
J. Differential Equations 248 (2010) 252–286
Contents lists available at ScienceDirect

Journal of Differential Equations

www.elsevier.com/locate/jde

Large time behavior of the semigroup on L p spaces
associated with the linearized compressible Navier–Stokes
equation in a cylindrical domain

Yuya Ishihara a, Yoshiyuki Kagei b,∗
a Yugengaisha-Singakuju, 1648-3, Oaza-ganda, Nogata, 822-0001, Japan
b Faculty of Mathematics, Kyushu University, Fukuoka, 812-8581, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 April 2009
Available online 21 July 2009

MSC:
35Q30
76N15

Keywords:
Compressible Navier–Stokes equation
Large time behavior
Cylindrical domain

Large time behavior of solutions to the linearized compressible
Navier–Stokes equation around the motionless state in a cylindrical
domain is investigated. The Lp decay estimates of the associated
semigroup are established for all 1 < p < ∞. It is also shown
that the time-asymptotic leading part of the semigroup is given
by a one-dimensional heat semigroup.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

This paper studies large time behavior of solutions to the following system of equations

∂t u + Lu = 0, (1.1)

where u = T (φ, v), φ = φ(x, t) ∈ R, v = T (v1(x, t), v2(x, t), v3(x, t)) ∈ R3, and L is an operator defined
by

L =
(

0 γ div
γ ∇ −ν� − ν̃∇ div

)
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with positive constants ν , ν̃ and γ . Here t � 0 is the time variable and x = (x1, x2, x3) ∈ R3 is the
space variable and T · stands for the transposition.

In this paper we consider (1.1) in a cylindrical domain

Ω = D × R = {
x = (x′, x3); x′ = (x1, x2) ∈ D, x3 ∈ R

}
under the boundary condition

v|∂Ω = 0. (1.2)

Here D is a bounded domain in R2 with smooth boundary ∂ D .
The system (1.1) arises from the linearization of the compressible Navier–Stokes equation

∂tρ + divm = 0,

∂tm + div

(
m ⊗ m

ρ

)
+ ∇ P (ρ) = μ�

(
m

ρ

)
+ (μ + μ′)∇ div

(
m

ρ

)
(1.3)

around the constant motionless state (ρ,m) = (ρ∗,0), where ρ = ρ(x, t) is the density; m =
T (m1(x, t),m2(x, t),m3(x, t)) is the momentum; and ρ∗ is a given positive number.

Large time behavior of solutions of (1.3) in unbounded domains has been widely studied, which
presents interesting aspects. Concerning the Cauchy problem for (1.3) on the whole space R3, it was
shown in [13,17,18] that if the initial perturbation (ρ(0) − ρ∗,m(0)) is sufficiently small in H3, then
there exists a unique global solution to (1.3) and the leading part of the perturbation u(t) = (ρ(t) −
ρ∗,m(t)) in large time is given by the solution of the linearized problem, which exhibits a hyperbolic–
parabolic aspect of system (1.3). (See [12] for the case of a general class of quasilinear hyperbolic–
parabolic systems.) The solution of the linearized problem is approximated in large time by the sum
of two terms; one is given by the convolution of the heat kernel and the fundamental solution of
the wave equation, the so-called diffusion wave; and the other is the solution of the heat equation. It
was found in [3,4] that hyperbolic and parabolic aspects of the diffusion wave exhibits an interesting
interaction phenomena in the decay properties of L p norms with 1 � p � ∞. (See also [16].) Such
an interaction phenomena also appears in the exterior domain problem [14,15] and the half space
problem [8,9]. Furthermore, in the case of the half space problem, some different aspect appears in
the decay property of spatial derivatives due to the presence of unbounded boundary.

On the other hand, solutions on the infinite layer Rn−1 × (0,1) behave in a different manner from
the ones on the domains mentioned above. The leading part of the solution on the infinite layer
is given by a solution of an (n − 1)-dimensional heat equation [7]. This is due to the fact that the
infinite layer has an infinite extent in n − 1 unbounded directions and the remaining one direction
has a finite thickness. An analogous result was obtained in [10] for the cylindrical domain Ω that
has one unbounded direction x3 and two-dimensional bounded cross section D . In this case, under
suitable assumptions on the initial value, the perturbation u(t) = (ρ(t) − ρ∗,m(t)) satisfies

∥∥u(t)
∥∥

L2 = O
(
t−1/4), ∥∥u(t) − u(0)(t)

∥∥
L2 = O

(
t−3/4 log t

)
as t → ∞. Here u(0) = (φ(0)(x3, t),0) with φ(0)(x3, t) satisfying

∂tφ
(0) − κ∂2

x3
φ(0) = 0, φ(0)

∣∣
t=0 = 1

|D|
∫
D

(
ρ0(x′, x3) − ρ∗

)
dx′, (1.4)

where κ is a positive constant and |D| denotes the Lebesgue measure of D . In [10] large time behavior
was investigated only in the L2 space, while in the case of the infinite layer [5–7] it was investigated
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in general L p spaces. The analysis in L p spaces in the case of the infinite layer relies on a solution
formula [5] whose analogous version seems to be unavailable in the case of cylindrical domains since
D is a general bounded domain of R2.

In this paper we will extend the analysis in the L2 space in [10] to general L p spaces. We here
treat only the linearized problem (1.1)–(1.2), since the nonlinear problem (1.3)–(1.2) can be treated as
in [7] based on the energy method by Matsumura and Nishida [19] and the analysis of the linearized
problem (1.1)–(1.2).

The main result of this paper is summarized as follows. Let 1 < p < ∞ and let u(t) be a solution
of (1.1)–(1.2) with u|t=0 = T (φ0, v0) ∈ [W 1,p × L p] ∩ L1. Then

∥∥u(t)
∥∥

L p = O
(
t− 1

2 (1− 1
p ))

,∥∥u(t) − u(0)(t)
∥∥

L p = O
(
t− 1

2 (1− 1
p )− 1

2
)

(1.5)

as t → ∞. Here u(0) = T (φ(0)(x3, t),0) with φ(0)(x3, t) satisfying the equation in (1.4) and φ(0)|t=0 =
1

|D|
∫

D φ0(x′, x3)dx′ .
To prove (1.5) we will consider the Fourier transform of problem (1.1)–(1.2) with respect to x3

variable which is written in the form

∂t û + L̂ξ û = 0,

v̂|∂ D = 0, û|t=0 = û0. (1.6)

Here û = û(x′, ξ, t) = T (φ̂(x′, ξ, t), v̂(x′, ξ, t)) (x′ ∈ D , ξ ∈ R, t � 0) denotes the Fourier transform of
u(x′, x3, t) = T (φ(x′, x3, t), v(x′, x3, t)) with respect to x3 variable. We investigate problem (1.6) ac-
cording to the following three cases:

(i) |ξ | 
 1, (ii) |ξ | � 1, (iii) r � |ξ | � M

with suitable constants 0 < r < M < ∞. The case (i) is treated similarly as in [6,10]. We regard
problem (1.6) as a perturbation from the one with ξ = 0 and analyze the spectral properties of L̂ξ

by applying the analytic perturbation theory [11]. As for the case (ii), we treat it as a perturbation
from the problem on the half space and derive necessary estimates for the corresponding part of
the resolvent in L p spaces by using the Fourier Multiplier Theorem. As for the case (iii), we derive
estimates for the derivatives of (λ + L̂ξ )

−1 with respect to ξ and then obtain necessary estimates for
the resolvent by employing the Riemann–Lebesgue lemma. To investigate the cases (ii) and (iii), we
will use the solution formula for the half space problem [8,9].

This paper is organized as follows. In Section 2 we state our main result of this paper. The analysis
for the cases (ii) and (iii) are done in Sections 3 and 4. Section 5 is devoted to the analysis for the
case (i). Based on the analysis in Sections 3–5, we prove our main result in Section 6.

2. Main result

We first introduce some notation.
For 1 � p � ∞ we denote by L p(Ω) the usual Lebesgue space on Ω and its norm is denoted by

‖ · ‖p . Let � be a nonnegative integer. The symbol W �,p(Ω) denotes the �-th order L p Sobolev space
on Ω with norm ‖ · ‖W �,p . When p = 2, the space W �,2(Ω) is denoted by H�(Ω) and its norm is
denoted by ‖ · ‖H� . C�,p

0 (Ω) stands for the set of all C� functions which have compact support in Ω .

We denote by W �,p
0 (Ω) the completion of C�,p

0 (Ω) in W �,p(Ω). In particular, W �,2
0 (Ω) is denoted by

H�
0(Ω).

We simply denote by L p(Ω) (resp., W �,p(Ω), H�(Ω)) the set of all vector fields v = T (v1, v2, v3)

on Ω with v j ∈ L p(Ω) (resp., W �,p(Ω), H�(Ω)), j = 1,2,3, and its norm is also denoted by ‖ · ‖Lp
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(resp., ‖·‖W �,p , ‖·‖H� ). For u = T (φ, v) with φ ∈ W �,p(Ω) and v = T (v1, v2, v3) ∈ W j,p(Ω), we define
‖u‖W �,p×W j,p = ‖φ‖W �,p + ‖v‖W j,p . When � = j, we simply write ‖u‖W �,p for ‖u‖W �,p×W �,p .

Similarly we introduce the function spaces L p(D), W �,p(D), H�(D) and H�
0(D). Their norms are

denoted by

| · |p, | · |W �,p , | · |H� .

For u = t(φ, v) with φ ∈ W �,p(D) and v = T (v1, v2, v3) ∈ W j,p(D), we denote |u|W �,p×W j,p ≡
|φ|W �,p + |v|W j,p .

The inner product of L2(D) is denoted by

( f , g) ≡
∫
D

f (x′)g(x′)dx′

for f , g ∈ L2(D). We also denote the inner product of L2(Ω) by the same symbol if no confusion
occurs. We define 〈·,·〉 by

〈 f , g〉 ≡ 1

|D| ( f , g)

for f , g ∈ L2(D). In particular, when g = 1, 〈 f ,1〉 is denoted by 〈 f 〉, i.e.,

〈 f 〉 ≡ 1

|D|
∫
D

f (x′)dx′.

For a Banach space X , we denote by S(R; X) the set of all rapidly decreasing functions on R with
values in X .

We next introduce some notations about integral operators. We denote the Fourier transform of
f = f (z) (z ∈ Rk) by

[Fz→ζ f ](ζ ) =
∫
Rk

f (z)e−iζ ·z dz,

and the inverse Fourier transform is denoted by

[
F −1

ζ→z f
]
(z) = (2π)−k

∫
Rk

f (ζ )eiζ ·z dζ.

In particular, the Fourier transform of f = f (x3) (x3 ∈ R) is denoted by f̂ or F f , i.e.,

f̂ (ξ) = F f (ξ) =
∫
R

f (x3)e−iξ ·x3 dx3,

and the inverse Fourier transform is denoted by F −1 f , i.e.,

F −1 f (x3) = (2π)−1
∫

f (ξ)eiξ ·x3 dξ.
R
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For a function K (y, z) on (0,∞) × (0,∞) we will denote by K f the integral operator∫∞
0 K (y, z) f (z)dz.

We denote the resolvent set of a closed operator A by ρ(A) and the spectrum by σ(A). For c ∈ R
and θ ∈ ( π

2 ,π), we will denote

Σ(c, θ) = {
λ ∈ C; ∣∣arg(λ − c)

∣∣� θ
}
.

We denote by Q 0, Q̃ and Q ′ the 4 × 4 diagonal matrices

Q 0 = diag(1,0,0,0), Q̃ = diag(0,1,1,1), Q ′ = diag(0,1,1,0),

respectively. We then have for u = T (φ, v), v = T (v1, v2, v3),

Q 0u =
(

φ

0

)
, Q̃ u =

(
0
v

)
, Q ′u =

⎛
⎝ 0

v ′
0

⎞
⎠ (

v ′ = T (v1, v2)).
We now state our main result. Let 1 < p < ∞. We define an operator L on W 1,p(Ω)× L p(Ω) with

domain of definition D(L) by

L =
(

0 γ div

γ ∇ −ν� − ν̃∇ div

)
,

D(L) = W 1,p(Ω) × [
W 2,p(Ω) ∩ W 1,p

0 (Ω)
]

with positive constants ν , ν̃ and γ .

Theorem 2.1. Let 1 < p < ∞. Then −L generates an analytic semigroup e−tL on W 1,p(Ω)× L p(Ω) and e−tL

has the following properties.

(i) There hold the estimates

∥∥e−tLu0
∥∥

W 1,p×L p � C‖u0‖W 1,p×L p

and

∥∥∂�
x Q̃ e−tLu0

∥∥
p � Ct− �

2 ‖u0‖W 1,p×L p (� = 1,2)

for 0 < t < 1.
(ii) If u0 = T (φ0, v0) ∈ [W 1,p(Ω) × L p(Ω)] ∩ L1(Ω), then e−tLu0 is decomposed as

e−tLu0 = U0(t)u0 + U∞(t)u0.

Here U0(t)u0 and U∞(t)u0 satisfy the following (ii-a) and (ii-b).
(ii-a) U0(t)u0 is written as

U0(t)u0 = W0(t)u0 + R0(t)u0.

