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In this paper, we investigate an initial boundary value problem
for 1D compressible isentropic Navier-Stokes equations with large
initial data, density-dependent viscosity, external force, and vac-
uum. Making full use of the local estimates of the solutions
in Cho and Kim (2006) [3] and the one-dimensional properties
of the equations and the Sobolev inequalities, we get a unique
global classical solution (p, u) where p € C1([0, T1; H'([0, 1])) and
u e H'([0, T1; H2([0, 1])) for any T > 0. As it is pointed out in Xin
(1998) [31] that the smooth solution (p,u) € C1([0, T]; H3(R1))
(T is large enough) of the Cauchy problem must blow up in
finite time when the initial density is of nontrivial compact
support. It seems that the regularities of the solutions we ob-
tained can be improved, which motivates us to obtain some
new estimates with the help of a new test function p2uy, such
as Lemmas 3.2-3.6. This leads to further regularities of (p,u)
where p e C1([0, T]; H3([0,1])), u € H'([0, T]; H3([0, 1])). It is
still open whether the regularity of u could be improved to
cl([o, T1; H3([0, 1)) with the appearance of vacuum, since it is
not obvious that the solutions in C1([0, T]; H3([0, 1])) to the ini-
tial boundary value problem must blow up in finite time.
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1. Introduction

In this paper, we consider the initial boundary value problem of compressible isentropic Navier—
Stokes equations in one dimension:

pr+(puwx=0, p=0,
2 (1.1)
(pw) + (pu?), + [P(P)], = [(Pux], + o f
for (x,t) € (0,1) x (0, +00), with the initial condition:
(P, Wl=0 = (po(x), up(x)) forxe[0,1], (1.2)
and the boundary condition:
Ulx=0,1=0, t=0, (1.3)

where p and u, denoting density and velocity of the fluids respectively, are unknown functions;
P(p) = KpY, for some constants ¥ > 1 and K > 0, is the pressure function; f is a given external
force.

Our main concern here is to show the existence, uniqueness and further regularity of global clas-
sical large solutions to (1.1)-(1.3). It worths mentioning that the initial density may vanish (i.e., the
initial vacuum may exist), and the viscosity ¢ depends on the density p. The restrictions on w in the
following will imply that the case for constant viscosity is included.

We begin with a rough review in this direction. When the viscosity u is constant, the local classical
solutions to the Navier-Stokes equations with heat-conducting fluid in Holder spaces was obtained
respectively by Itaya [11] for the Cauchy problem and by Tani [28] for IBVP with inf pg > 0, where the
spatial dimension N = 3. Using delicate energy methods in Sobolev spaces, Matsumura and Nishida
showed in [21,22] that the global classical solutions exist provided that the initial data is small in
some sense and away from vacuum and the spatial dimension N = 3. For large initial data, Kazhikhov,
Shelukhi in [17] (for polytropic perfect gas with constant viscosity) and Kawohl in [15] (for real gas
with = u(p)) got global classical solutions in dimension N =1 with infpg > 0, respectively. The
viscosity w in [15] satisfies

0 < po < pu(p) < py, forp >0, (14)

where wo and w@q are constants. In fact, such the condition includes the case (o) = const. There
are also some results about the existence of global strong (classical) solutions to the Navier-Stokes
equations for isentropic fluid with inf pg > 0, refer for instance to [1,16,29].

In the presence of vacuum, the existence of global weak solutions with large initial data in RN

was first obtained by Lions in [18], where y > ,\f—i’z for N =2 or 3. Feireisl et al. in [9] extended the

work in [18] to the case y > % for N = 3. For solutions with spherical symmetry, Jiang and Zhang in
[14] relaxed the restriction on y in [18] to the case y > 1, and got the global existence of the weak
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solutions for N =2 or 3. On the existence and regularity of weak solutions with density connecting
to vacuum continuously in 1D, please refer to [20]. During the pass two decades, Salvi, Choe, Kim and
Jiang et al made great progress towards the local or global existence of strong (classical) solutions
with vacuum, see [27,2,4,5,7,3]. Particularly, Choe and Kim in [5] showed that the radially symmetric
strong solutions exist globally in time for > 2 and N > 2. This result had been generalized to
the case y > 1 by Fan, Jiang and Ni in [7]. Note that [27,2,4,5,7] all considered the existence and
uniqueness of strong solutions. On the classical solutions, Cho and Kim in [3] in 2006 got the local
existence and uniqueness result for N = 3 by using successive approximations, based on some a priori
estimates for the solutions to the corresponding linearized problems. The existence of global classical
solutions with vacuum is still open.

It is well known that the physically important case related to vacuum is the case when u is not
constant. It can be seen from the derivation of the Navier-Stokes equations from the Boltzmann equa-
tion through Chapman-Enskog expansion to the second order, cf. [10], where the viscosity coefficient
depends on the temperature. For isentropic flow, this dependence is translated into the dependence
on the density by the laws of Boyle and Gay-Lussac for ideal gas as discussed in [19]. For the case
w(p) =ap’ with @ and 6 being positive constants, when the initial density was assumed to be con-
nected to vacuum discontinuously, the global existence of weak solutions for isentropic flow in one

dimension was obtained by Okada, Matusu-Necasova and Makino in [24] for 0 <6 < % and by Yang,

Yao and Zhu in [32] for 0 <6 < % and by Jiang, Xin and Zhang in [13] for 0 <6 < 1. Qin and Yao
in [26] relaxed the restriction on 6 in [13] to the case 0 < 6 < 1 with more regular initial data. On
the global existence of classical solutions to the Navier-Stokes equations with heat-conducting fluid,
inf pg > 0, and viscosity (p) = ap?, please refer to [12,25] where Jiang in [12] and Qin, Yao in [25]
considered the case 9 € (0, }l) and 0 € (0, %) respectively. For the Cauchy problem of (1.1)-(1.3), Mellet
and Vasseur in [23] showed the existence of global strong solutions when p satisfies

w(p) =ap?, forany p <1and6 €0, 1),
np) za, forp>1, (1.5)
u(p) <c+cp¥, foranyp >0,

where o and c are some positive constants. Moreover, if ((p) > « > 0 for all p >0, @(p) is uniformly
Lipschitz and y > 2, then this global strong solution is unique in the large class of weak solutions
satisfying the usual entropy inequality.

When the density function connects to vacuum continuously, please refer to [8,30,33] for the isen-
tropic case, where the global existence of weak solutions was obtained for (o) = ap?.

To sum up, the existence of global classical solutions of the Navier-Stokes equations with vacuum
and large initial data is still open whether the viscosity p is constant or depends on the density. This
is our motivation in this paper.

