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Abstract

In this paper, we study topological properties of semidynamical systems whose continuous dynamics are
interrupted by abrupt changes of state. First, we establish results which relate various concepts as stability of
Lyapunov, weakly almost periodic motions, recurrence and minimality. In the sequel, we study the stability
of Zhukovskij for impulsive systems and we obtain some results about uniform attractors.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

The theory of impulsive systems has been intensively investigated since this theory presents
important applications. The reader may consult [1,9,13,14,16,23,24], for instance.

The present paper concerns with the topological study of semidynamical systems with im-
pulses. We deal with results which encompass periodicity, recurrence, minimality, attractors and
stability.

In [2], many recursive concepts (minimality, recurrence and almost periodic motions) are pre-
sented for continuous dynamical systems. Most of these results were generalized for impulsive
systems, see [8,18,22] for example. However, many other properties of minimality, recurrence,
weakly almost periodic motions, stability and attractors still need to be studied for the impulsive
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case. In this way, we present in this paper a study of recursive motions via stability theory (Lya-
punov stability and Zhukovskij quasi stability). In the next lines we describe the organization of
the paper and the main results.

We start by presenting a summary of the basis of the theory of semidynamical systems with
impulse effects. In Section 2, we give some basic definitions and notations about impulsive semi-
dynamical systems. In Section 3, we present some additional definitions and various results that
will be very useful in the proof of the new results. Section 4 and Section 5 concern the main
results of this paper. In the sequel, we mention some of these results.

In Section 4, we start by presenting the concept of weak almost π̃ -periodic motions which was
introduced by Saroop Kaul in [18]. We give sufficient conditions for a weakly almost π̃ -periodic
point to be π̃ -recurrent, see Theorem 4.1. In Theorem 4.2, we show that a given point belongs to
its limit set provided this point is weakly almost π̃ -periodic and it does not belong to the impul-
sive set. The converse of Theorem 4.2 does not hold in general and we show a counterexample
in Example 4.1. Following the results proved in the continuous case, we show that a π̃ -recurrent
point is weakly almost π̃ -periodic provided it is Lyapunov π̃ -stable, see Theorem 4.3.

In Theorem 4.4, we present sufficient conditions for the limit set of a given point to be mini-
mal. Moreover, it is shown that if the points from the limit set which are outside of the impulsive
set are Lyapunov π̃ -stable, then these points are weakly almost π̃ -periodic. Theorem 4.5 shows
that the limit set of a point is minimal if and only if the trajectory of this point approaches uni-
formly to its limit set.

Section 5 deals with the quasi stability of Zhukovskij. In impulsive semidynamical systems,
this kind of stability was introduced by Changming Ding in [15]. In Theorem 5.1, we show that
the limit set of a given point is minimal provided the points of this limit set which are not in the
impulsive set are Zhukovskij quasi π̃ -stable. As consequence of this result, we give sufficient
conditions for the points of a limit set which are not in the impulsive set to be π̃ -recurrent, see
Corollary 5.1.

Theorem 5.2 presents some conditions for a point to be periodic. In the last result, namely
Theorem 5.3, we establish sufficient conditions for a limit set to be a uniform π̃ -attractor.

2. Preliminaries

Let X be a metric space and R+ be the set of non-negative real numbers. The triple (X,π,R+)

is called a semidynamical system, if the function π : X×R+ → X is continuous with π(x,0) = x

and π(π(x, t), s) = π(x, t + s), for all x ∈ X and t, s ∈ R+. We denote such system simply by
(X,π). For every x ∈ X, we consider the continuous function πx : R+ → X given by πx(t) =
π(x, t) and we call it the motion of x.

Let (X,π) be a semidynamical system. Given x ∈ X, the positive orbit of x is given by
π+(x) = {π(x, t): t ∈ R+}. Given A ⊂ X and t � 0, we define

π+(A) =
⋃
x∈A

π+(x) and π(A, t) =
⋃
x∈A

π(x, t).

For t � 0 and x ∈ X, we define F(x, t) = {y ∈ X: π(y, t) = x} and, for � ⊂ [0,+∞) and
D ⊂ X, we define

F(D,�) =
⋃{

F(x, t): x ∈ D and t ∈ �
}
.

Then a point x ∈ X is called an initial point if F(x, t) = ∅ for all t > 0.
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An impulsive semidynamical system (X,π;M,I) consists of a semidynamical system,
(X,π), a nonempty closed subset M of X such that for every x ∈ M , there exists εx > 0 such
that

F
(
x, (0, εx)

) ∩ M = ∅ and π
(
x, (0, εx)

) ∩ M = ∅,

and a continuous function I : M → X whose action we explain below in the description of the
impulsive trajectory of an impulsive semidynamical system. The set M is called the impulsive
set and the function I is called impulse function. We also define

M+(x) =
(⋃

t>0

π(x, t)

)
∩ M.

Let (X,π;M,I) be an impulsive semidynamical system. We define the function φ : X →
(0,+∞] by

φ(x) =
{

s, if π(x, s) ∈ M and π(x, t) /∈ M for 0 < t < s,

+∞, if M+(x) = ∅.

This means that φ(x) is the least positive time for which the trajectory of x meets M . Thus for
each x ∈ X, we call π(x,φ(x)) the impulsive point of x.

The impulsive trajectory of x in (X,π;M,I) is an X-valued function π̃x defined on the subset
[0, s) of R+ (s may be +∞). The description of such trajectory follows inductively as described
in the following lines.