Here W0(t)u0 takes the form
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W0(t)u0 =
(

φ(0)(t)
0

)
,

and φ(0)(x3, t) satisfies the following heat equation on R:

∂tφ
(0) − κ∂2

x3
φ(0) = 0, φ(0)

∣∣
t=0 = 1

|D|
∫
D

φ0(x′, x3)dx′

with some positive constant κ .
For 1 � r � ∞ and � = 0,1, the function R0(t)u0 satisfies the estimate

∥∥∂�
x R0(t)u0

∥∥
r � Ct− 1

2 (1− 1
r )− 1

2 ‖u0‖1

uniformly for t � 1. Furthermore,

U0(t)Q̃ = R0(t)Q̃

and the estimates hold for t � 1:

‖∂x U0(t)Q̃ u0‖r � Ct− 1
2 (1− 1

r )−1‖Q̃ u0‖1,∥∥U0(t)[∂x Q̃ u0]
∥∥

r � Ct− 1
2 (1− 1

r )− 1
2 ‖Q̃ u0‖1.

(ii-b) For � = 0,1, the function U∞(t)u0 satisfies the estimate

∥∥∂�
x U∞(t)u0

∥∥
p � Ce−ct‖u0‖W 1,p×L p

uniformly for t � 1.

Remark 2.2. Since φ(0) is a solution of a one-dimensional heat equation, we have

∥∥W0(t)u0
∥∥

r � Ct− 1
2 (1− 1

r )‖u0‖1.

This implies that

∥∥U0(t)u0
∥∥

r � Ct− 1
2 (1− 1

r )‖u0‖1.

The proof of Theorem 2.1 is based on the resolvent problem associated with (1.1)–(1.2):

(λ + L)u = f , v|∂Ω = 0. (2.1)

Here u = T (φ, v).
Hereafter we will often write

x = t(x′, x3), x′ = t(x1, x2) ∈ D, ∇′ = t(∂x1 , ∂x2), �′ = ∂2
x1

+ ∂2
x2

.

We take the Fourier transform of (2.1) with respect to x3 to obtain
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λφ̂ + γ ∇′ · v̂ ′ + iγ ξ v̂ 3 = f̂ 0,

λv̂ ′ − ν�′ v̂ ′ + νξ2 v̂ ′ − ν̃∇′(∇′ · v̂ ′ + iξ v̂ 3)+ γ ∇′φ̂ = ĝ ′,
λv̂ 3 − ν�′ v̂ 3 + νξ2 v̂ 3 − iν̃ξ

(∇′ · v̂ ′ + iξ v̂ 3)+ iγ ξφ̂ = ĝ 3,

v̂|∂ D = 0,

(2.2)

which is written in the form

(λ + L̂ξ )û = f̂ , v̂|∂ D = 0. (2.3)

Here ξ ∈ R denotes the dual variable; the unknown û = T (φ̂, v̂ ′, v̂ 3) is a function on D with values
in C; and

L̂ξ =
⎛
⎜⎝

0 γ T ∇′ iγ ξ

γ ∇′ −ν�′ + νξ2 − ν̃∇′T ∇′ −iν̃ξ∇′

iγ ξ −iν̃ξ T ∇′ −ν�′ + (ν + ν̃)ξ2

⎞
⎟⎠ .

Problem (2.3) will be investigated according to the cases

(i) |ξ | 
 1, (ii) |ξ | � 1, (iii) r � |ξ | � M

with constants 0 < r < M < ∞. We will study the cases (ii) and (iii) in Sections 3 and 4, respec-
tively. The case (i) will be studied in Section 5. Based on the analysis of problem (2.3), we will prove
Theorem 2.1 in Section 6.

3. Resolvent problem for high frequency part

In this section we establish estimates on (λ + L̂ξ )
−1 for |ξ | � 1.

Let M > 0 and set ûM = κM(ξ)(λ + L̂ξ )
−1 f̂ . Here κM is a C∞ function on R satisfying

0 � κM � 1, κM(ξ) =
{

1 (|ξ | > M),

0 (|ξ | < M
2 ).

We will show the following estimate.

Theorem 3.1. Let 1 < p < ∞ and let κM be a function defined as above. Then there exist M0 > 0, c∞ > 0 and
θ∞ ∈ ( π

2 ,π) such that if M � M0 and λ ∈ Σ(−c∞, θ∞), then F −1[κM(ξ)(λ+ L̂ξ )
−1 f̂ ] satisfies the estimate

∥∥F −1[κM(ξ)(λ + L̂ξ )
−1 f̂

]∥∥
W 1,p×W 2,p � C‖ f ‖W 1,p×L p

uniformly in M � M0 and λ ∈ Σ(−c∞, θ∞).

Theorem 3.1 is proved by establishing interior and boundary estimates. We here give a proof of
the estimate near the boundary only, since the interior estimate can be proved similarly.

We see from (2.2) that ûM = κM(ξ)(λ + L̂ξ )
−1 f̂ satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λφ̂M + γ ∇′ · v̂ ′
M + iγ ξ v̂ 3

M = κM f̂ 0,

λv̂ ′
M − ν�′ v̂ ′

M + νξ2 v̂ ′
M − ν̃∇′(∇′ · v̂ ′

M + iξ v̂ 3
M

)+ γ ∇′φ̂M = κM ĝ ′,
λv̂ 3

M − ν�′ v̂ 3
M + νξ2 v̂ 3

M − iν̃ξ
(∇′ · v̂ ′

M + iξ v̂ 3
M

)+ iγ ξφ̂M = κM ĝ 3,

ˆ

(3.1)
v M |∂ D = 0.
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We take a point x̄′ = (x̄1, x̄2) ∈ ∂ D and an open neighborhood O ⊂ R2 of x̄′ . Let χ ∈ C∞
0 (O). Then,

by (3.1), we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ(χφ̂M) + γ ∇′ · (χ v̂ ′
M

)+ iγ ξ
(
χ v̂ 3

M

)= F M ,

λ
(
χ v̂ ′

M

)+ ν
(
ξ2 − �′)(χ v̂ ′

M

)− ν̃∇′{∇′ · (χ v̂ ′
M

)+ iξ
(
χ v̂ 3

M

)}+ γ ∇′(χφ̂ ) = G ′
M ,

λ
(
χ v̂ 3

M

)+ ν
(
ξ2 − �′)(χ v̂ 3

M

)− iν̃ξ
{∇′ · (χ v̂ ′

M

)+ iξ
(
χ v̂ 3

M

)}+ iγ ξ(χφ̂M) = G3
M ,

(χ v̂ M)|∂ D∩O = 0.

(3.2)

Here

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F M = χκM f̂ 0 + (∇′χ) · v̂ ′
M ,

G ′
M = χκM ĝ ′ − ν(�′χ)v̂ ′

M − 2ν∇′χ · ∇′ v̂ ′
M − ν̃∇′(∇′χ · v̂ ′

M

)
− ν̃∇′χ

(∇′ · v̂ ′
M

)− iξ ν̃(∇′χ)v̂ 3
M + γ (∇′χ)φ̂M ,

G3
M = χκM ĝ 3

M − ν(�′χ)v̂ 3
M − 2ν∇′χ · ∇′ v̂ 3

M − iν̃ξ(∇′χ) · v̂ ′
M .

For any η > 0, if the diameter of O is sufficiently small, then one can find a function h with the
following properties (i)–(iii).

(i) h ∈ C∞(R), x̄1 = h(x̄2),h′(x̄2) = 0.
(ii) D ∩ O ⊂ {x′ = (x1, x2); x1 > h(x2)}, ∂ D ∩ O ⊂ {x′ = (x1, x2); x1 = h(x2)}.

(iii) There are an open neighborhood Õ of the origin of R2 and a diffeomorphism ω = T (ω1,ω2) from
O to Õ such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′ = ω(x′) =
(

x1 − h(x2)

x2 − x̄2

)
=
(

ω1(x′)
ω2(x′)

)
, ω(x̄′) = 0,

ω(D ∩ O) ⊂ {
y = (y1, y2); y1 > 0

}
,

ω(∂ D ∩ O) ⊂ {
y = (y1, y2); y1 = 0

}
,

x′ = ω−1(y′) =
(

y1 + h(y2 + x̄2)

y2 + x̄2

)
,

sup
y2

∣∣h′(y2 + x̄2)
∣∣< η.

Using the map ω, we define V M(y′, ξ), ΦM(y′, ξ), F̃ M(y′, ξ), G̃ ′
M(y′, ξ) and G̃3

M(y′, ξ) by

V M(y′, ξ) = χ v̂ M
(
ω−1(y′), ξ

)
, ΦM(y′, ξ) = χφ̂M

(
ω−1(y′), ξ

)
,

F̃ M(y′, ξ) = F M
(
ω−1(y′), ξ

)
, G̃ ′

M(y′, ξ) = G ′
M

(
ω−1(y′), ξ

)
,

G̃3
M(y′, ξ) = G3

M

(
ω−1(y′), ξ

)
.

Problem (3.2) is then transformed into the following one on the half space R2+ = {y =
(y1, y2) ∈ R2; y1 > 0, y2 ∈ R}:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λΦM + γ ∇′ · V ′
M + iγ ξ V 3

M = R̃0
M ,

λV ′
M + ν

(
ξ2 − �′)V ′

M − ν̃∇′(∇′ · V ′
M + iξ V 3

M

)+ γ ∇′ΦM = R̃ ′
M ,

λV 3
M + ν

(
ξ2 − �′)V 3

M − iν̃ξ
(∇′ · V ′

M + iξ V 3
M

)+ iγ ξΦM = R̃3
M ,

V | = 0.

(3.3)
M y1=0
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Here V M = T (V ′
M , V 3

M), V ′
M = T (V 1

M , V 2
M),

R̃0
M = F̃ M + γ h′∂y1 V 2

M ,

R̃ ′
M = T (R̃1

M , R̃2
M

)
,

R̃1
M = G̃1

M − ν
{

h′′∂y1 V 1
M + 2h′∂y1 y2 V 1

M − (h′)2∂2
y1

V 1
M

}− ν̃h′∂2
y1

V 2
M ,

R̃2
M = G̃2

M − ν
{

h′′∂y1 V 2
M + 2h′∂y1 y2 V 2

M − (h′)2∂2
y1

V 2
M

}
− ν̃

{
h′∂2

y1
V 1

M + h′′∂y1 V 2
M + 2h′∂y1 y2 V 2

M − (h′)2∂2
y1

V 2
M + iξh′∂y1 V 3

M

}
+ γ h′∂y1ΦM ,

R̃3
M = G̃3

M − ν
{

h′′∂y1 V 3
M + 2h′∂y1 y2 V 3

M − (h′)2∂2
y1

V 3
M

}− iν̃ξh′∂y1 V 2
M .

As for problem (3.3), we have the following estimates. In what follows we will write y for
(y1, y2, x3) ∈ R3+ .

Proposition 3.2. Let 1 < p < ∞ and let M0 > 0 be given. Then there exists a number δ > 0 such that if
diam(O) � δ, M � M0 and λ ∈ Σ(−c∞, θ∞), then the solution U M = T (ΦM , V ′

M , V 3
M) of (3.3) satisfies the

following estimates with C = C(χ, O) > 0 uniformly for M � M0 and λ ∈ Σ(−c∞, θ∞):

(i)
∥∥F −1

ξ→x3
V M

∥∥
p � C

M

{∥∥F −1
ξ→x3

[χκM f ]∥∥W 1,p×L p + ∥∥F −1
ξ→x3

[χ ûM ]∥∥L p×W 1,p

}
,

(ii)
∥∥F −1

ξ→x3
ΦM

∥∥
p + ∥∥∂y F −1

ξ→x3
V M

∥∥
p

� C

{∥∥F −1
ξ→x3

[
χκM f̂ 0]∥∥

W 1,p + ∥∥F −1
ξ→x3

[χ v̂ M ]∥∥p

+ 1

M

(∥∥F −1
ξ→x3

[χκM ĝ]∥∥p + ∥∥F −1
ξ→x3

[χ ûM ]∥∥L p×W 1,p

)}
,

(iii)
∥∥∂y F −1

ξ→x3
ΦM

∥∥
p + ∥∥∂2

y F −1
ξ→x3

V M
∥∥

p

� C
{∥∥∂y F −1

ξ→x3

[
χκM f̂ 0]∥∥

p + ∥∥F −1
ξ→x3

[χκM ĝ]∥∥p + ∥∥F −1
ξ→x3

[χ ûM ]∥∥L p×W 1,p

}
.