There are two main theorems in the paper. In Theorem 1.1, we get the existence and unique-
ness of global classical solutions with relatively weak initial data. In Theorem 1.2, we get further
regularities of the solutions with more regular initial data. The difficulties in Theorem 1.1 compared
with [3] are that we need some a priori estimates globally in time, and that we have to handle the
density-dependent viscosity. To handle these, we make full use of one-dimensional properties of the
equations and the Sobolev inequalities. Since the initial density may vanish, similarly to [3], we need
the compatibility condition (1.6) to handle f,pufhzo and fluftltzo in Lemma 2.6 and Lemma 2.10
respectively. The main difficulties in Theorem 1.2 lie in the higher order estimates of u. We get them
by some new useful estimates with the help of a new test function p2uy, such as Lemmas 3.2-3.5.
Among them, Lemma 3.3 is the most important one, where we take pzu[t instead of ug as the test
function in order to handle the vanishing effect of the density.

We have to emphasize that the smooth solution (p, u) € C1([0, T]; H3(R"))(T is large enough) to
the Cauchy problem of compressible isentropic Navier-Stokes equations in 1D must blow up in finite
time when the initial density is of nontrivial compact support (please refer to [31]). In Theorem 1.2,
we get p € C'([0, T]; H3([0,1])), u € H'([0, T]; H3([0, 1])). It is open whether regularity of u could
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be improved to C'([0, T]; H3([0, 1])) as vacuum appears, since it is not obvious that the solutions in
C1([0, T); H3([0, 1])) to the initial boundary value problem must blow up in finite time.
As in [3], we assume that the initial data satisfies the compatibility condition:

[1(po)utox], (%) — [P(00)],(X) = po()[—f(x.0) + g®)]. x€[0,1], (1.6)

for a given function g € H}, and the viscosity p satisfies

peC?0,00), 0<M;<pu(p)<Ma(1+p"), foranyp>0. (1.7)

We give a remark on (1.6) and (1.7).

Remark 1.1. (i) The function g in (1.6) plays a crucial role in handling fol pu?(O), fol uft(O) and
fol ,03u%[(0) when we use the Gronwall inequality in Lemma 2.6, Lemma 2.10 and Lemma 3.3, re-
spectively.

(ii) The restrictions on w in (1.7) cover the condition (1.4) in [15]. The upper bound of w in (1.7) is
the same as (1.5); in [23]. Unfortunately, the case w(0) =0 is excluded by (1.7). The lower bound in
(1.7) is imposed here because of the requirement of analysis. For the case ©«(0) =0, we will consider
in the next future.

Notations. (1) I =[0,1], 91 ={0,1}, Qr =1 x[0,T] for T > 0.

(2) For p >1, LP = LP(I) denotes the LP space with the norm | - ||p. For k>1and p > 1, WkP =
Wk-P(I) denotes the Sobolev space, whose norm is denoted as || - lwkps H*= W" 2(1).

(3) For an integer k>0 and 0 < & < 1, let Ck+®(I) denote the Schauder space of functions on I,
whose kth order derivative is H6lder continuous with exponents «, with the norm || - || ck+e.

Our main results are stated as follows.

Theorem 1.1. Assume that po > 0, po € H?, p} € H?, ug € H*NH], f € C([0, 00); HY), f; € L2 ([0, 00); L?),

and that the initial data and p satisfy (1.6) and (1.7) respectively. Then for any T > O there exists a unique
global classical solution (p, u) to (1.1)-(1.3) satisfying

(0, p7) €C(10, T H?), (pr, (p7),) €C(I0, TI: H'),  pu € C(10, T; L),
p=0, (p),el™([0,T];L?), (pu)e€C([0,T];H"),
ueC([0,T; H¥NHY), ueel™([0,T]; HY) NL2([0, T]; H?).
Remark 1.2. (i) The classical solution here means that it satisfies the equations and the corresponding
initial and boundary conditions everywhere.
(ii) If y > 2, the assumption pg € H? is not necessary, since pg € H? implies pg € H? For y €
(1, 2), such the conditions of pg, pg and ug in Theorem 1.1 are not empty. For example, pp = x#

(B > %), and ug is the solution to the elliptic equation (1.6) with zero boundary condition. By the
standard elliptic theory, we get ug € H*> N H|.

(iii) By the Sobolev embedding theorems, we have
HY(I) = ck=2 (1), fork=1,2,3.

This together with regularities of (p, u) gives

(p.p7) € C(10. T CH3(D).  (pe. (pu)) € C([0. T CE(D), e C(10, T C2HE (1)),
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which means (p,u) is the classical solution to (1.1)-(1.3). Note that we get the continuity of (pu);
with respect to space-time variables instead of getting that of u;. Anyway, o and u satisfy (1.1)-(1.3)
everywhere.

The next result shows further regularities of the solutions.

Theorem 1.2. Consider the same assumptions as in Theorem 1.1, and in addition assume that pg € H?,
Py € HY (/Po)x € L, (Pogx € L2, ug € H* and (fu., fu) € L} ([0, 00); L?), f € LE ([0, 00); H?),
1L € C*[0, 00). Then the regularities of the solutions obtained in Theorem 1.1 can be improved as follows:

(0.p") €C(I0. T HY),  ((WP)x: (VP)r) €L¥(Q1).  (ot. (07),) € C(10, T; H?),
(P, (p7),,) € C(10. TY: HY) N L2([0, T): H?),  (pue. (07),,,) € L2(Q1),
ueC([0,T]; H*) NL*([0, T1; H?), ue € L®([0, T1; Hy) NL*([0, T]; H?),
VPuxe € L%([0,T1; L?).

Remark 1.3. (i) The conditions of po, ,0(7)/ and ug in Theorem 1.2 are not empty. For example, pp =
xP(B > %), and ug is the solution to the elliptic equation (1.6) with zero boundary condition. By the

standard elliptic theory, we get ug € H* N H.
(ii) From Theorem 1.2, we get

(p,u) € C([0, TI; HA(D), peC'([0,T]; H3(D), ue H'([0, TT; H3 (D).

Whether could regularity of (o, u) here be improved further? This will be considered in our forth-
coming paper.

The constant K in the pressure function P(p) doesn’t play any role in the analysis, we assume
henceforth that K =1.

The rest of the paper is organized as follows. In Section 2, we prove Theorem 1.1 by giving the
initial density a lower bound § > 0, getting a sequence of approximate solutions to (1.1)-(1.3) and
taking § — O after making some estimates uniformly for §. The regularities guarantee the uniqueness
of the solutions. In Section 3, based on some new useful estimates such as Lemmas 3.2-3.6, we prove
Theorem 1.2 by the similar arguments as in Section 2.

