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1. Introduction

This paper studies large time behavior of solutions to the following system of equations

du-+Lu=0, (11)

where u=T(¢,v), p = (x,t) eR, v=T(v1(x,t), v2(x,t), v3(x,t)) € R?, and L is an operator defined
by

L= 0 y div
yV —vA —-1DVdiv
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with positive constants v, U and y. Here t > 0 is the time variable and x = (x1, X2, x3) € R? is the
space variable and T- stands for the transposition.
In this paper we consider (1.1) in a cylindrical domain

2=DxR={x=(,x3); X =(x1,X) €D, x3 €R}
under the boundary condition
V]ge =0. (1.2)

Here D is a bounded domain in R? with smooth boundary 9D.
The system (1.1) arises from the linearization of the compressible Navier-Stokes equation

orp +divm =0,
mem

Btm—i-div( >+vp(p):;m<%) +(/L+;L/)Vdiv(%> (13)

around the constant motionless state (p,m) = (p«,0), where p = p(x,t) is the density; m =
Tm!(x, t), m?(x, t), m3(x, t)) is the momentum; and p, is a given positive number.

Large time behavior of solutions of (1.3) in unbounded domains has been widely studied, which
presents interesting aspects. Concerning the Cauchy problem for (1.3) on the whole space R3, it was
shown in [13,17,18] that if the initial perturbation (p(0) — p,, m(0)) is sufficiently small in H>, then
there exists a unique global solution to (1.3) and the leading part of the perturbation u(t) = (p(t) —
P+, m(t)) in large time is given by the solution of the linearized problem, which exhibits a hyperbolic-
parabolic aspect of system (1.3). (See [12] for the case of a general class of quasilinear hyperbolic-
parabolic systems.) The solution of the linearized problem is approximated in large time by the sum
of two terms; one is given by the convolution of the heat kernel and the fundamental solution of
the wave equation, the so-called diffusion wave; and the other is the solution of the heat equation. It
was found in [3,4] that hyperbolic and parabolic aspects of the diffusion wave exhibits an interesting
interaction phenomena in the decay properties of LP norms with 1 < p < oo. (See also [16].) Such
an interaction phenomena also appears in the exterior domain problem [14,15] and the half space
problem [8,9]. Furthermore, in the case of the half space problem, some different aspect appears in
the decay property of spatial derivatives due to the presence of unbounded boundary.

On the other hand, solutions on the infinite layer R"~! x (0, 1) behave in a different manner from
the ones on the domains mentioned above. The leading part of the solution on the infinite layer
is given by a solution of an (n — 1)-dimensional heat equation [7]. This is due to the fact that the
infinite layer has an infinite extent in n — 1 unbounded directions and the remaining one direction
has a finite thickness. An analogous result was obtained in [10] for the cylindrical domain §2 that
has one unbounded direction x3 and two-dimensional bounded cross section D. In this case, under
suitable assumptions on the initial value, the perturbation u(t) = (p(t) — p«, m(t)) satisfies

Ju® = 0. u) ~u®)] = 0(c1og)

as t — oo. Here u©® = (¢©@(x3, t), 0) with ¢@ (x3, t) satisfying

1 /
0 — k%90 =0, 9,y = 11 / (00X x3) — py) d¥. (14)
D

where « is a positive constant and |D| denotes the Lebesgue measure of D. In [10] large time behavior
was investigated only in the L2 space, while in the case of the infinite layer [5-7] it was investigated
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in general LP spaces. The analysis in LP spaces in the case of the infinite layer relies on a solution
formula [5] whose analogous version seems to be unavailable in the case of cylindrical domains since
D is a general bounded domain of R?.

In this paper we will extend the analysis in the L? space in [10] to general LP spaces. We here
treat only the linearized problem (1.1)-(1.2), since the nonlinear problem (1.3)-(1.2) can be treated as
in [7] based on the energy method by Matsumura and Nishida [19] and the analysis of the linearized
problem (1.1)-(1.2).

The main result of this paper is summarized as follows. Let 1 < p < oo and let u(t) be a solution
of (1.1)-(1.2) with uli=o = T (¢0, vo) € [W!-P x LPIN L. Then

Ju ],y =037,
Jlu® —u® @), =0 21973 (15)

as t — oo. Here u©@ =T (9O (x3,t),0) with ¢© (x3, t) satisfying the equation in (1.4) and ¢©@|,—¢ =
IITI [ do(x, x3) dX..

To prove (1.5) we will consider the Fourier transform of problem (1.1)-(1.2) with respect to x3
variable which is written in the form

Ol + igfl =0,
Vlap =0, ll|¢—o = Tlo. (1.6)

Here ii = a(x,&,t) = T(p(X, E,1), V(x,E,1)) (¥ €D, £ €R, t > 0) denotes the Fourier transform of
ux,x3,t) = T(@ (X, x3,t), v(¥', X3, t)) with respect to x3 variable. We investigate problem (1.6) ac-
cording to the following three cases:

M El<«1,  d)EI>»1, (iDr<g<M

with suitable constants 0 <r < M < co. The case (i) is treated similarly as in [6,10]. We regard
problem (1.6) as a perturbation from the one with £ =0 and analyze the spectral properties of i,g
by applying the analytic perturbation theory [11]. As for the case (ii), we treat it as a perturbation
from the problem on the half space and derive necessary estimates for the corresponding part of
the resolvent in LP spaces by using the Fourier Multiplier Theorem. As for the case (iii), we derive
estimates for the derivatives of (A + ig)” with respect to & and then obtain necessary estimates for
the resolvent by employing the Riemann-Lebesgue lemma. To investigate the cases (ii) and (iii), we
will use the solution formula for the half space problem [8,9].

This paper is organized as follows. In Section 2 we state our main result of this paper. The analysis
for the cases (ii) and (iii) are done in Sections 3 and 4. Section 5 is devoted to the analysis for the
case (i). Based on the analysis in Sections 3-5, we prove our main result in Section 6.

2. Main result

We first introduce some notation.

For 1 < p < oo we denote by LP(£2) the usual Lebesgue space on 2 and its norm is denoted by
|- Ilp. Let ¢ be a nonnegative integer. The symbol WEP(£2) denotes the ¢-th order LP Sobolev space
on £2 with norm | - ||,yep. When p =2, the space W2(£2) is denoted by H(£2) and its norm is
denoted by || - ||ye. Cé’p(ﬂ) stands for the set of all C* functions which have compact support in £2.
We denote by W(l;'p(.Q) the completion of c(‘;"’(m in WP (£2). In particular, Wé’z(.Q) is denoted by
HE($2).

We simply denote by LP(£2) (resp., WP (£2), HE(£2)) the set of all vector fields v =T (v!, vZ, v3)
on 2 with v/ e LP(2) (resp., W&P(2), HY(£2)), j=1,2,3, and its norm is also denoted by | - ||z»



Y. Ishihara, Y. Kagei / . Differential Equations 248 (2010) 252-286 255

(resp., || lwep, Il - Ilge). For u="T(¢, v) with ¢ € WEP(2) and v =T (v, v2, v3) e WIP(£2), we define
Nullwerswie = lollwer + IVIwie. When £ = j, we simply write [[ullyyep for [[ullyes cwer-

Similarly we introduce the function spaces LP(D), W&P(D), HY(D) and Hf,(D). Their norms are
denoted by

[ lps I lwens |- Ige-

For u="f(¢,v) with ¢ € WE-P(D) and v = T(v!,v%,v3) € WIP(D), we denote |u|yep wic =

[#lwer + [VIyip-
The inner product of L2(D) is denoted by

(f.&)= / f(X)g)dx
D

for f,g e L%(D). We also denote the inner product of L%(£2) by the same symbol if no confusion
occurs. We define (-,-) by

(f. g —ﬁ(f 2

for f,g e L*(D). In particular, when g =1, (f, 1) is denoted by (f), i.e.,

|D| /f(x)dx

For a Banach space X, we denote by S(R; X) the set of all rapidly decreasing functions on R with
values in X.