To prove Proposition 3.2, we consider the Fourier transform of (3.3) in y2 variable. In what follows
we will write ζ̃ for T (ζ2, ξ) ∈ R2. Then the Fourier transform of (3.3) in y2 gives

{
(λ + Âζ̃ )F y2→ζ2 U M = F y2→ζ2 R̃M (y1 > 0),

F y2→ζ2 V M |y1=0 = 0.
(3.4)

Here U M = T (ΦM(y1, y2, ξ), V M(y1, y2, ξ)) with V ′
M = T (V ′

M(y1, y2, ξ), V 3
M(y1, y2, ξ)) is the solution

of (3.3); R̃M = T (R̃0
M(y1, y2, ξ), R̃ ′

M(y1, y2, ξ), R̃3
M(y1, y2, ξ)); and

Âζ̃ =
⎛
⎜⎝

0 γ ∂y1 iγ T ζ̃

γ ∂y1 ν(|ζ̃ |2 − ∂2
y1

) − ν̃∂2
y1

−iν̃ T ζ̃ ∂y1

iγ ζ̃ −iν̃ζ̃ ∂y1 ν(|ζ̃ |2 − ∂2
y1

)I2 + ν̃ζ̃ T ζ̃

⎞
⎟⎠ ,

where I2 is the 2 × 2 identity matrix.

As for problem (3.4) we make use of some results by [9]. For a given f ∈ C∞
0 (R3+) × C∞

0 (R3+) let
us consider the problem
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{
(λ + Âζ̃ )u = F ỹ→ζ̃ f (y1 > 0),

v|y1=0 = 0
(3.5)

for the unknown u = T (φ, v). To investigate problem (3.5) we introduce some quantities. We set

λ1 = −ν|ζ̃ |2,
λ± = −ν1

2
|ζ̃ |2 ± 1

2

√
ν2

1 |ζ̃ |4 − 4γ 2|ζ̃ |2

and

λ̃± = − ν̃1

2
|ζ̃ |2 ± 1

2

√
ν̃2

1 |ζ̃ |4 − 4γ 2|ζ̃ |2,

where ν1 = ν + ν̃ and ν̃1 = 2ν + ν̃ . It was shown in [8,9] that if ζ̃ �= 0 and λ /∈ {λ1, λ±, λ̃±,−γ 2/ν1},
then (3.5) has a unique solution u. We denote the solution operator for (3.5) by Ŝ(λ, ζ̃ ). Then for the
solution U M = T (ΦM , V M) of (3.3) we have

F y2→ζ2 U M = Ŝ(λ, ζ̃ )F y2→ζ2 R̃M ,

and, therefore,

F −1
ξ→x3

U M = F −1
ζ̃→ ỹ

Ŝ(λ, ζ̃ )F y2→ζ2 R̃M

= F −1
ζ̃→ ỹ

Ŝ(λ, ζ̃ )F ỹ→ζ̃ [F −1
ξ→x3

R̃M ].

As for F −1
ζ̃→ ỹ

Ŝ(λ, ζ̃ )F ỹ→ζ̃ , we have the following estimates.

Lemma 3.3. For any M0 > 0 there exist c∞ > 0 and θ0 ∈ ( π
2 ,π) such that if supp(F ỹ→ζ̃ f ) ⊂ {|ξ | � M/2}

with M � 2M0 and λ ∈ Σ(−c∞, θ∞), then there hold the following estimates uniformly for M � M0 and
λ ∈ Σ(−c∞, θ∞):

∥∥∂α
y Q 0 F −1

ζ̃→ ỹ

[
Ŝ(λ, ζ̃ )F ỹ→ζ̃ f

]∥∥
p � C

{∥∥∂α
y f 0

∥∥
p + 1

M1−|α| ‖g‖p

} (|α| = 0,1
)
, (3.6)

∥∥∂α
y Q̃ F −1

ζ̃→ ỹ

[
Ŝ(λ, ζ̃ )F ỹ→ζ̃ f

]∥∥
p

� C

{
1

M(1−|α|)+
∥∥∂(|α|−1)+

y f 0
∥∥

p + 1

M2−|α| ‖g‖p

} (|α| = 0,1,2
)
. (3.7)

Lemma 3.3 will be proved in a similar argument to that given in [5, Sections 4 and 5], but we
here need to pay attention to the dependence on M . The spectral bound, sup Reσ( Â ζ̃ ), of Â ζ̃ satisfies

sup Reσ( Â ζ̃ ) = O (1) < 0 as |ζ̃ | → ∞, and so we in general have ‖F −1
ζ̃→ ỹ

Ŝ(λ, ζ̃ )F ỹ→ζ̃ κM‖ = O (1) as

M → ∞, but we can gain a factor M−1 as in (3.6) and (3.7) which work well to obtain the desired
estimate of Theorem 3.1.

To prove Lemma 3.3, we will make use of an integral representation of the solution
u = Ŝ(λ, ζ̃ )F ỹ→ζ̃ f of (3.5) given by [9].

We introduce the characteristic roots of the ordinary differential system (λ + Â ζ̃ )u = 0, which are

given by ±μ j(λ, ζ̃ ), j = 1,2, where
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μ1 = μ1
(
λ, |ζ̃ |2)=

√
λ + ν|ζ̃ |2

ν
,

μ2 = μ2
(
λ, |ζ̃ |2)=

√
λ2 + ν1|ζ̃ |2λ + γ 2|ζ̃ |2

ν1λ + γ 2
, ν1 = ν + ν̃.

We next introduce the Green functions g(+)
μ j (y1, z1) and g(−)

μ j (y1, z1) of the equation μ2
j w − ∂2

y1
w = f

under the Neumann boundary condition and the Dirichlet one at y1 = 0 respectively. We define
g(±)
μ j (y1, z1) by

g(±)
μ j (y1, z1) = 1

2μ j

(
e−μ j |y1−z1| ± e−μ j(y1+z1)

)
( j = 1,2).

We set

g(±)
μ1,μ2(y1, z1) = g(±)

μ1 (y1, z1) − g(±)
μ2 (y1, z1).

We also define functions hμ j (y1), hμ1,μ2(y1), β0(z1), β(z1) and b(z1) by

hμ j (y1) = 1

μ j
e−μ j y1 ( j = 1,2), hμ1,μ2(y1) = hμ1(y1) − hμ2(y1),

β0(z1) = γ λ

d(λ)
e−μ2 z1 , β(z1) = |ζ̃ |2(e−μ1z1 − e−μ2 z1

)
,

b(z1) = iζ̃μ2
(
e−μ1z1 − e−μ2z1

)
.

Using the functions defined above, we have an integral representation of the solution u = Ŝ(λ, ζ̃ ) f of
(3.5).

Lemma 3.4. If ζ̃ �= 0 and λ /∈ {λ1, λ±, λ̃±,−γ 2/ν1}, then the solution u = Ŝ(λ, ζ̃ )F ỹ→ζ̃ f of (3.5) is repre-
sented as

Ŝ(λ, ζ̃ )F ỹ→ζ̃ f = Ĝ(λ, ζ̃ )F ỹ→ζ̃ f + Ĥ(λ, ζ̃ )F ỹ→ζ̃ f ,

where Ĝ(λ, ζ̃ ) and Ĥ(λ, ζ̃ ) are the integral operators given by

(
Ĝ(λ, ζ̃ )F ỹ→ζ̃ f

)
(y1) =

∞∫
0

Ĝ(λ, ζ̃ , y1, z1)F ỹ→ζ̃ f (z1)dz1

and

(
Ĥ(λ, ζ̃ )F ỹ→ζ̃ f

)
(y1) =

∞∫
0

Ĥ(λ, ζ̃ , y1, z1)F ỹ→ζ̃ f (z1)dz1.

Here Ĝ(λ, ζ̃ , y1, z1) is a 4 × 4 matrix of the form
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Ĝ(λ, ζ̃ , y1, z1) = ν1

d(λ)
δ(y1 − z1)Q 0 + Ĝ1(λ, ζ̃ , y1, z1) + Ĝ2(λ, ζ̃ , y1, z1),

where δ(y1) denotes the Dirac delta function;

Ĝ1 = 1

d(λ)

⎛
⎜⎜⎝

γ λ

d(λ)
g(+)
μ2 (y1, z1) −∂y1 g(−)

μ2 (y1, z1) −i T ζ̃ g(−)
μ2 (y1, z1)

−∂y1 g(+)
μ2 (y1, z1) 0 0

−iζ̃ g(+)
μ2 (y1, z1) 0 0

⎞
⎟⎟⎠ ;

Ĝ2 =

⎛
⎜⎜⎝

0 0 0

0 1
ν g(−)

μ1 (y1, z1) − 1
λ
∂2

y1
g(−)
μ1,μ2(y1, z1) − i T ζ̃

λ
∂y1 g(−)

μ1,μ2(y1, z1)

0 − iζ̃
λ

∂y1 g(−)
μ1,μ2(y1, z1)

1
ν g(−)

μ1 (y1, z1)I2 + ζ̃ T ζ̃
λ

g(−)
μ1,μ2(y1, z1)

⎞
⎟⎟⎠

with d(λ) = ν1λ + γ 2; and Ĥ(λ, ζ̃ , y1, z1) is a 4 × 4 matrix of the form

Ĥ(y1, z1) =

⎛
⎜⎜⎝

0 0 iγ T ζ̃

d(λ)
hμ2(y1)e−μ1 z1

0 0 i T ζ̃
λ

∂y1hμ1,μ2(y1)e−μ1 z1

0 0 − ζ̃ T ζ̃
λ

hμ1,μ2(y1)e−μ1 z1

⎞
⎟⎟⎠

+ 1

μ1μ2 − |ζ̃ |2

⎛
⎜⎝

0 0 0
0 0 0

iζ̃
ν hμ1(y1)β0(z1)

1
ν hμ1(y1)b(z1) − 1

ν hμ1(y1)
ζ̃ T ζ̃

|ζ̃ |2 β(z1)

⎞
⎟⎠

+ 1

μ1μ2 − |ζ̃ |2

×

⎛
⎜⎜⎝

γ |ζ̃ |2
d(λ)

hμ2(y1)β0(z1) − iγ T ζ̃

d(λ)
hμ2(y1)b(z1)

iγ T ζ̃

d(λ)
hμ2(y1)β(z1)

|ζ̃ |2
λ

∂y1hμ1,μ2(y1)β0(z1) − iT ζ̃
λ

∂y1 hμ1,μ2(y1)b(z1)
i T ζ̃
λ

∂y1hμ1,μ2(y1)β(z1)

iζ̃ |ζ̃ |2
λ

hμ1,μ2(y1)β0(z1)
|ζ̃ |2
λ

hμ1,μ2(y1)b(z1) − ζ̃ T ζ̃
λ

hμ1,μ2(y1)β(z1)

⎞
⎟⎟⎠ .

The solution formula above is given in [9, Section 3]. (See also [8, Section 3 and Appendix] and [5,
Theorem 3.8].)

Remark 3.5.

(i) For g(±)
μ j ( j = 1,2), we have

∂2
y1

(
g(±)
μ j f

)= μ2
j g(±)

μ j f − f ( j = 1,2), ∂2
y1

(
g(±)
μ1,μ2 f

)= μ2
1 g(±)

μ1 f − μ2
2 g(±)

μ2 f .

(ii) As for μ j ( j = 1,2), an elementary observation shows that μ1 =
√

λ−λ1
ν ; μ2 =

√
(λ−λ+)(λ−λ−)

(ν1λ+γ 2)
;

and if |ζ̃ | < 2γ /ν1, then λ− = λ+ and Imλ+ = γ |ζ̃ |
√

1 − ν2
1

4γ 2 |ζ̃ |2, while if |ζ̃ | > 2γ /ν1, then

λ± ∈ R. We also have

1

μ μ − |ζ̃ |2 = ν(ν1λ + γ 2)(μ1μ2 + |ζ̃ |2)
λ(λ − λ̃ )(λ − λ̃ )

.

1 2 + −
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Furthermore,

λ± = −ν1

2
|ζ̃ |2 ± iγ |ζ̃ | + O

(|ζ̃ |3) as |ζ̃ | → 0,

λ+ = −γ 2

ν1
+ O

(|ζ̃ |−2), λ− = −ν1|ζ̃ |2 + O (1) as |ζ̃ | → ∞,

and similar asymptotics also hold for λ̃± .

To estimate F −1
ζ̃→ ỹ

Ĝ(λ, ζ̃ )F ỹ→ζ̃ and F −1
ζ̃→ ỹ

Ĥ(λ, ζ̃ )F ỹ→ζ̃ , we prepare several lemmas. We proceed

as in [5, Sections 4 and 5].

Lemma 3.6 (Fourier Multiplier Theorem). Let 1 < p < ∞ and let s be an integer satisfying s � [k/2] + 1.
Suppose that Ψ (ω) ∈ C s(Rk − {0}) ∩ L∞(Rk) and that there exists a constant C0 > 0 such that

|ω||α|∣∣∂α
ωΨ (ω)

∣∣� C0

for all ω ∈ Rk − {0} and |α| � s. Then the operator F −1
ω→w [Ψ (ω)(F w→ω f )(ω)] is extended to a bounded

linear operator on L p(Rk) and there holds the estimate

∥∥F −1
ω→w

[
Ψ (ω)(F w→ω f )(ω)

]∥∥
L p(Rk)

� CC0‖ f ‖L p(Rk).

See, e.g., [2] for the proof of Lemma 3.6.
An elementary observation yields the following lemma.

Lemma 3.7. Let g(1)
μ j (y1, z1) = 1

2μ j
e−μ j |y1−z1| with μ j = μ j(λ, |ζ̃ |2) ( j = 1,2). Then

F −1
ζ̃→ ỹ

[ ∞∫
0

g(1)
μ j (y1, z1, ζ̃ )(F ỹ→ζ̃ f )(z1, ζ̃ )dz1

]
= F −1

ζ→y

[
1

μ2
j + ζ 2

1

F y→ζ (E f )

]
.