2. Proof of Theorem 1.1

In this section, we get a unique classical solution of (1.1)-(1.3) with initial density bounded below
away from zero by using some a priori estimates of the solutions based on the local existence.

In this section, we denote “c(T)” to be a generic constant depending on || ool 42, ||,Og||H2, lluolly3,
T and some other known constants but independent of §, for any § € (0, 1).

Before proving Theorem 1.1, we need the following auxiliary theorem.

Theorem 2.1. Consider the same assumptions as in Theorem 1.1, and in addition assume that pg > § > 0. Then
forany T > 0 there exists a unique global classical solution (p, u) to (1.1)-(1.3) satisfying

peCOTEH). peC(0.TEH). pueCO.TEL). o> .

ug € L2([0, T L?), ueC([0, T, H*NHY), ureC([0,T1; HY) NLA([0, T]; H?).
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Proof. The local solutions in Theorem 2.1 can be obtained by the successive approximations like
in [3]. We omit it here for simplicity. The regularities guarantee the uniqueness (refer for instance
to [4]). Based on the local existence of the solutions, Theorem 2.1 can be proved by some a priori
estimates globally in time.

For any given T € (0, o0), let (p, u) be the classical solutions to (1.1)-(1.3) as in Theorem 2.1. Then
we have the following basic energy estimate.

Lemma 2.1. For any 0 <t < T, it holds

t
/(pu2+py)(t)+//u§<c(r). (2.1)
0

I I
Proof. Multiplying (1.1), by u, integrating the resulting equation over I, and using integration by

parts, (1.1)1, (1.7), the Cauchy inequality and the Gronwall inequality, we get (2.1).
This completes the proof of Lemma 2.1. O

Lemma 2.2. For any (y, s) € Qr, it holds

1)
— < ,8) <c(T). 2.2
) py.s) <c(T) (2.2)
Proof. Step 1: we claim p(y,s) < c(T), for (y,s) € Qr.
Denote

t X t x
w(x, t)=/[u(p)ux—pu2 —py]+/pouo+f/pf- (2.3)

0 0 00

Differentiating (2.3) with respect to x, and using (1.1),, we have

Wy = pu.

This together with Lemma 2.1 and the Cauchy inequality gives
/ [wy| < c(T).
I

It follows from (2.3), (1.7), and Lemma 2.1 that

/IWI <c(D).
1

Since W11 < [ we get

Wl qr) < c(T). (2.4)

For any (y,s) € Qr, let x(t, y) satisfy
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dxt.
) _uwey.0), o<t<s,

X(s,y)=1y.

(2.5)

Denote

PR
F(x,t):exp{ f @dé—i—w(x,t)}.

1

It is easy to verify

dF(x(t, y),0)

= 0:F doxF
dt i F +udx

= F(@pf +we + 'ui)'o),oxu +,0u2>

x(t,y)
=<—py+ / pf)F

0

x(t,y)
<F / of,

which implies

t x(t,y)
%[Fexp(—f / pf(é,r)dédr)}go. (2.6)
0

0

Integrating (2.6) over (0, s), we have

s X(T,y)

F(y,s) exp(—/ f pf(é,t)dsdt> < F(x(0,),0),

0 0
which implies

s x(t,y)

F(y,s)gexp</ /
0 0

pf& v)dé dT) F(x(0,),0) <c(T),

where we have used (1.7). This gives

p(y.s)
xp( / “?ds)<c(T>exp{—w<y,s)}<c<T>,

where we have used (2.4). This together with (1.7) completes Step 1.
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Step 2: we claim p(y,s) > CJS—T) for (y,s) € Qr.

aw

Since 2 = p(p)ux — pu? — p¥ + [ pf, 2% = pu, we have

dw(x(t, y),t) _ a_w ow

dt o Yox
X(.y)
= p(P)ux(x(t, y).t) — p¥ (x(t, y). t) + / pf.
0
By (1.1)1, we deduce
PxU Pt
ux(x(t, y),t) = = _ 2
n(p)ux(x(t, y), t) M(P)( ) p)
o (e
=‘E< / M(exp{é})dé)-

This together with (2.7) gives

Inp(x(t,y).t)

% <W(x(t, y).t) + /1 (exp{§}) dé‘)
0
x(t,y)
=—p” (x(t, y).t) + / of.

0

Integrating (2.8) over (0, s) with respect to t, we get

Inp(y.s)
1 (exp{é}) d&
0
In po(x(0,y)) s s X(t,y)

=w(x(0,¥).0) — w(y.s) + / M(EXP{S})dS—/p“r//

0 0 0o 0
Ind
z =2|wllr=@m + / w(expi&}) dg — c(T)
0

> M 1Iné —c(T),

where we have used Step 1, (1.7) and (2.4).
If p(y,s) <1, we have

Inp(y,s)
w(exp{€}) d& < Mqlnp(y,s).

1703

(2.7)

(2.8)

(2.9)

(2.10)
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(2.9) and (2.10) give

8
,O(y’s)?ﬁ- (211)

If p(y,s) >1, (2.11) is obviously true. Step 2 is obtained.
By Steps 1 and 2, the proof of Lemma 2.2 is complete. 0O

Lemma 2.3. For any 0 <t < T, it holds

/uf‘—{—/puf <c(T).
]

Qr

Proof. Using (1.1)1, we rewrite (1.1); as

pue + puux + (p7), = [1(p)ux] + o f- (212)

Multiplying (2.12) by u;, integrating it over I, and using integration by parts and the Cauchy inequality,
we have

1d d
/P”?‘i‘za/ﬂ(ﬂ)“;z« dt oY uy + /M/(p)ptu)%_/puuxut

I 1 I 1

—y/py‘lpruﬁ/pfut

I I
d

Sl A —/M (P) (pu)xu2 + = /put +c(T)/pu2u§

1 I I

+y f PY ! (pu)xux + f puz +c(T) f pf?.

I I

This deduces

YT
~—
el

1d 1
uf + Ed—/u(p)ux < tfp”ux— 5/#’(0)(pu)xu§+C(T)/pu2u§
1 I 1

I

+J//py‘1(pu)xux+c(T)/pf2.
1 1

By (1.7), Lemma 2.2, the Sobolev inequality and integration by parts, we have

3/ 2 1d [
pu; 2t (p)uy
I

d 2
d—/pyux— —fu (p)pu; — —/u (p) pxuuss +C(T)</M(,0)U )
1

I I I
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+V/py‘1pxuux+y/pyu§+c(T)
1 1

d
d—/ ”ux+C(T)</u(p)u ) +C(T)Hu(p)uxHLm/M(p)u
I I I

1 / 2 y—1
5[ H (P)pxuuy +y [ p7 " pxuuy +c(T).
1 1

We will estimate the fourth and the fifth terms of the right side above.