We next introduce some notations about integral operators. We denote the Fourier transform of
f=f@ (zeRY by

[Fese 100) = / f@e ¥ dz,
and the inverse Fourier transform is denoted by
(772, flo=@mn™* / F@)e?de.
In particular, the Fourier transform of f = f(x3) (x3 € R) is denoted by f or Ff,ie.,

Fer=Fre) = / e € dxs,
R

and the inverse Fourier transform is denoted by F~1f, i.e.,

F ) = ) f &) de.
R



256 Y. Ishihara, Y. Kagei / J. Differential Equations 248 (2010) 252-286

For a function K(y,z) on (0,00) x (0,00) we will denote by Kf the integral operator

IS Ky, D f @) dz.
We denote the resolvent set of a closed operator A by p(A) and the spectrum by o (A). For c e R
and 0 € (%, ), we will denote

X)) ={reC

arg(A —o)| <0}.
We denote by Qo, Q and Q' the 4 x 4 diagonal matrices

Qo =diag(1,0,0,0),  Q =diag(0,1,1,1), Q' =diag(0,1,1,0),

respectively. We then have for u =T(¢,v), v=T(!, v2, v3),

Qou:<(g>, Qu:(?), Qu=| v (v =T(v',v?).

We now state our main result. Let 1 < p < co. We define an operator L on W1-P(£2) x LP(£2) with

domain of definition D(L) by
[— 0 y div
" \yV —vA-DVdiv )’

D(L)=W"P(2) x [W2P(2)n WP (2)]
with positive constants v, ¥ and y.

Theorem 2.1. Let 1 < p < co. Then —L generates an analytic semigroup et on WP (§2) x LP(£2) and e L
has the following properties.

(i) There hold the estimates
le™ " uol| y1p, 1 < Clltollw e e
and
€A ,—tL -t
|c Qe uo, < Ct™Zluolwipey (€=1,2)

for0O<t<1.
(ii) Ifug =T (¢o, vo) € WP (§2) x LP(2)]1 N L1 (£2), then e~Lug is decomposed as

e " ug = Up(O)ug + Uso (Huo.

Here Uy (t)ug and U (t)ug satisfy the following (ii-a) and (ii-b).
(ii-a) Up(t)ug is written as

Up(Dug =Wo()ug + Ro(t)uo.

Here Wy(t)ug takes the form
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0)
Wo(Hug = (¢ O(t) ) ,

and ¢© (x3, t) satisfies the following heat equation on R:

1
up® —ka56@ =0, 0] o= 15, / do (', x3) dx’
D

with some positive constant k.
For 1 <r <ooand{=0,1, the function Ro(t)ug satisfies the estimate

_lq_1y_ 1
[afRo(tyuol|, < Ct™ 2P~ 2 |jug|ly
uniformly for t > 1. Furthermore,

Up()Q =Ro(H)Q

and the estimates hold for t > 1:

Ao (£)Q <2914
10xUo(£) Quollr < 771 Quollt,

1

|tho (013 Quol], < Ct30=D=3 | Quols.
(ii-b) For £ =0, 1, the function U (t)ug satisfies the estimate
||Bfuoo(f)llo||p < Ce™uollwrpxrp
uniformly fort > 1.
Remark 2.2. Since ¢© is a solution of a one-dimensional heat equation, we have
[Wouol, < ce= 2= jlugls.
This implies that
|to®uo, < CE20=P Juglr.
The proof of Theorem 2.1 is based on the resolvent problem associated with (1.1)-(1.2):
A+Du=f, vlpe=0. (2.1)

Here u=T(¢, v).
Hereafter we will often write

X:t(X/,X3), X/:t(xlsxz)€D7 V/:t(8X1»aX2)a AIZB)?l +a)%2.

We take the Fourier transform of (2.1) with respect to x3 to obtain
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M4y V¥ +iyErd =0,
A — VAV FvEX —DV(V Y +iE03) +y Ve =§,

R (2.2)
A3 — VA D3 vED3 —ive(V/ 0 +ig03) +iyed =83,
Vlap =0,
which is written in the form
G+Lloii=f, ¥p=0. (2.3)

Here £ € R denotes the dual variable; the unknown &t = T(@, ¥/, 73) is a function on D with values
in C; and

0 yTv iy§
Le=| yV —vA +vE2 -V TV —iDEV’
iyE —iveTV —VA + (v + D)g?

Problem (2.3) will be investigated according to the cases

DI« () EI>»1,  d)r<gl<M

with constants 0 <r < M < oco. We will study the cases (ii) and (iii) in Sections 3 and 4, respec-
tively. The case (i) will be studied in Section 5. Based on the analysis of problem (2.3), we will prove
Theorem 2.1 in Section 6.

3. Resolvent problem for high frequency part

In this section we establish estimates on (A + ig)_1 for |€] > 1.
Let M > 0 and set Gy = kp (€)(A + I:;)‘lf. Here k) is a C*° function on R satisfying

1T (&> M),

0<im<1, -
<t ne={ (g1 < ).

We will show the following estimate.

Theorem 3.1. Let 1 < p < oo and let k' be a function defined as above. Then there exist Mg > 0, co, > 0 and
oo € (Z,7) such that if M > Mg and A € 3 (—Coo, 0o0), then F~1[icp (€) (. 4 L) ™1 f1 satisfies the estimate

17 em @ 0+ L) P s owzr < CIF e s
uniformly in M > Mg and A € X (—Cwo, 00)-

Theorem 3.1 is proved by establishing interior and boundary estimates. We here give a proof of
the estimate near the boundary only, since the interior estimate can be proved similarly.
We see from (2.2) that Gy = kp(E)(A + Lg)_]f satisfies

Aby+ YV O+ ivEVE =kmfO
Ay — VAV +vER Y — DV (VO +iEVE) + Y Vb =kmE

MY — VA +vERDY —iDE(V - Dy +iEVE) +ivEdm = kmE>,
Vmlap = 0.

(3.1)
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We take a point ¥’ = (X1, X) € 9D and an open neighborhood © C R? of ¥'. Let x € C5°(O). Then,
by (3.1), we have

Ax V) +v(E2 =AY (xTh) = DVV - (xVh) +iE(x Vi) + ¥V (Xb) =Gy, (32)
MX3) + V(6 = ) (093) — I9E(Y - (i) + 6 (003} + ivECedm) = Gy
(X Vm)lspno =0.

Here

Fu = xiem O+ (V0 - Oy,
Gy =xkm8 —v(A' )V =20V x -V, =DV (VX - Vy)
— DV X (V' Oy) =DV 3003 + ¥ (V' XD,
Gy = xkm8iy — V(A )V =20V x - VU3, —iDE(V'x) - Uy
For any n > 0, if the diameter of O is sufficiently small, then one can find a function h with the
following properties (i)-(iii).

(i) h e C*®°(R), X1 = h(xy), h'(x2) =0.
(i) DNO C{X =x1,%2); X1 >h(x2)}, dDNO C {x' = (x1,x2); x1 =h(x2)}.
(iii) There are an open neighborhood O of the origin of R? and a diffeomorphism o = T (w1, w;) from
O to O such that

r_ n_ (% —hx2)\ _ w1(X) SN
y—w(X)—( % — % )—(wz(x,)>, o) =0,
w(DNO)C{y=(y1,y2); y1 >0},
w@DNO)C{y=(y1.y2); y1=0},

K=o (y) = <J’1 +h(y2 +?_<2))

Y2 +X
sup|h'(y2 +X2)| <.
Y2

Using the map w, we define Vi (¥, &), &m(y', &), Fu(y', &), G, (v, &) and G3,(y, &) by

VM, &) = x (0 ', 8),  PmY, &) = xdu(0 (), €),
Fu(. &) = Fu(o™'(y).8),  GCu(v.&) =Gy(o ' (y).£),
Gy, &) =G0 ), £).

Problem (3.2) is then transformed into the following one on the half space R% = {y =
(y1,¥2) €R% y1 >0, y2 €R):

ABy +yV Vi +ivEVE =RY,

AV +v(E2 =AW =DV (V' Vi +iEVE) + vV éy = R},
AV +v(E2 = AV —iDE(V - Vi +iEVE) +iyEdy = Ry,
Vmly,=0=0.

(3.3)
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Here Vi =T(V},, V3D, Vi =TV VE),

RS, = Fu +yhay, vy,

Ry =" (Rl ).

Ry =Gy — v{n"0y, Vy + 210y, Vi — (0?05 V| — D05 Vi,

Ry =Gy — v{n0y, Vi +209y,y, Vi — (0)?07, Vi)
— (R3] Vi +h"dy Vi + 210y, Vi — (0?07 VY +ighay, Vi)
+yh'dy, Pum.,

Ry =Gy — v{n"0y, Vi + 210y, ), Vi — (W)287 V3 } — iDER 9y, V.