Here y = (y1, ỹ), ζ = (ζ1, ζ̃ ) with ζ̃ = (ζ2, ξ) and

(E f )(y) =
{

f (y) (y1 � 0),

0 (y1 < 0).

The following lemma follows from the boundedness of the Hilbert transform. (See [1, Lemma 2.6].)

Lemma 3.8. Let 1 < p < ∞ and set

T f (y1) =
∞∫

0

1

y1 + z1
f (z1)dz1, y1 ∈ (0,∞), f ∈ Lp(0,∞).

Then there exists a positive constant C = C(p) > 0 such that

‖T f ‖L p(0,∞) � C‖ f ‖L p(0,∞).
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By Remark 3.5(ii) one can obtain the following estimates. (Cf. [5, Lemma 4.5].) In what follows we
will denote

σ(λ, ζ̃ ) = |λ| + |ζ̃ |2.

Lemma 3.9. Let M0 > 0. Then there exist c∞ > 0 and θ∞ ∈ ( π
2 ,π) such that if |ζ̃ | � M0 and

λ ∈ Σ(−c∞, θ∞), then for any multi-index α̃ the following estimates hold with some positive constants
c = c(α̃) and C = C(α̃) uniformly for |ζ̃ | � M0 and λ ∈ Σ(−c∞, θ∞):

(i)
∣∣∂α̃

ζ̃
μ j

∣∣� C
(|λ| + |ζ̃ |2) 1

2 − |α̃|
2 ( j = 1,2),

(ii)

∣∣∣∣∂α̃
ζ̃

1

μ j

∣∣∣∣� C
(|λ| + |ζ̃ |2)− 1

2 − |α̃|
2 ,

(iii)
∣∣∂α̃

ζ̃
(μ1 − μ2)

∣∣� C |λ|(|λ| + |ζ̃ |2)− 1
2 − |α̃|

2 ,

(iv)
∣∣∂α̃

ζ̃

(
μ1μ2 − |ζ̃ |2)∣∣� C |λ|(|λ| + |ζ̃ |2)− |α̃|

2 ,

(v)
∣∣∂α̃

ζ̃

(
μ1μ2 − |ζ̃ |2)−1∣∣� C

1

|λ|
(|λ| + |ζ̃ |2)− |α̃|

2 ,

(vi)
∣∣∂α̃

ζ̃
e−μ j y1

∣∣� C
(|λ| + |ζ̃ |2)− |α̃|

2 e−cσ (λ,ζ̃ )
1
2 y1 ( j = 1,2),

(vii)
∣∣∂α̃

ζ̃

(
e−μ1 y1 − e−μ2 y1

)∣∣� C |λ|(|λ| + |ζ̃ |2)−1− |α̃|
2 e−cσ (λ,ζ̃ )

1
2 y1 .

We are now in a position to prove Lemma 3.3.

Proof of Lemma 3.3. Let M0 > 0 and let M � 2M0. Suppose that supp(F ỹ→ζ̃ f ) ⊂ {(y1, ζ̃ ), ζ̃ =
(ζ2, ξ); |ξ | � M/2}.

We first estimate the Ĝ(λ, ζ̃ ) part of Ŝ(λ, ζ̃ ). We begin with the terms concerning g(−)
μ1 . We write

g(−)
μ1

[
F ỹ→ζ̃ f 0](y1, ζ̃ ) = I1 − I2,

where

I1 = 1

2μ1

∞∫
0

e−μ1|y1−z1|(F ỹ→ζ̃ f 0)(z1)dz1,

I2 = 1

2μ1

∞∫
0

e−μ1(y1+z1)
(

F ỹ→ζ̃ f 0)(z1)dz1.

As for I1, by Lemma 3.7,

F −1
ζ̃→ ỹ

[I1] = F −1
ζ→y

[
1

μ2
1 + ζ 2

1

F y→ζ

(
E f 0)].

If |ξ | � M/2, then

∣∣∣∣∂α
ζ

[
1

μ2 + ζ 2

]∣∣∣∣� Cα
1

|ζ |2 |ζ |−|α| � Cα

M2
|ζ |−|α|
1 1
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for any α (|α| � 0). It then follows from Lemma 3.6 that

∥∥F −1
ζ̃→ ỹ

[I1]
∥∥

p � C

M2

∥∥ f 0
∥∥

p .

Similarly one can obtain

∥∥∂β
y F −1

ζ̃→ ỹ
[I1]

∥∥
p � C

M2−|β|
∥∥ f 0

∥∥
p

(|β| = 1,2
)
.

We next consider I2. Let |β̃| + � = 0,1,2. By Lemma 3.9, we have

∣∣∣∣∂α̃
ζ̃

[
ζ̃ β̃ ∂�

y1

1

2μ1
e−μ1(y1+z1)

]∣∣∣∣� Cα̃

(|λ| + |ζ̃ |2)− 1
2 + �

2 + β̃
2 − α̃

2 e−cσ (λ,ζ̃ )
1
2 (y1+z1)

� Cα̃

(|λ| + |ζ̃ |2)− 1
2 + �+|β̃|

2 − α̃
2

1

|ζ̃ |(y1 + z1)

� Cα

M2−�−|β̃| · |ζ̃ |−|α̃|

y1 + z1

for |ξ | � M/2. It then follows from Lemma 3.6 that

∥∥∥∥F −1
ζ̃→ ỹ

[
ζ̃ β̃ ∂�

y1

1

2μ1
e−μ1(y1+z1)

(
F ỹ→ζ̃ f 0)(z1)

]∥∥∥∥
L p

ỹ(R2)

� C

M2−�−|β̃| ·
‖ f 0(z1, ỹ)‖L p

ỹ

y1 + z1
,

and, therefore, by Minkowski’s inequality for integrals, we have

∥∥∥∥∥F −1
ζ̃→ ỹ

[
ζ̃ β̃ ∂�

y1

1

2μ1

∞∫
0

e−μ1(y1+z1)
(

F ỹ→ζ̃ f 0)(z1)dz1

]∥∥∥∥∥
p

� C

M2−�−|β̃|

( ∞∫
0

( ∞∫
0

‖ f 0‖L p
ỹ

y1 + z1
dz1

)p

dy1

) 1
p

.

Using Lemma 3.8, we see that for |β| = |β̃| + � = 0,1,2,

∥∥∂β
y F −1

ζ̃→ ỹ
[I2]

∥∥
p = ∥∥F −1

ζ̃→ ỹ

[
ζ̃ β̃ ∂�

y1
I2
]∥∥

p � C

M2−|β|
∥∥ f 0

∥∥
p .

From the estimates for I1 and I2 obtained above, we conclude

∥∥∂β
y F −1

ζ̃→ ỹ

[
g(−)
μ1

(
F ỹ→ζ̃ f 0)(y1)

]∥∥
p � C

M2−|β|
∥∥ f 0

∥∥
p

(|β| = 0,1,2
)
.

Also, since

∂y1

[
g(+)
μ j F ỹ→ζ̃ f

]= g(−)
μ j

[
∂y1 [F ỹ→ζ̃ f ]] ( j = 1,2),

ζ̃
[

g(+)
μ j F ỹ→ζ̃ f

]= g(+)
μ j F ỹ→ζ̃ [∂ ỹ f ] ( j = 1,2),
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one can similarly conclude for ∂y1 g(+)
μ2 and iζ̃ g(+)

μ2 that

∥∥∂β
y F −1

ζ̃→ ỹ

[
∂y1 g(+)

μ2

(
F ỹ→ζ̃ f 0)(y1)

]∥∥
p � C

M(1−|β|)+
∥∥∂(|β|−1)+

y f 0
∥∥

p

(|β| = 0,1,2
)
,

∥∥∂β
y F −1

ζ̃→ ỹ

[
iζ̃ g(+)

μ2

(
F ỹ→ζ̃ f 0)(y1)

]∥∥
p � C

M(1−|β|)+
∥∥∂(|β|−1)+

y f 0
∥∥

p

(|β| = 0,1,2
)
.

It remains to estimate the terms concerning g(±)
μ1,μ2 . This will be complete if we show the estimates

∥∥∥∥∂β
y F −1

ζ̃→ ỹ

[
ζ̃ ã

λ
∂b

y1
g(±)
μ1,μ2(F ỹ→ζ̃ f )(y1)

]∥∥∥∥
p

� C

M2−|β| ‖ f ‖p (3.8)

for any ã and b with |ã| + b = 2 and |β| = 0,1,2.
Let us prove (3.8). We write

ζ̃ ã

λ
∂b

y1
g(±)
μ1,μ2(F ỹ→ζ̃ f )(y1) = J1 ± J2,

where

J1 =
∞∫

0

ζ̃ ã

λ
∂b

y1

(
1

2μ1
e−μ1|y1−z1| − 1

2μ2
e−μ2|y1−z1|

)
(F ỹ→ζ̃ f )(z1)dz1,

J2 =
∞∫

0

ζ̃ ã

λ
∂b

y1

(
1

2μ1
e−μ1(y1+z1) − 1

2μ2
e−μ2(y1+z1)

)
(F ỹ→ζ̃ f )(z1)dz1.

As for J1, by Lemma 3.7,

F −1
ζ̃→ ỹ

[ J1] = F −1
ζ→y

[
ζ̃ ã

λ
∂b

y1
N(λ, ζ )F y→ζ (E f )

]
.

Here

N(λ, ζ ) = 1

μ2
1 + ζ 2

1

− 1

μ2
2 + ζ 2

1

.

An elementary computation gives

N(λ, ζ ) = − λ(ν̃λ + γ 2)

(λ + ν|ζ |2)(λ2 + ν1|ζ |2λ + γ 2|ζ |2) .

In view of Remark 3.5 (ii), one can see that

∣∣∣∣∂α
ζ

(
ζ j N(λ, ζ )

λ

)∣∣∣∣� Cα

M2
|ζ |−|α| (| j| = |ã| + b

)
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for |ξ | � M/2. Lemma 3.6 then implies that

∥∥F −1
ζ̃→ ỹ

[ J1]
∥∥

p � C

M2
‖ f ‖p.

Similarly we have

∥∥∂β
y F −1

ζ̃→ ỹ
[ J1]

∥∥
p � C

M2−|β| ‖ f ‖p
(|β| = 1,2

)
.

We next consider J2. We set

g(2)
μ1,μ2(y1, z1) = 1

2μ1
e−μ1(y1+z1) − 1

2μ2
e−μ2(y1+z1).

By Lemma 3.9, we have, for |ξ | � M/2,

∣∣∣∣∂α̃
ζ̃

[
ζ̃ β̃+ã

λ
∂�+b

y1

1

2μ1

(
e−μ1(y1+z1) − e−μ2(y1+z1)

)]∣∣∣∣
� Cα̃

(|λ| + |ζ̃ |2)− 1
2 + �+b

2 + |β̃|+|ã|
2 − |α̃|

2 e−cσ (λ,ζ̃ )
1
2 (y1+z1)

� Cα̃

(|λ| + |ζ̃ |2)− 1
2 + �+b+|β̃|+|ã|

2 − |α̃|
2

1

|ζ̃ |(y1 + z1)

� Cα

M2−�−b−|β̃|−|ã| · |ζ̃ |−|α̃|

y1 + z1
(3.9)

and

∣∣∣∣∂α̃
ζ̃

[
ζ̃ β̃+ã

λ
∂�+b

y1

(
1

μ1
− 1

μ2

)
e−μ2(y1+z1)

]∣∣∣∣� Cα

M2−�−b−|β̃|−|ã| · |ζ̃ |−|α̃|

y1 + z1
. (3.10)

Since

g(2)
μ1,μ2(y1, z1) = 1

2μ1

(
e−μ1(y1+z1) − e−μ2(y1+z1)

)+ 1

2

(
1

μ1
− 1

μ2

)
e−μ2(y1+z1),

we see from Lemma 3.6, (3.9) and (3.10) that

∥∥∥∥F −1
ζ̃→ ỹ

[
ζ̃ β̃+ã

λ
∂�+b

y1
g(2)
μ1,μ2(y1, z1)(F ỹ→ζ̃ f )(z1)

]∥∥∥∥
L p

ỹ(R2)

� C

M2−�−b−|β̃|−|ã| ·
‖ f ‖L p

ỹ

y1 + z1

for |ξ | � M/2. Therefore, by Lemma 3.8 and (3.9), we have, for |β| = |β̃| + � = 0,1,2,

∥∥∂β
y F −1

ζ̃→ ỹ
[ J2]

∥∥
p = ∥∥F −1

ζ̃→ ỹ

[
ζ̃ β̃ ∂�

y1
J2
]∥∥

p � C

M2−|β| ‖ f ‖p.