1 _
—E/M’(p)pxuuivtyfp’” T peutiy

I I

_ 1w 2 /Py_1,0x
= z/u%p)”*”[“(p)u"] ) gy o

__ L[ @ _ o7 1/#’(,0) — Y 4 p2¥
= ZI/MZ(p)pxu[u(p)ux pV] +21 Mz(p)pxu[ 2(p)uxp? + p?]

P 1 py oy /pzyilpx
—H/I/ o) ulu(p)ux—p" ] +y o "

1 1 2 w(p) /M(P) 2
== x 14 14 X X -3 14 X

2/(M(p)>xu[ﬂ(mu F’] /u 2(p )p puu[pipyux = p7] 12 (p)p Pl

psy—l y A 2y 1
o f ([ ) soom e ()
I 0 X 0 X

1 1 r

= 5/(m>xu[u(p)ux—py]2 —/(/ SV dS)XU[M(P)Ux—,Oy]

0

Hu(s)

0
() o [ et s (2
2]/</M (5) ds) U+)/l . () ds xu[li(,o)ux 1Y ]+V J ds Xu.

1

Using integration by parts, we have

1[0, _
—E/M (p)pxuuiﬂffpy ! pxuiy
1 1

1 1 2 1
fﬂ(p) [M(p)u 0 ] /M(p)u[u(p)u P ][,u(p)u 0 ]x

p p
w(s) W (s)
+I/(O/ Mz(s)syd5>ux[u(p)ux—py]+1[<0/ 6

s dS) u[p(p)ux — p"],

1705
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p o
w'(s) s7 1
O/u2<s)52yd5)”*_”/</Tds)”x[“(p)”" P

I 0

y pSZV—l
V/(fd5>U[M(p)ux 2 ]X—VI/<O/ e d5>ux.

This together with Lemma 2.2, (2.12), (1.7), the Cauchy inequality, and the Sobolev inequality gives

1
—E/,U«/(P)quu?c+V/Py_],0xuux
1 1

<c(D)| (pux]| o / p(p)uz +c(T) / w(p)uz +c(T)
1 1

o
(L(P)ux — p?)u W (s)s” s7 !
+I/{— ) +O/ 22(5) dsu—yfﬁdsu](puﬂrpuux 12y
2
<c(T)||u(p)ux||Lx/u(p)u + = /put +c(T)(/M(p)u§) +c(T).
1 1 1
From above, we get

5 1d , _d
< — 4 2
/,out + - 2dt np)uy < dt/p ux+c(T)</u(p)ux>
1 1 1

+o(D) | o)y f p(pyug +c(T). (213)
I

2

By Lemma 2.2, (2.12), W1 < [ and the Cauchy inequality, we get

lie(oux s < | (@)ux — p7 | oo +c(T)

<c(T) /HM(P)ux — 7|+ [(1(p)ux = p7), |] +c(T)
<) / (Pl + cm/ o + putty — p | +c(T)
I 1
<) / (P2 + c(DI/Pcl 2 + €(T). (214)

By (2.13)-(2.14) and the Cauchy inequality, we get

E/pu2+13fu<p>uz < i/pyu +¢(T) /u(p)uz fpu +¢(T).
8 ETdr XS dr X X t

1 I I I I

2

OOI'—‘
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Thus,

1 , 1d , _d 2\

— R < — Y . A

2/,0ut toq n(puy < dt/p ux+c(T)<fM(p)ux> +¢(T) (2.15)
1 1 1 1

Integrating (2.15) over (0, t) and using the Cauchy inequality, we have

//put /u(p)u /p”ux+c(T)/</u(p)u ) +¢(T)

2

t
1
<3 / Py +c(T) f ( / u(p)u%) +e(m),

I 0 I

which implies

t
1
5///) uf + /M(p)u c(ﬂ/(/u(p)u) +c(T).
0 I 1

Using the Gronwall inequality and Lemma 2.1, we complete the proof of Lemma 2.3. O
Lemma 2.4. For any 0 <t < T, it holds

f (p? + p2) < (D).

I

Proof. Differentiating (1.1); with respect to x, multiplying the resulting equation by py, integrating
over I, and using integration by parts, we have

1d fpx . /ppx[u(p)ux]x +/ pp,?u/(p)ux'
1 1

2 d_ w(p) w(p)

By (2.12), (2.14), Lemmas 2.2-2.3 and the Cauchy inequality, we have

1d PPx y
EE Px \C(T)HM(IO)UXHLN/pX / (p) /Out+)0uux+(,0 )x_lof]

<c(l) / pu; / pE +c(T) f pE +c(T) / pug +c(T).
I I 1 1

By the Gronwall inequality, and Lemma 2.3, we get

f pz <c().
1
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This together with (1.1); and Lemma 2.3 gives

/ P <c(T).
I

The proof of Lemma 2.4 is complete. O

Lemma 2.5. For any 0 < t < T, we have
/ uz, <c(T).
Qr

Proof. It follows from (2.12), (2.14), (1.7), Lemmas 2.2-2.4 that

T 2
fuﬁxgc(r)/puerc(T)/(/uﬁ) +c(T)/,oX2
Qr 0 Qr

Qr I

T
+¢(T) / llux 120 / P2 +c(T) f f?
0 1

I
<c(T).

This proves Lemma 2.5. O

Lemma 2.6. For any 0 <t < T, it holds
/,out2 + / u,zq <c(T).
1 Qr

Proof. Differentiating (2.12) with respect to t, we have

PUtr + PrUt + PrUly + pUrly + pUUx + (Py)xt = [M(P)Ux]xt +pocf +pft. (2.16)

Multiplying (2.16) by u;, integrating over I, and using (1.1); and integration by parts, we have
1d
5&/0”?4‘/#(,0)“,%
I I

:_Z/IOUUtUxt—/ptuuxut—/Pugux‘f‘/)’loyilptutx

I I I I
—//l(p)ptuxuxt+fptfut+/pftut
I I I

<20Vpucllzllvpullieslluxell 2 + el lullze o 12 luxll 2
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-1
+||ux||Lw/Put2+V||P|I{oc locll 2 Nuxe ll 2 + (T oell 2 [uxll oo [t |l 12
I
+ lluclie loell 2 I fllz + Nuelliee loll 2 Nl fell 2

This, combining Lemmas 2.2-2.4 and the Cauchy inequality, gives

1d 2 2
EE/put +/M(P)“xt
I i

<M (IIvpuell2 + lluxxllyz + 1 felli2 + 1) [V (0)uxe ]| 12 + e(T) (luxxll 2 + 1)/,011?
I

1
<5/u@Mi+dDmep+U/p#+dn/ﬁi+dn/ﬁ%max
I 1

I I

which implies

Q..lm_

t/mﬁ+/uww§<dnmwmn+0/p#
1 1

I

+c(T)/u§X+c(T)/f3+c(T). (2.17)
1 1

By (1.6) and (2.12), we have

1
ue(x,0) = m[#(ﬂo)%x - 0§ ], — (uouo)(x) + f(x,0)
= g(x) — (UuoUox) (X). (2.18)

Integrating (2.17) over (0, t), and using Lemma 2.5 and (2.18), we have

t t
/pu?Jrf/M(p)uit <c(T)/(||uxx||Lz +1)/puf+c(T).
0 I 0 1

1

Using the Gronwall inequality together with Lemma 2.5 and (1.7), we complete the proof of Lem-
ma 2.6. O

Lemma 2.7. For any 0 < t < T, it holds

/ uz, <c(T).

