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Abstract

An initial–boundary value problem is considered for the viscous compressible thermally radiative mag-
netohydrodynamic (MHD) flows coupled to self-gravitation describing the dynamics of gaseous stars in 
a bounded domain of R3. The conservative boundary conditions are prescribed. Compared to Ducomet–
Feireisl [13] (also see, for instance, Feireisl [18], Feireisl–Novotný [20]), a rather more general constitutive 
relationship is given in this paper. The analysis allows for the initial density with vacuum. Every transport 
coefficient admits a certain temperature scaling. The global existence of a variational (weak) solution with 
any finite energy and finite entropy data is established through a three-level approximation and methods of 
weak convergence.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

Magnetohydrodynamics (MHD) concerns the motion of conducting fluids (cf. gases) in an 
electromagnetic field with a very broad range of applications in physical areas from liquid met-
als to cosmic plasmas. In moving conducting magnetic fluids, magnetic fields can induce electric 
fields, and electric currents are developed, which create forces on the fluids and considerably 
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affect changes in the magnetic fields. The dynamic motion of the fluids and the magnetic field 
interact strongly with each other and both the hydrodynamic and electrodynamic effects have 
to be taken into account. Except for this, considerable attention has been put to study the ef-
fects of thermal radiation recently, because the radiation field significantly affects the dynamics 
of fluids, for example, certain re-entry of space vehicles, astrophysical phenomena and nuclear 
fusion, and hydrodynamics with explicit account of radiation energy and momentum contribu-
tion constitutes the character of radiation hydrodynamics. In this paper, we consider the viscous 
compressible thermally radiative conducting fluids driven by the self-gravitation in the full mag-
netohydrodynamic setting. The equations to the three-dimensional full magnetohydrodynamic 
flows have the following form [3,13,29,30]:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρt + ∇ · (ρu)= 0, x ∈Ω ⊂R3, t > 0,

(ρu)t + ∇ · (ρu ⊗ u)+ ∇p = ∇ · S+ ρ∇Ψ + (∇ × H)× H,

Et + ∇ ·
((
ρe+ 1

2
ρ|u|2 + p

)
u
)

+ ∇ · q

= ∇ · ((u × H)× H + νH × (∇ × H)+ Su
) + ρ∇Ψ · u,

Ht − ∇ × (u × H)= −∇ × (ν∇ × H), ∇ · H = 0,

(1.1)

where ρ ∈R denotes the density, u ∈R
3 the fluid velocity and H ∈R

3 the magnetic field, p ∈R

the pressure.

E = ρe+ 1

2

(
ρ|u|2 + |H|2)

is the total energy with e being the specific internal energy. S stands for the viscous stress tensor, 
given by Newton’s law of viscosity:

S= μ(∇u + ∇�u
) + λ(∇ · u)I3 (1.2)

with μ the shear viscosity coefficient and η = λ + 2
3μ the bulk viscosity coefficient of the 

flow (while μ should be positive for any “genuinely” viscous fluid, η may vanish, e.g. for 
a monoatomic gas), I3 the 3 × 3 identity matrix and ∇�u the transpose of the matrix ∇u. Note 
that

∇ · S =
(
η+ 1

3
μ

)
∇(∇ · u)+μ�u,

S : ∇u = μ|∇u|2 +μ∇u : ∇�u +
(
η− 2

3
μ

)
(∇ · u)2.

q is the heat flux obeying the classical Fourier’s law:

q = −κ∇ϑ, κ ≥ 0, (1.3)

where ϑ means the absolute temperature, κ is the heat conductivity coefficient. The term ρ∇Ψ
is the gravitational force where the potential Ψ obeys Poisson’s equation on the whole physical 
space R3 which is
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−�Ψ =Gρ with a constant G> 0,

where ρ was extended to be zero outside Ω . The coefficient ν > 0 is termed the magnetic diffu-
sivity of the fluid. Usually, we refer to Eq. (1.1)1 as the continuity equation (mass conservation 
equation), (1.1)2 and (1.1)3 as the momentum and the total energy conservation equation, respec-
tively. It is well-known that the electromagnetic fields are governed by the Maxwell equations. 
In magnetohydrodynamics, the displacement currents can be neglected in the time dependent 
Maxwell equations (see [22,29,30]), which transforms the hyperbolic Maxwell’s system into 
a parabolic equation from a mathematical viewpoint. Accordingly, Eq. (1.1)4 is called the induc-
tion equation, and the electric field E is related to the magnetic induction vector H and the fluid 
velocity u via Ampère’s law:

ν∇ × H = E + u × H.

As for the constraint ∇ · H = 0, it can be seen just as a restriction on the initial value H0, since 
(∇ · H)t ≡ 0. The equations in (1.1) describe the macroscopic behavior of the magnetohydrody-
namic flow with dissipative mechanisms. Magnetic reconnection is thought to be the mechanism 
responsible for the conversion of magnetic energy into heat and fluid motion (cf. [3,8]).

Next, we turn to the pressure–density–temperature (pdt) state equation. The well-known case 
is the ideal gas flow provided by Boyle’s law:

pG(ρ,ϑ)=Rρϑ,

where R is a constant inversely proportional to the mean molecular weight of the gas (cf. [18]). 
However, Boyle’s law is definitely not satisfactory in the high temperature and density regime 
physically relevant to general viscous fluids in the full thermodynamical setting. For example, it 
is known the pressure of highly condensed cold matter is proportional to ρ

5
3 (see Chapters 3, 11 

of [43]), also the isentropic state equation for a perfect monoatomic gas. In this paper, we will 
consider a much more general constitutive relationship than that introduced in [18], the so-called 
constitutive law for pressure, i.e., pG(ρ, ϑ) will be determined via

pG(ρ,ϑ)= pe(ρ)+ ϑpϑ(ρ)+ ϑ2pϑ2(ρ) (1.4)

with the elastic pressure pe and the thermal pressure components pϑ , pϑ2 being C1 functions 
of the density. In particular, for the so-called electronic pressure, one has pG(ρ, ϑ) = pe(ρ) +
Rρϑ + √

ρϑ2 (cf. [43]). From the mathematical point of view, (1.4) can be understood as the 
first three terms in the Taylor expansion:

pG(ρ,ϑ)= pG(ρ,Θ)+ (ϑ −Θ)∂pG
∂ϑ
(ρ,Θ)+ (ϑ −Θ)2

2

∂2pG

∂2ϑ
(ρ,Θ)+ higher order terms

for a given Θ > 0.
In addition, it is worth-noting that the regularizing effect of radiation has been already ob-

served in [9]. The radiation pressure is attributed to photons of very high energy, for example, the 
radiation energy associated with Planck distribution varies as the fourth power of the temperature, 
and the importance of the thermal radiation increases as the temperature is raised. Especially, at 
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high temperatures, a completely different mechanism of heat energy transfer appears due to radi-
ation, the energy and momentum densities of radiation field may become comparable to or even 
dominate the corresponding fluid quantities, for example, the heat conductivity coefficient κ be-
comes a rather sensitive function of temperature. As a consequence, the total pressure in fluid 
is augmented through the effect of high temperature radiation, by a radiation component pR(ϑ)
related to the absolute temperature through

pR(ϑ)= a
3
ϑ4

with the Stefan–Boltzmann constant a > 0 (see [2,11,37], also see Chapter 15 in [15]).
To conclude, we have the equation of state

p = p(ρ,ϑ)= pG(ρ,ϑ)+ pR(ϑ)= pe(ρ)+ ϑpϑ(ρ)+ ϑ2pϑ2(ρ)+ a
3
ϑ4 (1.5)

in this paper, which relates the pressure with the density and the absolute temperature of the flow.
Given the (pdt) state equation discussed above, note that the basic principle of the second 

law of thermodynamics implies that the internal energy and pressure are interrelated through 
Maxwell’s relationship, we define the specific entropy s, up to an additive constant, through the 
thermodynamics equation:

ϑDs(ρ,ϑ)=De(ρ,ϑ)+ p(ρ,ϑ)D
(

1

ρ

)
. (1.6)

The quantity 1
θ
(De+pD( 1

ρ
))must be a perfect gradient, which is the well-known Gibbs’ relation 

on p, e and s, implying that e and p are interrelated through

∂e

∂ρ
= 1

ρ2

(
p− ϑ ∂p

∂ϑ

)
= 1

ρ2

(
pe(ρ)− ϑ2pϑ2(ρ)− aϑ4) (1.7)

(see e.g. Chapter 3 in [1]). In fact, the equality (1.7) comes from ∂
2s

∂ρ∂ϑ
= ∂2s
∂ϑ∂ρ

.
Accordingly, e can be written in the form:

e= Pe(ρ)− ϑ2Pϑ2(ρ)+ aϑ
4

ρ
+Q(ϑ),

where

Pe(ρ)=
ρ∫

1

pe(z)

z2
dz is the elastic potential,

Pϑ2(ρ)=
ρ∫

1

pϑ2(z)

z2
dz,

and the thermal energy contribution Q is a non-decreasing function of ϑ . Here
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Q(ϑ)=
ϑ∫

0

cv(ξ) dξ,

where cv(ϑ) denotes the specific heat at constant volume such that

cv ∈ C1([0,∞)), inf
ϑ∈[0,∞) cv(ϑ) > 0.

The subsequent analysis leans essentially on thermodynamic stability of the fluid system ex-
pressed through

∂p

∂ρ
> 0,

∂e

∂ϑ
> 0 for all ρ,ϑ > 0.

Taking the high temperature and density regime physically relevant to our model equation into 
account, we can suppose⎧⎪⎨

⎪⎩
pe(0)= pϑ(0)= pϑ2(0)= 0,

p′
e(ρ)≥ a1ρ

γ−1 − b1, p′
ϑ(ρ)≥ 0, p′

ϑ2(ρ)≥ 0,

pe(ρ)≤ a2ρ
γ + b2, pϑ(ρ)≤ a3ρ

ς + b3, pϑ2(ρ)≤ a4ρ
ζ + b4,

(1.8)

with a1 > 0, γ ≥ 2, γ > 4
3ς , γ > 2ζ . We remark here that pe need not be a non-decreasing 

function of ρ.
Many theoretical studies have been devoted to the global-in-time existence of solutions with 

large data for the multidimensional continuum isothermal or isentropic fluid mechanics and elec-
trodynamics (see [17,21,30,32,35,36,42]), especially for the magnetohydrodynamics because of 
its physical importance, complexity, rich phenomena and mathematical challenges; see [3,6,13,
14,16,22,24,25,29,39,40] and the references cited therein. Note that the existence problem for 
a general full system including the energy equation is far from being solved. It is not know 
whether there is a classical (smooth) solution of system (1.1) with large initial data on an arbitrary 
time interval (0, T ) or not, even for the one-dimensional full perfect MHD equations with large 
data when all the viscosity, heat conductivity and magnetic diffusivity coefficients are constants, 
or for the three-dimensional Navier–Stokes equations describing the motion of compressible 
(incompressible) fluids. The simplest and most interesting case of the ideal gas flow with the vis-
cosity coefficients and the heat conductivity coefficient being constants is completely open. P.-L. 
Lions [32] gives a formal proof of weak stability under the additional hypothesis of boundedness 
of ρ, u and ϑ in L∞(Ω × (0, T )). The corresponding problem for the one-dimensional Navier–
Stokes equations was solved in [27] in the seventies last century. For the gases in one-dimension 
with small smooth initial data, the existence of global solutions was proved in [26], and the 
large-time behavior was studied in [33]. For large initial data, additional difficulties appear be-
cause of the presence of the magnetic field and its interaction with the hydrodynamic motion of 
the flow of large oscillation. Chen and Wang [5] investigated a free boundary problem for plane 
magnetohydrodynamic flows with general large initial data in 1-D and established the existence, 
uniqueness, and regularity of global solutions in H 1. Taking the effect of self-gravitation and the 
influence of high temperature radiation into account, global existence and uniqueness of a clas-
sical solution with large initial data was proved in [44] under a general assumption on the heat 
conductivity while all the viscosity, and magnetic diffusivity coefficients are constants. Based on 
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the concept of variational (weak) solutions in the spirit of Leray’s pioneering work (see [31]) in 
the context of incompressible, linearly viscous fluids, the existence theory was extended to the 
full Navier–Stokes system, including the thermal energy equation, under certain mostly technical 
hypothesis imposed on the quantities appearing in the constitutive equations (see Theorem 7.1 
in [18]) by Ducomet and Feireisl. They first developed the global existence of variational so-
lution in [18] under the assumptions that the viscosity coefficients μ and λ must be constant, 
while the heat conductivity coefficient κ depends on the temperature ϑ , and later they extended 
the result in [19] when μ and λ depend on ϑ . More complex, the effects of self-gravitation as 
well as the influence of radiation on the dynamics at high temperature regimes were included 
in [12]. Using the similar technique as in [12,18,19], Ducomet and Feireisl [13] studied the full 
compressible MHD equations while considering the effects of self-gravitation and the influence 
of radiations on the dynamics at high temperature regimes. Under the assumption that the vis-
cosity coefficients depend on the temperature and the magnetic field, the pressure behaves like 
the power law ρ

5
3 for large density (reminiscent of the isentropic state equation for a perfect 

monoatomic gas), and all the transport coefficients satisfy certain (1 + ϑα)-growth conditions 
for any α ∈ [1, 65

27 ), they introduced the total entropy balance as one of main field equations and 
proved the global existence of variational solution to any finite energy data on a bounded spatial 
domain in R3, supplemented with conservative boundary conditions. The reader is also referred 
to the monograph [20] for more details about the system and the methods. Hu and Wang [24]
considered a 3-D model problem for full compressible MHD flows with more general pressure, 
by using the thermal equation as in [19] instead of the entropy equation employed in [13,20], they 
proved the existence of a global variational weak solution to the MHD equations with large data.

We shall study the global existence of the variational (weak) solutions to the real magneto-
hydrodynamic flows, with general pressure and internal energy while permitting the generation 
of heat by the magnetic field as well as its interaction with the fluid motion, in a bounded do-
mainΩ in R3. In this paper, we supplement system (1.1) with the following initial and boundary 
conditions:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(ρ,ρu, ϑ,H)|t=0 = (ρ0,m0, ϑ0,H0), for x ∈Ω,
ρ0 ≥ 0, ess inf

Ω
ϑ0 > 0,

ρ0 ∈ Lγ (Ω), m0 ∈L1(Ω),
1

ρ0
|m0|2 ∈ L1(Ω),

(
ρQ(ϑ)

)
0 = ρ0Q(ϑ0) ∈L1(Ω),

ϑ0 ∈ L∞(Ω), H0 ∈ L2(Ω), ∇ · H0 = 0 in D′(Ω),

(1.9)

u|∂Ω = 0, q · n|∂Ω = 0, and H · n|∂Ω = 0, (∇ × H)× n|∂Ω = 0, (1.10)

where n denotes the unit outward normal on ∂Ω . The boundary condition prescribed on the 
velocity is the so-called non-slip boundary condition, on the temperature is the conservation 
boundary condition, which means the system is thermally insulated (isolated), and on the mag-
netic field is known as the perfectly conducting wall condition which describes the case where 
the wall of container is made of perfectly conductive materials. Such boundary conditions are 
classical in the theory of magnetohydrodynamics and conform to that the physical system (1.1)
is energetically isolated. Note here

(i) D denotes C∞
0 , and D′ for the sense of distributions;

(ii) 1 |m0|2 ∈ L1(Ω) indicates m0 = 0 a.a. x ∈ {ρ0 = 0}.