Combining the estimates for J1 and J2 we obtain (3.8); and the desired estimates for the Ĝ-part are
obtained.
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We next consider the Ĥ(λ, ζ̃ ) part of Ŝ(λ, ζ̃ ). By Lemma 3.9, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∂α̃
ζ̃

hμ j (y1)
∣∣� C

(|λ| + |ζ̃ |2)− 1
2 − |α̃|

2 e−cσ (λ,ζ̃ )
1
2 y1 ,

∣∣∂α̃
ζ̃

hμ1,μ2(y1)
∣∣� C |λ|(|λ| + |ζ̃ |2)− 3

2 − |α̃|
2 e−cσ (λ,ζ̃ )

1
2 y1 ,

∣∣∂α̃
ζ̃
β0(z1)

∣∣� C |λ|(|λ| + |ζ̃ |2)− |α̃|
2 e−cσ (λ,ζ̃ )

1
2 z1 ,

∣∣∂α̃
ζ̃
β(z1)

∣∣� C |λ|(|λ| + |ζ̃ |2)− |α̃|
2 e−cσ (λ,ζ̃ )

1
2 z1 ,

∣∣∂α̃
ζ̃

b(z1)
∣∣� C |λ|(|λ| + |ζ̃ |2)− |α̃|

2 e−cσ (λ,ζ̃ )
1
2 z1 .

(3.11)

These inequalities yield the desired estimates for the Ĥ-part. For example, let us consider the term
1

μ1μ2−|ζ̃ |2 · ζ̃
ν hμ1 (y1)β0(z1). By (3.11) and Lemma 3.9(v), we have

∣∣∣∣∂α̃
ζ̃

[
ζ̃ β̃ ∂�

y1

1

μ1μ2 − |ζ̃ |2 · ζ̃

ν
hμ1(y1)β0(z1)

]∣∣∣∣� C |ζ̃ ||β̃|+�−|α|e−cσ (λ,ζ̃ )
1
2 (y1+z1)

� C

M1−|β̃|−�
· 1

y1 + z1
|ζ̃ |−|α̃|

for |ξ | � M/2. As in the estimates for I2 and J2 above, we see from Lemmas 3.6 and 3.8 that

∥∥∥∥∂β
y F −1

ζ̃→ ỹ

[
1

μ1μ2 − |ζ̃ |2 · ζ̃

ν
hμ1(y1)β0(z1)F ỹ→ζ̃ f 0

]∥∥∥∥
p

� C

M(1−|β|)+
∥∥∂(|β|−1)+

y f 0
∥∥

p

for |β| = 0,1,2. Similarly one can obtain

∥∥∂β
y F −1

ζ̃→ ỹ
[Q 0 Ĥ Q 0 F ỹ→ζ̃ f ]∥∥p � C

∥∥∂β
y f 0

∥∥
p

(|β| = 0,1
)
,

∥∥∂β
y F −1

ζ̃→ ỹ
[Q̃ Ĥ Q 0 F ỹ→ζ̃ f ]∥∥p � C

M(1−|β|)+
∥∥∂(|β|−1)+

y f 0
∥∥

p

(|β| = 0,1,2
)
,

∥∥∂β
y F −1

ζ̃→ ỹ
[Q 0 Ĥ Q̃ F ỹ→ζ̃ f ]∥∥p � C

M1−|β| ‖g‖p
(|β| = 0,1

)
,

∥∥∂β
y F −1

ζ̃→ ỹ
[Q̃ Ĥ Q̃ F ỹ→ζ̃ f ]∥∥p � C

M2−|β| ‖g‖p
(|β| = 0,1,2

)
.

This completes the proof. �
We now prove Proposition 3.2.

Proof of Proposition 3.2. By Lemma 3.3, if supy2
|h′(y2)| � η, then

∥∥∂y F −1
ξ→x3

ΦM
∥∥

p + ∥∥∂2
y F −1

ξ→x3
V M

∥∥
p

� C
{∥∥F −1

ξ→x3
[∂y Q 0 R̃M ]∥∥p + ∥∥F −1

ξ→x3
[Q̃ R̃M ]∥∥p

}
� C

{∥∥∂y F −1
ξ→x3

[ F̃ M ]∥∥p + ∥∥F −1
ξ→x3

[∂y′ V M ]∥∥p + η
∥∥F −1

ξ→x3

[
∂2

y′ V M
]∥∥

p

+ ∥∥F −1
ξ→x [G̃ M ]∥∥ + η

∥∥F −1
ξ→x

[
∂2

y′ V M
]∥∥ + η

∥∥F −1
ξ→x [∂y′ΦM ]∥∥ }

. (3.12)

3 p 3 p 3 p
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We now take η > 0 in such a way that Cη � 1
2 and then choose δ > 0 so small that

supy2
|h′(y2)| � η whenever diam(O) � δ. It then follows from (3.12) that

∥∥∂y F −1
ξ→x3

ΦM
∥∥

p + ∥∥∂2
y F −1

ξ→x3
V M

∥∥
p

� C
{∥∥∂y F −1

ξ→x3
[ F̃ M ]∥∥p + ∥∥F −1

ξ→x3
[G̃ M ]∥∥p + ∥∥∂y F −1

ξ→x3
V M

∥∥
p

}
. (3.13)

Similarly, by Lemma 3.3,

∥∥F −1
ξ→x3

ΦM
∥∥

p + ∥∥∂y F −1
ξ→x3

V M
∥∥

p

� C

{∥∥F −1
ξ→x3

[Q 0 R̃M ]∥∥p + 1

M

∥∥F −1
ξ→x3

[Q̃ R̃M ]∥∥p

}

� C

{∥∥F −1
ξ→x3

[ F̃ M ]∥∥p + η
∥∥F −1

ξ→x3
[∂y′ V M ]∥∥p

+ 1

M

(∥∥F −1
ξ→x3

[G̃ M ]∥∥p + ∥∥F −1
ξ→x3

[
∂2

y′ V M
]∥∥

p

+ η
∥∥F −1

ξ→x3
[∂y′ V M ]∥∥p + η

∥∥F −1
ξ→x3

[∂y′ΦM ]∥∥p

)}
. (3.14)

We see from (3.13) and (3.14) that

∥∥F −1
ξ→x3

ΦM
∥∥

p + ∥∥∂y F −1
ξ→x3

V M
∥∥

p

� C

{∥∥F −1
ξ→x3

[ F̃ M ]∥∥p + 1

M

(∥∥F −1
ξ→x3

[G̃ M ]∥∥p + ∥∥∂y F −1
ξ→x3

[ F̃ M ]∥∥p + ∥∥∂y F −1
ξ→x3

V M
∥∥

p

)}
(3.15)

by taking η and δ smaller if necessary. It then follows from Lemma 3.3, (3.13) and (3.15) that

∥∥F −1
ξ→x3

V M
∥∥

p � C

M

{∥∥F −1
ξ→x3

[Q 0 R̃M ]∥∥p + ∥∥F −1
ξ→x3

[Q̃ R̃M ]∥∥p

}
� C

M

{∥∥F −1
ξ→x3

[ F̃ M ]∥∥W 1,p + ∥∥F −1
ξ→x3

[G̃ M ]∥∥p + ∥∥∂y F −1
ξ→x3

V M
∥∥

p

}
. (3.16)

Proposition 3.2 now follows from (3.13), (3.15) and (3.16). This completes the proof. �
We finally prove Theorem 3.1.

Proof of Theorem 3.1. For each x̄′ ∈ ∂ D we take Ox̄′ so that the estimates in Proposition 3.2 hold
with O replaced by Ox̄′ . Since D is bounded, one can find an open covering {O j}k

j=0 of D and

{χ j}k
j=0 ⊂ C∞

0 such that U ( j)
M = χ j ûM ( j = 1, . . . ,k) satisfy the estimates in Proposition 3.2 with

O replaced by O j . Here {O j}k
j=0 satisfies O0 ⊂ D , O j = Ox̄ j , for some x̄ j ∈ ∂ D ( j = 1,2, . . . ,k),

and D ⊂ ⋃k
j=0 O j ; and {χ j}k

j=0 ⊂ C∞ is a partition of unity subordinate to {Ok
j=0}, i.e., there

hold χ j ∈ C∞
0 (O j) and

∑k
j=0 χ j ≡ 1 on D . One can see that U (0)

M = χ0ûM satisfies similar esti-

mates to those in Proposition 3.2. Furthermore, the constants C appearing in the estimates for U ( j)
M

( j = 0, . . . ,k) can be taken uniformly in j = 0, . . . ,k.
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Proposition 3.2(i) then yields

∥∥F −1 v̂ M
∥∥

p �
k∑

j=0

∥∥F −1 V ( j)
M

∥∥
p

� C

M

k∑
j=0

{∥∥F −1[χ jκM f̂ ]∥∥W 1,p×L p + ∥∥F −1[χ j ûM ]∥∥L p×W 1,p

}

� C

M

{∥∥F −1[κM f̂ ]∥∥W 1,p×L p + ∥∥F −1ûM
∥∥

L p×W 1,p

}
. (3.17)

By (3.17) and Proposition 3.2(ii), we have

∥∥F −1ûM
∥∥

L p×W 1,p �
k∑

j=0

∥∥F −1U ( j)
M

∥∥
L p×W 1,p

� C

{∥∥F −1[κM f̂ ]∥∥W 1,p×L p + 1

M

∥∥F −1ûM
∥∥

L p×W 1,p

}
.

Therefore, if M > 0 is taken so large, we obtain

∥∥F −1ûM
∥∥

L p×W 1,p � C
∥∥F −1[κM f̂ ]∥∥W 1,p . (3.18)

It then follows from (3.18) and Proposition 3.2(iii) that

∥∥F −1ûM
∥∥

W 1,p×W 2,p �
k∑

j=0

∥∥F −1U ( j)
M

∥∥
W 1,p×W 2,p

� Ck
∥∥F −1[κM f̂ ]∥∥W 1,p×L p .

This completes the proof. �
4. Resolvent problem for the middle frequency part

Let M > 0 and r > 0. In this section we establish estimates on (λ + L̂ξ )
−1 for r/2 � |ξ | � M .

We begin with estimating (λ + L̂ξ )
−1 for λ in compact sets. We first estimate κr,M(ξ)(λ + L̂ξ )

−1 f
for f ∈ W 1,p(D) × L p(D). Here κr,M is a function in C∞

0 (R) satisfying

0 � κr,M � 1, κr,M(ξ) =
{

1 (r � |ξ | � M
2 ),

0 (|ξ | < r
2 , |ξ | > M).

Note that here f is a function of x′ ∈ D and does not depend on ξ .

Proposition 4.1. Let r and M be numbers satisfying 0 < r < M
2 and let Λ1 > 0. Then there exist constants

c1 = c1(r, M) > 0 and θ1 = θ1(r, M) ∈ ( π
2 ,π) such that if λ ∈ Σ(−c1, θ1) ∩ {|λ| � Λ1}, then for any integer

k � 0 the function κr,M(ξ)(λ + L̂ξ )
−1 f satisfies the following estimate

∣∣∂k
ξ

[
κr,M(ξ)(λ + L̂ξ )

−1 f
]∣∣

W 1,p×W 2,p � Ck| f |W 1,p×L p

with some constant Ck uniformly for ξ and λ ∈ Σ(−c1, θ1) ∩ {|λ| � Λ1}.
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Proof. Let ζ̃ = (ζ2, ξ) ∈ R2 and let Ŝ(λ, ζ̃ ) be the solution operator for problem (3.5) introduced in
Section 3. We consider the following problem on {y1 > 0}

{
(λ + Âζ̃ )w = F (y1 > 0),

Q̃ w|y1=0 = 0
(4.1)

for the unknown w = w(y1, ζ̃ ) and a given F = F (y1, ζ2) with ζ̃ = (ζ2, ξ) regarded as a parame-
ter. Note that F does not depend on ξ . In view of Lemma 3.4 and Remark 3.5(ii), similarly to the
proof of Lemma 3.3, we see that there exist c1 = c1(r, M) > 0 and θ1 = θ1(r, M) ∈ ( π

2 ,π) such that

if r
2 � |ξ | � M and λ ∈ Σ(−c1, θ1), then (4.1) has a unique solution w(y1, ζ̃ ) = Ŝ(λ, ζ̃ )F (y1). Fur-

thermore, F −1
ζ2→y2

w = F −1
ζ2→y2

Ŝ(λ, ζ̃ )F , which is a function of y′ = (y1, y2) ∈ R2+ with parameter ξ ,
satisfies the estimates∥∥∂α′

y′ Q 0 F −1
ζ2→y2

[
Ŝ(λ, ζ̃ )F

]
(y′, ξ)

∥∥
L p

y′ (R2+)

� C
{∥∥∂α′

y′ F −1
ζ2→y2

[Q 0 F ]∥∥L p
y′ (R2+)

+ ∥∥F −1
ζ2→y2

Q̃ F
∥∥

L p
y′ (R2+)

}
(4.2)

for |α′| = 0,1, and∥∥∂α′
y′ Q̃ F −1

ζ2→y2

[
Ŝ(λ, ζ̃ )F

]
(y′, ξ)

∥∥
L p

y′ (R2+)

� C
{∥∥∂(|α|−1)

y′ F −1
ζ2→y2

[Q 0 F ]∥∥L p
y′ (R2+)

+ ∥∥F −1
ζ2→y2

Q̃ F
∥∥

L p
y′ (R2+)

}
(4.3)

for |α′| = 0,1,2.
We write f and κr,M(ξ)(λ + L̂ξ )

−1 f as

f = T ( f 0, g
)
, κr,M(ξ)(λ + L̂ξ )

−1 f = T (φ̂r,M , v̂r,M).