As for problem (3.3), we have the following estimates. In what follows we will write y for
(¥1.y2.x3) €R3.

Proposition 3.2. Let 1 < p < oo and let Mg > 0 be given. Then there exists a number § > 0 such that if
diam(©) <8, M > Mg and A € X (—Coo, 00), then the solution Uy = T (P, Vi Vﬁ,) of (3.3) satisfies the
following estimates with C = C(x, O) > 0 uniformly for M > Mg and A € X (—Ceo, 00):

b I vl < SqpF FoIxi

@ ” Ex3 M”p < M{“ E—>X3[XKMf]“W1~P><LP + ” .f,:—>x3[XuM]”LPxW1«P}’

(i) |7l @ul, + 19,7t Vull,
<ol LT + 17 ol

1 _ n _ A~
+ M(H}"glxg[xxmg] Hp + ||]:§lx3[XuM]”LP><W1*p)}’
(i) 3y 7L, @mll, + 9572 V|,
-1 +0 —1 g -1 i
< C{||ay\7:§_>x3[XKMf ]”p + ||‘7:§—>X3 [xxmEl ”p + H]:g_»(g[XUM]“LPle.P}.

To prove Proposition 3.2, we consider the Fourier transform of (3.3) in y; variable. In what follows
we will write ¢ for T (¢, £) € R%. Then the Fourier transform of (3.3) in y; gives

{ A+ AE)fJ’Z—’CZ Upy = ‘FJ’ZQCZRM (y1>0), (3.4)

Fyr—t VM|y1=0 =0.

Here Uy ="(@m (Y1, ¥2.6). V(1. y2.) with Vi, =T (Vi (y1.y2.6), Vi;(¥1. y2.8)) is the solution
of (3.3); Rm=T(RY (y1.y2,6), Ry (y1,¥2,6), R3;(y1, y2,£)); and

0 ¥ dy, iyT¢
Ap=|ydy v@P-a5)-voy  —ibTiay, |
iy¢ —iD¢dy, V(22— )2+ 9 TC

where I is the 2 x 2 identity matrix.

As for problem (3.4) we make use of some results by [9]. For a given f € Cg"(la) X Cgo(Ri) let
us consider the problem
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{()\+Ag)u=f%gf (y1>0), (3.5)
Vly;=0=0

for the unknown u = T(¢, v). To investigate problem (3.5) we introduce some quantities. We set

A =—v|Z[%
V1 o~ 1 - =
Ap= —5|c|2i 5\/v12|;|4 — 4y2|¢|?

and

~ V1~ 1 /= =
b= S\ DRI — 4y 21E P,

where vi =v + ¥ and Py =2v + V. It was shown in [8,9] that if ; #0and A ¢ {M )Li,)\i, /v1}
then (3.5) has a unique solution u. We denote the solution operator for (3.5) by S, Z). Then for the
solution Uy =T (®y, Vi) of (3.3) we have

Fyr»eUm = §()»7 2)-7:}’2H§2RM’

and, therefore,
f&—)X} UM = ‘7:2_1 ~§()‘7 E)IYZQCZRM

:}—Z S()\ {) _>§[-7:§_>X3RM]

As for .7-'. ! S(k OF. we have the following estimates.

y—2

Lemma 3.3. For any Mg > 0 there exist coo > 0 and 0y € (%, ) such that if supp(F. _)§f) C{lEl > M/2}
with M > 2Mg and A € X (—Cwo, 00), then there hold the following estimates uniformly for M > Mgy and
A€ X(—Coo,b0x0):

”8“Qo]:._1 [5()» O)F, —>€f]” {Hagfoup o |a‘||g||p} (|ot|:0,1), 36)
loy Q7L [S(A HFyL: 11,
Ot 1

Lemma 3.3 will be proved in a similar argument to that given in [5, Sections 4 and 5], but we
here need to pay attention to the dependence on M. The spectral bound, sup Rea(A ), of A~ satisfies

supReG(A )= 0(1) <0 as |Z| — oo, and so we in general have |\_7-'~ 1 S(A ) y%c/cMH =0(1) as

M — oo, but we can gain a factor M~ as in (3.6) and (3.7) which work well to obtain the desired
estimate of Theorem 3.1.

To prove Lemma 3.3, we will make use of an integral representation of the solution
u=3S0, 0 y_);f of (3.5) given by [9].

We introduce the characteristic roots of the ordinary differential system (A + /A\E)u =0, which are
given by £u (X, D), j=1,2, where
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- [+ vZ2
w1 =p1(r151%) = %

- A2 +v1[212h + p2 T2
= A, 2y = ., Vi=v+ .
p2 = pa(X, 121°) \/ vty 1
We next introduce the Green functions g(+) (¥1,21) and gu )(y1 z1) of the equation M]w 82 =f

under the Neumann boundary condition and the Dirichlet one at y; = 0 respectively. We define
g (y1.21) by

1
gﬁ;)(m,zn — ﬂ(efﬂjl}'ﬁﬁl 4 e*ﬂj(}’lJFZl)) (j=1,2).
J

We set
g (1, 21) = g4y (V1. 21) — 815 (1, 21).

We also define functions hy,; (y1), Ry u, (¥1), Bo(z1), B(z1) and b(z1) by

1 ) )
huj(J’1)=;e_MjJ’1 (]=1,2), hMLMz(Y1)=hp_1(Y1)—hm(y1),
J
A .
Bo(z1) = ﬁe K2z B(z1) = |§|2(E*M121 _efuzzl)7
b(z1) = ifpp (e 1% — e~ H271),

Using the functions defined above, we have an integral representation of the solution u = S, Of of
(3.5).

Lemma 3.4.If 7 £ 0 and A & {\1, Ax, A+, —y2/v1}, then the solution u = SO DF. _}§f of (3.5) is repre-
sented as

8GO Fy i f =GO OFy o f +HOLOF, ; f,

where G (X, ) and A, 7) are the integral operators given by
o0
(GO DF; ¢ f) (J’1)=/ 8,120 Fy 5 fz) dz
0
and
(A OF Htf)(}ﬁ)—/ S y1, 20 F, jzf(z1)dz1.
0

Here G (X, Z,v1,21) is a 4 x 4 matrix of the form
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—8(y1 —21)Qo + G1(A, . y1,21) + G2 (A, T, y1, 21),

G, Coy1,21) = d(k)

where 8(y1) denotes the Dirac delta function;

dO)&QRylzn —dy, 8, 1.21) —iTEgl,) (y1.21)

Gi= an —B'yfg(iz) 1, 21) 0 0 ;
—i5gu, (Y1, 21) 0 0
0 0 0
Ga=]0 lglv1.z0) - 102 gl 1. 20) gy, 850, 21)
0 85 (v, 21) 160, 20h + 585, 0n, 21)

with d(}) = viA + y2; and I:I(A, Z,y1,21) is a 4 x 4 matrix of the form

.
0 0 %hm(m)e"“Zl
Hyi.zn=|o0 o L& aylhmm(yﬂe mn

00 __hﬂl Mz(Y1)e iz
0 0 0
1 0 0 0

+ 1 -
k2 =P\ Lhy, (rpo@) Thu (yobz) =I5 B@)

1
+ — =
/MMZ —1¢1
. T~

~ d(x) hm(y])ﬁo(zl) ';’(Afhm(yl)b(zo %hm()ﬁ)ﬁ(m)

x ; Ay, hyy py (¥1)Bo(z1) —*3y1hm (b)) ! Caylhm 1o (Y1)B(21)
2
1£|§| hyy iy (Y1) Bo(z1) %hm,m(l’l)b(zﬂ _Tghm,uz(l’l)ﬂ(ﬁ)

The solution formula above is given in [9, Section 3]. (See also [8, Section 3 and Appendix] and [5,

Theorem 3.8].)
Remark 3.5.

(i) For g(i) (j=1,2), we have

02 (g ) =mlge f—F (=12, 9 (g uwf)=nigs f—udgs f-

. . . [ai—h1. A=) =) .
(ii) As for @j (j=1,2), an elementary observation shows that w1 = />3~ ua2 = /%.
- _ - 2 -
and if |¢] <2y /v, then A_ =4 and ImAy = y|¢|,/1— ;ﬁm{ while if [¢] > 2y /vy, then
A+ € R. We also have

1 _ i+ yH e+ 1)
prip2 — |12 A=A ) (A — o)
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Furthermore,

Vi=g .= p ;
he=—2LER +iyIE+0(EF) asiEl—o0,

2
M:—Z—m 0(ZI7%),  r-=-wllPP+01) as[¢]— oo,

and similar asymptotics also hold for .