ρ0
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The problem considered in our paper seems more rational and physically valid in many as-
trophysical models, since it is well known that the dynamics of gaseous stars in astrophysics 
is dominated by intense magnetic fields, self-gravitation, and high temperature radiation (cf.
[7,41]).

Given the rather poor a priori estimates (ensuring equi-integrability, or weak L1 compactness 
of the quantities appearing in the corresponding balance laws) available for the MHD equations, 
approximate (or even exact) solutions are bounded only in the Lebesgue spaces of integrable 
functions, and, consequently, any existence theory must be built up on the methods of weak 
convergence. The idea of approximation was used in [12,20], where detailed existence proofs for 
simpler systems were given. In addition, the constitutive relations concerning the pressure in this 
paper are more general: we need to deal with the new terms in the (pdt) state equation, also for 
the general form of the thermal energy contribution Q(ϑ); and overcome the difficulty arising 
from the presence of the magnetic field and its coupling and interaction with the fluid variables. 
The heat conductivity is more complicated, not depending solely on the temperature. Except for 
the total energy conservation, we will formally obtain an entropy-type energy estimate involving 
the dissipative effects of viscosity, magnetic diffusion, and heat diffusion, which are essential to 
deduce the required available a priori estimates on the velocity, the magnetic induction vector 
and the temperature from boundedness of the initial total energy and the initial total entropy of 
the system by our careful analysis.

We introduce a suitable variational formulation of the problem and state the main existence 
result following a series of a priori estimates on the formal solution in Section 2, employ a three-
level approximation scheme (see, for instance, [12,13,18–20,24]) to construct a sequence of 
approximation solutions in Section 3, and show the existence of global variational (weak) so-
lution with large initial data in the last four sections. Our main result will be proved successively 
through the Galerkin method, a vanishing viscosity and vanishing artificial pressure limit passage 
using the methods of weak convergence.

2. Notations and results

2.1. Notations

(1) ΩT =Ω × (0, T ) for some fixed time T > 0.
(2) For k ≥ 1 and p ≥ 1, denote Wk,p =Wk,p(Ω) for the Sobolev space, whose norm is denoted 

as ‖ · ‖Wk,p , and Hk =Wk,2(Ω). For T > 0 and a function space X, denote by Lp(0, T ; X)
the set of Bochner measurable X-valued time dependent functions f such that t → ‖f ‖X
belongs to Lp(0, T ), and the corresponding Lebesgue norm is denoted by ‖ · ‖LpT (X).

Let us consider first a classical solution (ρ, u, ϑ, H) of the problem (1.1), (1.9), (1.10) in ΩT . 
Observe from the continuity equation that the total mass is a constant of motion, i.e., we obtain 
the conservation of mass in the integral form:∫

Ω

ρ(t) dx =
∫
Ω

ρ0 dx for all t ∈ [0, T ]. (2.1)

Note that if we multiply the continuity equation by b′(ρ), where b ∈ C1((0, ∞)) and usually 
its derivative vanishes for large arguments (see, for instance, [10]), the renormalized continuity 
equation is obtained:
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(
b(ρ)

)
t
+ ∇ · (b(ρ)u) + (

b′(ρ)ρ − b(ρ))∇ · u = 0. (2.2)

Multiplying the momentum equation by u, the induction equation by H, and inserting the results 
into the total energy equation, we get the following internal energy balance

(ρe)t + ∇ · (ρeu)+ p∇ · u = S : ∇u − ∇ · q + ν|∇ × H|2, (2.3)

where A : B denotes the scalar product of the two matrices A and B .
Recalling q = −κ∇ϑ and the state equation

p(ρ,ϑ)= pe(ρ)+ ϑpϑ(ρ)+ ϑ2pϑ2(ρ)+ a
3
ϑ4,

e(ρ,ϑ)= Pe(ρ)− ϑ2Pϑ2(ρ)+ a
ρ
ϑ4 +Q(ϑ),

we get the thermal energy equation

(
aϑ4 + ρQ(ϑ)− ρϑ2Pϑ2(ρ)

)
t
+ ∇ · ((aϑ4 + ρQ(ϑ)− ρϑ2Pϑ2(ρ)

)
u
) − ∇ · (κ∇ϑ)

= S : ∇u + ν|∇ × H|2 −
(
ϑpϑ(ρ)+ ϑ2pϑ2(ρ)+ a

3
ϑ4

)
∇ · u, (2.4)

where S : ∇u is termed the dissipation function responsible for the irreversible transfer of the 
mechanical energy into heat. Here we have used the fact that

(
ρPe(ρ)

)
t
+ ∇ · (ρPe(ρ)u) + pe(ρ)∇ · u = 0.

Moreover, if the temperature is strictly positive, multiplying (2.4) by 1
ϑ

and using the conti-
nuity equation, we obtain the entropy equation

(ρs)t + ∇ · (ρsu)− ∇ ·
(
κ∇ϑ
ϑ

)
= S : ∇u + ν|∇ × H|2

ϑ
+ κ|∇ϑ |2

ϑ2
, (2.5)

where the entropy

s = s(ρ,ϑ)= 4

3

aϑ3

ρ
+

ϑ∫
1

cv(ξ)

ξ
dξ − Pϑ(ρ)− 2ϑPϑ2(ρ)

with

Pϑ(ρ)=
ρ∫

1

pϑ(z)

z2
dz.

According to the Clausius–Duhem inequality (the second law of thermodynamics), the right-
hand side of (2.5) must be non-negative for any possible motion, thus in particular, the viscosity 
coefficients μ, η for the Newtonian fluid and the magnetic diffusivity coefficient ν must be 
non-negative. Experiments show that the viscosity of fluids is quite sensitive to changes in
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temperature, for example, viscosity of gases increases with temperature, also of liquids decreases. 
The total heat-conductivity

κ := κ(ρ,ϑ,H)= κG(ρ,ϑ,H)+ κRϑ3

where κR > 0 is a constant (see [2]), and κG > 0 satisfies certain growth conditions. For the sake 
of simplicity, but not without certain physical background, also in agreement with numerous 
practical experiments, we shall assume all the transport coefficients admit some temperature 
scalings. Specifically, we assume

0< c1
(
1 + ϑα) ≤ μ(ϑ,H)≤ c2(1 + ϑ)α,

0< c3ϑ
α ≤ η(ϑ,H)≤ c4(1 + ϑ)α

for some constant α ≥ 1
2 , and set

0< c5
(
1 + ϑβ) ≤ ν(ρ,ϑ,H), κG(ρ,ϑ,H)≤ c6

(
1 + ϑβ), and

cv(ϑ)≤ c7
(
1 + ϑ β2 −1) (2.6)

with β ≥ 1 to be specified below. Note that we only consider the case when the viscosity coeffi-
cients are independent of the density (though being physically relevant) to avoid unsurmountable 
technical details in mathematics. The condition on κG(ρ, ϑ, H) is physically reasonable as ex-
periments predict the value of β ≈ 4.5–5.5 while Q should behave like ϑ1.5 for large arguments, 
which is in good agreement with the hypothesis on cv(ϑ) (cf. [43]). We remark here that, if 
the magnetic field is absent, it has been shown by methods of statistical thermodynamics that 
μ = cϑ 1

2 for a gas under normal conditions, and meanwhile, the coefficients of viscosity in gases 
show only little dependence on the density (see, for instance, Chapter 10 in [4]). The idea to 
impose several kinds of temperature scalings on the transport coefficients was inspired by [12,
13,18,23]. The effect of the magnetic field is indeed very complicated because the viscous stress 
becomes unisotropic depending effectively on the direction of H (see Section 19.44 in [4]).

Since the gravitational potential Ψ can be determined by the boundary value problem:

{−�Ψ =Gρ, (t,x) ∈ΩT ,
Ψ |∂Ω = 0,

(2.7)

by using the maximum principle, Ψ ≥ 0 in ΩT , and

Ψ =G(−�)−1[ρ] with (−�)−1[ρ](x)=Fξ→x
[|ξ |2Fx→ξ [ρ]

]
, (2.8)

where F stands for the Fourier transform.
Moreover, taking advantage of the continuity equation, we have∫

Ω

ρ∇Ψ · udx = −
∫
Ω

Ψ∇ · (ρu) dx =
∫
Ω

Ψρt dx = 1

2G

d

dt

∫
Ω

|∇Ψ |2 dx

= 1

2

d

dt

∫
ρΨ dx = −G

2

d

dt

∫
�−1[ρ]ρ dx.
Ω Ω



JID:YJDEQ AID:7549 /FLA [m1+; v 1.194; Prn:2/07/2014; 11:48] P.10 (1-48)

10 X. Li, B. Guo / J. Differential Equations ••• (••••) •••–•••
From the total energy equation and the boundary conditions (1.10), we deduce that the total 
energy of the system is a constant of motion, i.e., the total energy is conserved,

d

dt

∫
Ω

(
ρPe(ρ)− ρϑ2Pϑ2(ρ)+ aϑ4 + ρQ(ϑ)+ 1

2
ρ|u|2 + 1

2
|H|2 + G

2
�−1[ρ]ρ

)
dx = 0,

E(t)=
∫
Ω

(
ρPe(ρ)− ρϑ2Pϑ2(ρ)+ aϑ4 + ρQ(ϑ)+ 1

2
ρ|u|2 + 1

2
|H|2 + G

2
�−1[ρ]ρ

)
dx

=E0 (2.9)

for a.a. t ∈ (0, T ), where

E0 =
∫
Ω

ρ0Pe(ρ0)− ρ0ϑ
2
0Pϑ2(ρ0)+ aϑ4

0 + ρ0Q(ϑ0)

+ 1

2ρ0
|m0|2 + 1

2
|H0|2 + G

2
�−1[ρ0]ρ0 dx.

Note that pe, pϑ2 are continuous functions vanishing at zero, thus

ρ �→ ρPe(ρ) ∈C[0,∞), lim
ρ→0+ρPe(ρ)= 0,

ρ �→ ρPϑ2(ρ) ∈C[0,∞), lim
ρ→0+ρPϑ2(ρ)= 0.

As for the energy contribution related to the term G2
∫
Ω
�−1[ρ]ρ dx is, in fact, negative. Using 

the fact that the total mass is a constant of motion, i.e., (2.1), the Hölder inequality and the 
classical elliptic estimate, we obtain

G

2

∫
Ω

∣∣�−1[ρ]ρ∣∣dx ≤ G
2

‖ρ‖Lγ
∥∥(−�)−1[ρ]∥∥

L
γ
γ−1

≤ C‖ρ‖Lγ ‖ρ‖L1 ≤ C‖ρ‖Lγ , γ ≥ 2.

Next we shall obtain sufficient a priori estimates on the solution by virtue of the total energy 
conservation (2.9). Firstly, the assumption (1.8) implies that

pe(ρ)≥ a1

γ
ργ − b1ρ.

Furthermore, there are two positive constants c̃1 and c̃2 such that

ρPe(ρ)≥ c̃1ργ − c̃2 for any ρ ≥ 0,

in particular,

ρPe(ρ)≥ c̃3
∣∣pe(ρ)∣∣ − c̃4 for ρ ≥ 0. (2.10)
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By using the Cauchy–Schwarz inequality and the Hölder inequality, there are three positive con-
stants c̃5(≤ c̃1), c̃6(≤ a) and c̃7 such that∣∣ρϑ2Pϑ2(ρ)

∣∣ ≤ c̃5ργ + c̃6ϑ4 + c̃7.
From (2.1), (2.9), we have

ργ , ϑ4, ρPe(ρ), ρϑ
2Pϑ2(ρ), ρQ(ϑ),

1

2
ρ|u|2, 1

2
|H|2 ∈ L∞(

0, T ;L1(Ω)
)
. (2.11)

Obviously, the elastic pressure component pe(ρ) is integrable as a result of (2.10). Moreover, by 

virtue of the Hölder inequality, ρu ∈L∞(0, T ; L 2γ
γ+1 (Ω)).

Secondly, in order to get estimates on the temperature, we integrate (2.5) over ΩT ,∫
ΩT

(
S : ∇u + ν|∇ × H|2

ϑ
+ κ|∇ϑ |2

ϑ2

)
dxdt = S(T )− S0, (2.12)

where ∇ϑ
ϑ

will be interpreted as ∇ lnϑ in the spirit of Lemma 5.3 in [12] (see also Lemma 2.1 
in [13]), S(t) = ∫

Ω
ρs dx, and

S0 =
∫
Ω

ρ0s(ρ0, ϑ0) dx =
∫
Ω

(
4

3
aϑ0

3 + ρ0

ϑ0∫
1

cv(ξ)

ξ
dξ − ρ0Pϑ(ρ0)− 2ρ0ϑ0Pϑ2(ρ0)

)
dx.

Moreover, the presence of ϑ in the denominator indicates that this quantity must be positive on 
a set of full measure for the above arguments to make sense.

It follows from (1.8) that for some certain C > 0,∣∣ρPϑ(ρ)∣∣ ≤ C(
1 + ρPe(ρ)

)
, ρ2P 2

ϑ2(ρ)≤ C
(
1 + ρPe(ρ)

)
,

then

ρs ≤ 4a

3
ϑ3 + ρQ(ϑ)+ ∣∣ρPϑ(ρ)∣∣ + 2

∣∣ρϑPϑ2(ρ)
∣∣

≤ 4a

3
ϑ3 + ρQ(ϑ)+ ∣∣ρPϑ(ρ)∣∣ + ρ2P 2

ϑ2(ρ)+ ϑ2

≤ C(
ρQ(ϑ)+ ρPe(ρ)+ ϑ4 + 1

)
.

Here we have also used

ϑ∫
1

cv(ξ)

ξ
dξ ≤ 0, 0< ϑ ≤ 1,

ϑ∫
1

cv(ξ)

ξ
dξ ≤

ϑ∫
1

cv(ξ) dξ =Q(ϑ)−Q(1)≤Q(ϑ), ϑ > 1,

and hence
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ϑ∫
1

cv(ξ)

ξ
dξ ≤Q(ϑ), for any ϑ > 0.