Based on (4.2) and (4.3), by using the localization argument as in the proof of Theorem 3.1, one can
obtain the estimate

|φ̂r,M |W 1,p + |v̂r,M |W 2,p � C
{∣∣ f 0

∣∣
W 1,p + |g|p + |φ̂r,M |p + |v̂r,M |W 1,p

}
. (4.4)

Let us prove

|φ̂r,M |p + |v̂r,M |W 1,p � C
{∣∣ f 0

∣∣
W 1,p + |g|p

}
. (4.5)

We will prove (4.5) by a contradiction. Assume that (4.5) does not hold. Then for any n ∈ N, there
are fn = T ( f 0

n , g′
n, g3

n) ∈ W 1,p(D)× L p(D)3, ξn ∈ R, λn ∈ C and ûn = T (φ̂n, v̂n) ∈ W 1,p(D)×[W 2,p(D)∩
W 1,p

0 (D)] satisfying the following (4.6)–(4.8):

r

2
� |ξn| � M, λn ∈ Σ(−c1, θ1), |λn| � Λ1, (4.6)

(λ + L̂ξn )ûn = κr,M(ξn) fn, (4.7)

|φ̂n|p + |v̂n|W 1,p � n
{∣∣ f 0

n

∣∣
W 1,p + |gn|p

}
. (4.8)

We may assume that

|φ̂n|p + |v̂n|W 1,p = 1. (4.9)
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By (4.4), we have

|φ̂n|W 1,p + |v̂n|W 2,p � C

(
1

n
+ 1

)
� 2C .

Therefore, we can find a subsequence of { fn, ξn, λn, ûn}, which we again denote by { fn, ξn, λn, ûn},
such that, as n → ∞,

f 0
n → 0 in W 1,p(D), gn → 0 in Lp(D),

ξn → ξ

(
r

2
� |ξ | � M

)
, λn → λ ∈ Σ(−c1, θ1) ∩ {|λ| � Λ1

}
,

φn ⇀ φ in W 1,p(D), φn → φ in Lp(D),

vn ⇀ v in W 2,p(D), vn → v in W 1,p
0 (D).

Letting n → ∞ in (4.7) and (4.9), we have

(λ + L̂ξ )û = 0, û ∈ W 1,p(D) × [
W 2,p(D) ∩ W 1,p

0 (D)
]
, |û|L p×W 1,p = 1.

But, by Lemma 4.2 below, if λ ∈ Σ(−c1, θ1)∩{|λ| � Λ1}, then û = 0, which contradicts |û|Lp×W 1,p = 1.
Therefore, we have (4.5).

It now follows from (4.4) and (4.5) that∣∣κr,M(ξ)(λ + L̂ξ )
−1 f

∣∣
W 1,p×W 2,p � C | f |W 1,p×L p . (4.10)

We next estimate ∂k
ξ [κr,M(ξ)(λ + L̂ξ )

−1 f ]. We set

û(k) = ∂k
ξ

[
κr,M(ξ)(λ + L̂ξ )

−1 f
]= T (φ̂(k), v̂ ′

(k), v̂ 3
(k)

)
.

Then û(k) is a solution of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λφ̂(k) + γ ∇′ · v̂ ′
(k) + iγ ξ v̂ 3

(k) = (
∂k
ξ κ1

)
f 0 +

k−1∑
j=0

(
k − j

j

)
∂k−1
ξ (iγ ξ)v̂ 3

( j),

λv̂ ′
(k) − ν�′ v̂ ′

(k) + νξ2 v̂ ′
(k) − ν̃∇′(∇′ · v̂ ′

(k) + iξ v̂ 3
(k)

)+ γ ∇′φ̂(k)

= (
∂k
ξ κ1

)
g′ +

k−1∑
j=0

(
k − j

j

){
∂k−1
ξ

(
νξ2)v̂ ′

( j) − ∂k−1
ξ (ν̃iξ)∇′ v̂ 3

( j)

}
,

λv̂ 3
(k) − ν�′ v̂ 3

(k) + νξ2 v̂ 3
(k) − iν̃ξ

(∇′ · v̂ ′
(k) + iξ v̂ 3

(k)

)+ iγ ξφ̂(k)

= (
∂k
ξ κ1

)
g3 +

k−1∑
j=0

(
k − j

j

){
∂k−1
ξ

(
νξ2)v̂ 3

( j) − ∂k−1
ξ (ν̃iξ)∇′ · v̂ ′

( j)

+ ∂k−1
ξ

(
ν̃ξ2)v̂3

( j) + ∂k−1
ξ (iγ ξ)φ̂( j)

}
,

v̂(k)|∂ D = 0.

By (4.10), we have

|φ̂(k)|W 1,p + |v̂(k)|W 2,p � Ck
{∣∣ f 0

∣∣
W 1,p + |g|p

}+
k−1∑
j=0

{|φ̂( j)|p + |v̂( j)|W 1,p

}
.

The desired estimate now follows by an induction argument. This completes the proof. �
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Lemma 4.2. Let 1 < p < ∞. If u ∈ W 1,p(D) ∩ [W 2,p(D) × W 1,p
0 (D)], (λ + L̂ξ )u = 0, r

2 � |ξ | � M and
λ ∈ Σ(−c1, θ1), then u = 0.

To prove Lemma 4.2, we prepare some propositions.

Proposition 4.3. Let k ∈ N. If r
2 � |ξ | � M and λ ∈ Σ(−c1, θ1), then for any f ∈ Hk(D) × Hk−1(D) there

exists a unique solution u ∈ Hk(D) × [Hk+1(D) ∩ H1
0(D)] of (λ + L̂ξ )u = f and u satisfies the estimate

|u|Hk×Hk+1 � C | f |Hk×Hk−1 .

Proposition 4.3 for k = 1 was proved in [10]. (See [10, Proposition 3.14].) The proof for k � 2 is
done in a similar line to that of [10, Proposition 3.14] by using the Matsumura–Nishida energy method
[19]. We here omit the details.

Remark 4.4. Proposition 4.3 remains true for the adjoint problem (λ + L̂∗
ξ )u = f , where

L̂∗
ξ =

⎛
⎝ 0 −γ T ∇′ −iγ ξ

−γ ∇′ −ν�′ + νξ2 − ν̃∇′T ∇′ −iν̃ξ∇′
−iγ ξ −iν̃ξ T ∇′ −ν�′ + (ν + ν̃)ξ2

⎞
⎠ .

Proposition 4.5. Let 2 � q < ∞. If r
2 � |ξ | � M and λ ∈ Σ(−c1, θ1) ∩ {|λ| � Λ1}, then for any

f ∈ W 1,q(D)×Lq(D) there exists a unique solution u∗ ∈ W 1,q(D)×[W 2,q(D)∩W 1,q
0 (D)] of (λ+ L̂∗

ξ )u∗ = f .

Proof. Let f ∈ C∞(D̄) × C∞
0 (D). Then, by Remark 4.4, there exists a unique solution u∗ of

(λ + L̂∗
ξ )u∗ = f , which belongs to Hk(D) × [Hk+1(D) ∩ H1

0(D)] for any k ∈ N. By the Sobolev embed-

ding theorem, we have u∗ ∈ W 1,q(D)×[W 2,q(D)∩ W 1,q
0 (D)]. Similarly to the proof of Proposition 4.1,

we can obtain the estimate

|u∗|W 1,q×W 2,p � C | f |W 1,q×Lq , (4.11)

if we show that (λ + L̂∗
ξ )u = 0 and u ∈ W 1,q(D) × [W 2,q(D) ∩ W 1,q

0 (D)] implies that u = 0. But,

since q � 2, we have W 1,q(D) × [W 2,q(D) ∩ W 1,q
0 (D)] ⊂ H1(D) × [H2(D) ∩ H1

0(D)]; and, hence, by
Remark 4.4, u = 0. We thus obtain (4.11).

We next assume that f ∈ W 1,q(D) × Lq(D). Then there exists { f (n)}∞n=1 ⊂ C∞(D̄) × C∞
0 (D) such

that

f (n) → f in W 1,q(D) × Lq(D).

By the preceding argument, for each n, there exists u∗(n) ∈ W 1,q(D) × [W 2,q(D) ∩ W 1,q
0 (D)] such that

(
λ + L̂∗

ξ

)
u∗(n) = f (n)

and ∣∣u∗(n) − u∗(m)
∣∣

W 1,q×W 2,q � C
∣∣ f (n) − f (m)

∣∣
W 1,q×Lq .

Therefore, {u∗(n)} is a Cauchy sequence in W 1,q(D)×[W 2,q(D)∩ W 1,q
0 (D)], and we can find a function

u∗ ∈ W 1,q(D) × [W 2,q(D) ∩ W 1,q
0 (D)] such that∣∣u∗(n) − u∗∣∣

1,q 2,q → 0 (n → ∞).
W ×W
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Letting n → ∞ in (λ + L̂∗
ξ )u∗(n) = f (n) , we obtain

(
λ + L̂∗

ξ

)
u∗ = f .

The uniqueness of u∗ follows from Remark 4.4 since q � 2. This completes the proof. �
We now prove Lemma 4.2.

Proof of Lemma 4.2. It suffices to prove Lemma 4.2 for 1 < p < 2. Let q ∈ (2,∞) be the Hölder conju-
gate to p. Assume that u ∈ W 1,p(D)∩[W 2,p(D)× W 1,p

0 (D)] satisfies (λ+ L̂ξ )u = 0. By Proposition 4.5,

for any f ∈ C∞(D̄) × C∞
0 (D), there exists a unique solution u∗ ∈ W 1,q(D) ∩ (W 2,q(D) × W 1,q

0 (D)) of

(λ̄ + L̂∗
ξ )u∗ = f . By integration by parts,

(u, f ) = (
u,
(
λ̄ + L̂∗

ξ

)
u∗)= (

(λ + L̂ξ )u, u∗)= 0,

which implies u = 0. This completes the proof. �
We now establish the estimate on F −1[κr,M(ξ)(λ + L̂ξ )

−1 f̂ ] for f ∈ W 1,p(Ω) × L p(Ω).

Theorem 4.6. Let f ∈ W 1,p(Ω) × L p(Ω). If λ ∈ Σ(−c1, θ1) ∩ {|λ| � Λ1}, there holds the estimate

∥∥F −1[κr,M(ξ)(λ + L̂ξ )
−1 f̂

]∥∥
W 1,p×W 2,p � C‖ f ‖W 1,p×L p

uniformly for λ ∈ Σ(−c1, θ1) ∩ {|λ| � Λ1}.

It suffices to prove Theorem 4.6 for f ∈ S(R; W 1,p(D)× L p(D)). In fact, since f ∈ W 1,p(Ω)× L p(Ω)

can be approximated by elements in S(R; W 1,p(D) × L p(D)), Theorem 4.6 immediately follows from
the following proposition.

Proposition 4.7. Let λ ∈ Σ(−c1, θ1) ∩ {|λ| � Λ1} and set K̂ (λ, ξ) = κr,M(ξ)(λ + L̂ξ )
−1 . Define K (λ, x3) by

K (λ, x3)F = F −1[K̂ (λ, ξ)F
]= 1

2π

∫
R

eix3ξ K̂ (λ, ξ)F dξ

for F ∈ W 1,p(D) × L p(D). Then for f ∈ S(R; W 1,p(D) × L p(D)), the function u = F −1[K̂ (λ, ξ) f̂ (ξ)] satis-
fies u = K (λ, ·) ∗ f and the estimate

‖u‖W 1,p×W 2,p � C‖ f ‖W 1,p×L p .

Here ∗ means the convolution in x3 .

Proof. We first show

K̂ (λ, ·) f̂ (ξ) = F
[

K (λ, ·) ∗ f
]

for any f ∈ S(R; W 1,p(D) × L p(D)). Since

eix3ξ = 1
k
∂k
ξ eix3ξ ,
(ix3)
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we see from Proposition 4.1 that for F ∈ W 1,p(D) × L p(D)

∣∣∂�
x3

K (λ, x3)F
∣∣

W 1,p×W 2,p

�
∣∣∣∣ 1

2π

∫
R

(iξ)�eix3ξ K̂ (λ, ξ)F dξ

∣∣∣∣
W 1,p×W 2,p

�
∣∣∣∣ 1

2π

(−1)k

(ix3)k

∫
R

eix3ξ ∂k
ξ

[
(iξ)� K̂ (λ, ξ)

]
F dξ

∣∣∣∣
W 1,p×W 2,p

� C(1 + M)�|x3|−k
k∑

j=0

∫
{r/2�|ξ |�M}

∣∣∂ j
ξ K̂ (λ, ξ)F

∣∣
W 1,p×W 2,p dξ

� C(1 + M)�|x3|−k
∫

{r/2�|ξ |�M}
|F |W 1,p×L p dξ

� Cr,M |x3|−k|F |W 1,p×L p (� = 0,1,2).