I
Proof. First, we claim
luxlleor) < c(T). (2.19)

In fact, this can be obtained directly by (2.14), Lemmas 2.3 and 2.6.
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It follows from (2.12), (2.19), (1.7), Lemmas 2.2-2.4, and Lemma 2.6 that

/ u2, <c(T).

1

This completes the proof of Lemma 2.7. O

Lemma 2.8. For any 0 <t < T, it holds

[ 103+ 02+ 107) ol + 1071+ [ 108 +1(07) P < et
I Qr

Proof. From (1.1)1, we have

Pxxt = —PxxxU — 3 PxxUx — 3 Pxlxx — PUxxx- (2.20)

Multiplying (2.20) by pxx, integrating over I, and using integration by parts, we have

e s
2dt Pxx = 3 PxxUx PxPxxUxx PPxxUxxx
1

1 I 1

< C(T)IluxllLOO/,Ofx + 3|l oxllzoe | oxxll g2 [[uxxll 12 4 | 21 | Oxxll 12 [ [ 2
I

By the Sobolev inequality, the Cauchy inequality, Lemmas 2.2-2.4, Lemma 2.7 and (2.19), we have

1d
EE/P)%X<C(T)/P§X+C(T)(1 + lloxxll12) 1 Pl 2+ (T 1l oxxl 2 | teex [ 2
I I

<em) [ Pt [ubrem. (221)
1 1

Multiplying (1.1); by yp?~!, we have

(p7),+ (p7)u+ypYux=0, (2.22)
which implies
(py)xxt + (py)xxxu +( +2) (py)xxux +@Qy + 1)(pV)xuxx + J//OyuXXX =0.

Similarly to (2.21), we get

1d
53/|(py)xx|2 <c(T)/|(pV)XX|2+c(T)fu,%xx+c(T). (2.23)
1 I T
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(2.21) and (2.23) imply
d
o [ @A) < [ 1(07)of) + D) [id+-cam.
I I I

The next step is to estimate the term [, u2,,.
Differentiating (2.12) with respect to x, we have

(O Ux = =24 () Pxlxx + Pxlt + PlUxt + PxUlx + ,Ou>2< + puuxx + (py)xx

- M//(P)P;%Ux — W (p)pxxtix — px f — p fx.
(2.25), combining (1.7), Lemmas 2.2-2.4, Lemma 2.7 and the Sobolev inequality, gives
2 2 2 Yy |2 2
Up <€) | pi+ (M) + () [ uge+cT [ |(07), ] +cDIfIZ:.
I I 1 I
Since f € C([0, T]; H'), we have
2
/ U < C(T) / [0 + (07 ) | T+ (T f ug +¢(T).
I I I
By (2.24) and (2.26), we get
d 2 2 2 2 2
m / (o [(P7) ) < €T / (o + [ (07 ) ) + (D / uf + (1.
I I I
By Lemma 2.6 and the Gronwall inequality, we get
2
[ @2+ 1(e7) o) < e
I
This, combining (1.1)1, (2.22), Lemmas 2.2-2.4, Lemmas 2.6-2.7, immediately gives
2 2 2 2
1241071+ [[62 +1(67) T < e
I Qr

The proof of Lemma 2.8 is complete. O
From (2.26), Lemmas 2.6 and 2.8, we immediately get the next result.
Lemma 2.9. For any 0 < t < T, it holds

f uz,, <c(T).
Qr

1711

(2.24)

(2.25)

(2.26)
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Lemma 2.10. For any 0 <t < T, it holds

/uit—i—fpuftgc(T).
[

Qr

Proof. Multiplying (2.16) by uy, integrating over I, and using integration by parts, (1.7), Lemma 2.2
and the Cauchy inequality, we have

1d
/Pu?t+§afﬂ(p)”)2<t

1 I

1
= 5/M’(,o),otu,zct—f,u/(,O),OtUxert4—/(,Otf'1‘,0ft)urr
1

I I

- /[ptututt + PrUllyUee + PUrUxUe + PUUxeUsr — (py)tuxtt]
I

1
<c(Dllpellg /M(p)u;zﬁ_/M/(p)ptuxuxtt_/(ptututt+ptuuxutt)+Z/pu?t
I i I I

(T / pu? + c(T)lul2 / w2, + / (07 ) ttee + / pu g +(T) / 12
1 I 1 1

1

By Lemmas 2.3-2.4, Lemmas 2.6-2.8, (1.7), the Cauchy inequality and the Sobolev inequality, we have

3,0 , 1d 5
2| Pt 5 m(p)uy,
I I

<C(T)/H«(P)U;2q _/M/(p)ptuxuxtt_/Ptututt_fptuuxutt+/(py)tuxtt
1

I I I I

+ / pefuge +c(T) f fE+c(T)
I

I

d
<c(T) / (P — A R / (1" (0) pF uxtixe + I (0) Preixtixe + 1 (0) pritg ]
I

1 I
1d 5 1 , d 5
T odr pPruy + 5 Prely — i PrullxUs + (Pttuuxllt + prugux + ,Otuuxtut)
I I I 1

d d
+a/(py)tuxt—f(/oy)n“xt-i-E/Ptfut—/(Pttf-i‘/)tft)ur-i-C(T)/ftz+C(T)
I I I

1 1

2 d ! 1 2 y
<c(M) | plp)ug — al* (0) pruxtixe + 5Pt + pruuxue — (p7) txe — pr fur
I I

+¢(T) / g+ (D llugl i + (T) f 1(07) ) + (T / fE+a).
1 1 1
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Since [|u¢lfo < (f;u2)? < c(T)(f; m(p)u2)?, we have