Then from (2.9), (2.12), we have

∫
ΩT

(
S : ∇u + ν|∇ × H|2

ϑ
+ κ|∇ϑ |2

ϑ2

)
dxdt − ess inf

t∈[0,T ]

∫
Ω

ρ(t) lnϑ(t) dx ≤C(E0, T )− S0.

Recalling the assumption (2.6) on κG(ρ, ϑ, H), we have

∫
ΩT

κ|∇ϑ |2
ϑ2

dxdt =
∫
ΩT

(κRϑ
3 + κG(ρ,ϑ,H))|∇ϑ |2

ϑ2
dxdt

≥ c
∫
ΩT

1 + ϑβ + ϑ3

ϑ2
|∇ϑ |2 dxdt.

Consequently, on the one hand,

ess sup
t∈[0,T ]

∫
Ω

ρ(t)
∣∣lnϑ(t)∣∣dx +

∫
ΩT

(∣∣∇ϑ β2 ∣∣2 + ∣∣∇ϑ 3
2
∣∣2 +

∣∣∣∣∇ϑϑ
∣∣∣∣
2)
dxdt ≤ C(E0, S0, T ), (2.13)

which yields

ρ|lnϑ | ∈ L∞(
0, T ;L1(Ω)

)
,

∇ϑ
ϑ
, ∇ϑ β2 , ∇ϑ 3

2 ∈L2(ΩT ).

First of all, ∇ϑ 3
2 ∈ L2(ΩT ) together with (2.11) give rise to

ϑ
3
2 ∈ L2(0, T ;H 1(Ω)

)
.

Next, since ϑ > 0, then

∫
Ω

|∇ϑ |2 dx =
∫
Ω

ϑ∇ϑ√
κ

√
κ∇ϑ
ϑ

dx

≤
(∫
Ω

ϑ2|∇ϑ |2
κ

dx
) 1

2
(∫
Ω

κ|∇ϑ |2
ϑ2

dx
) 1

2

≤ C
(∫
Ω

|∇ϑ |2 dx
) 1

2
(∫
Ω

κ|∇ϑ |2
ϑ2

dx
) 1

2

≤ ε
∫

|∇ϑ |2 dx +Cε
∫
κ|∇ϑ |2
ϑ2

dx,
Ω Ω
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where ε > 0 is small enough. Thus,

∇ϑ ∈ L2(ΩT ).

Recalling ϑ ∈ L∞(0, T ; L4(Ω)) again, we have

ϑ ∈L2(0, T ;H 1(Ω)
)
.

Now, taking advantage of Lemma 5.3 in [12] (see also Lemma 2.1 in [13]) and the estimates 
in (2.13), we know

lnϑ ∈H 1(Ω), ∇ lnϑ = ∇ϑ
ϑ

a.e. on Ω,

‖lnϑ‖2
L2 ≤ C

(
‖ρ lnϑ‖2

L1 +
∥∥∥∥∇ϑ
ϑ

∥∥∥∥
2

L2

)
,

and furthermore,

lnϑ is bounded in L2(ΩT )

by a constant depending only on the data and T . This estimate can be seen as “weak positivity” 
of the temperature ϑ . Finally, we conclude

lnϑ ∈ L2(0, T ;H 1(Ω)
)
.

On the other hand, since

S : ∇u
ϑ

= μ(ϑ,H)
ϑ

(
|∇u|2 + ∇u : ∇�u − 2

3
(∇ · u)2

)
+ η(ϑ,H)

ϑ
(∇ · u)2

= μ(ϑ,H)
2ϑ

∣∣∣∣∇u + ∇�u − 2

3
∇ · uI3

∣∣∣∣
2

+ η(ϑ,H)
ϑ

(∇ · u)2

≥ cϑα−1
∣∣∇u + ∇�u

∣∣2
,

and, by virtue of Young’s inequality, it yields

∣∣∇u + ∇�u
∣∣r ≤ C(

ϑα−1
∣∣∇u + ∇�u

∣∣2 + ϑ4) with r = 8

5 − α .

Here we need α ≤ 1. Hence r ≤ 2, and

u ∈Lr(0, T ;W 1,r
0 (Ω)

)
.

In view of the entropy equation (2.12) again, combining with the assumption on the magnetic 
diffusivity coefficient, we have

(1 + ϑ)β−1
2 ∇ × H ∈L2(ΩT ).
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Bearing in mind the fact that ‖∇ × H‖L2 = ‖∇H‖L2 when ∇ · H = 0, together with (2.11), we 
conclude

H ∈L2(0, T ;H 1(Ω)
)
.

Therefore, for the initial–boundary value problem, based on our assumptions on pe, pϑ , pϑ2 , 
i.e., (1.8), on all the transport coefficients μ, η, ν, κG and on the initial data, we have a priori
estimates resulting from boundedness of the initial total energy and the initial total entropy as 
follows:

ργ ∈ L∞(
0, T ;L1(Ω)

)
, ρu ∈L∞(

0, T ;L 2γ
γ+1 (Ω)

)
,

ρPe(ρ), ρϑ
2Pϑ2(ρ), ρQ(ϑ) ∈ L∞(

0, T ;L1(Ω)
)
,

ϑ ∈ L∞(
0, T ;L4(Ω)

) ∩L2(0, T ;H 1(Ω)
)
, ∇ϑ β2 ∈L2(ΩT ),

ϑ
3
2 , lnϑ ∈ L2(0, T ;H 1(Ω)

)
,

u ∈Lr(0, T ;W 1,r
0 (Ω)

)
, r = 8

5 − α ,

H ∈L∞(
0, T ;L2(Ω)

) ∩L2(0, T ;H 1(Ω)
)
.

We remark that (i) the velocity gradient ∇u is not known to be square integrable; (ii) a variational 
(weak) formulation of the momentum equation may not yield the full amount of mechanical 
energy dissipated by a (non-smooth) motion, then it may only satisfy the inequality

(ρe)t + ∇ · (ρeu)+ p∇ · u ≥ S : ∇u − ∇ · q + ν|∇ × H|2

instead of the internal energy balance (2.3). And consequently, Eq. (2.4) becomes

(
aϑ4 + ρQ(ϑ)− ρϑ2Pϑ2(ρ)

)
t
+ ∇ · ((aϑ4 + ρQ(ϑ)− ρϑ2Pϑ2(ρ)

)
u
) − ∇ · (κ∇ϑ)

≥ S : ∇u + ν|∇ × H|2 −
(
ϑpϑ(ρ)+ ϑ2pϑ2(ρ)+ a

3
ϑ4

)
∇ · u. (2.14)

Using the same argument as the production of the entropy equation (2.5), the thermal energy 
inequality (2.14) can be “equivalently” expressed through the variational principle of entropy

∫
ΩT

(
ρsϕt + ρsu · ∇ϕ − κ∇ϑ

ϑ
· ∇ϕ

)
dxdt ≤ −

∫
ΩT

(
S : ∇u + ν|∇ × H|2

ϑ
+ κ|∇ϑ |2

ϑ2

)
ϕ dxdt,

for any 0 ≤ ϕ ∈D(ΩT ; R).
The above arguments suggest us what we mean by a variational (weak) solution of the 

system (1.1), (1.9), (1.10) based on the second law of thermodynamics and the integral repre-
sentation of balance laws.
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Definition 2.1. Given the initial distribution of the state variables

ρ|t=0 = ρ0, ρu|t=0 = m0, ϑ |t=0 = ϑ0, H|t=0 = H0, ρ0 ≥ 0, ϑ0 > 0.

Let T > 0 be given; (ρ, u, ϑ, H) is called a variational (weak) solution of (1.1), (1.9), (1.10), if

• ρ ≥ 0, u ∈ Lr(0, T ; W 1,r
0 (Ω)) with r > 1 and H ∈C([0, T ]; L2

weak(Ω)) ∩L2(0, T ; H 1(Ω))

satisfy the continuity equation in D′(R3 ×[0, T )), the momentum conservation equation and 
the induction equation in D′(Ω × [0, T )), which are∫

ΩT

(
ρψ ′φ +ψρu · ∇φ)

dxdt +ψ(0)
∫
Ω

ρ0φ dx = 0,

for any ψ ∈ C∞([0, T ]) with ψ(T ) = 0 and φ ∈ D(R3; R), ess limt→0+
∫
Ω
ρφ dx =∫

Ω
ρ0φ dx;

∫
ΩT

(
ψ ′ρu · φ +ψ(ρu ⊗ u) : ∇φ +ψp∇ · φ)

dxdt

=
∫
ΩT

(
ψS : ∇φ − ρψ∇Ψ · φ −ψ(

(∇ × H)× H
) · φ)

dxdt −ψ(0)
∫
Ω

m0 · φ dx,

where Ψ =G(−�)−1[1Ωρ], and∫
ΩT

(
ψ ′H · φ +ψ(u × H) · (∇ × φ)−ψν(∇ × H) · (∇ × φ))dxdt

+ψ(0)
∫
Ω

H0 · φ dx = 0,

for any ψ ∈ C∞([0, T ]) with ψ(T ) = 0 and φ ∈ D(Ω; R3), ess limt→0+
∫
Ω
ρu · φ dx =∫

Ω
m0 · φ dx, ess limt→0+

∫
Ω

H · φ dx = ∫
Ω

H0 · φ dx.
• The propagation of density oscillations is described by (2.2), i.e., the continuity equation 

is satisfied in the sense of renormalized solutions introduced in [10], that is, (2.2) holds in 
D′(R3 × [0, T )) with any b ∈ C1(R+) satisfying

b′(z)= 0 for all z ∈ R
+ large enough, e.g., z≥ zb, (2.15)

where the constant zb depends on the choice of function b, that means,∫
ΩT

(
b(ρ)ψ ′φ +ψb(ρ)u · ∇φ +ψ(

b(ρ)− b′(ρ)ρ)∇ · uφ
)
dxdt

+ψ(0)
∫
b(ρ0)φ dx = 0, (2.16)
Ω
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for any ψ ∈ C∞([0, T ]) with ψ(T ) = 0 and φ ∈ D(Ω; R), ess limt→0+
∫
Ω
b(ρ)φ dx =∫

Ω
b(ρ0)φ dx.

• ϑ > 0 satisfies the variational principle of entropy production

∫
ΩT

(
ρsψ ′φ +ψρsu · ∇φ −ψ κ∇ϑ

ϑ
· ∇φ

)
dxdt

≤ −
∫
ΩT

(
S : ∇u + ν|∇ × H|2

ϑ
+ κ|∇ϑ |2

ϑ2

)
ψφ dxdt −ψ(0)

∫
Ω

ρ0s(ρ0, ϑ0)φ dx,

for any 0 ≤ ψ ∈ C∞([0, T ]) with ψ(T ) = 0 and 0 ≤ φ ∈ D(R3; R), ess limt→0+
∫
Ω
ρs×

φdx ≥ ∫
Ω
ρ0s(ρ0, ϑ0)φ dx.

• The total energy E(t) defined in (2.9) is a constant of motion:

T∫
0

Eψ ′ dt = −E0ψ(0),

for any ψ ∈ C∞([0, T ]) with ψ(T ) = 0.
• (ρ, u, ϑ, H) satisfies (1.10) in the sense of trace a.a. in (0, T ).

Note that all the choices of the test functions agree with the boundary condition (1.10). 
We remark here, if the magnetic field H is absent, the system (1.1) with the constitutive rela-
tions (1.2), (1.3) is called the full Navier–Stokes–Fourier system, and a variational formulation 
of such a system with conservative boundary conditions was introduced in [12]. Now, we are 
ready to state our main theorem of this paper, which is the existence of global variational (weak) 
solutions for (1.1), (1.9), (1.10). More precisely, we prove

Theorem 2.1. Let Ω ⊂ R
3 be a bounded domain of class C2+ι, ι ∈ (0, 1]. Assume that the 

pressure p determined by (1.5), the internal energy e and the specific entropy s are interrelated 
by (1.6). Furthermore, suppose that the temperature scaling on μ, η satisfies 1

2 ≤ α ≤ 1, on ν, κG
and cv satisfies 1 ≤ β ≤ 4. Then the system (1.1), (1.9), (1.10) has at least one global variational 
(weak) solution for all T ∈ (0, ∞) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ ∈ C([0, T ];L1(Ω)
) ∩L∞(

0, T ;Lγ (Ω)), ρu ∈C([0, T ];L
2γ
γ+1
weak(Ω)

)
,

u ∈ Lr(0, T ;W 1,r
0 (Ω)

)
with r > 1,

ϑ ∈ L∞(
0, T ;L4(Ω)

) ∩L2(0, T ;H 1(Ω)
)
, ρQ(ϑ) ∈ L∞(

0, T ;L1(Ω)
)
,

ϑ
3
2 , ϑ

β
2 , lnϑ ∈L2(0, T ;H 1(Ω)

)
,

H ∈ C([0, T ];L2
weak(Ω)

) ∩L2(0, T ;H 1(Ω)
)
.

Remark 2.1. 1. ρ ∈ L∞(0, T ; Lγ (Ω)) can be strengthened to ρ ∈ C([0, T ]; Lγweak(Ω)), in par-
ticular, ρ(t) ⇀ ρ0 in Lγ (Ω) as t → 0, and

∫
Ω
ρ(t) dx = ∫

Ω
ρ0 dx is a constant of motion 

(independent of t ∈ [0, T ]).
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2. It will be shown that ϑ satisfies the initial condition

ess lim
t→0+

∫
Ω

ϑφ dx =
∫
Ω

ϑ0φ dx, for any φ ∈D(Ω;R)

if there exists a sequence of times tn → 0 such that {ϑtn} is precompact in L1(Ω).

3. Approximation scheme associated to (1.1)

We consider the following regularized problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρt + ∇ · (ρu)= ε�ρ,
(ρu)t + ∇ · (ρu ⊗ u)+ ∇

(
pm(ρ)+ pb(ρ)+ ϑpϑ(ρ)+ ϑ2pϑ2(ρ)+ a

3
ϑ4

)

+δ∇ρΓ + ε∇u · ∇ρ = ∇ · S+ ρ∇Ψ + (∇ × H)× H,(
aϑ4 + ρQ(ϑ)− ρϑ2Pϑ2(ρ)

)
t
+ ∇ · ((aϑ4 + ρQ(ϑ)− ρϑ2Pϑ2(ρ)

)
u
)

− ∇ · ((κG(ρ,ϑ,H)+ κRϑ3)∇ϑ)
= S : ∇u + ν(ρ,ϑ,H)|∇ × H|2 + ε|∇ρ|2

(
δΓρΓ−2 + p

′
m(ρ)

ρ

)

−
(
ϑpϑ(ρ)+ ϑ2pϑ2(ρ)+ a

3
ϑ4

)
∇ · u,

Ht − ∇ × (u × H)= −∇ × (
ν(ρ,ϑ,H)∇ × H

)
, ∇ · H = 0,

(3.1)

with the initial–boundary conditions

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇ρ · n|∂Ω = 0, ρ|t=0 = ρ0,δ,

u|∂Ω = 0, (ρu)|t=0 = m0,δ =
{m0, if ρ0,δ ≥ ρ0,

0, if ρ0,δ < ρ0,

∇ϑ · n|∂Ω = 0 (no-flux), ϑ |t=0 = ϑ0,δ,

H · n|∂Ω = (∇ × H)× n|∂Ω = 0, H|t=0 = H0,δ,

(3.2)

where “the elastic pressure component” pe has been decomposed as

pe(ρ)= pm(ρ)+ pb(ρ)

with pm, pb ∈ C1[0, ∞), p′
m(ρ) ≥ 0, |pb| ≤M . The parameters ε, δ > 0 and δ∇ρΓ is the ar-

tificial pressure with Γ > 0 (a constant to be determined when facilitating the limit passage 
ε→ 0).