If M+(x) = ∅, then π̃x(t) = π(x, t) for all t ∈ R+ and φ(x) = +∞. However if M+(x) 	= ∅,
there is the smallest positive number s0 such that π(x, s0) = x1 ∈ M and π(x, t) /∈ M , for 0 <

t < s0. Then we define π̃x on [0, s0] by

π̃x(t) =
{

π(x, t), 0 � t < s0,

x+
1 , t = s0,

where x+
1 = I (x1) and φ(x) = s0. Let us denote x by x+

0 .
Since s0 < +∞, the process now continues from x+

1 onwards. If M+(x+
1 ) = ∅, then we define

π̃x(t) = π(x+
1 , t − s0) for s0 � t < +∞ and φ(x+

1 ) = +∞. When M+(x+
1 ) 	= ∅, there is the

smallest positive number s1 such that π(x+
1 , s1) = x2 ∈ M and π(x+

1 , t − s0) /∈ M , for s0 < t <

s0 + s1. Then we define π̃x on [s0, s0 + s1] by

π̃x(t) =
{

π(x+
1 , t − s0), s0 � t < s0 + s1,

x+
2 , t = s0 + s1,

where x+
2 = I (x2) and φ(x+

1 ) = s1, and so on. Notice that π̃x is defined on each interval
[tn, tn+1], where tn+1 = ∑n

i=0 si . Hence π̃x is defined on [0, tn+1].
The process above ends after a finite number of steps, whenever M+(x+

n ) = ∅ for some n. Or
it continues infinitely, if M+(x+

n ) 	= ∅, n = 0,1,2, . . . , and in this case the function π̃x is defined
on the interval [0, T (x)), where T (x) = ∑∞

si .
i=0
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Let (X,π;M,I) be an impulsive semidynamical system. Given x ∈ X, the impulsive positive
orbit of x is defined by the set

π̃+(x) = {
π̃(x, t): t ∈ [

0, T (x)
)}

.

Given A ⊂ X and t � 0, we define

π̃+(A) =
⋃
x∈A

π̃+(x) and π̃ (A, t) =
⋃
x∈A

π̃(x, t).

Analogously to the non-impulsive case, an impulsive semidynamical system satisfies the fol-
lowing standard properties: π̃ (x,0) = x for all x ∈ X and π̃ (π̃(x, t), s) = π̃(x, t + s), for all
x ∈ X and for all t, s ∈ [0, T (x)) such that t + s ∈ [0, T (x)). See [4] for a proof of it.

For details about the structure of these types of impulsive semidynamical systems, the reader
may consult [3–8,10–12,17–19].

3. Additional definitions and results

Let us consider a metric space X with metric d . By B(x, δ) we mean the open ball with
center at x ∈ X and radius δ > 0. Given A ⊂ X, let B(A, δ) = {x ∈ X: d(x,A) < δ} where
d(x,A) = inf{d(x, y): y ∈ A}.

Let (X,π) be a semidynamical system. Any closed set S ⊂ X containing x (x ∈ X) is called
a section or a λ-section through x, with λ > 0, if there exists a closed set L ⊂ X such that

(a) F(L,λ) = S;
(b) F(L, [0,2λ]) is a neighborhood of x;
(c) F(L,μ) ∩ F(L,ν) = ∅, for 0 � μ < ν � 2λ.

The set F(L, [0,2λ]) is called a tube or a λ-tube and the set L is called a bar. Let (X,π;M,I)

be an impulsive semidynamical system. We now present the conditions TC and STC for a tube.
Any tube F(L, [0,2λ]) given by a section S through x ∈ X such that S ⊂ M ∩ F(L, [0,2λ])

is called TC-tube on x. We say that a point x ∈ M fulfills the Tube Condition and we write (TC),
if there exists a TC-tube F(L, [0,2λ]) through x. In particular, if S = M ∩ F(L, [0,2λ]) we
have a STC-tube on x and we say that a point x ∈ M fulfills the Strong Tube Condition (we write
(STC)), if there exists a STC-tube F(L, [0,2λ]) through x. The theory about tube may be found
in [10].

The following theorem concerns the continuity of φ which is accomplished outside M for M

satisfying the condition TC.

Theorem 3.1. (See [10, Theorem 3.8].) Consider an impulsive semidynamical system (X,π;
M,I). Assume that no initial point in (X,π) belongs to the impulsive set M and that each
element of M satisfies the condition (TC). Then φ is continuous at x if and only if x /∈ M .

In the sequel, for each x ∈ X, we consider that the motion π̃(x, t) is defined for every t � 0,
that is, [0,+∞) denotes the maximal interval of definition of π̃x .

Let A ⊂ X. If π̃+(A) ⊂ A, we say that A is positively π̃ -invariant. And, a set A is I -invariant
if I (x) ∈ A for all x ∈ A ∩ M .
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The limit set of a point x ∈ X in (X,π;M,I) is given by

L̃+(x) = {
y ∈ X: there is a sequence {tn}n�1 ⊂R+

such that tn
n→+∞−→ +∞ and π̃(x, tn)

n→+∞−→ y
}
,

and the prolongational limit set of x ∈ X is given by

J̃+(x) = {
y ∈ X: there are sequences {xn}n�1 ⊂ X and {tn}n�1 ⊂R+ such that

xn
n→+∞−→ x, tn

n→+∞−→ +∞ and π̃(xn, tn)
n→+∞−→ y

}
.

In the sequel, we mention some auxiliary results that will be very useful in the proof of the
main results.

Lemma 3.1. (See [4, Lemma 3.2].) Given an impulsive semidynamical system (X,π;M,I),
suppose w ∈ X \ M and {zn}n�1 is a sequence in X which converges to w. Then, for any t � 0

there is a sequence {εn}n�1 ⊂R such that εn
n→+∞−→ 0 and π̃(zn, t + εn)

n→+∞−→ π̃ (w, t).

Lemma 3.2. (See [5, Lemma 3.3].) Given an impulsive semidynamical system (X,π;M,I),
suppose w ∈ X \ M and {zn}n�1 is a sequence in X which converges to w. Then, for any t � 0

such that t 	= ∑k
j=0 φ(w+

j ), k = 0,1,2, . . . , we have π̃(zn, t)
n→+∞−→ π̃(w, t).

Lemma 3.3. (See [8, Proposition 4.1].) Let (X,π;M,I) be an impulsive semidynamical system.
Then L̃+(x) \ M is positively π̃ -invariant for all x ∈ X.

The next three definitions are established in [8].

Definition 3.1. A subset A ⊂ X is minimal in (X,π;M,I) if A \ M 	= ∅, A is closed, A \ M is
positively π̃ -invariant and A does not contain any proper subset satisfying these conditions.

Theorem 3.2. (See [8, Theorem 4.1].) A subset A ⊂ X is minimal in (X,π;M,I) if and only if
A = π̃+(x) for all x ∈ A \ M .