To estimate F-! _G(a, OF-
{—>y y
as in [5, Sections 4 and 5].

_;7 and }'{iyﬁl(k, E)]-}HE, we prepare several lemmas. We proceed

Lemma 3.6 (Fourier Multiplier Theorem). Let 1 < p < oo and let s be an integer satisfying s > [k/2] + 1.
Suppose that ¥ (w) € CS(R* — {0}) N L (R¥) and that there exists a constant Co > 0 such that

lw 82w ()| < Co

for all @ € R* — {0} and |«| < s. Then the operator fJLW[tI/(w)(}"W_,wf)(w)] is extended to a bounded
linear operator on LP (R¥) and there holds the estimate

|Foke [ (@) (Fums o @] iy < CCOll Fll o -

See, e.g., [2] for the proof of Lemma 3.6.
An elementary observation yields the following lemma.

)

Lemma 3.7. Let g,ﬁj y1.21) = ﬁje*ﬂim*zl' with uj = wj(x, 1£1%) (j=1,2). Then

1 o) - - R 1
]:g_)y|:0fguj (}’1721,5)(-7'—5,_>§f)(zls§')dzl:| —fgﬁy[m}—y»g@ﬂ}-

Here y = (y1.9), ¢ = (¢1,¢) with § = (£, &) and

(ENG) = { A

The following lemma follows from the boundedness of the Hilbert transform. (See [1, Lemma 2.6].)

Lemma 3.8. Let 1 < p < oo and set

oo

1
Tf()’l):/ " +Z]f(zl)dz1a y1€(0,00), f€LP(0,00).
0

Then there exists a positive constant C = C(p) > 0 such that

ITfllLp0,00) < CllfIILp(0,00)-
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By Remark 3.5(ii) one can obtain the following estimates. (Cf. [5, Lemma 4.5].) In what follows we
will denote

o0 =+ 122

Lemma 3.9. Let Mo > 0. Then there exist cso > 0 and 0 € (Z,m) such that if |E| > Mo and
A € X(—Coo, Oo0), then for any multi-index & the following estimates hold with some positive constants
¢ =c(&) and C = C(&) uniformly for |¢| > Mo and A € X (—Coo, Oc0):

N

- ~ 1_
(i) |02 i <C(AI+121%)? (i=1,2),

&

(i) a“—‘ Clal+ER) 22,

_lal

Gi) |38 (1 — )| < CIRI(X1+1E2) 2 %,
. ~ ]

(i) [0 (e1pa2 = 1E12)[ < CIAI(IA1 +1217) 2,
i )%
(M) 2

W) [0 (12 — 27 <c

a

-1
20ROy (j=1,2),

(vi) ’30‘ TV < C(IM + (2] %)
a -1
(vii) |3§l(e—ﬂ1)’1 _ e—#z)’1)| < C|)¥|(|}\| 4 |E|2)_1_|2_‘6—C0(MC)ZY1.

We are now in a position to prove Lemma 3.3.

Proof of Lemma 3.3. Let My > 0 and let M > 2My. Suppose that supp(F. %gf) c{y,0).. =
©.8:1El2M2) o
We first estimate the G(A, ¢) part of S(A, ¢). We begin with the terms concerning gl([]). We write

g;(;)[fy%gfo]()’l, O=I—1I,

where
[o.¢]
I = 1 —m1ly1—zil 0 d
=, e (fyﬁgf )(z1)dz1,
0
1 o
I = _/ Ml(Y1+Z1)(_7: f )(21)d21
241 )

As for I1, by Lemma 3.7,
~[11]— [71 Fy ,{(Efo)].
v T

If |£] > M/2, then

1 1
a“[—”« — I < ol
Lud+ell ™ ke M2
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for any o (Ja| > 0). It then follows from Lemma 3.6 that

7l < o 1),

Similarly one can obtain

loy7, ﬁy[h]” M2 18] ”fOH (181=1.2).

¢

We next consider I,. Let IBI +¢=0,1,2. By Lemma 3.9, we have

i @ L1
aa[gﬁaylz e Ml(}’1+21)jH &(|)\|+|E|2)_%+§+%_%e*60(&£)7(J/1+Zl)
I

_1y bl & 1
Ca(Irl+121%) T
1Z1(y1+21)
Co g7
S M-8l 1tz
for |&€| > M/2. It then follows from Lemma 3.6 that
o e (5 c @i
— e Mtz 7 < _ .
‘ gﬁy[f e (Fy_ e ) 1)} ey MRyt

and, therefore, by Minkowski’s inequality for integrals, we have

p

oo
|:{ﬁ8 ZL/ M1(y1+z1) gfo)(21)d21:|
0

c [/ ULl P P
< — d d .
M2~ 17 / /Y1+z a) e
0

Using Lemma 3.8, we see that for || =|8|+¢=0,1,2,

Jof 7t a1l = 177 805, ], < <o 01,
From the estimates for I and I, obtained above, we conclude
lof 7 L8 (7 )00l < s 101, (81=0.1.2)

Also, since

oy, (&) Fy_ e f1=gi) [0n[F_ e F1] (1=1,2),

e Fyne =g FyL 10561 (1=1.2),
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one can similarly conclude for E)ylg(+) and l{g(ﬂ that

||85f§ly[a”g’(‘t)( g2 )], < VI \ﬂm loy”=" s, (181=0.1.2),

C _
loy 7 Lz (7 SO ool muayﬂ‘ Do), (181=0,1,2).

It remains to estimate the terms concerning g,(fl?m. This will be complete if we show the estimates

=yl A N

[T c
07! [—ab Loz (F Hf)(yo]H vl (38)
p

for any @ and b with |a| +b=2 and || =0,1,2.
Let us prove (3.8). We write

¢
S0 i (Fyn: N =% ],

where

o0 L.
I 1 1 _
]]:/7321<2 e Mlyi—z1l _ ZMZe M2ly1—21] (fj,ﬁgf)(zﬂdzla
0

o L~

[ (L itz _ L i

o= [ 50 T e O ) () e .
0

As for J1, by Lemma 3.7,

2_—1>5/U]] _Fc_—ly[faim)" Gh)fy»;(ff)]-

Here

1
mi+ef us+d

N, &)=

An elementary computation gives

A+ y2)
A+ VIE)A2 +v[C1Pr+y2e1)

In view of Remark 3.5 (ii), one can see that

o ONCLON| _ Ca a1
o (f)km'“ I (1jl =1al + b)
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for |£| > M/2. Lemma 3.6 then implies that

72 Ul < 223 11
Similarly we have
loyr 2l < Mz Il (181=1,2).
We next consider J,. We set
@ _ etz _ L itz
g (V1,21) = ﬂe —me

By Lemma 3.9, we have, for || > M/2,

ud
301|:§ﬁ a§+b 1 ( e~My1+z1) _ e—uz(Y1+Zl))] ‘
AT 20

< Ca(ul+ ) AR b
crbHpa ) 1
+
<Ca(IA+121%)72 7
1Z1(y1+ z1)
B <R 1
M2-t-b—1B-ldl  y1 + z1
and
i -
e[ (L - L)oo « G BT
cLa "\ e M2—t-b=1B1-ldl  y1 + 21
Since
g(2) w, (Y1, 21) = 71 (e*m()’1+21) _ e*#z(y1+l1)) + 1<i — l)efﬂz(}’ﬁzl),
Fie 214 M1 M2
we see from Lemma 3.6, (3.9) and (3.10) that
c I

Fh+a
H}?l&[()\ ﬁjbg/%) 2 (Y1, 21)(F Hcf)(zﬂ]

< .
L1_7(R2) szszflmfla‘ yi+2z1
Yy

for || > M/2. Therefore, by Lemma 3.8 and (3.9), we have, for |8| =8| +£=0,1,2,

Haﬁf U2, =7 [ 2]l < 1£1lp.