Here the approximate initial density, temperature and magnetic induction vector distributions 
are chosen in such a way that
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0,δ ∈ C2+ι(Ω), ∇ρ0,δ · n|∂Ω = 0, inf
x∈Ω ρ0,δ > 0,

ρ0,δ → ρ0 in Lγ (Ω),
∣∣{x ∈Ω | ρ0,δ < ρ0}

∣∣ → 0 as δ→ 0;
ϑ0,δ ∈ C2+ι(Ω), ∇ϑ0,δ · n|∂Ω = 0, inf

x∈Ω ϑ0,δ > 0,

ϑ0,δ → ϑ0 in L1(Ω) as δ→ 0;
H0,δ ∈D

(
Ω;R3), ∇ · H0,δ = 0, H0,δ · n|∂Ω = (∇ × H0,δ)× n|∂Ω = 0,

H0,δ → H0 in L2(Ω;R3) as δ→ 0.

(3.3)

Taking ε→ 0 and δ→ 0 in (3.1) will give the solution of system (1.1), (1.9), (1.10) in Theo-
rem 2.1. Note that the most important principle we want to conform to is that the total energy is 
a constant of motion at every step of approximation. In particular, denoting

Pm(ρ)=
ρ∫

1

pm(z)

z2
dz,

the initial value of the regularized total energy

E0,δ =
∫
Ω

(
ρ0,δPm(ρ0,δ)− ρ0,δϑ

2
0,δPϑ2(ρ0,δ)+ ρ0,δQ(ϑ0,δ)+ aϑ4

0,δ + 1

2ρ0,δ
|m0,δ|2

+ 1

2
|H0,δ|2 + δ

Γ − 1
ρΓ0,δ

)
dx

is bounded by a constant independent of δ > 0.
Moreover, it is easy to check that the corresponding approximate solutions satisfy the energy 

balance:

d

dt

∫
Ω

(
ρPm(ρ)− ρϑ2Pϑ2(ρ)+ ρQ(ϑ)+ 1

2
ρ|u|2 + aϑ4 + 1

2
|H|2 + δ

Γ − 1
ρΓ

)
dx

=
∫
Ω

ρ∇Ψ · udx +
∫
Ω

∇pb · udx in D′(0, T ).

Here we have used

(
ρPm(ρ)

)
t
+ ∇ · (ρPm(ρ)u) + pm(ρ)∇ · u = εPm(ρ)�ρ + εpm(ρ)

ρ
�ρ

which leads to

d

dt

∫
Ω

ρPm(ρ)dx =
∫
Ω

∇pm(ρ) · udx − ε
∫
Ω

p′
m(ρ)

ρ
|∇ρ|2 dx,

and
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δ

∫
Ω

∇ρΓ · udx − εδΓ
∫
Ω

|∇ρ|2ρΓ−2 dx

= δΓ
∫
Ω

ρΓ−1∇ρ · udx − εδΓ

Γ − 1

∫
Ω

∇ρ · ∇(
ρΓ−1)dx

= δΓ
∫
Ω

ρΓ−1∇ρ · udx + εδΓ

Γ − 1

∫
Ω

ρΓ−1�ρ dx

= δΓ
∫
Ω

ρΓ−1∇ρ · udx + δΓ

Γ − 1

∫
Ω

ρΓ−1(ρt + ∇ · (ρu)
)
dx

= δΓ
∫
Ω

ρΓ−1∇ρ · udx + δ

Γ − 1

d

dt

∫
Ω

ρΓ dx + δΓ

Γ − 1

∫
Ω

ρΓ−1∇ · (ρu) dx

= δΓ
∫
Ω

ρΓ−1∇ρ · udx + δ

Γ − 1

d

dt

∫
Ω

ρΓ dx − δΓ
∫
Ω

ρΓ−1∇ρ · udx

= δ

Γ − 1

d

dt

∫
Ω

ρΓ dx.

Moreover,

lim
t→0

∫
Ω

(
ρPm(ρ)− ρϑ2Pϑ2(ρ)+ ρQ(ϑ)+ aϑ4 + 1

2
ρ|u|2 + 1

2
|H|2 + δ

Γ − 1
ρΓ

)
dx

=
∫
Ω

(
ρ0,δPm(ρ0,δ)− ρ0,δϑ

2
0,δPϑ2(ρ0,δ)+ ρ0,δQ(ϑ0,δ)+ aϑ4

0,δ + 1

2ρ0,δ
|m0,δ|2

+ 1

2
|H0,δ|2 + δ

Γ − 1
ρΓ0,δ

)
dx.

After the above modification, the proof of Theorem 2.1 consists of the following steps:
Step 1: Solving problem for fixed parameters ε > 0, δ > 0 and Γ > 0 by the Galerkin method, 

deriving estimates independent of the dimension k of the Galerkin approximation and carrying 
out the limit as k→ ∞ provided Γ has been chosen large enough.

Step 2: Passing to the limit ε→ 0.
Step 3: Letting δ→ 0.

4. Proof of Theorem 2.1

In this section we introduce the chain of approximations which we use to solve the original 
problem (1.1), (1.9), (1.10). At any level of approximations we formulate the statements about 
the existence of variational (weak) solutions and their properties which are needed to carry out
the proof of existence for the original system.

To begin with, the goal proposed in Step 1 can be achieved via a Schauder–Tychonoff-type 
fixed point argument. More precisely, we first establish that ρ, Ψ , ϑ , and H can be computed 
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successively from the first equation of (3.1), (2.8), and the last two equations of (3.1) as functions 
of u, then the approximation problem for fixed parameters ε and δ can be easily solved by means 
of a modified Faedo–Galerkin method in the same way as in Chapter 7 in [18].

4.1. Solvability of continuity equation with dissipation

Given velocity field u ∈C([0, T ]; C2
0(Ω, R

3)), the density ρ := ρ[u] is determined uniquely 
as the solution of the Neumann (suggested by the fact that conservation of mass in the form 
(
∫
Ω
ρ dx)t = 0 should hold) initial–boundary value problem:

⎧⎨
⎩
ρt + ∇ · (ρu)= ε�ρ, ε > 0,

ρ|t=0 = ρ0,δ,

∇ρ · n|∂Ω = 0,

(4.1)

with ρ0,δ satisfying (3.3). More precisely, since this is a linear parabolic Neumann problem in ρ, 
the existence and uniqueness of a classical solution

ρ ∈C([0, T ];C2+ι(Ω)
)
, ρt ∈ C

([0, T ];Cι(Ω)),
ρ(t,x)≥ inf

x∈Ω ρ0,δ(x) exp
(−‖∇ · u‖L1

t (L
∞)

)
> 0 on ΩT

can be obtained by the Galerkin method (Theorem 5.1.2 in [34], also see Section 7.6 in [38] for 
details), the solution mapping u �→ ρ[u] is bounded and

u ∈C([0, T ];C2
0

(
Ω,R3)) �→ ρ[u] ∈ C1(ΩT )

is continuous (Proposition 7.1 in [18]). The gravitational potential Ψ will be solved by (2.7)
and (2.8) by extending ρ to be zero outside of Ω .

4.2. Solvability of both the magnetic field and the temperature

In this section we show that the following system can be uniquely solved in terms of u.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ht − ∇ × (u × H)= −∇ × (
ν(ρ,ϑ,H)∇ × H

)
, ∇ · H = 0,(

aϑ4 + ρQ(ϑ)− ρϑ2Pϑ2(ρ)
)
t
+ ∇ · ((aϑ4 + ρQ(ϑ)− ρϑ2Pϑ2(ρ)

)
u
)

= S : ∇u + ν(ρ,ϑ,H)|∇ × H|2 + ε|∇ρ|2
(
δΓρΓ−2 + p

′
m(ρ)

ρ

)

+ ∇ · ((κG(ρ,ϑ,H)+ κRϑ3)∇ϑ) −
(
ϑpϑ(ρ)+ ϑ2pϑ2(ρ)+ a

3
ϑ4

)
∇ · u,

H|t=0 = H0,δ, ϑ |t=0 = ϑ0,δ,

H · n|∂Ω = (∇ × H)× n|∂Ω = 0, ∇ϑ · n|∂Ω = 0,

(4.2)

with H0,δ and ϑ0,δ satisfying (3.3).
For given u ∈C([0, T ]; C2

0(Ω; R3)), ρ has already been given by (4.1), Eq. (4.2)1 is a quasi-
linear parabolic-type structure in H and Eq. (4.2)2 is indeed a non-degenerate parabolic-type 
system in terms of ϑ4, since
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−∇ × (
ν(ρ,ϑ,H)∇ × H

) = −∇ν(ρ,ϑ,H)× (∇ × H)+ ν(ρ,ϑ,H)�H,

∇ · ((κG(ρ,ϑ,H)+ κRϑ3)∇ϑ) = κR
4
�ϑ4 + κG(ρ,ϑ,H)�ϑ + ∇κG(ρ,ϑ,H) · ∇ϑ.

Thus, H, ϑ can be solved by means of the standard Faedo–Galerkin methods. More explicitly, 
the boundary value problem of (4.2) has a unique solution (ϑ := ϑ[u], H := H[u]) defined on 
the whole time interval (0, T ) satisfying the following properties:

• ϑ is a strong solution to (4.2) and strictly positive on ΩT . In fact, the existence of a weak 
solution ϑ ∈ L2(0, T ; H 1(Ω)) can be obtained by the standard iterational process as in 
Chapter 1.2 in [28]. And the regularity of weak solutions (i.e. the Hölder continuity of weak 
solutions in a strictly interior subdomain) can be established as in Chapter 5.2 in [28]. As 
the first three terms on the right-hand side of (4.2)2 are always non-negative, and the func-
tion ϑ = 0 is a subsolution, by using the comparison theorem, ϑ(t, x) ≥ 0 for all t ∈ [0, T ], 
x ∈Ω . In agreement with the physical background and as required in the variational formu-
lation introduced in Section 2, the absolute temperature must be positive a.a. on ΩT .

• H ∈ C([0, T ]; L2
weak(Ω)) ∩L2(0, T ; H 1(Ω)).

5. The Faedo–Galerkin approximation scheme

In this section, we establish the existence of solutions to (3.1). Although (3.1)2 and (3.1)3 are 
of parabolic type, the unknowns u and ϑ appear to be multiplied by ρ in the leading terms, we 
have to use a more complicated approach based on the Faedo–Galerkin approximation technique 
to obtain the first level approximate solutions. In order to do this, assume the vector functions 
wj = wj (x) (j = 1, 2, ...) are smooth, {wj }∞j=1 is an orthogonal basis of H 1

0 (Ω), and {wj }∞j=1 is 

an orthonormal basis of L2(Ω). Define k-D Euclidean space Yk = span{wj }kj=1 with scalar prod-

uct 〈v, w〉 = ∫
Ω

v · w dx, v, w ∈ Yk and let Pk : (L2(Ω))3 → Yk be the orthonormal projection. 

The approximate velocity field uk ∈ C([0, T ]; Yk), we may write uk(t, x) = ∑k
j=1 g

j
k (t)wj (x), 

satisfies

〈
(ρkuk)t ,wj

〉 + 〈∇ · (ρkuk ⊗ uk)+ ∇pk + δ∇ρΓk + ε∇uk · ∇ρk,wj
〉

= 〈∇ · Sk + ρk∇Ψk + (∇ × Hk)× Hk,wj
〉

(5.1)

with the initial conditions

〈
(ρkuk)(0),wj

〉 = 〈m0,δ,wj 〉,

for all t ∈ [0, T ], j = 1, ..., k, where {(ρk, Ψk, Hk, ϑk)}∞k=1 are determined as the unique solution 
of (4.1), (2.8), (4.2) in terms of {uk}∞k=1 on [0, T ]. Here ρk = ρδ,ε[uk], etc., pk = p(ρk, ϑk), 
Ψk =G(−�)−1[ρk], and ε, δ, Γ are fixed positive parameters.

Given

f ∈ C([0, T ];L1(Ω)
)
, ft ∈L1(ΩT ), ess inf

(t,x)∈ΩT
f (t,x)≥ a > 0,

define an operator
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Of (t) : Yk → Yk, 〈Of (t)u,v〉 ≡
∫
Ω

f (t)u · vdx, for u,v ∈ Yk, t ∈ [0, T ].

It is easy to derive that O−1
f (t) exists for all t ∈ [0, T ] and ‖O−1

f (t)‖L(Yk,Yk) ≤ 1
a

.
Taking advantage of the operator Of (t), and since

ρk(t)≥ inf
x∈Ω ρ0,δ(x) exp

(−‖∇ · uk‖L1
t (L

∞)
)
> 0,

(5.1) can be rephrased as

uk(t)=O−1
ρk(t)

(
Pkm0,δ +

t∫
0

Pk
(−∇ · (ρkuk ⊗ uk)− ∇pk − δ∇ρΓk − ε∇uk · ∇ρk

+ ∇ · Sk + ρk∇Ψk + (∇ × Hk)× Hk
)
dτ

)
.

The local existence of the velocity uk can be obtained by fixed point argument and the uniform 
estimates obtained from (5.2), (5.3) furnish the possibility of repeating the fixed point argument 
to extend the solution to the whole time interval [0, T ] (see [38, Chapter 7.7] for details). Thus, 
for any fixed k = 1, 2, ..., we solve first the regularized system for positive values of the parame-
ters ε and δ, and the solution (ρk, uk, ϑk, Hk) defined on the whole time interval.