Definition 3.2. A point x ∈ X is said to be π̃ -recurrent if for every ε > 0 there exists a number
T = T (ε) > 0, such that for every t, s � 0, the interval [0, T ] contains a number τ > 0 such that

d
(
π̃(x, t), π̃(x, s + τ)

)
< ε.

A positive orbit π̃+(x) is said to be π̃ -recurrent if x ∈ X is π̃ -recurrent.

Definition 3.3. A subset D ⊂ R+ is called relatively dense if there is a number L > 0 such that
D ∩ (α,α + L) 	= ∅ for all α � 0.

Theorem 3.3. (See [8, Theorem 4.7].) Let (X,π;M,I) be an impulsive semidynamical system
and A ⊂ X be a compact minimal set. If x ∈ A \ M , then x is π̃ -recurrent.
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Theorem 3.4. (See [8, Theorem 4.9].) Let (X,π;M,I) be an impulsive semidynamical system
and π̃+(x) be compact for some x ∈ X \ M . The positive orbit π̃+(x) is π̃ -recurrent if and only
if for each ε > 0 the set Kε = {t ∈ R+: d(x, π̃(x, t)) < ε} is relatively dense.

Corollary 3.1. (See [8, Corollary 4.2].) Let (X,π;M,I) be an impulsive semidynamical system.
Suppose X complete and let x ∈ X \ M be such that L̃+(x) \ M 	= ∅. If π̃+(x) ∪ {xk}k�1 is
minimal then x is periodic.

Next, we define the concept of region of uniform attraction. See Ref. [7].

Definition 3.4. Let (X,π;M,I) be an impulsive semidynamical system and A be a subset of X.
The set

P̃ +
u (A) = {x ∈ X: for every neighborhood U of A, there is a neighborhood V of x

and a T > 0 such that π̃(V , t) ⊂ U for all t � T },

is called the region of uniform attraction of the set A with respect to π̃ . If x ∈ P̃ +
u (A), we say

that x is uniformly π̃ -attracted to A.

Proposition 3.1. (See [7, Proposition 3.2].) Let (X,π;M,I) be an impulsive semidynamical sys-
tem and A ⊂ X be compact. Suppose X is locally compact. Then P̃ +

u (A) = {x ∈ X: J̃+(x) 	= ∅
and J̃+(x) ⊂ A}.

Lastly, we present another auxiliary result which will be used in the last theorem of this paper.

Lemma 3.4. (See [6, Lemma 3.13].) Let (X,π;M,I) be an impulsive semidynamical system.
Let x /∈ M and y ∈ L̃+(x). Then J̃+(x) ⊂ J̃+(y).

In the next two sections, we shall consider an impulsive semidynamical system (X,π;M,I),
where (X,d) is a metric space. Moreover, we shall assume the following additional hypotheses:

(H1) No initial point in (X,π) belongs to the impulsive set M and each element of M satisfies
the condition (STC), consequently φ is continuous on X \ M (see Theorem 3.1).

(H2) M ∩ I (M) = ∅.
(H3) For each x ∈ X, the motion π̃ (x, t) is defined for every t � 0, that is, [0,+∞) denotes the

maximal interval of definition of π̃x .

4. Recursive motions and Lyapunov stability

Given x ∈ X, we denote N(x) by

N(x) =N= {0,1,2,3, . . .} if x ∈ M

and

N(x) =N∗ = {1,2,3, . . .} if x /∈ M.
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Now, given x ∈ X and ε > 0, we consider the following set

L(x, ε) = {
t ∈ R+:

∣∣t − tn(x)
∣∣ > ε for all n ∈N(x)

}
,

where tn(x) = ∑n−1
j=0 φ(x+

j ) for n � 1, n ∈N, and t0(x) = 0.
Next, we present the concept of weakly almost π̃ -periodic points. Such definition is due to

Kaul [18].

Definition 4.1. A point x ∈ X is called weakly almost π̃ -periodic, if given ε > 0 there is a number
T = T (ε) > 0, such that for any α � 0, the interval [α,α + T ] contains a number τ = τ(α) > 0
such that

d
(
π̃ (x, t), π̃(x, t + τ)

)
< ε for all t ∈ L(x, ε).

In the sequel, we present conditions for a weakly almost π̃ -periodic point to be π̃ -recurrent.

Theorem 4.1. Let (X,π;M,I) be an impulsive semidynamical system and x ∈ X \ M . Suppose
that π̃+(x) is compact. If x is weakly almost π̃ -periodic then x is π̃ -recurrent.

Proof. Let ε > 0 be given. We may assume that 0 ∈ L(x, ε) since x ∈ X \ M . By hypothesis,
there is T = T (ε) > 0 such that for every α � 0 the interval [α,α + T ] contains a number
τ = τ(α) > 0 such that

d
(
π̃ (x, t), π̃(x, t + τ)

)
< ε for all t ∈ L(x, ε). (4.1)

Consider Kε = {s ∈R+: d(x, π̃(x, s)) < ε}. Hence by (4.1) we have Kε ∩ [α,α + T ] 	= ∅ for all
α � 0, because 0 ∈ L(x, ε). It follows by Theorem 3.4 that x is π̃ -recurrent. �

If x ∈ X \ M , we can choose a sufficiently small ε0 > 0 such that 0 ∈ L(x, ε) for all ε ∈
(0, ε0). Thus, provided x is weakly almost π̃ -periodic one can obtain a sequence {tn}n∈N ⊂ R+,

tn
n→+∞−→ +∞, such that π(x, tn)

n→+∞−→ x. Hence, we have the following result.

Theorem 4.2. Let (X,π;M,I) be an impulsive semidynamical system and x ∈ X \ M . If x is
weakly almost π̃ -periodic then x ∈ L̃+(x).

In the continuous case, the converse of Theorem 4.2 does not hold in general. It also happens in
the impulsive case, see Example 4.1. To present the example we recall two auxiliary definitions.

Remark 4.1. Let (X,σ ) be a discrete dynamical system, see [20] for instance. A point x ∈ X is
called a recurrent point of σ if given ε > 0 for any N ∈N one can obtain a natural number n > N

such that σn(x) ∈ B(x, ε). A point x ∈ X is called an almost periodic point of σ if given ε > 0
there is N ∈ N such that {σn+i (x): i = 0,1, . . . ,N} ∩ B(x, ε) 	= ∅ for all n ∈N.