Mz 18]

(3.9)

(3.10)

Combining the estimates for J; and J we obtain (3.8); and the desired estimates for the G-part are

obtained.
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We next consider the H(x, z) part of S, Z). By Lemma 3.9, we have

,@ =1
|98k, 1) < C(AI+[E2) 727 2 emco® 02,

_3_ o -1
’3 iy, uz()’1)| C|A| A+ 1Z] ) 272 gm0 (D201
la]

Ze

~ 1
02 Bo(z20)| < CIAI(12] +1§12) 7 7 emeo®0%21,

|

Ze

-1
(08 Bz0)| < CIA(1A] +1E2) % emcr®:02 2,

-1
|aab(21)| C|A|(|A|+|§| )776—60()\,;)2;1.

These inequalities yield the desired estimates for the H-part. For example, let us consider the term

m - $hu, (y1)Bo(z1). By (3.11) and Lemma 3.9(v), we have

S (yl)ﬁocz])” < Clg|Brse-tleeo .3 042
v

<€ Tz
M1=IBI=t Y1+ 21

a“[ S
M1M2—|§|2

for |§] > M/2. As in the estimates for I; and J, above, we see from Lemmas 3.6 and 3.8 that

< m”a(\ﬂl 1)+f0 H

pra |1 é:
ayfg—)?[muz—lflz y i O0PoE *{f]

for |8] =0, 1, 2. Similarly one can obtain

loy 7" 1QoAQoF;_; f1], <Clay f°], (1B1=0.1).

C — U+
||3ﬁf~ iQHQOﬂ»;ﬂH m||a§‘ﬂ' D, (1B1=0,1,2),

lgly (181=0,1),

B C
oy 7+ QAR F; e 1], < sy

o7 JQAGF, N1, < orrlely (81=0.1,2).
This completes the proof. 0
We now prove Proposition 3.2.
Proof of Proposition 3.2. By Lemma 3.3, if sup,, |h'(y2)| <7, then
IIByfglx3¢M I, + 10572 Vmll,
< {72 10y QoRml|, + [ 72 [QRu| )
<c{loyF g Full, + 172 10y vl + 0l 7[5 vl

+F sl + 0l 7[5Vl + 07 By oml] -
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We now take n > 0 in such a way that Cn < % and then choose § > 0 so small that

supy, [’ (y2)| <7 whenever diam(O) < é. It then follows from (3.12) that
loy 7, @mll, + 8572, Vi,
ClloyF o Fml], + |7 (O], + 8y Fel V], }- (3.13)
Similarly, by Lemma 3.3,
|72 emll, + [0y 72, Vull,
<cljF 1ok Lir 1GR
|72 QoRMI|, + 7 [ 7 [QRMI]
{1z twl, 40l vl
1 _ ~ _
+ o IF g Cmlll, + |72 [05 V]l
ala oy vl ey oul,) | (14

We see from (3.13) and (3.14) that

75t @ul, + 175, vl
Izl + 45 7L Gl + oyl + [t V)| 315)

by taking 1 and § smaller if necessary. It then follows from Lemma 3.3, (3.13) and (3.15) that

17 vl < (17l QoRu, + 757 [0 Ru )
< %{ |76l wos + 17 Cmll, + [0y 7Vl ) (316)
Proposition 3.2 now follows from (3.13), (3.15) and (3.16). This completes the proof. O
We finally prove Theorem 3.1.

Proof of Theorem 3.1. For each x' € 9D we take Oy so that the estimates in Proposmon 3.2 hold
with O replaced by Oy. Since D is bounded, one can find an open covering {(’)j} _o of D and

{)(j}’]‘-=0 C Cg° such that U,(J,) = xjim (j=1,...,k) satisfy the estimates in Proposition 3.2 with
O replaced by Oj. Here {Oj}lj-=0 satisfies Og C D, Oj = Oy, for some x; € 9D (j=1,2,...,k),
and D C UI;':o Oj; and {Xj}’;:o C C*® is a partition of unity subordinate to {O’J?zo}, ie, there
hold x; € C3°(Oj) and le':o xj =1 on D. One can see that U,(\f),) = Xoilm satisfies similar esti-

mates to those in Proposition 3.2. Furthermore, the constants C appearing in the estimates for U,(d,')
(j=0,...,k) can be taken uniformly in j=0,...,k.
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Proposition 3.2(i) then yields

k
|7 0w, < 217 VAP,
=0

k

C _ A _ ~
<MZ{“]’- 1[XJ'KMf]”W1,prP+”}— 1[X1“M]”prw1<p}
j=0

C ~ ~
< M{”}—_l["Mﬂ”Wl.prP + ||-7:_1”M||prwlvv}' (3.17)

By (3.17) and Proposition 3.2(ii), we have

k
EL VTR 3 Enll ]
j=0

_ A 1 1
<c{1F T ysn,ao + 3717 0 |
Therefore, if M > 0 is taken so large, we obtain

H]:_]ﬁM”LPxW1~P S C”]:_l["Mf] lwrs- (318)

It then follows from (3.18) and Proposition 3.2(iii) that

k
“]:_HAIMHWLPXWZJ’ S Z“f_lul(\/Jl) lwirswes
j=0

<Ok em Py o
This completes the proof. O

4. Resolvent problem for the middle frequency part

Let M > 0 and r > 0. In this section we establish estimates on (A + ig)_] for r/2 <|E| < M.

We begin with estimating (A + ig)*] for A in compact sets. We first estimate i« p(§)(A + ig)*] f
for f € WI.P(D) x LP(D). Here k; y is a function in C°(R) satisfying

1 r<igl<y,
0<krm<1, Kr,M(S)={ .

0 (§l<3. 1§1>M).
Note that here f is a function of X' € D and does not depend on &.

Proposition 4.1. Let r and M be numbers satisfying 0 <1 < % and let A1 > 0. Then there exist constants
c1=c1(r,M)>0and 6, =01(r, M) € (%, 1) such that if » € X (—c1,61) N {|r| < A1}, then for any integer
k > 0 the function «r p () (A + ig)*l f satisfies the following estimate

[0 ke & A+ L) T | yw o woe < Cel flwtosre

with some constant Cy, uniformly for & and A € X' (—cq1,61) N {|A] < A1}



272 Y. Ishihara, Y. Kagei / J. Differential Equations 248 (2010) 252-286

Proof. Let = ({3, &) € R? and let S, Z) be the solution operator for problem (3.5) introduced in
Section 3. We consider the following problem on {y; > 0}

{(/\—l—Ag)W:F (y1>0), 1

Qwly,=0=0
for the unknown w = w(y1,¢) and a given F = F(y1, &) with ¢ = ({2, &) regarded as a parame-

ter. Note that F does not depend on &. In view of Lemma 3.4 and Remark 3.5(ii), similarly to the
proof of Lemma 3.3, we see that there exist ¢; =c¢1(r, M) > 0 and 6; = 61(r, M) € (£, ) such that

if 5 <&/ <M and A € ¥(—cq,6), then (4.1) has a unique solution w(y1,%) = S(x,{)F(y1). Fur-

thermore ]-'Qﬁyzw fz_z»yzs()" 2)F, which is a function of y' = (y1, y2) € R%r with parameter &,

satisfies the estimates

[0 QoFgL,,, [SLOF] (Y. s>||Lu ®)

{“aa §2~>y2[Q0F]||Lp,(R2 + ||'7:§_2Ly2QF||L§,(R3_)} (4.2)
for |&'| =0, 1, and

”8a Q Cz%J/Z [S(k’ E)F](y/’ ‘i:)”Lf/,(Ri)

< C{Ha;(zl’al 1)]:g_zl—>y2[Q0F] ”Lf/,(Ri) + ”‘7:{_21—>y2 QF”Lz,(REr)} (43)

for |&’| =0,1,2. R
We write f and k. y(€)(A + Le)71 f as

F="(r%g), «kem@®C+L) =T m, V).

Based on (4.2) and (4.3), by using the localization argument as in the proof of Theorem 3.1, one can
obtain the estimate

|¢rM|W1P‘i‘|VrM|W217 {|f |W1p+|g|p+|¢rM|p+|VrM|w1P} (4.4)

Let us prove

|rmlp + [Vrmlwre < C{[FO]yrp + 1810} (4.5)

We will prove (4.5) by a contradiction. Assume that (4.5) does not ljold. Then for any n € N, there
are fu="T(f0, g, g3) e WIP(D) x LP(D)3, & €R, Ay € C and &, = T (¢, V) € WIP(D) x [W2P(D)N
W(}'p(D)] satisfying the following (4.6)-(4.8):

r
§<|§n|<M, An € X(—C1,01), |An| < A1, (4.6)
(L, iin = Kr w1 (En) fi, (4.7)
|¢n|p+|‘7n|wl-p >n{|f;?|wl,p+|gn|p}- (4.8)

We may assume that

|(13n|p+|‘7n|wlwp =1 (4.9)
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By (4.4), we have

N N 1
|¢n|W1,p + |Vn|W2.p < C(E + 1) < 2C

273

Therefore, we can find a subsequence of {fy, &, An, Uiy}, which we again denote by {fn, &, An, Un},

such that, as n — oo,
-0 inw'P(D), g, —0 inLP(D),
r
bn— & (5<|5|<M), = de D(—c1,0) N{IA < A},

¢pn—¢ InW'P(D), ¢ —>¢ inLlP(D),
vp—=v inW?*P(D), vy—v inW}P(D).