Our plan is hereafter to send k→ ∞, and so we will need to obtain uniform estimates that are 
independent of the dimension k of Yk . We start with the energy estimates which can be derived 
as follows: multiplying (5.1) by gjk (t), summing j = 1, ..., k, and repeating the procedure for 
a priori estimates in Section 2. It yields the approximate kinetic energy and total energy balance:

d

dt

∫
Ω

ρk

(
1

2
|uk|2 + δ

Γ − 1
ρΓ−1
k + Pm(ρk)

)
dx

+
∫
Ω

(
Sk : ∇uk + ε

(
δΓρΓ−2

k + p
′
m(ρk)

ρk

)
|∇ρk|2

)
dx

=
∫
Ω

(
ρk∇Ψk + (∇ × Hk)× Hk

) · uk dx

+
∫
Ω

(
pb(ρk)+ ϑkpϑ(ρk)+ ϑ2

k pϑ2(ρk)+ a
3
ϑ4
k

)
∇ · uk dx, (5.2)

and

d

dt

∫
Ω

(
ρk

(
1

2
|uk|2 + Pm(ρk)+Q(ϑk)− ϑ2

k Pϑ2(ρk)+ δ

Γ − 1
ρΓ−1
k

)
+ aϑ4

k + 1

2
|Hk|2

)
dx

=
∫
ρk∇Ψk · uk dx +

∫
pb(ρk)∇ · uk dx, (5.3)
Ω Ω
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where

∫
Ω

Sk : ∇uk dx =
∫
Ω

((
η(ϑk,Hk)+ 1

3
μ(ϑk,Hk)

)
(∇ · uk)2 +μ(ϑk,Hk)|∇uk|2

)
dx.

Since ϑk is strictly positive on ΩT , then multiplying the regularized thermal energy equation 
by 1

ϑk
and using the continuity equation with dissipation, we have

(
4a

3
ϑ3
k

)
t

+ ∇ ·
(

4a

3
ϑ3
k uk

)
+ ε�ρk

(
Q(ϑk)

ϑk
+ ϑk

(
Pϑ2(ρk)+ ρkP ′

ϑ2(ρk)
)) + pϑ(ρk)∇ · uk

+ ρk cv(ϑk)
ϑk

ϑkt + ρk cv(ϑk)∇ϑk · uk
ϑk

− (
2ρkPϑ2(ρk)ϑk

)
t
− ∇ · (2ρkPϑ2(ρk)ϑkuk

)
= 1

ϑk

(
Sk : ∇uk + ∇ · ((κG(ρk,ϑk,Hk)+ κRϑ3

k

)∇ϑk) + ν(ρk,ϑk,Hk)|∇ × Hk|2

+ ε|∇ρk|2
(
δΓρΓ−2

k + p
′
m(ρk)

ρk

))
,

∫
Ω

ρk(t) dx =
∫
Ω

ρ0,δ dx for any t ≥ 0, (5.4)

1

2

d

dt

∫
Ω

ρ2
k dx + ε

∫
Ω

|∇ρk|2 dx = −1

2

∫
Ω

ρ2
k∇ · uk dx, (5.5)

and hence, on the one hand, the regularized thermal energy equation can be rewritten as an 
“entropy inequality”:

(
4a

3
ϑ3
k + ρk

ϑk∫
1

cv(ξ)

ξ
dξ − 2ρkPϑ2(ρk)ϑk

)
t

+ ∇ ·
((

4a

3
ϑ3
k + ρk

ϑk∫
1

cv(ξ)

ξ
dξ − 2ρkPϑ2(ρk)ϑk

)
uk

)

− ∇ ·
(
κG(ρk,ϑk,Hk)+ κRϑ3

k

ϑk
∇ϑk

)

≥ ε
( ϑk∫

1

cv(ξ)

ξ
dξ − Q(ϑk)

ϑk
− ϑk

(
Pϑ2(ρk)+ ρkP ′

ϑ2(ρk)
))
�ρk − pϑ(ρk)∇ · uk

+ κG(ρk,ϑk,Hk)+ κRϑ
3
k

ϑ2
k

|∇ϑk|2 + Sk : ∇uk + ν(ρk,ϑk,Hk)|∇ × Hk|2
ϑk

. (5.6)

On the other hand, combining (5.3), (5.5), (5.6) yields
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d

dt

∫
Ω

(
ρk

(
1

2
|uk|2 + Pm(ρk)+Q(ϑk)− ϑ2

k Pϑ2(ρk)+ δ

Γ − 1
ρΓ−1
k

)
+ aϑ4

k + 1

2
|Hk|2

)
dx

+ d

dt

∫
Ω

(
1

2
ρ2
k − 4a

3
ϑ3
k − ρk

ϑk∫
1

cv(ξ)

ξ
dξ + 2ρkPϑ2(ρk)ϑk

)
dx

+
∫
Ω

(
κG(ρk,ϑk,Hk)+ κRϑ3

k

ϑ2
k

|∇ϑk|2 + ε|∇ρk|2

+ Sk : ∇uk + ν(ρk,ϑk,Hk)|∇ × Hk|2
ϑk

)
dx

≤ ε
∫
Ω

((
Q(ϑk)

ϑ2
k

+ Pϑ2(ρk)+ ρkP ′
ϑ2(ρk)

)
∇ϑk · ∇ρk + p

′
ϑ2(ρk)

ρk
ϑk|∇ρk|2

)
dx

+
∫
Ω

ρk∇Ψk · uk dx +
∫
Ω

(
pϑ(ρk)+ pb(ρk)− 1

2
ρ2
k

)
∇ · uk dx. (5.7)

The classical elliptic estimate yields

‖∇Ψk‖L∞ ≤ C∥∥(−�)−1[ρk]
∥∥
W 2,Γ ≤ C‖ρk‖LΓ

provided Γ > 3. Taking advantage of (5.4), one has

∫
Ω

ρk∇Ψk · uk dx ≤ C‖ρk‖LΓ
(∫
Ω

ρ0,δ dx
) 1

2
(∫
Ω

ρk|uk|2 dx
) 1

2

.

By virtue of definition of m0,δ in (3.2), we have

∫
Ω

m0,δ · u0,δ,k dx ≤ 1

2

∫
Ω

( |m0,δ|2
ρ0,δ

+ ρ0,δ|u0,δ,k|2
)
dx = 1

2

∫
Ω

( |m0|2
ρ0,δ

+ m0,δu0,δ,k

)
dx,

and

∫
Ω

m0,δ · u0,δ,k dx ≤
∫
Ω

|m0|2
ρ0,δ

dx,

where the value of u0,δ,k ∈ Yk is uniquely determined by

∫
Ω

ρ0,δu0,δ,k · wj dx =
∫
Ω

m0,δ · wj dx, j = 1, ..., k.

Recalling the fact that
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Sk : ∇uk
ϑk

≥ cϑα−1
k

∣∣∇uk + ∇�uk
∣∣2
,

and, by virtue of Young’s inequality,

∣∣∇uk + ∇�uk
∣∣r ≤ C(

ϑα−1
k

∣∣∇uk + ∇�uk
∣∣2 + ϑ4

k

)
with r = 8

5 − α ,

combining with

∫
Ω

ρ0,δPm(ρ0,δ) dx ≤
∫
Ω

(
ρ0,δPe(ρ0,δ)+C(1 + ρ0,δ)

)
dx,

the hypothesis (2.6) on cv and κG, we are ready to apply Gronwall’s lemma to (5.7) provided 
Γ = Γ (r) is large enough to handle the last integral on the right-hand side of (5.7). Here the 
Cauchy–Schwarz inequality has been used repeatedly. Moreover,

∫
Ω

(|∇ lnϑk|2 + ∣∣∇ϑ 3
2
k

∣∣2)
dx ≤ C

∫
Ω

κG(ρk,ϑk,Hk)+ κRϑ3
k

ϑ2
k

|∇ϑk|2 dx.

Thus, the following estimates hold:

sup
t∈[0,T ]

(‖ρk‖LΓ + ∥∥ρk|uk|2∥∥L1

) ≤C(δ), (5.8)

sup
t∈[0,T ]

(∥∥ρkQ(ϑk)∥∥L1 + ‖ϑk‖L4 + ‖Hk‖L2

) + ess sup
t∈[0,T ]

∫
Ω

ρk|lnϑk|dx ≤ C(δ), (5.9)

∫
ΩT

Sk : ∇uk + ν|∇ × Hk|2
ϑk

+ |∇ lnϑk|2 + ∣∣∇ϑ 3
2
k

∣∣2 + ∣∣∇ϑ β2k ∣∣2 + ε|∇ρk|2 dxdt ≤C(δ), (5.10)

and

‖uk‖Lr(0,T ;W 1,r
0 )

≤ C(δ) with r = 8

5 − α ,∥∥(1 + ϑk) β−1
2 ∇ × Hk

∥∥
L2(0,T ;L2)

≤ C(δ). (5.11)

Note that all constants in (5.8)–(5.11) are independent of k and ε.
In order to identify a limit for k → ∞ of the approximate solutions {(ρk, uk, ϑk, Hk)}∞k=1

obtained above as a solution of problem (3.1), (3.2), additional estimates are needed. Firstly, we 
have the uniform estimates of the artificial pressure which is proportional to ρΓ and the density 
gradient estimates the same as in Section 5.2 and Section 5.3 in [9], we state without proof the 
following result:

Lemma 5.1. Under the hypothesis of Theorem 2.1, let Γ = Γ (r) be large enough, then the 
density sequence {ρk}∞ satisfies the following properties:
k=1
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‖ρk‖
L
Γ
r′ (0,T ;L

3Γ
r′ )

≤ C(ε, δ), r ′ := r

r − 1
= 8

3 + α ,

ε‖∇ρk‖Lq(ΩT ) ≤C(δ) for a certain q > r ′,

‖ρkt‖Lπ (ΩT ), ‖�ρk‖Lπ (ΩT ) ≤ C(ε, δ) for a certain π > 1.

Now, using the same arguments as in Section 2.4 in [21], for the sequences {ρk}∞k=1 and 
{uk}∞k=1, we have (at least for some chosen subsequences)

ρk → ρ in C
([0, T ];LΓweak

) ∩L1(ΩT ), ρ ≥ 0, (5.12)

ρt , �ρ ∈Lπ(ΩT ) for a certain π > 1,

uk ⇀ u in Lr
(
0, T ;W 1,r

0 (Ω)
)
, r = 8

5 − α , (5.13)

where the limit velocity u satisfies the non-slip boundary condition in the sense of traces. And ρ is 
the unique strong solution to (4.1), i.e., the functions ρ, u satisfying the continuity equation with 
dissipation a.e. in ΩT , the initial condition a.e. in Ω and the homogeneous Neumann boundary 
condition in the sense of traces a.e. in (0, T ). In particular,

ρt + ∇ · (ρu)= ε∇ · (1Ω∇ρ) in D′(
R

3 × (0, T ))
provided ρ, u were extended to be zero outside Ω . Moreover, in accordance with (5.10) and 
Lemma 5.1, one has

T∫
0

ε‖∇ρ‖2
L2 + εq‖∇ρ‖qLq dt ≤C(δ) for a certain q > r ′. (5.14)

By using interpolation, the estimate (5.8) and Lemma 5.1 lead to

ρk → ρ in Lπ(ΩT ) for some π > Γ. (5.15)

Combining the estimate (5.8) and the strong convergence (5.15), we also have

ρkuk
∗
⇀ρu in L∞(

0, T ;L 2Γ
Γ+1 (Ω)

)
.

The estimates obtained in Lemma 5.1 can be used to deduce from (4.1)1 that the integral mean 
functions

t �→
∫
Ω

ρkuk · wj dx form a precompact system in C
([0, T ])

for any fixed j . This implies that

ρkuk → ρu in C
([0, T ];L

2Γ
Γ+1 (Ω)

)
,
weak
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with the limit function satisfying ρu(0) = m0,δ . As the space L
2Γ
Γ+1 (Ω) is compactly imbedded 

into the dual space W−1,r ′(Ω) for suitable (large) Γ , and, consequently,

ρkuk ⊗ uk ⇀ ρu ⊗ u in Lr
(
0, T ;Lπ(Ω)), 1< π ≤ 6Γ r

3r + Γ r + 6Γ
. (5.16)

In accordance with Lemma 5.1, it yields strong convergence

∇ρk → ∇ρ in Lπ(ΩT ) for a certain r ′ ≤ π < q,
in particular,

∇uk · ∇ρk → ∇u · ∇ρ in D′(ΩT ).

Secondly, we need to show pointwise convergence of the sequence {ϑk}∞k=1. From esti-
mates (5.9) and (5.10), repeating the procedure for a priori estimates in Section 2, we know

{ϑk}∞k=1 is bounded in L∞(
0, T ;L4(Ω)

) ∩L2(0, T ;H 1(Ω)
)
, (5.17)

{lnϑk}∞k=1 is bounded in L2(0, T ;H 1(Ω)
)
, (5.18){

ϑ
3
2
k

}∞
k=1 is bounded in L2(0, T ;H 1(Ω)

)
, (5.19)

{∇ϑ β2k }∞
k=1 is bounded in L2(ΩT ). (5.20)

This implies that, by selecting a subsequence if necessary, there exists a function ϑ such that

ϑk
∗
⇀ϑ in L∞(

0, T ;L4(Ω)
)
, and ϑk ⇀ ϑ in L2(0, T ;H 1(Ω)

)
,

lnϑk ⇀ lnϑ in L2(0, T ;H 1(Ω)
)
,

and

f (ϑk)⇀ f (ϑ) in L2(0, T ;H 1(Ω)
)

for any

f ∈ C1(0,∞), ∣∣f ′(ξ)
∣∣ ≤ C

(
1

ξ
+ ξ 1

2

)
, ξ > 0.

Here and in what follows, the symbol F(v) stands for a weak limit of a composition {F(vk)}∞k=1
in L1(ΩT ).

Next, we claim that {ϑkt }∞k=1 satisfies the “entropy inequality” (5.6). Note that, according 
to (5.8) and (5.18), by virtue of the Sobolev imbedding theorem H 1(Ω) ↪→ L6(Ω), one has

{ρk lnϑk}∞k=1 bounded in L2(0, T ;L 6Γ
6+Γ (Ω)

)
.

Together with (5.9), we have
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ρk lnϑk ∈ L∞(
0, T ;L1(Ω)

) ∩L2(0, T ;L 6Γ
6+Γ (Ω)

)
.

Similarly, (5.8) leads to

sup
t∈[0,T ]

‖ρkuk‖
L

2Γ
Γ+1

≤C(δ). (5.21)

Together with (5.18), it yields

ρkuk lnϑk ∈L2(0, T ;L 6Γ
3+4Γ (Ω)

)
.

Recalling the hypothesis (2.6) on cv , we know, from (5.8) and (5.17),

ρkϑ
β
2 −1
k ∈L∞(

0, T ;L1(Ω)
) ∩L2(0, T ;L 6Γ

6+Γ (Ω)
)

for β ≤ 4, (5.22)

provided Γ large enough, say, Γ > 3, then

ρk

ϑk∫
1

cv(ξ)

ξ
dξ ∈L∞(

0, T ;L1(Ω)
) ∩L2(0, T ;L 6Γ

6+Γ (Ω)
)
,

and

ρkuk

ϑk∫
1

cv(ξ)

ξ
dξ ∈ L2(0, T ;L 6Γ

3+4Γ (Ω)
)
.