Example 4.1. Let (Y, dY ) be a complete metric space and consider a discrete dynamical system
(Y,σ ) with σ continuous. Suppose that every point in Y is recurrent but is not almost periodic.
The reader may find an example of such system in [20, Example 3.3]. Now, define X = R × Y
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endowed with metric d((t, x), (s, y)) = max{|t − s|, dY (x, y)}. Consider the semiflow π : X ×
R+ → X given by

π
(
(r, y), t

) = (r + t, y).

Let M = {0} × Y and I : M → X given by

I (0, y) = (−1, σ (y)
)
,

which is clearly continuous. Given z = (−1, y) ∈ X, we consider the following notations

zn+1 = (
0, σ n(y)

)
and I (zn+1) = z+

n+1 = (−1, σ n+1(y)
)
,

for n = 0,1,2, . . . , where z+
0 = z.

Now, note that given t, s ∈ R+, then there are k,m ∈ N such that t = k + t ′ with 0 � t ′ < 1
and s = m + s′ with 0 � s′ < 1. Then

d
(
π̃(z, t), π̃(z, s)

) = d
(
π

(
z+
k , t ′

)
,π

(
z+
m, s′)) = d

(
π

((−1, σ k(y)
)
, t ′

)
,π

((−1, σm(y)
)
, s′))

= d
((

t ′ − 1, σ k(y)
)
,
(
s′ − 1, σm(y)

)) = max
{∣∣t ′ − s′∣∣, dY

(
σk(y), σm(y)

)}
.

1) z ∈ L̃+(z).

Indeed, let ε > 0 be arbitrary. Since y is a recurrent point of σ , there is a sequence

{nk}k∈N ⊂N such that nk
k→+∞−→ +∞ and dY (σnk (y), y) < ε for all k ∈N. Then

d
(
π̃ (z, nk), z

) = max
{
0, dY

(
σnk (y), y

)}
< ε,

for all k ∈N. Therefore, z ∈ L̃+(z).

2) z is not weakly almost π̃ -periodic.

Since y is not almost periodic, there is ε0 > 0 such that for all N ∈ N we may find nN ∈ Z+
such that

dY

(
σnN+i (y), y

)
� ε0, (4.2)

for all i ∈ {0,1,2, . . . ,N}.
Now, given an arbitrary T > 0, there is natural NT > 0 such that NT � T < NT + 1. Let

nNT
:= nT be given by (4.2). For any s ∈ [nT ,nT + T ], we can write s = nT + i0 + s′ for some

i0 ∈ {0,1,2, . . . ,NT } and 0 � s′ < 1. Then

d
(
z, π̃(z, s)

) = max
{
s′, dY

(
y,σnT +i0(y)

)}
� ε0.

Hence, z is not weakly almost π̃ -periodic.
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If a continuous motion is positively Lyapunov stable and recurrent then it is almost periodic,
see Theorem 8.11 in [21]. Next, we present the concept of Lyapunov stability for impulsive
semidynamical systems and we obtain sufficient conditions for a π̃ -recurrent point to be weakly
almost π̃ -periodic.

The concept of Lyapunov stability is established by Kaul in [19], see the next definition.

Definition 4.2. A point x ∈ X is called Lyapunov π̃ -stable with respect to a set B ⊂ X, if given
ε > 0, there is a δ > 0 such that for any y ∈ B with d(y, x) < δ we have

d
(
π̃(y, t), π̃(x, t)

)
< ε for all t ∈ L(x, ε).

We have the following result.

Theorem 4.3. Let (X,π;M,I) be an impulsive semidynamical system and x ∈ X \ M . Suppose
that π̃+(x) is compact. If x is π̃ -recurrent and Lyapunov π̃ -stable with respect to π̃+(x), then x

is weakly almost π̃ -periodic.

Proof. Let ε > 0 be given. Since x is Lyapunov π̃ -stable with respect to π̃+(x), then there is a
δ > 0 such that if y ∈ π̃+(x) and d(x, y) < δ, we have

d
(
π̃(x, t), π̃(y, t)

)
< ε for all t ∈ L(x, ε). (4.3)

By the π̃ -recurrence of x, we can use Theorem 3.4 and conclude that the set

Kδ = {
r > 0: d

(
x, π̃(x, r)

)
< δ

}
is relatively dense, that is, there is T > 0 such that for any α � 0, the interval [α,α +T ] contains
a number τ > 0 such that d(x, π̃(x, τ )) < δ. Then by (4.3) we get

d
(
π̃ (x, t), π̃(x, t + τ)

)
< ε for all t ∈ L(x, ε).

Hence, the point x is weakly almost π̃ -periodic. �
Definition 4.3. An orbit π̃+(x), x ∈ X, is said to approach uniformly to a set A, if for any ε > 0,
there exists a positive number T = T (ε) > 0 such that

A⊂ B
(
π̃

(
x, [t, t + T ]), ε) for all t ∈R+.

Now, we intend to generalize the result presented in [3]. It is proved in Theorem 3.3, [3], that
if x ∈ X \ M is such that π̃+(x) is compact and L̃+(x) ∩ M = ∅, then L̃+(x) is minimal if and
only if π̃+(x) uniformly approximates its limit set L̃+(x). We shall show in Theorem 4.5 that
this result holds if we drop the conditions x /∈ M and L̃+(x) ∩ M = ∅.

We start by presenting an auxiliary result.

Lemma 4.1. Let A be a closed subset of X such that A \ M is positively π̃ -invariant. Let a ∈
A \M and {wn}n∈N be a sequence in X such that wn

n→+∞−→ a. If {τn}n∈N is a bounded sequence
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in R+, then given ε > 0 there are a subsequence {τn

}
∈N of {τn}n∈N, a natural n0 > 0 and a ∈ A

such that d(π̃(wn

, τn


), a) < ε for all n
 � n0.

