ) − Df
(
K2(θ)

)
�(θ).

Then, from the Taylor’s Theorem and Lemma 57 we have the following estimate:

|�|C
−2σ � κ̂γ −2|R|C
(Tn) � κγ −2|�|C
(Tn)|�|C
−2σ (Tn),

from which and (112) we have that if |K1 − K2|C
(Tn) is sufficiently small such that

κγ −2|�|C
(Tn) < 1,

then � = 0.

4.3. Bootstrap of regularity (Proof of Theorem 50)

Theorem 50 is a consequence of Theorems 46, 49, and the fact that, near to a finitely dif-
ferentiable approximate solution (f,K) of (76) it is possible to obtain an analytic approximate
solution of the same equation by means of the operators St and Tt of Theorem 18. More pre-
cisely, using Theorems 18 and 46 we prove that, under certain conditions, if (f,K) belongs to
either Diff
(U) × C
1(Tn,U) or A(U + �,C
1) × C
1(Tn,U), with 
 and 
1 as in Theorem 50,
then there exists a finitely differentiable parameterization of an n-dimensional torus K∗ such
that: (a) (f,K) is a solution of (76), (b) K∗ is close to K in certain norms, and (c) K∗ has the
wished regularity. Then Theorem 50 follows from the local uniqueness result Theorem 49.

Lemma 59. Let γ , σ , ω, m, 
1, and U be as in Theorem 50. Let (K,f ) be a solution of (76)
with f ∈ Diff
(U) an exact symplectic diffeomorphism, and K ∈ C
1(Tn,U). Let 
 ∈ [
1,m) and
let f ∈ C
(U). Assume that hypotheses S1–S3 (replacing ρ with � in S3) in Theorem 47 hold.
Then, for any 4σ + 2 < μ < 
 − 1, satisfying μ − (2σ + 1) /∈ N, there is positive constant c,
depending on μ, 
, 
1, σ , ζ , MΩ , |f |C
(U), |K|C
1 (Tn), |N |C0(Tn), and |(avg{A}θ )−1|, such that
for any 0 < ρ < 1 satisfying

cγ −4ρμ−(4σ+2) < min(1, β, η), (115)

there exists K∗ ∈ Cμ−2σ (Tn,U) satisfying N1 and N2 in Definition 45 and such that (f,K∗) is
a solution of (76). Moreover, for any 0 � ν < μ − (2σ + 1) the following estimate holds:

|K∗ − K|Cν(Tn) � κγ −2ρμ−(2σ+1+ν),

for some positive constant κ .
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Proof. The proof of Lemma 59 follows the same steps as the proof of Theorem 47 the only
thing one has to be careful is that f ∈ C
(U) and K ∈ C
1(Tn,U) (and not in C
(Tn,U)), hence
we replace 
 with 
1 in the estimates of the norms involving the term St [K]. Moreover, the
assumption F(f,K) = 0, with F as in (77), simplifies many estimates. �
Lemma 60. Let γ , σ , ω, m, 
1, and U be as in Theorem 50. Let (K,f ) be a solution of (76)
with f ∈ A(U + �,C
1), an exact symplectic diffeomorphism, and K ∈ C
1(Tn,U). Assume
that hypotheses S1–S3 in Theorem 47 hold. Then, for any 4σ < μ < 
1 − 1, there is positive
constant c, depending on n, μ, 
1, σ , ζ , �, β , MΩ , |f |C
1 (U+�), |K|C
1 (Tn), |N |C0(Tn), and

|(avg{A}θ )−1|, such that for any 0 < ρ < 1 satisfying

cγ −4ρμ−4σ < min(1, �, η), (116)

there exists K∗ ∈A(Tn + ρ/2,C1) satisfying N1 and N2 in Definition 45 and such that (f,K∗)
is a solution of (76). Moreover, for any 0 � ν < μ − 2σ , the following estimate holds:

|K∗ − K|Cν(Tn) � κ
(
γ −2ρμ−(2σ+ν) + ρ
1−ν

)
, (117)

for some positive constant κ .

Proof. We prove Lemma 60 applying again the smoothing technique. Since f is already analytic
we only smooth the parameterization K ∈ C
1(Tn,U) by using the smoothing operator St , de-
fined in Section 3.1. Let κ = κ(n, 
1,1) be as in Proposition 23, and assume that t is sufficiently
large so that

κβt−
1 |K|C
1 (Tn) < min(�/2, η/2), (118)

then Proposition 23 implies St [K](Tn + t−1) ⊂ U + �, so that the composition f ◦ St [K] is well
defined on Tn + t−1. Now, write

f ◦ St [K] − St [K] ◦ Rω = St [f ] ◦ St [K] − St [f ◦ K],
where we have used that (f,K) satisfies Eq. (76). Then, using Proposition 37 and Lemma 30 one
has that for any 4σ < μ < 
1, there exists a constant c̃, depending on n, 
1, β , μ, |f |C
1 (U+�),
and |K|C
1 (Tn) such that ∣∣f ◦ St [K] − St [K] ◦ Rω

∣∣
C0(Tn+t−1)

� c̃t−μ.

Hence for t satisfying (118) (f,St [K]) is an approximate solution of Eq. (76), with error bounded
in (116). Moreover, it can be proved, as we did in Lemma 52, that for t sufficiently large, St [K]
satisfies N1 and N2 in Definition 45 and the estimates given in part (iv) of Lemma 53. Hence,
applying Theorem 46 to the analytic approximate solution (f,St [K]) one has that there is a
positive constant c, depending on σ , n, β , μ, |f |C2(U+�), ζ , Mω, |K|C
1 (Tn), |N |C0(Tn+t−1), and

|(avg{A}θ )−1| such that, if ρ = t−1, with t is sufficiently large so that (116) and (118), then there
exists K∗ ∈A(Tn + ρ/2,C1) satisfying

|K∗ − K|C0(Tn) � ĉ
(
γ −2ρμ−2σ + ρ
1

)
.

Estimate (117) follows from the Cauchy’s estimates. �
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Now Theorem 50 follows easily from the local uniqueness formulated in Theorem 49, Lem-
mas 59 and 60. Indeed, in the case that f ∈ Diff
(U) with 
 ∈ [
1,m) − Z, let K∗ be as in
Lemma 59. Fix ν ∈ (2σ,μ − (2σ + 2))∩ (2σ, 
1 − 1) such that ν, ν − 2σ /∈ Z, then f ∈ Diffν+2,
and K,K∗ ∈ Cν+1(Tn,U) ∩ N . Assume that in (115) ρ is sufficiently small such that The-
orem 49 holds, then K = K∗ ◦ Tθ∗ , for some θ∗ ∈ Rn and hence K ∈ C
−2σ (Tn,U). The
case f ∈ A(U + �,C
) is proved similarly using Lemma 60 instead of Lemma 59 and fixing
ν ∈ (2σ,μ − 2σ − 1) such that ν, ν − 2σ /∈ Z and applying Lemma 60 and Theorem 49.
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