In accordance with hypothesis (1.8) and estimate (5.8),

ρkPϑ2(ρk) is bounded in L∞(
0, T ;LΓζ (Ω)),

and furthermore, together with (5.17),

ρkPϑ2(ρk)ϑk ∈L∞(
0, T ;L1(Ω)

) ∩L2(0, T ;L 6Γ
6ζ+Γ (Ω)

)
.

According to Lemma 6.3 of Chapter 6 in [18], we have

4a

3
ϑ3
k + ρk

ϑk∫
1

cv(ξ)

ξ
dξ − 2ρkPϑ2(ρk)ϑk

→ 4a

3
ϑ3 + ρ

ϑ∫
1

cv(ξ)

ξ
dξ − 2ρPϑ2(ρ)ϑ in L2(0, T ;H−1(Ω)

)
.

In addition, we employ (5.17) to get
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∫
ΩT

(
4a

3
ϑ3
k + ρk

ϑk∫
1

cv(ξ)

ξ
dξ − 2ρkPϑ2(ρk)ϑk

)
ϑk dxdt

→
∫
ΩT

(
4a

3
ϑ3 + ρ

ϑ∫
1

cv(ξ)

ξ
dξ − 2ρPϑ2(ρ)ϑ

)
ϑ dxdt. (5.23)

Since

lim
k→∞

∫
ΩT

ρkPϑ2(ρk)ϑ
2
k dxdt =

∫
ΩT

ρPϑ2(ρ)ϑ
2 dxdt,

then (5.23) reduces to

∫
ΩT

(
4a

3
ϑ3
k + ρk

ϑk∫
1

cv(ξ)

ξ
dξ

)
ϑk dxdt →

∫
ΩT

(
4a

3
ϑ3 + ρ

ϑ∫
1

cv(ξ)

ξ
dξ

)
ϑ dxdt. (5.24)

As the function ξ �→ 4a
3 ξ

3 +ρ ∫ ξ
1
cv(y)
y
dy is non-decreasing, we have, from (5.24), the following 

strong (pointwise) convergence

ϑk → ϑ in L1(ΩT ).

Employing (5.17) again, by virtue of a simple interpolation argument, we obtain

ϑk → ϑ in Lπ(ΩT ) for some π > 4.

Finally, using ∇ · Hk = 0, the estimates (5.9), (5.11) on the magnetic field {Hk}∞k=1 imply that

Hk
∗
⇀H in L∞(

0, T ;L2(Ω)
)
, Hk ⇀H in L2(0, T ;H 1(Ω)

)
and

Hk → H in L2(ΩT ),

and consequently, via interpolation,

(∇ × Hk)× Hk ⇀ (∇ × H)× H in Lπ(ΩT ) for a certain π > 1.

Moreover,

Sk ⇀ S in Lq(ΩT ) for some q > 1,

where S = μ(ϑ, H)(∇u + ∇�u) + η(ϑ, H)(∇ · u)I3. We also have

uk × Hk ⇀ u × H in Lπ(ΩT ) for a certain π > 1,

in accordance with (5.13).
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Now, we can pass to the limit for k→ ∞ in (5.1) to get

(ρu)t + ∇ · (ρu ⊗ u)+ ∇
(
pe(ρ)+ ϑpϑ(ρ)+ ϑ2pϑ2(ρ)+ a

3
ϑ4 + δρΓ

)
+ ε∇u · ∇ρ

= ∇ · S+ ρ∇Ψ + (∇ × H)× H in D′(ΩT ), (5.25)

where the potential Ψ satisfies (2.7).
Moreover, due to the estimates (5.10) and (5.17), as β satisfies the hypothesis in (5.22), we 

know

ν(ρk,ϑk,Hk)∇ × Hk = √
ϑkν(ρk,ϑk,Hk)

√
ν(ρk,ϑk,Hk)

ϑk
∇ × Hk

are bounded in Lπ(ΩT ) for a certain π > 1.
Thus the limit quantities satisfy

∫
ΩT

(
ψ ′H · φ +ψ(u × H) · (∇ × φ)−ψν(∇ × H) · (∇ × φ))dxdt +ψ(0)

∫
Ω

H0 · φ dx = 0,

for any ψ ∈ C∞([0, T ]) with ψ(T ) = 0 and φ ∈ D(Ω; R3).
In the same way, we let k→ ∞ in the energy equality (5.3) to get

−
∫
ΩT

ψ ′
(
ρ

(
1

2
|u|2 + Pm(ρ)+Q(ϑ)− ϑ2Pϑ2(ρ)+ δ

Γ − 1
ρΓ−1

)
+ aϑ4 + 1

2
|H|2

)
dxdt

=
∫
Ω

(
1

2

|m0,δ|2
ρ0,δ

+ ρ0,δPm(ρ0,δ)+ ρ0,δQ(ϑ0,δ)− ρ0,δϑ
2
0,δPϑ2(ρ0,δ)+ δ

Γ − 1
ρΓ0,δ + aϑ4

0,δ

+ 1

2
|H0,δ|2

)
dx +

∫
ΩT

ψ
(
ρ∇Ψ · u + pb(ρ)∇ · u

)
dxdt, (5.26)

for any ψ ∈ C∞([0, T ]) with ψ(0) = 1, ψ(T ) = 0. Here we have used

∫
Ωτ

(
ρ∇Ψ · u + pb(ρ)∇ · u

)
dxdt = lim

k→∞

∫
Ωτ

(
ρk∇Ψk · uk + pb(ρk)∇ · uk

)
dxdt

for any τ ≥ 0 in accordance with (5.13), (5.15). By virtue of the hypothesis (2.6) on cv(ϑ), (5.22)
on β and the estimates (5.17), (5.20), we have

Q(ϑk)⇀Q(ϑ) in L2(0, T ;H 1(Ω)
)
,

combining with (5.8),

ρkQ(ϑk)⇀ ρQ(ϑ) in L2(0, T ;Lq(Ω)), 1< q <
6Γ

.

Γ + 6
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Now since Q(ϑk) tends to Q(ϑ) a.e. on Ω , we infer Q(ϑ) =Q(ϑ), and

∫
Ω

ρQ(ϑ)(τ+) dx = lim
h→0+

1

h

(
lim
k→∞

τ+h∫
τ

∫
Ω

ρkQ(ϑk) dxdt

)

for a.e. τ ∈ [0, T ]. We also have used (5.16) to deduce

∫
Ω

ρ|u|2(τ+)φ dx = lim
h→0+

1

h

τ+h∫
τ

∫
Ω

ρ|u|2φ dxdt

= lim
h→0+

1

h

(
lim
k→∞

τ+h∫
τ

∫
Ω

ρk|uk|2φ dxdt

)
for any φ ∈D(Ω;R),

and, similarly,

∫
Ω

ρPm(ρ)(τ+)φ dx = lim
h→0+

1

h

(
lim
k→∞

τ+h∫
τ

∫
Ω

ρkPm(ρk)φ dxdt

)
,

∫
Ω

ρϑ2Pϑ2(ρ)(τ+)φ dx = lim
h→0+

1

h

(
lim
k→∞

τ+h∫
τ

∫
Ω

ρkϑ
2
k Pϑ2(ρk)φ dxdt

)
,

∫
Ω

ρΓ (τ+)φ dx = lim
h→0+

1

h

(
lim
k→∞

τ+h∫
τ

∫
Ω

ρΓk φ dxdt

)
,

for a.e. τ ∈ [0, T ].
The final aim in this section is to pass to the limit k→ ∞ in the “entropy inequality”. Note it 

is enough to show that one can pass to the limit in all nonlinear terms contained in (5.6). To this 
end, we start with the observation that

Sk : ∇uk
ϑk

= μ(ϑk,Hk)
ϑk

(
|∇uk|2 + ∇uk : ∇�uk − 2

3
(∇ · uk)2

)
+ η(ϑk,Hk)

ϑk
(∇ · uk)2

=
∣∣∣∣
√
μ(ϑk,Hk)

2ϑk

(
∇uk + ∇�uk − 2

3
∇ · ukI3

)∣∣∣∣
2

+
(√
η(ϑk,Hk)
ϑk

∇ · uk

)2

,

then, by the estimate (5.10) and the weak lower semi-continuity,

∫
Ωτ

S : ∇u
ϑ

dxdt ≤ lim inf
k→∞

∫
Ωτ

Sk : ∇uk
ϑk

dxdt

for any τ ≥ 0.
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Since one can estimate the entropy flux

∣∣∣∣κG(ρk,ϑk,Hk)+ κRϑ3
k

ϑk
∇ϑk

∣∣∣∣ ≤C(|∇ lnϑk| +
(
ϑ2
k + ϑβ−1

k

)|∇ϑk|),
where

(
ϑ2
k + ϑβ−1

k

)|∇ϑk| = 2

3
ϑ

3
2
k

∣∣∇ϑ 3
2
k

∣∣ + 2

β
ϑ
β
2
k

∣∣∇ϑ β2k ∣∣,
by virtue of the hypothesis (5.22) on β and the estimates (5.17)–(5.20), one can show that

{
κG(ρk,ϑk,Hk)+ κRϑ3

k

ϑk
∇ϑk

}∞

k=1
is bounded in Lπ(ΩT ) for a certain π > 1.

Furthermore,

{
κG(ρk,ϑk,Hk)+ κRϑ3

k

ϑ2
k

|∇ϑk|2
}∞

k=1
is bounded in Lπ(ΩT ) for some π > 1.

And, consequently,

κG(ρk,ϑk,Hk)+ κRϑ3
k

ϑk
∇ϑk ⇀ κG(ρ,ϑ,H)+ κRϑ3

ϑ
∇ϑ in Lπ(ΩT ) for a certain π > 1.

κG(ρk,ϑk,Hk)+ κRϑ3
k

ϑ2
k

|∇ϑk|2 ⇀ κG(ρ,ϑ,H)+ κRϑ3

ϑ2
|∇ϑ |2 in Lπ(ΩT ) for a certain π > 1.

Making use of Lemmas 5.3, 5.4 of Chapter 5 in [12], the estimates (5.8)–(5.11), the above rela-
tions together with (5.6) yields the desired variational form of the entropy inequality:

∫
ΩT

ψ ′
(

4a

3
ϑ3 + ρ

ϑ∫
1

cv(ξ)

ξ
dξ − 2ρPϑ2(ρ)ϑ

)
φ dxdt

+
∫
ΩT

ψ

(
4a

3
ϑ3 + ρ

ϑ∫
1

cv(ξ)

ξ
dξ − 2ρPϑ2(ρ)ϑ

)
u · ∇φ dxdt

−
∫
ΩT

ψ

(
κG(ρ,ϑ,H)+ κRϑ3

ϑ
∇ϑ

)
· ∇φ dxdt

≤
∫
ΩT

ε∇
(
ψφ

( ϑ∫
1

cv(ξ)

ξ
dξ − Q(ϑ)

ϑ
− ϑ(

Pϑ2(ρ)+ ρP ′
ϑ2(ρ)

)))
· ∇ρ

+ψφpϑ(ρ)∇ · udxdt
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−
∫
ΩT

ψφ

(
κG(ρ,ϑ,H)+ κRϑ3

ϑ2
|∇ϑ |2 + S : ∇u + ν(ρ,ϑ,H)|∇ × H|2

ϑ

)
dxdt

−ψ(0)
∫
Ω

φ

(
4a

3
ϑ3

0,δ + ρ0,δ

ϑ0,δ∫
1

cv(ξ)

ξ
dξ

)
dx (5.27)

for any 0 ≤ψ ∈ C∞([0, T ]) with ψ(T ) = 0 and 0 ≤ φ ∈D(Ω; R).

6. Passing to the limit ε → 0

Our goal in this section is to take the vanishing limit of the artificial viscosity ε→ 0 for the 
family of approximate solutions {(ρδ,ε, Ψδ,ε, Hδ,ε, ϑδ,ε)} constructed in Section 5, i.e., to get rid 
of the artificial viscosity in (3.1)1. In other words, we are to show the weak sequential stability 
(compactness) for the approximate solutions. Denote ρε = ρδ,ε , etc. in this section. Due to the 
bounds of the density estimates in Lemma 5.1 depending on ε, we definitely loose boundedness 
of ∇ρε and, consequently, strong compactness of the sequence of {ρε}ε>0 in L1(ΩT ) becomes 
a central issue now, so more refined estimates are needed to make sure the limit passage. At this 
stage, we first point out that it is easy to check that the sequences {ρεuε}ε>0, {ρεuε ⊗ uε}ε>0, 
{ρε∇Ψε}ε>0, {(∇ × Hε) × Hε}ε>0 are bounded in Lπ(ΩT ) for a certain π > 1 because of the 
estimates (5.8), (5.11). Moreover, since

Sε = √
ϑεμ(ϑε,Hε)

√
μ(ϑε,Hε)
ϑε

(
∇uε + ∇�uε − 2

3
(∇ · uε)I3

)

+ √
ϑεη(ϑε,Hε)

√
η(ϑε,Hε)
ϑε

(∇ · uε)I3,

by virtue of (5.9), (5.10), we know that {Sε}ε>0 is bounded in Lπ(ΩT ) for a certain π > 1. As 
already pointed out in [18], both classical stumbling blocks of this approach – the phenomena 
of oscillations and concentrations – are likely to appear. In order to deal with the non-linear 
constitutive equations for the pressure and other quantities, the density oscillations as well as 
concentrations in the temperature must be excluded. Therefore, we have to find a bound (inde-
pendent of ε) for the the pressure term in a reflexive space Lπ(ΩT ) with π > 1. To this end, 
similar as in Section 6.1 in [13], let us introduce an operator B = (B1, B2, B3) with the following 
properties:

• B :
{
f ∈Lπ(Ω)

∣∣∣ ∫
Ω

f dx = 0

}
�→W 1,π (Ω)3

is a bounded linear operator, i.e.,

∥∥B[f ]∥∥
W 1,π (Ω)

3 ≤ C(π)‖f ‖Lπ for any 1< π <∞; (6.1)
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• the function v = B[f ] solves the BVP:

∇ · v = f in Ω, v|∂Ω = 0; (6.2)

Usually, the symbol B ≈ (∇·)−1 is called the Bogovskii operator.
• if f ∈ Lπ(Ω) can be written as f = ∇ · g with g ∈Lq(Ω)3, g · n|∂Ω = 0, then

∥∥B[f ]∥∥
Lπ

≤ C(π)‖g‖Lq for any 1< π <∞.