Proof. Let ε > 0 be given. First, note that there is a convergent subsequence of {τn}n∈N, we say

{τn

}
∈N such that τn



→+∞−→ τ ∈R+. We have three cases to consider.
Case 1) 0 � τ < φ(a).

Since a /∈ M we have φ(wn)
n→+∞−→ φ(a). It follows that there is an integer p0 > 0 such that

0 � τn

< φ(wn


)

for all n
 � p0. Hence,

π̃ (wn

, τn


) = π(wn

, τn


)

→+∞−→ π(a, τ ) = π̃ (a, τ ).

Set a = π̃ (a, τ ). By the positive π̃ -invariance of A \ M we have a ∈ A. Then, there is n0 > 0
such that d(π̃(wn


, τn

), a) < ε for all n
 � n0.

Case 2) τ > φ(a) and τ 	= ∑r
j=0 φ(a+

j ) for all r = 1,2, . . . .
One can obtain a number k ∈N such that

τ =
k∑

j=0

φ
(
a+
j

) + s with 0 < s < φ
(
a+
k+1

)
.

Note that π̃(a, τ ) = π(a+
k+1, s). By continuity of π and I we have (wn)

+
j

n→+∞−→ a+
j for all j ∈N.

Since φ is continuous in X \ M , there is a sequence {sn

}
∈N ⊂ R+ such that

τn

=

k∑
j=0

φ
(
(wn


)+j
) + sn


with sn



→+∞−→ s.

Note that π̃(wn

, τn


) = π((wn

)+k+1, sn


) for all 
 ∈ N. Then

π̃ (wn

, τn


) = π
(
(wn


)+k+1, sn


) 
→+∞−→ π
(
a+
k+1, s

) = π̃(a, τ ).

Set a = π̃(a, τ ) ∈ A and we have the result in this case.
Case 3) τ = ∑k

j=0 φ(a+
j ) for some k = 0,1,2, . . . .

Here, we consider two subcases: when {τn

}n∈N admits a subsequence {τ ′

n

}
∈N such that

τ ′
n


<
∑k

j=0 φ(a+
j ) for all 
 ∈ N and when {τn


}n∈N admits a subsequence {τ ′′
n


}
∈N such that

τ ′′
n


�
∑k

j=0 φ(a+
j ) for all 
 ∈ N.

In the first subcase it is easy to see that

π̃
(
wn


, τ ′
n


) 
→+∞−→ ak+1 ∈ A
(
A is closed and π̃+(a) ⊂ A

)
.

Thus, there is an integer n′
0 > 0 such that

d
(
π̃

(
wn , τ ′

n

)
, ak+1

)
< ε for all n
 � n′ .

 
 0
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In the second subcase we have π̃ (wn

, τ ′′

n

)


→+∞−→ a+
k+1 = I (ak+1) ∈ A (π̃+(a) ⊂ A by invari-

ance). Then there is an integer n′′
0 > 0 such that

d
(
π̃

(
wn


, τ ′′
n


)
, a+

k+1

)
< ε for all n
 � n′′

0.

In conclusion, in all of the cases above we can find an element a ∈ A and a natural n0 such
that d(π̃(wn


, τn

), a) < ε for all n
 � n0. �

Theorem 4.4 gives sufficient conditions for a limit set to be minimal.

Theorem 4.4. Let (X,π;M,I) be an impulsive semidynamical system and x ∈ X be such that
π̃+(x) is compact. If π̃+(x) approaches uniformly to L̃+(x) then L̃+(x) is a minimal set. More-
over, if a point y ∈ L̃+(x) \ M is Lyapunov π̃ -stable with respect to π̃+(y), then y is weakly
almost π̃ -periodic.

Proof. First, let us show that the limit set is minimal. Suppose to the contrary that there is a
closed subset A� L̃+(x) such that A\M 	= ∅ and A\M is positively π̃ -invariant. Let w ∈ L̃+(x)

be such that w /∈ A and consider ε = d(w,A)

3
> 0.

Since π̃+(x) approaches uniformly to L̃+(x), there is T = T (ε) > 0 such that

L̃+(x) ⊂ B
(
π̃

(
x, [t, t + T ]), ε) for all t ∈R+. (4.4)

Let a ∈ A \ M ⊂ L̃+(x), then there is a sequence {tn}n∈N ⊂R+, tn
n→+∞−→ +∞ such that

π̃ (x, tn)
n→+∞−→ a. (4.5)

By (4.4) we have, in particular, that

L̃+(x) ⊂ B
(
π̃

(
x, [tn, tn + T ]), ε) for all n ∈N.

Thus

w ∈ B
(
π̃

(
x, [tn, tn + T ]), ε) for all n ∈ N.

For each n ∈N, there is τn ∈ [0, T ] such that

d
(
w, π̃(x, tn + τn)

)
< ε.

We may assume without loss of generality that τn
n→+∞−→ τ ∈ [0, T ]. Define wn = π̃ (x, tn), n ∈N.

By Lemma 4.1, there are a ∈ A, a subsequence {τn

}
∈N and an integer n0 > 0 such that

d
(
π̃(wn


, τn

), a

)
< ε,

for all n
 � n0. Then
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3ε = d(w,A) � d(w,a)

� d
(
w, π̃(wn0 , τn0)

) + d
(
π̃(wn0 , τn0), a

)
< ε + ε = 2ε

which is a contradiction. Hence, we conclude that L̃+(x) is minimal.
We also have that L̃+(x) is compact since L̃+(x) ⊂ π̃+(x). Then by Theorem 3.3 every point

y ∈ L̃+(x) \ M is π̃ -recurrent. If y ∈ L̃+(x) \ M is Lyapunov π̃ -stable with respect to π̃+(y), it
follows by Theorem 4.3 that y ∈ L̃+(x) \ M is weakly almost π̃ -periodic. �
Theorem 4.5. Let (X,π;M,I) be an impulsive semidynamical system and x ∈ X be such that
π̃+(x) is compact. Then L̃+(x) is a minimal set if and only if π̃+(x) approaches uniformly to its
limit set L̃+(x).