3,0 5, 1d
1 PuU + = 2dt :Uv(/)) Xt
I I

<— dt {M(p)ptuxuxt+ PeUf + peuuyue — (p”)tuxt—prfut}

2
+c(r)< / u(p)uﬁf) e [+ 10" [ ] +en) [ f24em. @)
1 1 1

Integrating (2.27) over (0, t), and using Lemma 2.8, we have

t
3 2 1 2
2 oU + 3 W)Uy,
0 I

1

1
E/M(po)uxt(x 0) — /{M (P)ptuxuxt+ ptu[ + prutyue — (p7) Ut _,Otfut}
1 1

1
+ /{V«,(lo)ptuxuxt + E,Otutz + pruuxus — (py)tuxt - Ptfut}(X, 0)
I

¢ 2
+c(T)/</u(p)u§[> +¢(T). (2.28)
0

1
By (1.1)1, we get

Pele=o = —(poto)x € H'. (2.29)

(2.18), (2.28) and (2.29) show

t
//pU?tJr fu(p)uxt
[

1
_/{M/(p)ptuxuxt + E,Otuf + prutxUs — (,Oy)fuxt - ;Otfut}
I

£ 2
+c(T) / ( / M(p)lﬁt) +c(T)
0 I

1
S c(Dllpellp2 lluxlizee lluxellp2 + 5 /(Pu)xuf + lloclip2 lull oo lluxll g2 luell Lo

AW
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¢ 2
+ [ (p7), ]| 2 Nuxell2 + Nuellees | Fll 2l oell 2 + ¢(T) / ( / u(p)ui) +c(T)
0 I

L 2
<c(D)|Vi(p)ux || 2 —/puutuxt+C(T)||ut||L°° +C(T)/(/M(p)u§t> +c(T)
1 0 1

¢ 2
1
< qu(p)uft+C(T)/(fu(p)l§t> +c(T),
I 0 I

which implies

t

L 2
f (p)ug + / / pug < c(T) / ( / M(p)u§t> +c(T). (2.30)
I 0 I I

0

Here we have used Lemmas 2.2-2.4, Lemmas 2.6-2.8, (1.7), the Hoélder inequality, the Sobolev in-
equality, and the Cauchy inequality. By Lemma 2.6 and the Gronwall inequality, we can complete the
proof of Lemma 2.10. O

Lemma 2.11. For any 0 <t < T, it holds

[U§XX<C(T), (2.31)
1
/ uz,, <c(T). (2.32)
Qr

/[ptzt+ (7)1 <. (2.33)

I

Proof. By (2.26), Lemmas 2.8 and 2.10, we get (2.31). (2.32) can be obtained by (2.16), Lemmas 2.2-
24, Lemmas 2.7-2.8, Lemma 2.10. From (1.1);, Lemmas 2.2-2.4, Lemmas 2.8 and 2.10, we have
(233). O

From above, we get the following estimates

8
) <pxt) <c(T), (2.34)
and
[ 27 ) 2 + 1o (7)) + [ (ot (07 )ee) [ 12 + Ntz + el
+ f(PU?t + ) < (), (2.35)
Qr
where ¢(T) is a positive constant, independent of § and ||(-,")||x = || - llx + || - llx, for some Banach
space X.

The proof of Theorem 2.1 is complete. O
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Proof of Theorem 1.1. To prove Theorem 1.1, we construct a sequence of approximate solutions to
(1.1)-(1.3) by giving the initial density a positive lower bound § and using Theorem 2.1. Then, we get
some estimates uniformly on &8, and take limit § — O (take a subsequence if necessary). After that,
we get existence of classical solutions to (1.1)-(1.3).

More precisely, we denote ,og = po+3. ug is the unique solution of the following elliptic problems
for each § > 0:

[(0)ud] @ — [p(0d)], 0 = P§® [~ FX.0) + g®)], x€(0,1), (2.36)

and

)
up|, o, =0. (2.37)

Since po, p) € H?, we have as § — 0
5 2
05— Po, inH?, (2.38)
(0d)” — py, inH2. (2.39)

From (2.36)-(2.39) and the elliptic theory (please refer to [6])

uy — uo, inH3, (2.40)

as § — 0.
Consider (1.1), (2.36) with initial boundary data

(0% u)],_o = (05, up), inl,
and
u5|31 =0, fort>0.

We can get a unique solution (p%, u®) for each § > 0 by Theorem 2.1, with the following estimates:

s 5
) <P, 1) <c(T), (2.41)

and

[ PNz + 1ot P(0°)) ligs + (ot P(0") o) 12+ [ 5

+ [ [ + /(p(S!”ft‘z + ‘uixt|2) <), (2.42)
Qr

where c(T) is a positive constant, independent of §.
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Based on the estimates (2.41) and (2.42), we get a solution (p, u) to (1.1)-(1.3) after taking limit
8 — 0 (take the subsequence if necessary):

p eL™([0,TI; H?), prel®([0, T H'), puel™®([0,TI;L?), p>0,
(P7) o €L7(10, TEL%), - (p7), €L°(10, TL 1%), (o), €17(10, T1; L),
uel™([0, T; H* NHY), ue e L®([0, TT; HY) NL*([0, T1; H?).

Since u € L°°([0, T]; H?) and u; € L*°([0, T1; H(l)), we have u € C([0, T]; H?) (please refer to [6]). This
together with (1.1)1, (2.22) and [3] implies

p € C([0,T1; H?), (2.43)
and
p? € C([0, T]; H?). (2.44)
Denote G = [(p)ux — p¥1x + o f. By (2.12), (1.7) and the regularities of (p, u), we have
G = pue + puuy € L*([0, T1; H?),
Ge = [1(p)ux — p" ] + (e € 1*(10, T1; L?).
From the embedding theorem ([6]), we have G € C([0, T]; H'). Since pf € C([0, T]; H!), we get
[1(p)ux — p?], € C([0.T]; H').
This means
m(p)ux — p¥ € C([0, T1; H?). (2.45)
By (2.44) and (2.45), we get
1 (p)uy € C([0, T1; H?).
This together with (1.7) and (2.43) implies
ueC([0,T]; H?). (2.46)
By (1.1)1, (2.43) and (2.46), we obtain
pe € C([0, T]; H). (2.47)
It follows from (1.1)3, (2.43)-(2.44), (2.46) and (1.7) that
(pu) € C([0, T]; H). (2.48)

Differentiating (1.1); with respect to t, we have

Pre = —(pU)¢x.
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This combining (2.48) gives
pi € C([0, T1; L?). (2.49)
By (2.22), (2.44) and (2.46), we get
(p¥), €C(0.T]; H').

The existence of global classical solutions as in Theorem 1.1 is obtained. The uniqueness of the
solutions can be proved by the standard method like in [4], we omit it for simplicity. The proof of
Theorem 1.1 is complete. O
3. Proof of Theorem 1.2

Before proving Theorem 1.2, we need the following auxiliary theorem.