Considering the regularity of the approximate density functions, we can use the quantities

{
ψ(t)B

[
ρε − 1

|Ω|
∫
Ω

ρε dx
]}
ε>0
, ψ ∈D(0, T ), 0 ≤ψ ≤ 1

as test functions in the momentum equation (5.25). Bearing in mind property (6.2) of the linear 
operator B, we have the following integral identity:

T∫
0

ψ

(∫
Ω

(
pe(ρε)+ ϑεpϑ(ρε)+ ϑ2

ε pϑ2(ρε)+ a
3
ϑ4
ε + δ∇ρΓε

)
ρε dx

)
dt

= I + II + · · · + IX, (6.3)

where

I =
∫
Ω
ρε dx

|Ω|
T∫

0

ψ

(∫
Ω

pe(ρε)+ ϑεpϑ(ρε)+ ϑ2
ε pϑ2(ρε)+ a

3
ϑ4
ε + δ∇ρΓε dx

)
dt,

II =
T∫

0

ψ

(∫
Ω

Sε : ∇B
[
ρε − 1

|Ω|
∫
Ω

ρε dx
]
dx

)
dt,

III = −
T∫

0

ψ

(∫
Ω

(ρεuε ⊗ uε) : ∇B
[
ρε − 1

|Ω|
∫
Ω

ρε dx
]
dx

)
dt,

IV = ε
T∫

0

ψ

∫
Ω

(
∇uε · ∇ρε ·B

[
ρε − 1

|Ω|
∫
Ω

ρε dx
]
dx

)
dt,

V = −
T∫

0

ψ

∫
Ω

(
ρε∇Ψε ·B

[
ρε − 1

|Ω|
∫
Ω

ρε dx
]
dx

)
dt,

VI = −
T∫
ψ ′

∫ (
ρεuε ·B

[
ρε − 1

|Ω|
∫
ρε dx

]
dx

)
dt,
0 Ω Ω
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VII = −ε
T∫

0

ψ

∫
Ω

(
ρεuε ·B[∇ · (∇ρε)

]
dx

)
dt,

VIII =
T∫

0

ψ

∫
Ω

(
ρεuε ·B[∇ · (ρεuε)

]
dx

)
dt,

IX = −
T∫

0

ψ

(∫
Ω

(∇ × H)× H ·B
[
ρε − 1

|Ω|
∫
Ω

ρε dx
]
dx

)
dt.

By virtue of the hypothesis (1.8), the fact that

∫
Ω

ρε dx =
∫
Ω

ρ0,δ dx independent of t,

and the property (6.1), one has the integrals I, II, III, V and IX bounded uniformly with respect 
to ε > 0.

Using the same argument as in Section 6.1 in [13], we know that the left terms IV, VI, VII and 
VIII are bounded uniformly for any small ε, and furthermore, from (6.3), the resulting estimate 
reads ∫

ΩT

ρΓ+1
ε dxdt ≤ C(δ), with C(δ) independent of ε.

Now, we have, at least for some subsequences

ρε → ρ in C
([0, T ];LΓweak(Ω)

)
, (6.4)

uε ⇀ u in Lr
(
0, T ;W 1,r

0 (Ω)
)
, r = 8

5 − α , (6.5)

and

ρεuε → ρu in C
([0, T ];L

2Γ
Γ+1
weak(Ω)

)
, (6.6)

as LΓweak(Ω) is continuously imbedded into the dual space W−1,r ′(Ω) for suitable (large) 
Γ (> 24

17+3α );

ϑε
∗
⇀ϑ in L∞(

0, T ;L4(Ω)
)
, and ϑk ⇀ ϑ in L2(0, T ;H 1(Ω)

)
,

lnϑε ⇀ lnϑ in L2(0, T ;H 1(Ω)
)
, (6.7)

ϑ
β
2
ε ⇀ ϑ

β
2 in L2(0, T ;H 1(Ω)

)
,

and
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f (ϑε)⇀ f (ϑ) in L2(0, T ;H 1(Ω)
)

for any

f ∈ C1(0,∞), ∣∣f ′(ξ)
∣∣ ≤ C

(
1

ξ
+ ξ 1

2

)
, ξ > 0,

Hε
∗
⇀H in L∞(

0, T ;L2(Ω)
)
, Hε ⇀H in L2(0, T ;H 1(Ω)

)
,

Hε → H in L2(0, T ;L2(Ω)
)
,

(∇ × Hε)× Hε ⇀ (∇ × H)× H in Lπ(ΩT ) for a certain π > 1,

uε × Hε ⇀ u × H in Lπ(ΩT ) for a certain π > 1,

and

ν(ρε,ϑε,Hε)∇ × Hε ⇀ ν(ρ,ϑ,H)∇ × H in Lπ(ΩT ) for a certain π > 1.

Furthermore, based on (6.4) and (6.5), if Γ > r ′, we can show that the density ρ ≥ 0 and the 
velocity u solve the original continuity equation (1.1)1 on the whole space R3 × [0, T ) via ex-
tending both of them to be zero outside Ω , where, in fact,

ρεuε → ρu in C
([0, T ];L

2Γ
Γ+1
weak

(
R

3))
provided ρε , uε were extended to be zero outside Ω . Thus ρ, u satisfy the integral identity:∫

ΩT

(
ρψ ′φ +ψρu · ∇φ)

dxdt +ψ(0)
∫
Ω

ρ0φ dx = 0,

for any ψ ∈ C∞([0, T ]) with ψ(T ) = 0 and φ ∈ D(R3; R). Meanwhile, by using the celebrated 
regularization technique of R.J. DiPerna and P.-L. Lions [10], ρ, u (being extended to be zero 
outside Ω) solve the renormalized continuity equation (2.2) in D′(R3 × [0, T )) for any continu-
ously differentiable function b satisfying (2.15).

By the Hölder inequality, together with (6.5) and (6.6), we have

ρεuε ⊗ uε ⇀ ρu ⊗ u in Lr
(
0, T ;Lπ(Ω)), 1< π ≤ 6Γ r

3r + Γ r + 6Γ
.

Here we have used the continuous imbedding

L
2Γ
Γ+1
weak(Ω)⊂W−1,r ′(Ω) provided Γ ≥ 12

5 + 3α
.

Furthermore, by the same token, in accordance with (6.6) and (6.7), we have

ρεuε lnϑε ⇀ ρulnϑ in Lπ(ΩT ) for a certain π > 1.

Using the same argument as in Section 5, we know
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ρεuε

ϑε∫
1

cv(ξ)

ξ
dξ ⇀ ρu

ϑε∫
1

cv(ξ)

ξ
dξ in Lπ(ΩT ) for a certain π > 1.

By virtue of the Hölder inequality and (5.14), we have

ε

∫
Ω

∇
(
 

( ϑε∫
1

cv(ξ)

ξ
dξ − Q(ϑε)

ϑε
− ϑε

(
Pϑ2(ρε)+ ρεP ′

ϑ2(ρε)
)))

· ∇ρε dx → 0

in Lπ(0, T ) (6.8)

for any π ≥ 1 and any  ∈C1(Ω).
Hence, for the quantities 4a

3 ϑ
3
ε +ρε

∫ ϑε
1

cv(ξ)
ξ
dξ − 2ρεPϑ2(ρε)ϑε in (5.27), by the same argu-

ment as in Section 5,

∫
ΩT

(
4a

3
ϑ3
ε + ρε

ϑε∫
1

cv(ξ)

ξ
dξ − 2ρεPϑ2(ρε)ϑε

)
ϑε dxdt

→
∫
ΩT

(
4a

3
ϑ3 + ρ

ϑ∫
1

cv(ξ)

ξ
dξ − 2ρPϑ2(ρ)ϑ

)
ϑ dxdt.

Note that, in contrast to Section 5, we do not know yet if the densities {ρε}ε>0 converge strongly 
in L1(ΩT ). Fortunately, it holds that

lim
ε→0

∫
ΩT

ρεPϑ2(ρε)ϑ
2
ε dxdt =

∫
ΩT

ρPϑ2(ρ)ϑ
2 dxdt.

Thus, exactly as in Section 5,

∫
ΩT

(
4a

3
ϑ3
ε + ρε

ϑε∫
1

cv(ξ)

ξ
dξ

)
ϑε dxdt →

∫
ΩT

(
4a

3
ϑ3 + ρ

ϑ∫
1

cv(ξ)

ξ
dξ

)
ϑ dxdt,

which implies strong convergence of {ϑε}ε>0, and especially, ϑε → ϑ in L2(ΩT ). Then it comes 
from Lemma 5.4 in [12] that ϑ is strictly positive a.e. on ΩT , and lnϑ = lnϑ .

Letting ε→ 0 in (5.25), due to the estimate (5.14), the extra terms

ε∇uε · ∇ρε → 0 in Lπ(ΩT ) for a certain π > 1,

indeed note that

ε

∫
∇uε · ∇ρε · φ dx → 0 for any φ ∈C(

Ω;R3) as ε→ 0
Ω
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uniformly in t ∈ [0, T ], we know the limit quantities satisfy an “averaged” momentum equation

(ρu)t + ∇ · (ρu ⊗ u)+ ∇
(
pe(ρ)+ ϑpϑ(ρ)+ ϑ2pϑ2(ρ)+ a

3
ϑ4 + δρΓ

)

= ∇ · S+ ρ∇Ψ + (∇ × H)× H in D′(ΩT ), (6.9)

where the potential Ψ satisfies (2.7).
In order to commute the limits with the composition operators in the “averaged” momentum 

equation (6.9), we need to show strong (pointwise) convergence of the sequence {ρε}ε>0, i.e.,

ρε → ρ in L1(ΩT ).

This is a lengthy but nowadays formal procedure, making good use of the special function b(ρ) =
ρ lnρ in the renormalized continuity equation and the weak continuity of the effective viscous 
pressure “p − (λ + 2μ)∇ · u”. We omit it here (readers can refer to Section 6.3 in [9] for the 
details). Consequently, the limit functions ρ, u satisfy the momentum equation (1.1)2, where p
is replaced by pe(ρ) + ϑpϑ(ρ) + ϑ2pϑ2(ρ) + a

3ϑ
4 + δρΓ , in D′(ΩT ).

The magnetic induction vector H satisfies∫
ΩT

(
ψ ′H · φ +ψ(u × H) · (∇ × φ)−ψν(∇ × H) · (∇ × φ))dxdt

+ψ(0)
∫
Ω

H0 · φ dx = 0, (6.10)

for any ψ ∈ C∞([0, T ]) with ψ(T ) = 0 and φ ∈ D(Ω; R3).
To conclude, we have to let ε → 0 in the energy equality (5.26) and the entropy inequal-

ity (5.27). Since ρ, u satisfy the renormalized continuity equation in D′(R3 × [0, T )), then∫
ΩT

ψpb(ρ)∇ · udxdt =
∫
ΩT

ψ ′ρPb(ρ)dxdt +
∫
Ω

ρ0,δPb(ρ0,δ) dx

for any ψ ∈ C∞([0, T ]) with ψ(0) = 1, ψ(T ) = 0. Here Pb(ρ) =
∫ ρ

1
pb(z)

z2
dz.

Thus passing the limit for ε→ 0 in (5.26), one has the total energy balance:

−
∫
ΩT

ψ ′
(
ρ

(
1

2
|u|2 + Pe(ρ)+Q(ϑ)− ϑ2Pϑ2(ρ)+ G

2
�−1[ρ] + δ

Γ − 1
ρΓ−1

)

+ aϑ4 + 1

2
|H|2

)
dxdt

=
∫
Ω

(
ρ0,δ

(
1

2

|m0,δ|2
ρ2

0,δ

+ Pe(ρ0,δ)+Q(ϑ0,δ)− ϑ2
0,δPϑ2(ρ0,δ)+ G

2
�−1[ρ0,δ] + δ

Γ − 1
ρΓ−1

0,δ

)

+ aϑ4
0,δ + 1 |H0,δ|2

)
dx �E0,δ (6.11)
2
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for any ψ ∈ C∞([0, T ]) with ψ(0) = 1, ψ(T ) = 0. Note that,

�−1[ρε] →�−1[ρ] in C(ΩT )

by combining (6.4) with the standard elliptic theory. Here we have used the fact that

∫
Ω

ρε∇Ψε · uε dx = −
∫
Ω

Ψε∇ · (ρεuε) dx =
∫
Ω

Ψε(ρεt − ε�ρε) dx

= 1

2

d

dt

∫
Ω

ρεΨε dx + εG
∫
Ω

ρ2
ε dx

= G
2

d

dt

∫
Ω

ρε(−�)−1[ρε]dx + εG
∫
Ω

ρ2
ε dx.

The limit entropy inequality reads

∫
ΩT

ψ ′
(

4a

3
ϑ3 + ρ

ϑ∫
1

cv(ξ)

ξ
dξ − ρPϑ(ρ)− 2ρϑPϑ2(ρ)

)
φ dxdt

+
∫
ΩT

ψ

(
4a

3
ϑ3 + ρ

ϑ∫
1

cv(ξ)

ξ
dξ − ρPϑ(ρ)− 2ρϑPϑ2(ρ)

)
u · ∇φ dxdt

−
∫
ΩT

ψ

(
κG(ρ,ϑ,H)+ κRϑ3

ϑ
∇ϑ

)
· ∇φ dxdt

≤ −
∫
ΩT

ψφ

(
κG(ρ,ϑ,H)+ κRϑ3

ϑ2
|∇ϑ |2 + S : ∇u + ν(ρ,ϑ,H)|∇ × H|2

ϑ

)
dxdt

−ψ(0)
∫
Ω

φ

(
4a

3
ϑ3

0,δ + ρ0,δ

ϑ0,δ∫
1

cv(ξ)

ξ
dξ − ρ0,δPϑ(ρ0,δ)− 2ρ0,δϑ0,δPϑ2(ρ0,δ)

)
dx

(6.12)

for any 0 ≤ψ ∈ C∞([0, T ]) with ψ(T ) = 0 and 0 ≤ φ ∈ D(Ω; R). Here we have used (6.8), the 
fact that∫

ΩT

ψφpϑ(ρ)∇ · udxdt

=
∫
ΩT

ψ ′φρPϑ(ρ)dxdt +ψ(0)
∫
Ω

φρ0,δPϑ(ρ0,δ) dx +
∫
ΩT

ψρPϑ(ρ)u · ∇φ dxdt.
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7. Passing to the limit δ → 0

Our final task is to carry out the limit process when the parameter δ→ 0 to recover the original 
system (1.1) by evoking the full strength of the pressure and temperature estimates, in other 
words, we will establish the weak sequential stability property for the approximate solutions set 
{ρδ, uδ, ϑδ, Hδ}δ>0 constructed in Section 6. To begin with, note that, from hypothesis (3.3) on 
the approximate initial data, we have

E0,δ →E0 as δ→ 0,

and

∫
Ω

φ

(
4a

3
ϑ3

0,δ + ρ0,δ

ϑ0,δ∫
1

cv(ξ)

ξ
dξ − ρ0,δPϑ(ρ0,δ)− 2ρ0,δϑ0,δPϑ2(ρ0,δ)

)
dx

→
∫
Ω

φ

(
4a

3
ϑ3

0 + ρ0

ϑ0∫
1

cv(ξ)

ξ
dξ − ρ0Pϑ(ρ0)− 2ρ0ϑ0Pϑ2(ρ0)

)
dx as δ→ 0

for any φ ∈ C∞(Ω), φ ≥ 0.
In light with the total energy balance (6.11), the following uniform bounds by a constant 

depending only on E0 hold:

ρδ bounded in L∞(
0, T ;Lγ (Ω)), (7.1)

ρδ|uδ|2, ρδQ(ϑδ) bounded in L∞(
0, T ;L1(Ω)

)
,

and, consequently, by Hölder’s inequality,

ρδuδ bounded in L∞(
0, T ;L 2γ

γ+1 (Ω)
); (7.2)

ϑδ bounded in L∞(
0, T ;L4(Ω)

)
,

Hδ bounded in L∞(
0, T ;L2(Ω)

)
, (7.3)

and

δ

∫
ΩT

ρΓδ dxdt ≤ C uniformly with respect to δ > 0.