Proof. The necessary condition follows by Theorem 4.4. Let us prove the sufficient condition.
Suppose that π̃+(x) does not approach uniformly to L̃+(x), that is, there are ε > 0 and sequences

{Tn}n∈N, {tn}n∈N, ⊂R+, {yn}n∈N ⊂ L̃+(x) such that Tn
n→+∞−→ +∞ and

d
(
yn, π̃

(
x, [tn, tn + Tn]

))
� ε for all n ∈ N. (4.6)

We note that L̃+(x) is compact since L̃+(x) ⊂ π̃+(x), thus we may assume that there is y ∈
L̃+(x) such that

yn
n→+∞−→ y. (4.7)

Moreover, since yn ∈ L̃+(x) for each n ∈ N, then there is a sequence {τn
m}m∈N ⊂R+ such that

τn
m

m→+∞−→ +∞ and π̃
(
x, τn

m

) m→+∞−→ yn (4.8)

for each n ∈N. Thus from (4.8) it follows that there exists mn > n such that

d
(
π̃

(
x, τn

mn

)
, yn

)
<

ε

2
, (4.9)

for all n ∈ N. Also, from (4.7) and (4.8) we obtain

π̃
(
x, τn

mn

) n→+∞−→ y. (4.10)

On the other hand {π̃ (x, tn + Tn

2 )}n∈N ⊂ π̃+(x), (tn + Tn

2 )
n→+∞−→ +∞ and since π̃+(x) is

compact we may assume that there is b ∈ L̃+(x) such that

π̃

(
x, tn + Tn

2

)
n→+∞−→ b. (4.11)

In the sequel, we are going to show that there is an element z ∈ L̃+(x) \ M such that y /∈
π̃+(z). It will contradict the minimality of L̃+(x) and hence the theorem will be proved. We
have two cases to consider: when b ∈ M and otherwise.



E.M. Bonotto, M.Z. Jimenez / J. Differential Equations 256 (2014) 1683–1701 1695
Case 1) b /∈ M . Let t � 0 be fixed and arbitrary such that t 	= ∑k
j=0 φ(b+

j ) for all k =
0,1,2, . . . . From (4.11) and Lemma 3.2 we get

π̃

(
x, tn + Tn

2
+ t

)
n→+∞−→ π̃ (b, t). (4.12)

Since Tn
n→+∞−→ +∞, there is an integer n0 > 0 such that Tn

2 > t for n � n0. Then tn < tn + Tn

2 +
t < tn + Tn for all n � n0. Consequently, by using (4.6) and (4.9) we have

d

(
π̃

(
x, tn + Tn

2
+ t

)
, π̃

(
x, τn

mn

))
� d

(
yn, π̃

(
x, tn + Tn

2
+ t

))
− d

(
yn, π̃

(
x, τn

mn

))
� ε − ε

2
= ε

2
,

for all n � n0. As n → +∞ in the above inequality and using (4.10) and (4.12), we get
d(π̃(b, t), y) � ε

2 . Since t is arbitrary, we conclude that

d
(
π̃(b, t), y

)
� ε

2
for all t 	=

k∑
j=0

φ
(
b+
j

)
, k = 0,1,2, . . . . (4.13)

Now, let t = ∑k
j=0 φ(b+

j ) for some arbitrary k ∈ {0,1,2, . . .}. We may take a sequence
{λn}n∈N of positive real numbers such that

λn
n→+∞−→

k∑
j=0

φ
(
b+
j

)
, with

k∑
j=0

φ
(
b+
j

)
< λn <

k+1∑
j=0

φ
(
b+
j

)
, n ∈ N.

Then by (4.13) we have

d
(
π̃(b, λn), y

)
� ε

2
for all n ∈ N.

As n → +∞ we have

d

(
π̃

(
b,

k∑
j=0

φ
(
b+
j

))
, y

)
� ε

2
,

since π̃ is continuous from the right. In conclusion, we have

d
(
π̃(b, t), y

)
� ε

2
for all t � 0,

and hence

y /∈ π̃+(b)
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which is a contradiction, because b ∈ L̃+(x) \ M and then π̃+(b) = L̃+(x) since L̃+(x) is mini-
mal (see Theorem 3.2).

Case 2) b ∈ M . Since M satisfies the condition STC, there is a STC-tube F(L, [0,2λ])
through of b given by a section S. Moreover, the tube is a neighborhood of b, then there is
an η > 0 such that

B(b,η) ⊂ F
(
L, [0,2λ]).

Denote H1 = F(L, [λ,2λ]) ∩ B(b,η) and H2 = F(L, [0, λ]) ∩ B(b,η). Also, denote wn =
π̃ (x, tn + Tn

2 ), n ∈N. Then wn
n→+∞−→ b by (4.11).

We may assume without loss of generality (taking a subsequence, if necessary) that
{wn}n∈N ⊂ H1 or {wn}n∈N ⊂ H2.

• First, suppose that {wn}n∈N ⊂ H1. We note that φ(wn)
n→+∞−→ 0. Then

π̃
(
wn,φ(wn)

) n→+∞−→ I (b),

that is,

π̃

(
x, tn + Tn

2
+ φ(wn)

)
n→+∞−→ I (b). (4.14)

In the sequel, we are going to show that y /∈ π̃+(I (b)). Note that I (b) ∈ L̃+(x) \ M , because

(tn + Tn

2 + φ(wn))
n→+∞−→ +∞ and I (M) ∩ M = ∅. Let t � 0 be such that t 	= ∑k

j=0 φ(I (b)+j )

for all k = 0,1,2, . . . . By (4.14) and Lemma 3.2 we get

π̃

(
x, tn + Tn

2
+ φ(wn) + t

)
n→+∞−→ π̃

(
I (b), t

)
. (4.15)

There is n′
0 > 0 such that Tn

2 > t +φ(wn) for all n � n′
0. Then, tn < tn + Tn

2 +φ(wn)+ t < tn +Tn

for all n � n′
0. By (4.6) and (4.9), we obtain the following inequality

d

(
π̃

(
x, tn + Tn

2
+ φ(wn) + t

)
, π̃

(
x, τn

mn

))
� d

(
yn, π̃

(
x, tn + Tn

2
+ φ(wn) + t

))
− d

(
yn, π̃

(
x, τn

mn

))
� ε − ε

2
= ε

2
,

for all n � n′
0. As n → +∞ in the above inequality and using (4.15) and (4.10) we have

d(π̃(I (b), t), y) � ε
2 . Since t is arbitrary, we get

d
(
π̃

(
I (b), t

)
, y

)
� ε

2
for all t 	=

k∑
φ
(
I (b)+j

)
, k = 0,1,2, . . . . (4.16)
j=0
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Now, let t = ∑k
j=0 φ(I (b)+j ) for some k = 0,1,2, . . . . We consider a sequence {λn}n∈N of posi-

tive real numbers such that

λn
n→+∞−→

k∑
j=0

φ
(
I (b)+j

)
, with

k∑
j=0

φ
(
I (b)+j

)
< λn <

k+1∑
j=0

φ
(
I (b)+j

)
.