Theorem 3.1. Consider the same assumptions as in Theorem 1.2, and in addition assume that pg > § > 0. Then
forany T > O there exists a unique global classical solution (p, u) to (1.1)-(1.3) satisfying

peC([0,TI:HY), preC([0,T]:H?), py € C([0,T]: H') NL3([0, T; H?),

(=2}

pue € L2(Q1), p = — . wec(o Tk H* N Hg) N L*([0, T1; H?),
ug € C([0, TI; H*) N L*([0, T1; H?), ug € C([0, T1; L*) NL*([0, T1; Hy).
Proof. Similarly to the proof of Theorem 2.1, Theorem 3.1 can be proved by some a priori estimates
globally in time. Since (2.34) and (2.35) are also valid here, we need other a priori estimates about
higher order derivatives of (p, u). The generic positive constant ¢(T) may depend on the initial data
presented in Theorem 1.2 and some other known constants but independent of 3.
Lemma 3.1. For any 0 <t < T, it holds
2 2 2 2 2 2 2
/['OXXX + Pt + |(on)xxx| + |('Oy)xxt| 1+ /[Pm + |('0y)xtt| + U] < €(T).
1 Qr

Proof. Differentiating (2.20) with respect to x, we have

Pxxxt = — Pxxxxd — 4Pxxxlx — 6 0xxUxx — 40xUxxx — PUxxxx- (3.1)

Multiplying (3.1) by pxxx, integrating the resulting equation over I, and using integration by parts,

we have
1d
5 d_ = :Oxxx OxxPxxxlixx — 4 | PxPxxxlxxx — | PPxxxUxxxx
1 1 1

I

2
< §||Ux||L°°/Pxxx + 6lluxxllLoo || oxxll 2 | Oxxxll 2

+ 4|l oxllLoo | Oxxx l 2 x|l 2 + | O 11200 || Oxxex Il p2 | Uxxxx |l 2 -
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By the Sobolev inequality, (2.34)-(2.35) and the Cauchy inequality, we get

1d
Ed_/pxxx C(T)/pxxx+C(T)/ xxxx+C(T) (3'2)
I
Similarly to (3.2), we get from (2.22)
1d y
St | 107l <€D [1(07 )" e [ e+ (3.3)
I
By (3.2) and (3.3), we have
[t 107 ool <) [0t (07 )l 4D [ ted. 3)
d t pxxx 1Y XXX X Pxxx P XXX XXXX . 4
I
Differentiating (2.25) with respect to x, we have
(P Uxxxx = =3 (0) Ptk — 31 (0) Prxxlixx — BM//(p)p;%uxx + Pxxlit + 2 pxlxt
+ Pl + (PxUUx)x + (,OU,%)X + (pux)x + (,OV)XXX - MW(,O),OX Ux
= 31" (p) pxPxxlix — L' () Pxxxtix — Paxf — 2Pxfx — P fxx- (3.5)
By (3.5) and (2.34)-(2.35), we have
/ 2 e <e(T) f P2 (07 o) (T / 2 4D f iaem.  (36)

Combining (3.4) and (3.6), we get

d 2
a | (P + (07 )| 7) <€) / P+ (07 ) el ) + (D) f xe +(T) / Facte(D).
By the Gronwall inequality and (2.35), we obtain

/(’Ofxx + |(py)xxx|2) <c().

I

(3.7)

It follows from (2.20), (2.22), (1.1)1, (2.34), (2.35), (3.6) and (3.7) that
[Tk + 01 [ 103+ 1007 ) + ] < e
Qr

The proof of Lemma 3.1 is complete. O
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Lemma 3.2. For any T > 0, we have

” (ﬁ)x||Lm(QT) + ” (\/ﬁ)f”[_o@(QT) < C(T)

Proof. Multiplying (1.1); by we have

1

2P’
1

WP+ (Vp)xu + i«/ﬁux =0. (3.8)

Differentiating (3.8) with respect to x, we get

3 1
(\/ﬁ)xt + («/ﬁ)xxu + E(ﬁ)xux + E\/ﬁuxx =0.

Denote h = (,/p)x, we have

3 1
he + hyu + Ehux + Eﬁum =0,

which implies

t t

d 3 1 3
a{hexp(ifux(x(r,y),t)dr>} =—Eﬁuxxexp<§/ux(x(r,y),r)dt>, (3.9)

0 0

where x(t, y) is the solution to (2.5).
Integrating (3.9) over (0, s), we get

N

3
h(y,s) = exp(—i / ux(x(t, ). 7) df>h(x(0, ).0)
0

N t

_;exp<—3/ux(x(t,y),r)dt)/\/ﬁuxxexp<:;/ux(x(t,y),r)dt) de.
0

0 0

This together with (2.35) implies

From (2.34)-(2.35), (3.8) and (3.10), we get

|VP)ell gy < (D
The proof of Lemma 3.2 is complete. O

The next lemma plays the most important role in this section.
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Lemma 3.3. For any 0 <t < T, it holds

/(P3“t2t + P“ixt) + /(qu)zctt + u>2<xxt) <.
I Qr

Proof. Differentiating (2.16) with respect to t, multiplying the resulting equation by p2uy, integrating
over I, and using integration by parts and the Cauchy inequality, we have

1d
5E/p3uf2t+/u(p)p2u)2m

1 1

/Pzptutzt - /[,Ottut + Peelly + 20¢Uply + 2 0p ULy + 20UgUye + (py)m](pzun)
I

1
2

/ pPuluy — f pPutlgtiy — / [1 (0) pEux + W () pretix + 214" (0) petixe ] (0% tixer)
1 1

-2 / (1 (0) pFux + 1 (0) pretix + 248 () ettt + 1 () Uxee | (0PxUer)
1

+f(/0ttf+2/Otft+pftt)(p2utt)
I

<c(T)/pU?t+c(T)H (0) e |22 + /M(,O)P Uk
1

1

—4 / () Uit/ Pliee (/P )x + €D (I fe 25 + I fee I 22) + c(T)

1

2
<2 f WP +c(T) / P+ (D) (0) |22
1

+¢(T) / pu2| (VP)x|* +c(T) f f2+¢(T) / fE+c).
I 1 I

This together with Lemma 3.2 implies

1d
Ed_ :0 utt /M(p)p uxtt
<cm) [ pud+ e [1(67) ]+ [ (524 1) +cm. (31)
1 1 1

Integrating (3.11) over (0, t), and using (2.35) and Lemma 3.1, we get

t
1 1
fp u + 5//#(0)/0 UZy < 3 [p uZ(x,0) +c(T). (3.12)
0

I
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By (2.16), (2.18), (2.29), (3.12), (1.7) and (,/00&x)x € L?, we have

/ P ug + / PPy < c(T). (313)
1 Qr

Differentiating (2.16) with respect to x, we get

(P Uxxxt = =21 (0) Pxtiexx — 21" (0) PxPrthxx — 214" () Pxethxx — 24" (0) Pxt Pt
— W () Petixxx — 1" (P) P2 petix — I (0) e Pxtix — I (0) Prelix
— W) pruxt — W' () Pxxlixt + 2(/D )xn/Plltt + Plixet + Patlic + Prlixe
+ Pl + PUZ + Pelillg + PxUelx + 2PUxelx + Py + OxUllye
+ puttxe + (07) e — Oxe f = P fx — pxfe — P fe.