Letting n — oo in (4.7) and (4.9), we have

(h+ L) =0, ﬁeW]*p(D)x[Wz’p(D)ﬂWJ’p(D)], U] pswin =1.

But, by Lemma 4.2 below, if A € X (—cq,61) N{|A| < A1}, then & = 0, which contradicts |t];p, y1.r = 1.

Therefore, we have (4.5).
It now follows from (4.4) and (4.5) that

e @ AL Flyipwar < CU lwirsre-
We next estimate ag[/cr,,v,(g)(x + ig)”f]. We set
gy = 0 [krm & .+ L™ ] =T (Dao Vi V3)-
Then il is a solution of the problem
Ay + YV - Vi + zyév(k) = Bélﬁ )0+ Z < >3k (i)/&‘)\?fj),
Ay = VAV +VE* V() — DV (V- () + lév(k)) + ¥V
k-1 .
= (ofx1)g + ) (k ; ]>{8§’1(v$ )0 — 8" RUNATAN
j=0
MGy — VAV G +VE* VG, —iDE(V' - V() +iEVG)) +ivEde
k-1
= (%x1)g +<2:< ) {7 (ve?)0 ) — ol Die)V' - oy,

+ ok (52) 35+ 0 iy e ).
V(kylop =0.

By (4.10), we have

k—1
Ibaolwrr +1Va0lwar < Gl [ £y + 1810} + D {10 1p + 190y lwr ).
j=0

The desired estimate now follows by an induction argument. This completes the proof.

(4.10)
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Lemma 4.2. et 1 < p < oo. If u € WI-P(D) N [W2P(D) x Wé’p(D)], (+Lou=0 5 <& <Mand
A€ X(—cq,01), thenu=0.

To prove Lemma 4.2, we prepare some propositions.

Proposition 4.3. Let k € N. If § < |€| < M and A € ¥(—c1, 61), then for any f € H*(D) x H*~1(D) there
exists a unique solution u € H*(D) x [H¥t1(D) n Hg)(D)] of (A + i;)u = f and u satisfies the estimate

[U] gk e et < C|f | ey i1+
Proposition 4.3 for k =1 was proved in [10]. (See [10, Proposition 3.14].) The proof for k > 2 is
done in a similar line to that of [10, Proposition 3.14] by using the Matsumura-Nishida energy method
[19]. We here omit the details.

Remark 4.4. Proposition 4.3 remains true for the adjoint problem (A + I:g‘)u = f, where

0 ~yIv —iy§
Li=|—-yV —vA +vE2 VTV —iDEV’
—iyé —ivgTV/ —VA + (v + D)&2

Proposition 4.5. Let 2 < q < oo. If 5 < || <M and A € X(—c1,601) N {|A| < Aq}, then for any
f € WH9(D) x LI(D) there exists a unique solution u* € W1-4(D) x [Wz’q(D)ﬂWS’q(D)] of(k-Hii;)u* =f.

Proof. Let f € C®(D) x C3°(D). Then, by Remark 4.4, there exists a unique solution u* of
+ ig)u* = f, which belongs to H¥(D) x [H**1(D) N H}(D)] for any k € N. By the Sobolev embed-

ding theorem, we have u* ¢ W4(D) x [W29(D)N W(l)’q(D)]. Similarly to the proof of Proposition 4.1,
we can obtain the estimate

[u*lwraxwer < Clflwtaxpas (4.11)

if we show that (A + ig)u =0 and u € WH9(D) x [W29(D) N Wé’q(D)] implies that u = 0. But,

since q > 2, we have W'9(D) x [W29(D) N W, (D)] C H'(D) x [H%(D) N H}(D)]; and, hence, by
Remark 4.4, u = 0. We thus obtain (4.11). B

We next assume that f € W19(D) x L9(D). Then there exists {f™}>, C C>(D) x C5°(D) such
that

f™ > f inw"“(D) x LI(D).
By the preceding argument, for each n, there exists u*™ e W14(D) x [W24(D) N Wé’q(D)] such that

(h+ L)ur® = o
and

|”*(n) - ”*(m)‘wl-qXWZ-q < C|f(n) - f(m)}wl-qu'
Therefore, {u*™} is a Cauchy sequence in W19(D) x [W29(D)N Wé’q(D)], and we can find a function
u* e WH(D) x [W24(D)N Wg*"(D)] such that

[u ™ —u*| g, yze — 0 (1= 00).
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Letting n — oo in (A + I:g‘)u*(”) = f® we obtain
T, %
(A +LHu* = f.
The uniqueness of u* follows from Remark 4.4 since q > 2. This completes the proof. O

We now prove Lemma 4.2.

Proof of Lemma 4.2. It suffices to prove Lemma 4.2 for 1 < p < 2. Let q € (2, o0) be the Hoélder conju-
gate to p. Assume that u e WP(D)N[W2P (D) x Wé‘p(D)] satisfies (1 4 Lg)u = 0. By Proposition 4.5,
for any f e C>(D) x C5°(D), there exists a unique solution u* € W9(D) N (W29(D) x Wé’q(D)) of
x+ ig‘)u* = f. By integration by parts,

@, fy=(u, (A +L7)u*) = (h + Le)u, u*) =0,
which implies u = 0. This completes the proof. O
We now establish the estimate on F~'[k; p(£)(A 4 Le) ™1 f1 for f € WIP(2) x LP(£2).

Theorem 4.6. Let f € W1P(2) x LP(£2).If A € ¥ (—c1,61) N{|A| < A1}, there holds the estimate

Hj:_] [KF,M(g)()" + ié‘)_] }] ” WLpxW2.p < C”f”W]vaLP
uniformly for . € ¥ (—c1,01) N{|A| < A1}

It suffices to prove Theorem 4.6 for f € S(R; W1-P(D) x LP(D)). In fact, since f € W1-P(£2) x LP(£2)
can be approximated by elements in S(R; W1-P(D) x LP(D)), Theorem 4.6 immediately follows from
the following proposition.

Proposition 4.7. Let A € X (—c1,61) N {|| < A1} and set K(A, &) = ky m(£)(h + Lg) 1. Define K (i, x3) by
~ 1 e
K(,x3)F = F'[K(A, &)F] = E/e”‘ﬁK(/\,é)F dg

R

for F e WI-P(D) x LP(D). Then for f € S(R; W1-P(D) x LP(D)), the function u = F~[K (%, &) f (£)] satis-
fiesu=K(x, ) * f and the estimate

Nullwieswzr <CIfllwtpxrr-
Here x means the convolution in x3.
Proof. We first show

R0 F @ =F[KO, ) * f]
for any f € S(R; W1-P(D) x LP(D)). Since

oitst _ 1 ok,ixst
(ix3)k 3

)
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we see from Proposition 4.1 that for F € W1-P(D) x LP(D)

]8f3 K(x, XB)F‘WLPXWZJ’

1 . N
< ‘— / (ig)‘et™s* K(A,S)Fdé‘
27[ R W1,prz,p

1D
|27 (ix3)k
R

™5 f[(i8) K (1, &)]F dg‘
WhLpxw2.p

k
SCA+Mf x| ™*> / 0§ RO E)F | yyrp o dE
=04 2<je1<my

<C(+M)fixs| / |Flwipspp dE
{r/2<161<M}
< Crmlxsl M Flyin, e (€=0,1,2).
It then follows that

C

]8 K@, X3)’L‘(W1 P(D)xLP(D),W1.P(D)x W2.P(D)) = < m (4.12)

Here |T|;(x,y) denotes the operator norm of a bounded operator T : X — Y. By (4.12), for any
f e S(R; WP(D) x LP(D)), there hold the estimates

C
’K()\-, X3)f(y3)ywl,p><w2.p < m’f(}@”wwxm € L<l (Rx3 X Ry3)
and

|F )| wipepr €L Rey x Ryy).