It then follows that

∣∣∂�
x3

K (λ, x3)
∣∣

L(W 1,p(D)×L p(D),W 1,p(D)×W 2,p(D))
� C

1 + |x3|2 . (4.12)

Here |T |L(X,Y ) denotes the operator norm of a bounded operator T : X → Y . By (4.12), for any
f ∈ S(R; W 1,p(D) × L p(D)), there hold the estimates

∣∣K (λ, x3) f (y3)
∣∣

W 1,p×W 2,p � C

1 + |x3|2
∣∣ f (y3)

∣∣
W 1,p×L p ∈ L1(Rx3 × Ry3)

and

∣∣K (λ, z3 − y3) f (y3)
∣∣

W 1,p×W 2,p � C

1 + |z3 − y3|2
∣∣ f (y3)

∣∣
W 1,p×L p ∈ L1(Rz3 × Ry3).

Therefore, by Fubini’s theorem, we have K̂ (λ, ξ) f̂ (ξ) = F [K (λ, ·) ∗ f ], which implies u = K (λ, ·) ∗ f .
Furthermore, we see from (4.12) that

∥∥Q 0 K (λ, ·) ∗ f
∥∥p

W 1,p

=
∑

�+k�1

∥∥∂�
x3

Q 0 K (λ, ·) ∗ f
∥∥p

L p(R;W k,p(D))

=
∑

�+k�1

∫
R

∣∣∣∣∂�
x3

∫
R

Q 0 K (λ, x3 − y3) f (·, y3)dy3

∣∣∣∣
p

W k,p
dx3

� C
∑

�+k�1

∫
R

(∫
R

1

1 + |x3 − y3|2
∣∣ f (·, y3)

∣∣
W 1,p×L p dy3

)p

dx3

� C‖ f ‖p
1,p p .
W ×L
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Similarly one can estimate ‖Q̃ K (λ, ·) ∗ f ‖W 2,p and the desired estimate is obtained. This completes
the proof. �

We next consider estimates on κr,M(ξ)(λ+ L̂ξ )
−1 f̂ for large |λ|, which can be obtained by a similar

argument as in Section 3.
Let f ∈ C∞

0 (Ω) × C∞
0 (Ω). Then κr,M(ξ)(λ + L̂ξ )

−1 f̂ = T (φ̂r,M , v̂r,M) is a solution of (3.1) with κM

replaced by κr,M .
Similarly to the proof of Lemma 3.3, one can prove the following estimate (cf. [5, Sections 4

and 5]).

Lemma 4.8. There are Λ̃ > 0 and θ̃ ∈ ( π
2 ,π) such that if λ ∈ Σ(Λ̃, θ̃), then there hold the estimates

∥∥∂α
y F −1

ζ̃→ ỹ

[
Ŝ(λ, ζ̃ )F −1

ỹ→ζ̃
f
]∥∥

p � C

{‖∂α
y f 0‖p

|λ| + ‖g‖p

|λ|1− |α|
2

} (|α| = 0,1
)

and

∥∥∂2
y F −1

ζ̃→ ỹ

[
Q̃ Ŝ(λ, ζ̃ )F −1

ỹ→ζ̃
f
]∥∥

p � C
{∥∥∂y f 0

∥∥
p + ‖g‖p

}
.

Based on Lemma 4.8 and the localization argument as in the proof of Theorem 3.1, we have the
following estimate (by taking Λ̃ larger if necessary).

Theorem 4.9. There are Λ̃ > 0 and θ̃ ∈ ( π
2 ,π) such that if λ ∈ Σ(Λ̃, θ̃), then there holds the estimate

∥∥F −1[κr,M(ξ)(λ + L̂ξ )
−1 f̂

]∥∥
W 1,p×W 2,p � C‖ f ‖W 1,p×L p .

Combining Theorems 4.6 and 4.9, we obtain the following estimate for κr,M(ξ)(λ + L̂ξ )
−1 f̂ .

Theorem 4.10. Let r and M be numbers satisfying 0 < r < M
2 . Then there are constants Λ̃ > 0, c1 > 0 and

θ̃ ∈ ( π
2 ,π) such that if λ ∈ Σ(Λ̃, θ̃) ∪ {Reλ � −c1}, then

∥∥F −1[κr,M(ξ)(λ + L̂ξ )
−1 f̂

]∥∥
W 1,p×W 2,p � C‖ f ‖W 1,p×L p .

5. Spectral properties of low frequency part

In this section we investigate spectral properties of −L̂ξ for |ξ | 
 1. This case is treated as a
perturbation from the case ξ = 0.

We begin with some spectral properties of −L̂0. We set ξ = 0 in (2.2) to obtain

(λ + L̂0)û = f̂ , v̂|∂ D = 0, (5.1)

where û = T (φ̂, v̂ ′, v̂ 3), f̂ = T ( f̂ 0, ĝ ′, ĝ 3) and

L̂0 =
⎛
⎝ 0 γ T ∇′ 0

γ ∇′ −ν�′ − ν̃∇′T ∇′ 0
0 0 −ν�′

⎞
⎠ .

We decompose φ̂ and f̂ 0 into
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φ̂ = φ̂0 + φ̂1, φ̂0 ≡ 1

|D|
∫
D

φ̂(x′)dx′,

f̂ 0 = f̂ 0
0 + f̂ 0

1 , f̂ 0
0 ≡ 1

|D|
∫
D

f̂ (x′)dx′,

respectively. This gives an orthogonal decomposition in L2(D), and we have

|φ̂|22 = |φ̂0|22 + |φ̂1|22.

Furthermore, since φ̂1-component has vanishing mean value, by the Poincaré inequality, there holds
the estimate

|φ̂1|p � C |∂x′ φ̂1|p = C |∂x′ φ̂|p .

In terms of this decomposition, problem (5.1) is reduced to the following problem (5.2)–(5.5):

λφ̂0 = f̂ 0
0 , (5.2)

λφ̂1 + γ ∇′ · v̂ ′ = f̂ 0
1 , (5.3)

λv̂ ′ − ν�′ v̂ ′ − ν̃∇′(∇′ · v̂ ′) + γ ∇′φ̂1 = ĝ ′, v̂ ′|∂ D = 0, (5.4)

λv̂ 3 − ν�′ v̂ 3 = ĝ 3, v̂ 3|∂ D = 0. (5.5)

As for the solvability of (5.2)–(5.5) we have the following facts.
It is clear that (5.2) is uniquely solvable if and only if λ �= 0, and in this case the solution is given

by φ̂0 = 1
λ

f̂ 0
0 . It is also easy to see that λ = 0 is a simple eigenvalue with eigenfunction φ̂0 = 1.

As for (5.5), it is well known that there are {λ j}∞j=1 (λ j < 0, |λ1| < |λ2| � |λ3| � · · · → ∞) such that

each λ j is a semi-simple eigenvalue and, for λ /∈ {λ j}∞j=1, (5.5) has a unique solution v̂ 3 ∈ W 2,p(D) ∩
W 1,p

0 (D). Furthermore, if |arg(λ − 1
2 λ1)| � π − ε (ε > 0), then the solution v̂ 3 satisfies the estimate

|λ|∣∣v̂ 3
∣∣

p + |λ| 1
2
∣∣∂x′ v̂ 3

∣∣
p + ∣∣∂2

x′ v̂ 3
∣∣

p � Cε

∣∣ĝ 3
∣∣

p .

As for the solvability of (5.3)–(5.4), we have the following result.

Proposition 5.1. Let 1 < p < ∞. Then there exist constants c0 > 0, Λ > 0 and θ ∈ ( π
2 ,π) such that if

λ ∈ Σ(Λ0/2, θ0) ∪ {Reλ � −2c0}, then for any T ( f̂ 0
1 , ĝ ′) ∈ W 1,p(D) × L p(D) with

∫
D f̂ 0

1 dx′ = 0, there

exists a unique solution T (φ̂1, v̂ ′) ∈ W 1,p(D) × [W 2,p(D) ∩ W 1,p
0 (D)] with

∫
D φ̂1 dx′ = 0 of (5.3)–(5.4),

which satisfies the estimate

|λ|{|φ̂1|W 1,p + |v̂ ′|p
}+ |λ| 1

2 |∂x′ v̂ ′|p + ∣∣∂2
x′ v̂ ′∣∣

p � C
{∣∣ f̂ 0

1

∣∣
W 1,p + |ĝ ′|p

}
.

Proposition 5.1 was proved by [21]. (See also [20].) We summarize the spectral properties of −L̂0
obtained above.
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Proposition 5.2. There are constants c0 > 0, Λ0 > 0 and θ0 ∈ ( π
2 ,π) such that

(
Σ(Λ0/2, θ0) ∪ {Re λ � −2c0}

)∩ {|λ| � c0
}⊂ ρ(−L̂0)

and

σ(−L̂0) ∩ {|λ| < c0
}= {0}.

If λ ∈ (Σ(Λ0/2, θ0) ∪ {Reλ � −2c0}) ∩ {|λ| � c0}, then

∣∣(λ + L̂0)
−1 f

∣∣
W 1,p×L p � C

|λ| + 1
| f |W 1,p×L p ,

∣∣∂�
x′ Q̃ (λ + L̂0)

−1 f
∣∣

p � C

(|λ| + 1)1− �
2

| f |W 1,p×L p (� = 1,2).

Furthermore, 0 is a simple eigenvalue and the associated eigenprojection P̂ (0) is given by

P̂ (0)u = T (〈φ〉,0
)

for u = T (φ, v).

Based on Proposition 5.2, one can obtain the following result by a perturbation argument as in the
proof of [10, Propositions 4.3 and 4.4].

Theorem 5.3. There exists a positive constant r1 > 0 such that the following assertions hold.

(i) If |ξ | � r1 , then

(
Σ(Λ0, θ0) ∪ {Re λ � −c0}

)∩
{
|λ| � c0

2

}
⊂ ρ(−L̂ξ ).

(ii) If λ ∈ (Σ(Λ0, θ0) ∪ {Reλ � −c0}) ∩ {|λ| � c0
2 }, then

∣∣(λ + L̂ξ )
−1 f

∣∣
W 1,p×L p � C

|λ| + 1
| f |W 1,p×L p ,

∣∣∂�
x′ Q̃ (λ + L̂ξ )

−1 f
∣∣

p � C

(|λ| + 1)1− �
2

| f |W 1,p×L p (� = 1,2).

(iii) If |ξ | � r1 , then

σ(−L̂ξ ) ∩
{
|λ| < c0

2

}
= {

λ0(ξ)
}
.

Here λ0(ξ) is a simple eigenvalue of −L̂ξ , which satisfies

λ0(ξ) = −a1γ

ν
|ξ |2 + O

(|ξ |4) (|ξ | → 0
)

for some constant a1 > 0.
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We next give an estimate for the eigenprojection P̂ (ξ) associated with the eigenvalue λ0(ξ). For
this purpose we write L̂ξ as

L̂ξ = L̂0 + ξ L̂(1) + ξ2 L̂(2).

Here

L̂(1) =
⎛
⎝ 0 0 iγ

0 0 −iν̃∇′
iγ −iν̃T ∇′ 0

⎞
⎠ , L̂(2) =

⎛
⎝ 0 0 0

0 ν I 0
0 0 ν + ν̃

⎞
⎠ .

We begin with the following

Proposition 5.4. Let R > 0. Then the following estimate holds for λ ∈ (Σ(Λ0/2, θ0)∪{Reλ � −2c0})∩{c0 �
|λ| � R}:

∣∣(λ + L̂0)
−1 f̂

∣∣
H3×H4 � C R | f̂ |H3×H2 .

Proof. We here give an outline of the proof. As it was shown in [10], an application of the Matsumu-
ra–Nishida energy method [19] to (5.3)–(5.4) gives

|v̂ ′|H2 + |φ̂1|H1 � C R
(∣∣ f̂ 0

1

∣∣
H1 + |ĝ ′|2

)
for some constant C = C(R) > 0. Then higher order derivatives can also be estimated by the
Matsumura–Nishida energy method to obtain

|v̂ ′|H4 + |φ̂1|H3 � C R
(∣∣ f̂ 0

1

∣∣
H3 + |ĝ ′|H2

)
. (5.6)

Applying the elliptic regularity estimate to (5.5), we have

∣∣v̂ 3
∣∣

H4 � C R
∣∣ĝ 3

∣∣
H2 . (5.7)

Proposition 5.4 now follows from (5.2), (5.6) and (5.7). This completes the proof. �
Lemma 5.5. There hold the following estimates

∣∣L( j)(λ + L̂0)
−1 f̂

∣∣
H3 � C | f̂ |H3 ( j = 1,2)

for λ ∈ (Σ(Λ0/2, θ0) ∪ {Reλ � −2c0}) ∩ {c0 � |λ| � R}.

Proof. Let T (φ̂, v̂) = (λ + L̂0)
−1 f̂ . It follows from Proposition 5.4 that

∣∣L(1)(λ + L̂0)
−1 f̂

∣∣
H3 = ∣∣L(1)û

∣∣
H3 � C

{∣∣v̂ 3
∣∣

H3 + ∣∣∇′ v̂ 3
∣∣

H3 + |φ̂|H3 + |∇′ · v̂ ′|H3

}
� C | f̂ |H3×H2

and

∣∣L(2)(λ + L̂0)
−1 f̂

∣∣
H3 = ∣∣L(2)û

∣∣
H3 � C

{|v̂ ′|H3 + ∣∣v̂ 3
∣∣

H3

}
� C | f̂ |H3×H2 .