This together with (1.7), (2.35), (3.13) and Lemmas 3.1-3.2 implies

/ U2 <c(T).
Qr

By (2.16), (2.34)-(2.35), and (3.13), we have

/,ou,zm <c(T).

1

The proof of Lemma 3.3 is complete. O

Lemma 3.4. For any 0 < t < T, it holds

2
/(p)%xxx+ |(py)xxxx| )+ [ u)%xxxx <c(D).
I Qr

Proof. Differentiating (3.1) with respect to x, multiplying the resulting equation by pxxxx, integrating
over I, and using integration by parts, we get

1d 2 9 5
S | Prox=—5 | Proxtix — 10 | PxxxPxxxxtixx — 10 | Oxx Oxxxx U
2dt 2

1 1

I 1

-5 / Px PxxxxUxxxx — / L PxxxxUxxxxx
1 1
<ell) [ Pt €0 [t 60T [ WD, (314)
I I 1

Similarly, we have

1d
it 10 ) ol” <@ 107 40 [ e [ e, 315)
1 1 I 1
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By (3.14) and (3.15), we obtain
d
dt (onxxx + |( xxxx| ) < C(T)/ pxxxx + ’( xxxx| ) + C(T)/ XXXX
+¢(T) / U2y + C(T).
I

Now we estimate the third term of the right-hand side of (3.16).
Differentiating (3.5) with respect to x, we have

() e = =411 () Pk — 614" () P2 Uxx — BIL' () Prxnx
— 120" (D) xPrxliz — 418 (D) Prxline — 4" (0) 3 U + Prxe
+ 3Pxxlint + 3Pxlixxt + Pllxr + (Pxlitlo)xx + (PUZ)
+ (ULt )+ (07) e — 1" (0) P Ux — 614" () 5 Prcxlix
— 31" (0) PAlx — A" (0) Pxrxlix — I (0) Prxuxli

— Pxxx S — 30xx fx — 30x fxx — P Faxx-

/ 12 < C(T) [ 12+ C(T) / w2 +c(T) /

+ C(T) /(pfxxx + ’(py)xxxx‘ ) + C(T) /(fxzx + szXX) + C(T)’
I I

Therefore,

where we have used (1.7), (2.34)-(2.35), Lemma 3.1.
By (3.16) and (3.17), we obtain

d
dt ('OXXXX |(py)xxxx‘2) = C(T)/ 'OXxxx ’(py)xxxx’ ) + C(T)/. xx

I

(3.16)

(3.17)

o) [ +e@) [ e (ot ) +em.
1 1 1

Using the Gronwall inequality, (2.35), Lemmas 3.1 and 3.3, we get
2 2
/(pxxxx + |(on)xxxx} ) <ce(D).
I
It follows from (3.17), (3.18), (2.35), Lemmas 3.1 and 3.3 that
[ e,
Qr

This proves Lemma 3.4. O

(3.18)

(3.19)
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Lemma 3.5. For any 0 <t < T, it holds
[ <.
I

Proof. From (2.35), Lemmas 3.1, 3.3, and 3.4, we get

lullp20,1: 15y < €(T), (3.20)

and

luellp20,;m3) < (T). (3.21)

By the embedding theorem (cf. [6]), (3.20), (3.21) show

lullcgo, 14 < €(T).

This proves Lemma 3.5. O

From (1.1)1, (2.22), (2.34)-(2.35), Lemma 3.1, Lemmas 3.3-3.5, we immediately get the following
lemma.

Lemma 3.6. For any 0 < t < T, it holds

J 103+ 107 )+ P+ 1007 el
I

+ /[Ptztt + |(py)m|2 + ngtt + |(,0y)xm|2] <c(T).
Qr

Here we have used the following inequality

2
prug = 2{(V/P)xv/P} uf < c(T) pugy.

From above estimates, we get

B
o < px,t) <c(D), (3.22)

and

[Pl + 1Pl + (0 27 Y ga + (ot (7))
+ 1 (oees (07 ) o) |1 + Mg+ el + [ 07 e | 2 + /Pt 2
+ f {pzu)ztl’t + pu?t + u)2<xt + u)2<XX[ + u)2<XXXX + Iotzt[ + |(py)tft|2 + p)%xtt + |(IOV)XX”|2}

Qr
< (D). (3.23)
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From (3.22) and (3.23), we get

lollge + loellgs + loeellgr + lullga + luellgz + lueell 2

+ /(u?(tt + u)2<xxt + u)2<xxxx + ptztt + p;%xtt) < C(T’ 8)’ (3-24)
Qr

where ¢(T, §) is a positive constant, and may depend on 3.
The proof of Theorem 3.1 is complete. O

Proof of Theorem 1.2. To prove Theorem 1.2, we follow the similar arguments as in Section 2. After
taking § — 0 (take subsequence if necessary), we get a solution (p, u) to (1.1)-(1.3) satisfying

(p.p?) € L®([0. TI: HY).,  ((WP)x. WP)) €L%(Q1), (o1, (07),) € L(10. T1; H3),
(pie. (p7),,) € L°(10. TI: HY) N L2([0, T H), (ot (07) ) € L2(Q1).
uel®([0, TI; H*) N L2([0, T1; H°), ur € L®([0, TT; HY) NL*([0, T1; H?),

Pk € L2([0, T1; L?).
Since
uel?([0,T]; H?),  ueL*([0,T1; H?),
(pff’ (py)tt) € LZ([O’ Tl; Hz)’ (Iofff’ (py)m) € Lz([o’ Tl; Lz)’

we apply the embedding theorem in [6] to get

ueC([0, T HY), (o (0¥),) €C(10,. T]; HY). (3.25)

By (3.25), u € L2([0, T]; H?), (1.1)1, (2.22) and [3], we have

peC(0,.T;HY),  p¥eC([0, T HY), (o1 (07),) € C(10. T1; H?).
The proof of Theorem 1.2 is complete. O
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