As for the term 
∫
Ω
�−1[ρ]ρ dx in the energy equality (6.11) related to the gravitational potential, 

from the elliptic estimates and the fact that

∫
ρδ(t) dx =

∫
ρ0,δ dx =M0 for a.a. t ∈ (0, T ),
Ω Ω
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we know, by virtue of Hölder’s inequality,

∫
Ω

∣∣�−1[ρ]ρ∣∣dx ≤ ‖ρ‖L2

∥∥�−1[ρ]∥∥
L2 ≤M0‖ρ‖L2 .

Similarly, the entropy production inequality (6.12) gives rise to

ess sup
t∈[0,T ]

∫
Ω

ρδ|lnϑδ|dx ≤ C(S0),

∫
ΩT

Sδ : ∇uδ + ν|∇ × Hδ|2
ϑδ

+ |∇ lnϑδ|2 + ∣∣∇ϑ 3
2
δ

∣∣2 + ∣∣∇ϑ β2δ ∣∣2
dxdt ≤ C(S0), (7.4)

together with

∫
ΩT

κG(ρδ,ϑδ,Hδ)+ κRϑ3
δ

ϑ2
δ

|∇ϑδ|2 dxdt ≤ C(S0),

and, consequently, by using the same arguments in Section 2 or in Section 5,

∥∥(1 + ϑδ) β−1
2 ∇ × Hδ

∥∥
L2(L2)

≤C(S0),

‖ϑδ‖L2(H 1) + ‖lnϑδ‖L2(H 1) +
∥∥ϑ 3

2
δ

∥∥
L2(H 1)

+ ∥∥ϑ β2δ ∥∥
L2(H 1)

≤ C(E0, S0),

‖uδ‖Lr(W 1,r
0 )

≤C(E0, S0), r = 8

5 − α ,

furthermore, utilizing estimates (7.1), (7.2), (7.3) and the hypothesis (1.8),

ϑδpϑ(ρδ), ϑ
2
δ pϑ2(ρδ), (∇ × Hδ)× Hδ, uδ × Hδ, ν(ρδ,ϑδ,Hδ)∇ × Hδ bounded in Lπ(ΩT )

for some certain π > 1,

ρδuδ ⊗ uδ bounded in Lr
(
0, T ;L 6γ r

3r+γ r+6γ (Ω)
)
.

And the bounds are independent of δ > 0. Here we have used ϑ
3
2
δ ∈L2(0, T ; H 1(Ω)), and a sim-

ple interpolation argument

L∞(
0, T ;L4(Ω)

) ∩L3(0, T ;L9(Ω)
) ⊂ Lπ(ΩT ), with π = 17

3
.

Note that lnϑδ is bounded in L2(ΩT ) by a constant independent of δ > 0, which implies the 
strict positivity of the temperature.
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Since

Sδ = √
ϑδμ(ϑδ,Hδ)

√
μ(ϑδ,Hδ)
ϑδ

(
∇uδ + ∇�uδ − 2

3
(∇ · uδ)I3

)

+ √
ϑδη(ϑδ,Hδ)

√
η(ϑδ,Hδ)
ϑδ

(∇ · uδ)I3,

the estimate (7.4) yields

Sδ bounded in L2(0, T ;L 4
3 (Ω)

)
uniformly with respect to δ.

Moreover, we can repeat step by step the proof of the refined pressure estimates in [12]. The
resulting estimate reads

∫
ΩT

(
pe(ρδ)+ ϑδpϑ(ρδ)+ ϑ2

δ pϑ2(ρδ)+ a
3
ϑ4
δ + δρΓδ

)
ρωδ dxdt ≤C(E0, S0),

in particular,

{
ρ
γ+ω
δ

}
δ>0,

{
δρΓ+ω
δ

}
δ>0 are bounded in L1(ΩT ). (7.5)

In view of the above estimates, we may assume that, up to a subsequence,

ρδ → ρ in C
([0, T ];Lγweak(Ω)

)
,

uδ ⇀ u in Lr
(
0, T ;W 1,r

0 (Ω)
)
, r = 8

5 − α ,

and

ρδuδ → ρu in C
([0, T ];L

2γ
γ+1
weak(Ω)

)
,

as Lγweak(Ω) is continuously imbedded into the dual space W−1,r ′(Ω) since γ ≥ 2. Moreover, 
due to the choice of initial data ρ0,δ and m0,δ ,

ρ(0,x)= ρ0(x) a.e. on Ω,

δ

Γ − 1

∫
Ω

ρΓ0,δ dx → 0 as δ→ 0

and

ρu(0,x)= m0(x) a.e. on Ω.
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Consequently, in accordance with the hypothesis γ ≥ 2, the space L
2γ
γ+1 (Ω) is compactly imbed-

ded into W−1,r ′(Ω), which yields compactness of the convective terms:

ρδuδ ⊗ uδ ⇀ ρu ⊗ u in Lr
(
0, T ;L 6γ r

3r+γ r+6γ (Ω)
)
.

Here we have used the fact that ρδ , uδ satisfy (1.1)1 and (ρδuδ)t can be expressed by (6.9). 
Since γ ≥ 2, we can use the regularization technique developed in [10] to show that ρ, u satisfy 
the (2.16), and furthermore, ρ ∈ C([0, T ]; L1(Ω)).

ϑδ
∗
⇀ϑ in L∞(

0, T ;L4(Ω)
)
, and ϑδ ⇀ ϑ in L2(0, T ;H 1(Ω)

)
, (7.6)

lnϑδ ⇀ lnϑ in L2(0, T ;H 1(Ω)
)
,

furthermore,

ρδ lnϑδ ⇀ ρlnϑ in L2(0, T ;L 6γ
6+γ (Ω)

)
,

ρδ lnϑδuδ ⇀ ρlnϑu in L2(0, T ;L 6γ
3+4γ (Ω)

)
,

ϑ
β
2
δ ⇀ ϑ

β
2 in L2(0, T ;H 1(Ω)

)
,

Q(ϑδ)⇀Q(ϑ) in L2(0, T ;H 1(Ω)
)
,

ρδQ(ϑδ)⇀ ρQ(ϑ) in L2(0, T ;L 6γ
6+γ (Ω)

)
,

ρδuδQ(ϑδ)⇀ ρuQ(ϑ) in L2(0, T ;L 6γ
3+4γ (Ω)

)
,

and

f (ϑδ)⇀ f (ϑ) in L2(0, T ;H 1(Ω)
)

for any

f ∈ C1(0,∞), ∣∣f ′(ξ)
∣∣ ≤ C

(
1

ξ
+ ξ 1

2

)
, ξ > 0,

Hδ
∗
⇀H in L∞(

0, T ;L2(Ω)
)
,

which can be improved to

Hδ → H in C
([0, T ];L2

weak(Ω)
)
,

since Hδt can be expressed through Eq. (6.10);
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Hδ ⇀H in L2(0, T ;H 1(Ω)
)
, Hδ → H in L2(ΩT ),

(∇ × Hδ)× Hδ ⇀ (∇ × H)× H in Lπ(ΩT ) for a certain π > 1,

uδ × Hδ ⇀ u × H in Lπ(ΩT ) for a certain π > 1,

ν(ρδ,ϑδ,Hδ)∇ × Hδ ⇀ ν(ρ,ϑ,H)∇ × H in Lπ(ΩT ) for a certain π > 1,

and

H(0,x)= H0(x) a.e. on Ω.

As usual as in Section 5 and Section 6, our next duty is to show strong (pointwise) convergence 
of the temperature. By virtue of hypothesis (1.8), we have

ρδPϑ(ρδ) is bounded in L∞(
0, T ;Lγς (Ω)), with

γ

ς
>

4

3
,

ρδPϑ2(ρδ) is bounded in L∞(
0, T ;Lγζ (Ω)), with

γ

ζ
> 2,

and

ρδϑδPϑ2(ρδ) is bounded in L∞(
0, T ;L 4γ

γ+4ζ (Ω)
)
, with

4γ

γ + 4ζ
>

4

3
,

in accordance with (7.6).
Using the entropy inequality (6.12) together with Lemma 6.3 of Chapter 6 in [18], we have

4a

3
ϑ3
δ + ρδ

ϑδ∫
1

cv(ξ)

ξ
dξ − ρδPϑ(ρδ)− 2ρδϑδPϑ2(ρδ)

→ 4a

3
ϑ3 + ρ

ϑ∫
1

cv(ξ)

ξ
dξ − ρPϑ(ρ)− 2ϑρPϑ2(ρ) in L2(0, T ;H−1(Ω)

)
,

and, in particular,

∫
ΩT

(
4a

3
ϑ3
δ + ρδ

ϑδ∫
1

cv(ξ)

ξ
dξ − ρδPϑ(ρδ)− 2ρδϑδPϑ2(ρδ)

)
ϑδ dxdt

→
∫
ΩT

(
4a

3
ϑ3 + ρ

ϑ∫
1

cv(ξ)

ξ
dξ − ρPϑ(ρ)− 2ϑρPϑ2(ρ)

)
ϑ dxdt. (7.7)

Since ρδ satisfies the renormalized equation (2.16), we have

b(ρδ)→ b(ρ) in C
([0, T ];Lγ (Ω)

)

weak
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provided b is a bounded and continuously differential function. Thus, a simple approximation 
argument yields

ρδPϑ(ρδ)→ ρPϑ(ρ) in C
([0, T ];L

γ
ς

weak(Ω)
)
,

ρδPϑ2(ρδ)→ ρPϑ2(ρ) in C
([0, T ];L

γ
ζ

weak(Ω)
)
,

whence, using (7.6) again,

lim
δ→0

∫
ΩT

ρδPϑ(ρδ)ϑδ dxdt = lim
δ→0

∫
ΩT

ρPϑ(ρ)ϑ dxdt,

lim
δ→0

∫
ΩT

ρδPϑ2(ρδ)ϑ
2
δ dxdt = lim

δ→0

∫
ΩT

ρPϑ(ρ)ϑ
2 dxdt.

Consequently, (7.7) reduces to

∫
ΩT

(
4a

3
ϑ3
δ + ρδ

ϑδ∫
1

cv(ξ)

ξ
dξ

)
ϑδ dxdt →

∫
ΩT

(
4a

3
ϑ3 + ρ

ϑ∫
1

cv(ξ)

ξ
dξ

)
ϑ dxdt.

Exactly as in Section 6, we obtain

ϑδ → ϑ in L2(ΩT ).

Thanks to Lemma 5.4 in [12], ϑ is positive a.a. on ΩT and lnϑ = lnϑ .
In order to establish strong convergence of the sequence {ρδ}δ>0, we pursue the approach 

similarly as in Sections 7.5, 7.6 in [12]. The results on propagation of oscillations stated in 
Section 7.6 in [12] yield

ρδ → ρ in L1(ΩT ),

which can be strengthened to

ρδ → ρ in C
([0, T ];L1(Ω)

)
(see [10] or Section 6.7 in [18]).

Consequently, the limit function ρ, u satisfy the continuity equation

ρt + ∇ · (ρu)= 0 in D′(
R

3 × [0, T ))
as well as its renormalized version (2.16).
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Similarly, the momentum equation

(ρu)t + ∇ · (ρu ⊗ u)+ ∇
(
pe(ρ)+ ϑpϑ(ρ)+ ϑ2pϑ2(ρ)+ a

3
ϑ4

)
= ∇ · S+ ρ∇Ψ + (∇ × H)× H

is satisfied in D′(ΩT ). One can handle the induction equation as well, i.e.,

Ht − ∇ × (u × H)= −∇ × (ν∇ × H)

is satisfied in D′(ΩT ).
By the same token, we can pass to the limit in the energy equality (6.11) in order to ob-

tain (6.11). Note that

δρΓδ → 0 in L1(ΩT )

as a consequence of (7.5). Hence, the regularizing δ-dependent terms on the left-hand side dis-
appear. And it is a routine matter to deal with the entropy inequality (6.12) based on the above 
estimates. We remark here that it is standard to pass to the limit in the production rate keeping 
the correct sense of the inequality as all terms are convex with respect to the spatial gradients 
of u, ϑ and H.

Last but not least, we need to show that the temperature ϑ tends to its prescribed initial distri-
bution ϑ0 for t → 0. Since the total energy of the system is conserved, we have

E(t)=
∫
Ω

(
ρPe(ρ)− ρϑ2Pϑ2(ρ)+ aϑ4 + ρQ(ϑ)+ 1

2
ρ|u|2 + 1

2
|H|2 + G

2
�−1[1Ωρ]ρ

)
dx

=
∫
Ω

(
ρ0Pe(ρ0)− ρ0ϑ

2
0Pϑ2(ρ0)+ aϑ4

0 + ρ0Q(ϑ0)+ 1

2ρ0
|m0|2 + 1

2
|H0|2 − 1

2
ρ0Ψ0

)
dx,

with Ψ0 =G(−�)−1[1Ωρ0].
Bearing in mind,

ρ(t)⇀ ρ0 in Lγ (Ω) for t → 0,

ρu(t)⇀m0 in L
2γ
γ+1 (Ω) for t → 0,

H(t) ⇀H0 in L2(Ω) for t → 0,

using the same argument as in Section 7.7 in [12] to derive

ess lim
t→0+

∫
Ω

(
4a

3
ϑ3 + ρ

ϑ∫
1

cv(ξ)

ξ
dξ − ρPϑ(ρ)− 2ρϑPϑ2(ρ)

)
φ dx

≥
∫ (

4a

3
ϑ3

0 + ρ0

ϑ0∫
cv(ξ)

ξ
dξ − ρ0Pϑ(ρ0)− 2ρ0ϑ0Pϑ2(ρ0)

)
φ dx
Ω 1
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for any 0 ≤ φ ∈D(Ω; R). And

ϑ(t)→ ϑ0 in L4(Ω) as t → 0 + .

Theorem 2.1 has been proved.
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