C
|K()L Z3 — J’B)f(J/B)|W1 pawzp S m

Therefore, by Fubini’'s theorem, we have IA((A, E)]‘(S) = F[K (X, ) * f], which implies u = K(, -) % f.
Furthermore, we see from (4.12) that

| QoK (. ) £y
= 37 050K ) * [P wino

+k<1
p
/QOK(X x3—y3)f (-, y3)dys3 dxs
£+l<<1R wkp
> 7y p
C /(/72 f(7y3) WI,prpdy?r) dX3
ety 1+ |x3 — ys3|

C”f”WleLp
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Similarly one can estimate ||Q K (%, -) % fllw2r and the desired estimate is obtained. This completes
the proof. O

We next consider estimates on ., M(s)(k+i5)*1]‘ for large ||, which can be obtained by a similar
argument as in Section 3.

Let f € C3°(2) x C°(82). Then kv m (€)M + Le) ™' f =T (ér.m, ¥r.m) is a solution of (3.1) with ky
replaced by «; u.

Similarly to the proof of Lemma 3.3, one can prove the following estimate (cf. [5, Sections 4
and 5]).

Lemma 4.8. There are A > 0 and 6 € (Z, ) such that if . € X (A, 6), then there hold the estimates

195 f°llp . lgllp
A + 1-ldd
[A] A=z

} (lel =0,1)

logr 1800551 11l < ]
and
o271 [85. 07 1, < c{lay ], + lelp)-

Based on Lemma 4.8 and the localization argument as in the proof of Theorem 3.1, we have the
following estimate (by taking A larger if necessary).

Theorem 4.9. There are A > 0 and 6 € (Z, 7r) such that if » € X (A, §), then there holds the estimate

”-7:_1 [Kr,M(S)()\ + i&)_lf] ”Wl,pxwz,p < C”f”wlyprp-
Combining Theorems 4.6 and 4.9, we obtain the following estimate for x; p(§)(A + i,g)_1f.

Theorem 4.10. Let r and M be numbers satisfying 0 <1 < % Then there are constants A > 0, ¢; > 0 and
6 e (&, 1) such thatif » € (A, 0) U {Rei = —cq}, then

17 e @ O+ L) Fl wrwwwzr < CUFllwtpspo-
5. Spectral properties of low frequency part

In this section we investigate spectral properties of —l:g for |£] < 1. This case is treated as a
perturbation from the case & =0. .
We begin with some spectral properties of —Lg. We set £ =0 in (2.2) to obtain

O+Loti=F, Vlap =0, (5.1)

where i =T($, 9/, 93), F=T(f° 8,83 and

R 0 yTv’ 0
Lo=| yV —vA'—DVTV' 0
0 0 —vA/

We decompose (f) and ]‘0 into
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" 7 " n 1 Tyl /
D
Fo=pit i9= o [Twar,
respectively. This gives an orthogonal decomposition in L2(D), and we have

1612 = Idol3 + |113.

Furthermore, since <;31 -component has vanishing mean value, by the Poincaré inequality, there holds
the estimate

1$11p < Clayilp = Claydlp.

In terms of this decomposition, problem (5.1) is reduced to the following problem (5.2)-(5.5):

o = o, (52)

a+yV ¥ =FL, (53)

A — VAV —DV(V V) +yVidr =8, ¥|p =0, (5.4)
A3 —vA 93 =53 93p =0. (5.5)

As for the solvability of (5.2)-(5.5) we have the following facts.

It is clear that (5.2) is uniquely solvable if and only if A # 0, and in this case the solution is given
by fo = %foo. It is also easy to see that » =0 is a simple eigenvalue with eigenfunction @g = 1.

As for (5.5), it is well known that there are {Aj}]?i] (Aj <0, |Aq] < |A2| < |A3] < -+ — 00) such that
each A; is a semi-simple eigenvalue and, for A ¢ {; ;’i], (5.5) has a unique solution 93 € W2P(D) N

Wg’p(D). Furthermore, if |arg(A — %A1)| <7 —¢ (¢ > 0), then the solution 73 satisfies the estimate

|A]

N 1, . N N
P32 [0 03]+ (0503, < Cel &3],
As for the solvability of (5.3)-(5.4), we have the following result.
Proposition 5.1. Let 1 < p < oco. Then there exist constants co > 0, A > 0 and 6 € (%, m) such that if

A € £(A0/2,60) U {Rer > —2co}, then for any T(f2, &) € WP(D) x LP(D) with [, fdx =0, there

exists a unique solution T (¢1, 9") € WP (D) x [W2P(D) N WP (D)] with [, $1dx' =0 of (5.3)~(5.4),
which satisfies the estimate

It s + 191} + 1012180 91 + (0297 < C{|FO] o + 1815}

Proposition 5.1 was proved by [21]. (See also [20].) We summarize the spectral properties of 1o
obtained above.
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Proposition 5.2. There are constants co > 0, Ag > 0 and 0y € (%, 7) such that

(2(A0/2.60) U {Re A = —2co}) N {IA = co} € p(~Lo)

and

o(=Lo)N{Irl <co} ={0}.

Ifr e (X(Aog/2,600) U{Rer > —2co}) N{|A| = co}, then

|(}‘+i0)_1f|wl,pxl_p< |f|W1-I7><]_D7

[A]+1

~ A C
0 Q 0+ L) f|, < ———Iflwirsrr €=1,2).
(A + D'z

Furthermore, 0 is a simple eigenvalue and the associated eigenprojection PO s given by

POU=T((¢),0) foru=T(¢,v).

Based on Proposition 5.2, one can obtain the following result by a perturbation argument as in the
proof of [10, Propositions 4.3 and 4.4].

Theorem 5.3. There exists a positive constant r1 > 0 such that the following assertions hold.
(1) If 1§] <1, then

Co

(2(A0.60) U{ReA > —co}) N [m > 5] c p(—Le).

(i) If 1 € (£ (Ao, 60) U {Red > —co}) N{|A] > L}, then

C

m|f|W1*pXL1”

|(k+i§)_1f|wl,pxl_p<
I - C
|3X/Q()~+L§) f|p<7”|f|W1~PxLP t=1,2).
(Al+1)"72

(iii) If 1&| < r1, then
A Co
o(=Loynyir < 21 ={h®}.
Here Ao (€) is a simple eigenvalue of—i;, which satisfies

ro® =—"L1e2+ 0(Igl%) (161> 0)

for some constant a; > 0.
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We next give an estimate for the eigenprojection 13(5) associated with the eigenvalue 1o(§). For

this purpose we write Lg as

Be = o+ el 4620,

Here
0 0 iy 0 0 0
ID={ o 0 —iov' |, [®=[0 vi o0
iy —ivTv/ 0 0 0 v+

We begin with the following

Proposition 5.4. Let R > 0. Then the following estimate holds for . € (X (Ao/2,00) U{Re A > —2co}) N{co <

|A] < R}:

’()‘+i0)7]f‘H3xH4 < CR|f|H3xH2'

Proof. We here give an outline of the proof. As it was shown in [10], an application of the Matsumu-

ra-Nishida energy method [19] to (5.3)-(5.4) gives

1912 + 1611m < Cr(|F2],1 +18712)

for some constant C = C(R) > 0. Then higher order derivatives can also be estimated by the

Matsumura-Nishida energy method to obtain

19154 + 11113 < CR(F2 s +1812)-

Applying the elliptic regularity estimate to (5.5), we have

‘03’H4 <Cr

g ’ |H2 ’
Proposition 5.4 now follows from (5.2), (5.6) and (5.7). This completes the proof. O
Lemma 5.5. There hold the following estimates
LD +Lo) " fl,p <Clfls (1=1,2)
for i e (X(A0/2,60) U{Rei > —2co}) N{co < [A] < R}
Proof. Let T(¢, ) = (» + Lo)~ f. It follows from Proposition 5.4 that

ILYGA+Lo) 7 |, =LV

H3<C{

< C|f|H3><H2

03‘1-13 + ’V/‘73|H3 +|¢§|H3 + |V,'\7,|H3}

and

LDt L) F s = (1P

3 CUP L + 193]} < ClF s

This completes the proof. O

(5.6)

(5.7)
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We now estimate the integral kernel of the eigenprojection f’(é) associated with the eigenvalue
ro(8) for |§] < 1.