Thus, from (4.16) we have

d
(
π̃

(
I (b), λn

)
, y

)
� ε

2
for all n ∈ N.

When n → +∞, it follows by the right continuity of π̃ that

d

(
π̃

(
I (b),

k∑
j=0

φ
(
I (b)+j

))
, y

)
� ε

2
.

In this way, we conclude that

d
(
π̃

(
I (b), t

)
, y

)
� ε

2
for all t � 0.

Then y /∈ π̃+(I (b)), which is a contradiction because I (b) ∈ L̃+(x) \ M and thus π̃+(I (b)) =
L̃+(x) since the limit set is minimal.

• Suppose now that {wn}n∈N ⊂ H2. Let β ∈ ]0, φ(b)[. Since wn
n→+∞−→ b, we have

π̃ (wn,β)
n→+∞−→ π̃(b,β),

that is,

π̃

(
x, tn + Tn

2
+ β

)
n→+∞−→ π̃ (b,β).

We note that b1 = π̃ (b,β) ∈ L̃+(x) \ M , since (tn + Tn

2 + β)
n→+∞−→ +∞ and 0 < β < φ(b). By

following the same steps done above one can obtain the following inequality

d
(
π̃(b1, t), y

)
� ε

2
for all t � 0.

Thus, y /∈ π̃+(b1) which is again a contradiction since b1 ∈ L̃+(x) \ M and L̃+(x) is minimal.
Therefore, the result is proved. �
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5. Zhukovskij quasi stability

In this section, we devote our study to the theory of Zhukovskij quasi stability. On impul-
sive semidynamical systems, this kind of stability was initially introduced by Changming Ding
in [15]. We start by presenting the concept of reparametrization and then we define the concept
of Zhukovskij quasi stability. The reader may find many results about Zhukovskij quasi stability
in [15].

Definition 5.1. A time reparametrization is a homeomorphism h : R+ →R+ such that h(0) = 0.

Definition 5.2. A point x ∈ X \ M is called Zhukovskij quasi π̃ -stable if given any ε > 0, there
is a δ = δ(x, ε) > 0 such that if d(y, x) < δ, then one can find a time reparametrization τy such
that

d
(
π̃(x, t), π̃

(
y, τy(t)

))
< ε for all t � 0.

Moreover, if there is λ > 0 such that d(y, x) < λ implies d(π̃(x, t), π̃(y, τy(t)))
t→+∞−→ 0, then x

is called asymptotically Zhukovskij quasi π̃ -stable.
A subset A ⊂ X \ M is Zhukovskij (asymptotically Zhukovskij) quasi π̃ -stable if each point

y ∈ A possesses this property.

Definition 5.3. A point x ∈ X \ M is uniformly asymptotically Zhukovskij quasi π̃ -stable pro-
vided that given any ε > 0, there exists a δ > 0 such that for each s � 0 and y ∈ B(π̃(x, s), δ) one
can find a time reparametrization τy such that d(π̃(x, s + t), π̃(y, τy(t))) < ε holds for all t � 0,

and also d(π̃(x, s + t), π̃(y, τy(t)))
t→+∞−→ 0. A subset A ⊂ X \ M is uniformly asymptotically

Zhukovskij quasi π̃ -stable if each point y ∈ A possesses this property.

Remark 5.1. As sighted in [15], taking s = τy(t) and h(s) = τ−1
y (s) = t , we can write

d
(
π̃ (x, t), π̃

(
y, τy(t)

)) = d
(
π̃

(
x,h(s)

)
, π̃(y, s)

)
,

where we get an equivalent definition for Zhukovskij quasi π̃ -stability.

In [15], the author shows that a sufficient condition for the limit set of a point x to be minimal
is that x is uniformly asymptotically Zhukovskij quasi π̃ -stable, see Lemma 4.4 there. We show
below that a limit set is minimal provided the points of this set which are not in M are Zhukovskij
quasi π̃ -stable.

Theorem 5.1. Let (X,π;M,I) be an impulsive semidynamical system and x ∈ X. Suppose that
the nonempty set L̃+(x) \ M is Zhukovskij quasi π̃ -stable. Then L̃+(x) is a minimal set.

Proof. Let y ∈ L̃+(x) \ M be arbitrary. We need to show that L̃+(x) = π̃+(y). Suppose to the
contrary that there is z ∈ L̃+(x) such that z /∈ π̃+(y). Let ε = d(z, π̃+(y)) > 0.

Let q ∈ π̃+(y). Note that π̃+(y) ⊂ L̃+(x) by Lemma 3.3. By hypothesis, there is δ = δ(q) > 0
such that if d(v, q) < δ, we can find a reparametrization τv such that

d
(
π̃(q, t), π̃

(
v, τv(t)

))
<

ε
for all t � 0. (5.1)
3
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Moreover, there is s > 0 such that d(π̃(x, s), q) < δ. By (5.1) we may find a reparametriza-
tion τw , w = π̃(x, s), such that

d
(
π̃ (q, t), π̃

(
w,τw(t)

))
<

ε

3
for all t � 0. (5.2)

On the other hand, since z ∈ L̃+(x) then z ∈ L̃+(w). Thus there is a sequence {tn}n∈N ⊂ R+
such that tn

n→+∞−→ +∞ and π̃(w, tn)
n→+∞−→ z. Let n0 > 0 be such that d(z, π̃(w, tn0)) < ε

2 . Let
sn > 0 be such that tn = τw(sn), n ∈ N. Then

d
(
π̃ (q, sn0), π̃

(
w,τw(sn0)

))
� d

(
z, π̃(q, sn0)

) − d
(
z, π̃

(
w,τw(sn0)

))
� ε − ε

2
= ε

2
,

which contradicts (5.2). Therefore, L̃+(x) is minimal. �
Corollary 5.1. Let (X,π;M,I) be an impulsive semidynamical system and x ∈ X. Suppose that
L̃+(x) is compact and L̃+(x) \ M 	= ∅.

a) If L̃+(x) \ M is Zhukovskij quasi π̃ -stable then L̃+(x) \ M is π̃ -recurrent;
b) If x /∈ M and π̃+(x) is uniformly asymptotically Zhukovskij quasi π̃ -stable then L̃+(x) \ M

is π̃ -recurrent.