This completes the proof. �
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We now estimate the integral kernel of the eigenprojection P̂ (ξ) associated with the eigenvalue
λ0(ξ) for |ξ | 
 1.

Theorem 5.6. There exists r2 > 0 such that if |ξ | � r2 , then the following assertions hold.

(i) The eigenprojection P̂ (ξ) associated with the eigenvalue λ0(ξ) is written in the form

P̂ (ξ) = P̂ (0) + ξ P̂ (1) + P̂ (2)(ξ),

P̂ ( j)u =
∫
D

P̂ ( j)(x′, y′)u(y′)dy′, j = 0,1,

P̂ (2)u =
∫
D

P̂ (2)(ξ, x′, y′)u(y′)dy′.

Here P̂ (0) = 1
|D| Q 0; and P̂ (1)(x′, y′) and P̂ (2)(ξ, x′, y′) satisfy

∂α′
x′ ∂

β ′
y′ P̂ (1)(x′, y′), ∂α′

x′ ∂
β ′
y′ P̂ (2)(ξ, x′, y′) ∈ L∞(D × D)

for |α′| � 1 and |β ′| � 1. Furthermore, for any α � 0, P̂ (2)(ξ, x′, y′) satisfies the estimate

∣∣∂α
ξ ∂α′

x′ ∂
β ′
y′ P̂ (2)(ξ, ·, ·)∣∣L∞(D×D)

� Cα |ξ |2−α.

(ii) λ0(ξ) is a simple eigenvalue of the adjoint operator −L̂∗
ξ and the associated eigenprojection P̂∗(ξ) is

written as

P̂∗(ξ) = P̂ (0)∗ + ξ P̂ (1)∗ + P̂ (2)∗(ξ),

P̂ ( j)∗u =
∫
D

P̂ ( j)∗(x′, y′)u∗(y′)dy′, j = 0,1,

P̂ (2)∗(ξ)u =
∫
D

P̂ (2)∗(ξ, x′, y′)u∗(y′)dy′.

Here P̂ ( j)∗(x′, y′) ( j = 0,1) and P (2)∗(ξ, x′, y′) satisfy

P̂ (0)∗ = P̂ (0), P̂ (1)∗(x′, y′) = P̂ (1)(y′, x′),

P̂ (2)∗(ξ, x′, y′) = P̂ (2)(ξ, y′, x′).

(iii) There hold the following relations

(
P̂ (ξ)[∂x′ Q̃ u], u∗)= −(

u, ∂x′ Q̃ P̂∗(ξ)u∗),(
P̂ (1)[∂x′ Q̃ u], u∗)= −(

u, ∂x′ Q̃ P̂ (1)u∗),(
P̂ (2)[∂x′ Q̃ u], u∗)= −(

u, ∂x′ Q̃ P̂ (2)u∗).
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Proof. As for (i), we here give an outline of the proof, since it is similar to that of [6, Theorem 3.3].
Let ψ0 = T (1,0), which is an eigenfunction for the eigenvalue 0 of −L̂0 and −L̂∗

0. Clearly, |ψ0|Hk =
|D| 1

2 for all k � 0.
We define ψ(ξ) and ψ∗(ξ) by

ψ(ξ) = 1

2π i

∫
Γ

(λ + L̂ξ )
−1ψ0 dλ

and

ψ∗(ξ) = 1

〈ψ(ξ), ψ̃∗(ξ)〉 ψ̃
∗(ξ)

with

ψ̃∗(ξ) = 1

2π i

∫
Γ

(
λ + L̂∗

ξ

)−1
ψ0 dλ,

where Γ = {|λ| = c0
2 }. Then as in the proof of [6, Theorem 3.3], one can see the following estimates on

ψ(ξ) and ψ∗(ξ). By Lemma 5.5 and the Neumann series expansion of (λ + L̂ξ )
−1, ψ(ξ) is expanded

as

ψ(x′, ξ) = ψ0 + ξψ(1)(x′) + ψ(2)(x′, ξ),

and, with the aid of the Sobolev embedding H3 ↪→ W 1,∞ ,

∣∣ψ(1)
∣∣

W 1,∞ � C
∣∣ψ(1)

∣∣
H3 � C,∣∣∂α

ξ ψ(2)(ξ)
∣∣

W 1,∞ � C
∣∣∂α

ξ ψ(2)(ξ)
∣∣

H3 � C |ξ |2−α.

The same expansion also holds for ψ∗(ξ):

ψ∗(x′, ξ) = ψ0 + ξψ(1)∗(x′) + ψ(2)∗(x′, ξ),

where ψ( j)∗ ( j = 1,2) satisfy the estimates

∣∣ψ(1)∗∣∣
W 1,∞ � C and

∣∣∂α
ξ ψ(2)∗(ξ)

∣∣
W 1,∞ � C |ξ |2−α.

In terms of ψ(x′, ξ) and ψ∗(x′, ξ), P̂ (ξ) is given in the form

P̂ (ξ)u = 〈
u,ψ∗(ξ)

〉
ψ(ξ) =

∫
D

P̂ (ξ, x′, y′)u(y′)dy′

with

P̂ (ξ, x′, y′) = 1

|D|ψ(x′, ξ)T ψ∗(y′, ξ)

= 1
Q 0 + ξ P̂ (1)(x′, y′) + P̂ (2)(ξ, x′, y′).
|D|
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Here

P̂ (1)(x′, y′) = 1

|D|
{
ψ(1)(x′)T ψ0 + ψ0

T ψ(1)∗(y′)
}
,

P̂ (2)(ξ, x′, y′) = 1

|D|
{
ψ0

T ψ(2)∗(y′, ξ) + ψ(2)(x′, ξ)T ψ0

+ ψ(2)(x′, ξ)T ψ(2)∗(y′, ξ) + ξψ(1)(x′)T ψ(2)∗(y′, ξ)

+ ξψ(2)(x′, ξ)T ψ(1)∗(y′) + ξ2ψ(1)(x′)T ψ(1)∗(y′)
}
.

It follows from the estimates for ψ(ξ) and ψ∗(ξ) obtained above that

∣∣∂α′
x′ ∂

β ′
y′ P̂ (1)(x′, y′)

∣∣
L∞(D×D)

� C

and ∣∣∂α
ξ ∂α′

x′ ∂
β ′
y′ P̂ (2)(ξ, x′, y′)

∣∣
L∞(D×D)

� C |ξ |2−α.

For the details, see the proof of [6, Theorem 3.3].
Assertion (ii) easily follows from the relation

(
(λ + L̂ξ )

−1u, u∗)= (
u,
(
λ̄ + L̂∗

ξ

)−1
u∗)

for u, u∗ ∈ W 1,p(D) × L p(D).
As for (iii), since Q̃ (λ̄ + L̂∗

ξ )
−1u∗|∂ D = 0, by integration by parts, we have

(
(λ + L̂ξ )

−1[∂x′ Q̃ u], u∗)= −(
u, ∂x′ Q̃ (λ + L̂ξ )

−1u∗),
which yields the desired results. This completes the proof. �
6. Proof of Theorem 2.1

In this section we give an outline of the proof of Theorem 2.1.
The following proposition implies that −L generates an analytic semigroup.

Proposition 6.1. There are Λ > 0 and θ ∈ ( π
2 ,π) such that Σ(Λ,θ) ⊂ ρ(−L) and there hold the following

estimates uniformly for λ ∈ Σ(Λ,θ):

(i)
∥∥(λ + L)−1 f

∥∥
W 1,p×L p � C

|λ| ‖ f ‖W 1,p×L p ,

(ii)
∥∥∂�

x Q̃ (λ + L)−1 f
∥∥

p � C

|λ|1− �
2

‖ f ‖W 1,p×L p (� = 1,2).

Proof. We here give an outline of the proof. Let λ �= 0. By (2.1),

φ = 1

λ

(
f 0 − γ div v

)
. (6.1)

Substituting this into the second equation of (2.1), we have

λv − ν�v − ν̃∇ div v = F , v|∂Ω = 0. (6.2)
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Here

F ≡ g − γ

λ
∇(

f 0 − γ div v
)
.

Since B v = −ν�v − ν̃∇ div v is strongly elliptic, it holds that there are Λ′ > 0 and θ ∈ ( π
2 ,π) such

that for λ ∈ Σ(Λ′, θ)

|λ|‖v‖p + |λ| 1
2 ‖∂x v‖p + ∥∥∂2

x v
∥∥

p � C‖F‖p

� C

{
‖ f ‖W 1,p×L p + 1

|λ|
∥∥∂2

x v
∥∥

p

}
.

We take Λ > 0 large enough so that C p

|λ| � 1
2 for λ ∈ Σ(Λ,θ). Then

|λ|‖v‖p + |λ| 1
2 ‖∂x v‖p + ∥∥∂2

x v
∥∥

p � 2C‖ f ‖W 1,p×L p .

This, together with (6.1), yields

‖φ‖W 1,p � C

|λ|
(∥∥ f 0

∥∥
W 1,p + ‖div v‖W 1,p

)
� C

|λ| ‖ f ‖W 1,p×L p .

This completes the proof. �
By Proposition 6.1, −L generates an analytic semigroup e−tL on W 1,p(Ω) × L p(Ω); and e−tL is

represented as

e−tL = 1

2π i

∫
Γ

eλt(λ + L)−1 dλ.

Here Γ = {λ = Λ + se±θ ; s � 0}.
Using the estimates (i) and (ii) in Proposition 6.1, one can show Theorem 2.1(i) by a standard

argument.
We now give a proof of asymptotic behavior of e−tL given in Theorem 2.1(ii).

Proof of Theorem 2.1(ii). The proof is done by a similar argument to that in [6, Section 4]. We here
give an outline of the proof.

We decompose e−tL as

e−tL = V0(t) + V∞(t).

Here

V0(t) = F −1[κ0(ξ)e−t L̂ξ
]
, V∞(t) = F −1[(1 − κ0(ξ)

)
e−t L̂ξ

]
,

where κ0 is a function satisfying

κ0(ξ) ∈ C∞
0 (R), κ0(ξ) =

{
1 (|ξ | � r

2 ),
0 (|ξ | � r)
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and

e−t L̂ξ = 1

2π i

∫
Γ

eλt(λ + L̂ξ )
−1 dλ

with Γ = {λ = Λ + se±θ ; s � 0}. We here take r > 0 in such a way that 0 < r � min{r1, r2} with r1
and r2 given in Theorems 5.3 and 5.6 respectively.

To prove Theorem 2.1(ii), we will deform the contour Γ in a suitable way.
We first consider V0(t). By Theorem 5.3, we can deform Γ into Γ0 ∪ Γ̃0 and a suitable circle

around 0, where

Γ0 = {
λ = −c0 + is; |s| � s0

}
, Γ̃0 = {

λ = Λ0 + se±iθ0 : s � s̃0
}
.

Here Λ0 and θ0 are the numbers given in Theorem 5.3; and we choose s0 and s̃0 in such a way that
Γ0 connects with Γ̃0 at the end points of Γ0. It then follows from Theorems 5.3, 5.6 and the residue
theorem that V0(t) is written as

V0(t)u0 = W (0)(t)u0 + W (1)(t)u0,

where

W ( j)(t)u0 = F −1[Ŵ ( j)(t)û0
]

( j = 0,1),

Ŵ (0)(t)û0 = κ0(ξ)eλ0(ξ)t P̂ (ξ)û0,

Ŵ (1)(t)û0 = 1

2π i

∫
Γ0∪Γ̃0

eλtκ0(ξ)(λ + L̂ξ )
−1û0 dλ.

By using Theorems 5.3 and 5.6, one can show that W (0)(t)u0 is written in the form

W (0)(t)u0 = W (0)(t)u0 + R(0)(t)u0,

where W (0)(t)u0 and R(0)(t)u0 have the properties in Theorem 2.1(ii-a). We here omit the details
since it can be shown in the same way as in [6, Section 4]. Also, by using Theorem 5.3, one can show
that W (1)(t) satisfies the estimate

∥∥W (1)(t)u0
∥∥

W 1,p×W 2,p � Ce−c0t‖u0‖W 1,p×L p .

As for V∞(t), by Theorems 3.1 and 4.10, one can deform the contour Γ into Γ = Γ∞ ∪ Γ̃∞ , where

Γ∞ = {
λ; λ = −c∞ + is

(|s| � s∞
)}

, Γ̃∞ = {
λ; λ = Λ0 + se±iθ0 , s � s̃∞

}
for some c∞ > 0. We here take s∞ and s̃∞ so that Γ∞ connects with Γ̃∞ at the end points of Γ∞ . It
then follows from Theorems 3.1 and 4.10 that

∥∥V∞(t)u0
∥∥

W 1,p×W 2,p � Ce−c∞t‖u0‖W 1,p×L p .

Setting U∞(t) = W (1)(t) + V∞(t), we see that U∞(t) satisfies the estimate in Theorem 2.1(ii-b).
This completes the proof. �
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