Theorem 5.6. There exists ry > 0 such that if |&| < ry, then the following assertions hold.

(i) The eigenprojection 13(5) associated with the eigenvalue Lo (&) is written in the form

Pe) =P +5PV + PP ),

ﬁ‘j)u=/l3(f)(x/,y’)u(y’)dy/, j=0,1,
D

PPu= / PO, X, yhuydy'.
D

Here P© = Il_l Qq; and PO (X, y) and P@ (&, X', y') satisfy

9 0y POy, 0 5 PPE K y) € 1(D x D)
for |a’| < 1 and | 8’| < 1. Furthermore, for any « > 0, P@ (¢, %', y') satisfies the estimate
/ lg’ A (2) 2—
‘3?83 ay/P (“E"")|L°0(D><D)<C“|g| Dl-

(ii) Ao(&) is a simple eigenvalue of the adjoint operator —ig‘ and the associated eigenprojection P*(€) is
written as

P*E) = PO* 4 £pM* 4 p@(g),

f’”)*u=/f’(j)*(x’,y’)u*(y’)dy’, i=01,
D

P (g = / PO (e, ¥, yyur(y) dy.
D

Here PU*(x', y) (j =0, 1) and P@*(&, ¥, y') satisfy
pO*=pO PO, y)=PD(y,x),
P@*(E. X, y)=P@ .y X).
(iii) There hold the following relations
(P®)[9x Qul. u*) = —(u, 3 Q P*(€)u),
(PMV[ay Qul, u*) = —(u, 8y @ PVu*),
(PP 19y Qul, u*) = —(u, dy Q P
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Proof. As for (i), we here give an outline of the proof, since it is similar to that of [6, Theorem 3.3].
Let ¥ = T (1, 0), which is an eigenfunction for the eigenvalue 0 of —Lg and —Lg. Clearly, |yolyx =

|D\% for all k> 0.
We define ¢ (&) and ¢* (&) by

_ 1 r -1
1/f<s>—2m/(x+Ls> Voda
r

and

* _ 1 7%
reOsve e ©

with
~ 1 Ay —
w*@):—./(xug) "yodi.,
r

where I' = {|A| = %0}. Then as in the proof of [6, Theorem 3.3], one can see the following estimates on

¥(&) and ¥*(¢). By Lemma 5.5 and the Neumann series expansion of (A + ig)”, ¥ (&) is expanded
as

Y, &) =vo+EY V) +y P, 6),

and, with the aid of the Sobolev embedding H3 < W%,
vV e <ClyD],5 <C,
’ w H
08U @ E)| 10 < ClAZY D &) s < CIEPT.

The same expansion also holds for *(&):

YKL E) = Yo+ EY V) + Yy D 6),

where v * (j =1, 2) satisfy the estimates

[ 1o <C and |9y P*E)] 100 < CIEPT

In terms of ¥ (X, &) and ¥*(x, &), P(£) is given in the form

PEu=(u,y* @)W E) = / P& X,y uy)dy

D

with

" 1
PEX,y)= ﬁw(x’, oHTy*(y,6)
1

~ Dl Qo +&ePV, y)+ PP, X, y).
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Here

1
ID|
l;ﬁ{wofw@*(y’,s) YO, )T Yo

+y P Oy (. &) + ey V)Y Py £)
SR ARl A VAR S A CORTAL( DI

PO, yy= —{vP) yo+ v v * )},

PP, X, y) =

It follows from the estimates for v (£) and ¥ *(£) obtained above that

|02 00, PO, Y| e ppy < €

and
/ ﬁ’f\(z / / 2—
|0g'ag 8 P@ &, X, ¥ oo ey S CIEIPT.

For the details, see the proof of [6, Theorem 3.3].
Assertion (ii) easily follows from the relation

(4L "uu) = (u, (L+ L) 'w?)
for u, u* € W-P(D) x LP(D).
As for (iii), since Q (A + Lg)_1u*|aD =0, by integration by parts, we have
(O-+Le) oy Qul u*) = —(u, 00 QO + L) 'u¥),
which yields the desired results. This completes the proof. O

6. Proof of Theorem 2.1

In this section we give an outline of the proof of Theorem 2.1.
The following proposition implies that —L generates an analytic semigroup.

Proposition 6.1. There are A > 0 and 6 € (%, ) such that X (A, 0) C p(—L) and there hold the following
estimates uniformly for . € X (A, 0):

. _ C
O [A+D7 flyiw, e < o lwrrr.

. ~ _ C
(i) oy Q@ +D7"f, < g lwiesar (€=1.2).
2
Proof. We here give an outline of the proof. Let A # 0. By (2.1),

¢=%(f°—ydivv). (6.1)

Substituting this into the second equation of (2.1), we have

AV — VAV —DVdivyv=F, v|3e=0. (6.2)
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Here

F=g— %V(fo—ydivv).

Since Bv = —vAv — DV divv is strongly elliptic, it holds that there are A’ > 0 and 6 € (%, ) such
that for L € X(A’,0)

1
AV + A2 [0xvilp + ||33V||p < ClFlp

1
<clistwrns + i, )

We take A > 0 large enough so that % < % for L € X (A, 6). Then

1
AvIp + 212110k v]ip + HBfVHp L2C| fllwroserp-

This, together with (6.1), yields

C . C
lellwie < m(”fOHWLP + 1 leV”WLp) < m”f”wtpxl_w

This completes the proof. O

By Proposition 6.1, —L generates an analytic semigroup e~ on W1P(2) x LP(£2); and e~ is
represented as

1
P — / e+ L)~ da.
2mi
r

Here I' = {A = A +se*?; s>0).
Using the estimates (i) and (ii) in Proposition 6.1, one can show Theorem 2.1(i) by a standard

argument.

We now give a proof of asymptotic behavior of e~tL

given in Theorem 2.1(ii).

Proof of Theorem 2.1(ii). The proof is done by a similar argument to that in [6, Section 4]. We here
give an outline of the proof.
We decompose e~ as

et =Vo(0) + Voo D).

Here

Vo) = F k0@ ], Violt) = F1[(1 — ko (®))e ],

where ky is a function satisfying

1 el< D),
ko(§) € CPR),  Ko(€) ={ (|$: i )
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and

N ‘l A
e—tle — _,/e“(x +Lg)Mda
2mi
r

with I' = {A = A + se®™; s> 0}. We here take r > 0 in such a way that 0 < r < min{rq, 2} with rq
and r, given in Theorems 5.3 and 5.6 respectively.
To prove Theorem 2.1(ii), we will deform the contour I" in a suitable way.

We first consider Vo(t). By Theorem 5.3, we can deform I" into I U I and a suitable circle
around 0, where

Io={r=—co+is; |s| <so}, o= {r= 40 + seFito: s> S0}

Here Ap and 6 are the numbers given in Theorem 5.3; and we choose sp and So in such a way that
Iy connects with Iy at the end points of Ip. It then follows from Theorems 5.3, 5.6 and the residue
theorem that Vy(t) is written as

Vo(Ouo = WO t)ug + WP (t)uo,
where
WP Oup =7 WD) (j=0,1),
WO (t)ilg = ko (£)e™ P (£)ilo,

~ . 1 n R
w<”(t)u0=2—m / e*Mico(£) (A + Le) g da.

F()Ufo
By using Theorems 5.3 and 5.6, one can show that W (t)ug is written in the form
WO tyug =W t)ug + R (0)uo,

where WO (t)ug and R©@ (t)ug have the properties in Theorem 2.1(ii-a). We here omit the details
since it can be shown in the same way as in [6, Section 4]. Also, by using Theorem 5.3, one can show
that W (t) satisfies the estimate

HW(l)(t)UOHWLpXsz < Ceicot”uO”Wl-prP-
As for Vs (t), by Theorems 3.1 and 4.10, one can deform the contour I" into I” = I's, U I'so, Where
oo = {4 A= —Coo +i5 (Is| <So0)}. Foo = {x: =40 4 seFifo o> S0}

for some cs, > 0. We here take s, and 3o, 50 that I's, connects with I's, at the end points of . It
then follows from Theorems 3.1 and 4.10 that

”Voo(t)uo ” WD x w2 S Ce " uglly1.ppp-

Setting Uso(t) = WD () + Vo (), we see that Us(t) satisfies the estimate in Theorem 2.1(ii-b).
This completes the proof. O
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