Proof. a) By Theorem 5.1 the limit set L̃+(x) is minimal. By Theorem 3.3 the points of
L̃+(x) \ M are π̃ -recurrent. b) In this case, the minimality of L̃+(x) follows by Lemma 4.4
of [15] and the conclusion follows by Theorem 3.3. �
Theorem 5.2. Let (X,π;M,I) be an impulsive semidynamical system, X complete and x ∈
X \ M . Assume L̃+(x) = π̃+(x) ∪ {xk}k�1.

a) If L̃+(x) \ M is Zhukovskij quasi π̃ -stable then x is periodic;
b) If π̃+(x) is uniformly asymptotically Zhukovskij quasi π̃ -stable then x is periodic.

Proof. a) First, we note that L̃+(x) \ M 	= ∅. By Theorem 5.1, the set L̃+(x) is minimal. Since
L̃+(x) = π̃+(x) ∪ {xk}k�1, it follows by Corollary 3.1 that x is periodic. b) It is enough to use
Lemma 4.4 of [15] in the proof of item a). �

In the sequel, we obtain some results about uniform attractors.
The first lemma concerns the relation between the sets L̃+(x) and J̃+(x), x ∈ X. A proof of

it may be found in [15, Theorem 4.2].

Lemma 5.1. If x ∈ X \ M is Zhukovskij quasi π̃ -stable, then L̃+(x) = J̃+(x).

By Lemma 5.1 and Proposition 3.1, we have the following result.

Lemma 5.2. Suppose that X is locally compact, x ∈ X \ M is Zhukovskij quasi π̃ -stable and
L̃+(x) is a nonempty compact set. Then x ∈ P̃ +

u (L̃+(x)).
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Next, we present sufficient conditions for a limit set to belong to its uniform region of attrac-
tion.

Proposition 5.1. Suppose that X is locally compact, L̃+(x) ∩ M = ∅ and L̃+(x) is Zhukovskij
quasi π̃ -stable. If L̃+(x) is compact then L̃+(x) ⊂ P̃ +

u (L̃+(x)).

Proof. Since L̃+(x)∩M = ∅ we have that L̃+(x) is positively π̃ -invariant by Lemma 3.3. Now,
let y ∈ L̃+(x). By the positive π̃ -invariance and closedness of L̃+(x), we have π̃+(y) ⊂ L̃+(x).
Consequently, L̃+(y) ⊂ L̃+(x). Note that L̃+(y) 	= ∅ by compactness of L̃+(x).

Since y is Zhukovskij quasi π̃ -stable it follows that L̃+(y) = J̃+(y), see Lemma 5.1. Hence,
J̃+(y) 	= ∅ and J̃+(y) ⊂ L̃+(x). The result follows by Proposition 3.1. �

In the last result, we give conditions for a limit set to be a uniform π̃ -attractor.

Theorem 5.3. Let X be locally compact and L̃+(x) ∩ M = ∅ for some x ∈ X. If L̃+(x) is a
nonempty asymptotically Zhukovskij quasi π̃ -stable set with L̃+(x) compact then L̃+(x) is uni-
formly π̃ -attractor.

Proof. For each y ∈ L̃+(x), there is δy > 0 such that if d(z, y) < δy then we may find a time
reparametrization τz such that

d
(
π̃ (y, t), π̃

(
z, τz(t)

)) t→+∞−→ 0.

Since L̃+(x) ∩ M = ∅ and L̃+(x) is compact, there is β > 0 such that B(L̃+(x),β) ∩ M = ∅.
By compactness of the limit set, there are y1, . . . , yn ∈ L̃+(x) such that L̃+(x) ⊂ B(y1,

δ1
2 ) ∪

· · · ∪ B(yn,
δn

2 ). Set 2δ = min{δy1 , . . . , δyn, β}.
We claim that B(L̃+(x), δ) ⊂ P̃ +

u (L̃+(x)). In fact, let w ∈ B(L̃+(x), δ). Then w ∈ B(yj , δj )

for some j ∈ {1, . . . , n}. Then

d
(
π̃ (yj , t), π̃

(
w,τw(t)

)) t→+∞−→ 0,

or,

d
(
π̃

(
yj ,h(t)

)
, π̃(w, t)

) t→+∞−→ 0,

where h(t) = τ−1
w (t), see Remark 5.1. Since π̃+(yj ) ⊂ L̃+(x) (because L̃+(x) is positively

π̃ -invariant) we have

d
(
L̃+(x), π̃(w, t)

) t→+∞−→ 0.

Then L̃+(w) 	= ∅ and L̃+(w) ⊂ L̃+(x). It is clear that J̃+(w) 	= ∅. Now, let us verify that
J̃+(w) ⊂ L̃+(x). Indeed, let a ∈ L̃+(w). Since w /∈ M (δ < β) it follows by Lemma 3.4 that

J̃+(w) ⊂ J̃+(a).
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Since a ∈ L̃+(x), it is Zhukovskij quasi π̃ -stable and by Lemma 5.1 we have J̃+(a) = L̃+(a).
But L̃+(x) is positively π̃ -invariant. Then π̃+(a) ⊂ L̃+(x), consequently, L̃+(a) ⊂ L̃+(x). Then

J̃+(w) ⊂ L̃+(x).

Hence, by Proposition 3.1 we have w ∈ P̃ +
u (L̃+(x)) and the result follows. �
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