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Abstract

In this paper, we consider the initial-boundary value problem of the 3D primitive equations for oceanic
and atmospheric dynamics with only horizontal diffusion in the temperature equation. Global well-
posedness of strong solutions are established with H 2 initial data.
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1. Introduction

The primitive equations derived from the Boussinesq system of incompressible flow are fun-
damental models for weather prediction, see, e.g., Lewandowski [12], Majda [16], Pedlosky [17],
Vallis [21], and Washington and Parkinson [22]. Due to their importance, the primitive equations
has been studied analytically by many authors, see, e.g., [13,14,20,18,16] and the references
therein.
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In this paper, we consider the viscous primitive equations with only horizontal diffusion in the
temperature equation:

v+ (v-Vg)v+wi, v+ Vgp — Av+ fok x v=0, (1.1)
ap+T=0, (1.2)

Vu-v+0o,w=0, (1.3)

T +v-VuT +wd, T — AgT =0, (1.4)

where the horizontal velocity v = (vl, vz), the vertical velocity w, the temperature 7 and the
pressure p are the unknowns and fj is the Coriolis parameter. In this paper, we use the notations
Vi = (0y,0y) and Ay = 8)% + 8)2, to denote the horizontal gradient and the horizontal Lapla-
cian, respectively. The dominant horizontal eddy diffusivity in this model is justified by some
geophysicists due to the strong horizontal turbulent mixing.

In 1990s, Lions, Temam and Wang [13—15] initialed the mathematical studies on the primi-
tive equations, where among other issues they established the global existence of weak solutions.
The uniqueness of weak solutions for 2D case was later proven by Bresch, Guillén-Gonzilez,
Masmoudi and Rodriguez-Bellido [1]; however, the uniqueness of weak solutions in the three-
dimensional case is still unclear. Local existence of strong solutions was obtained by Guillén-
Gonzalez, Masmoudi and Rodriguez-Bellido [8]. Global existence of strong solutions for 2D
case was established by Bresch, Kazhikhov and Lemoine in [2] and Temam and Ziane in [20],
while the 3D case was established by Cao and Titi [6]. Global strong solutions for 3D case were
also obtained by Kobelkov [9] later by using a different approach, see also the subsequent articles
Kukavica and Ziane [10,11]. The systems considered in all the papers [6,9-11] are assumed to
have diffusion in all directions. It is proven by Cao and Titi [7] that these global existence results
still hold true for the system with only vertical diffusion, provided the local in time strong so-
lutions exist. As the complement of [7], local existence results for the system with only vertical
diffusion are recently given by Cao, Li and Titi [4] with H? initial data. Notably, the inviscid
primitive equation, with or without coupling to the heat equation has been shown by Cao et al.
[3] to blow up in finite time (see also [23]).

In this paper, we consider the primitive equations with only horizontal diffusion in the temper-
ature equation, i.e. system (1.1)—(1.4). The aim of this paper is to show that the strong solutions
exist globally for system (1.1)—(1.4) subject to some initial and boundary conditions. More pre-
cisely, we consider the problem in the domain 290 = M x (—h, 0), with M = (0, 1) x (0, 1), and
supplement system (1.1)—(1.4) with the following boundary and initial conditions:

v, w and T are periodic in x and y, (1.5)
(0:v, w)|z=—n,0 = (0,0), Tl=—n=1, T|;=0 =0, (1.6)
(v, T)li=0 = (vo, To)- (1.7)

We note that, since there is no normal flow on the boundaries, the boundary conditions for 7 as in
(1.6),1.e. T|;=—p = 1 and T|,—9 = 0, are preserved, as long as they are satisfied initially. In fact,
with the aid of the boundary condition w|,—_p 0 = 0, the temperature T satisfies the following
equation

&T +v-VyT — AT =0,
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on the boundaries, i.e. z = —h or z =0, form which, one deduces T|,—_; =1 and T|,—9 =0,
as long as these are satisfied initially. On account of this, we put the boundary conditions for 7'
in (1.6), and suppose that Tp|;—=—; = 1 and Ty|,—0 = 0.

Replacing T and pby T + ;- and p — %, respectively, then system (1.1)—(1.4) with (1.5)—(1.7)
is equivalent to the following system

v+ (v-VE)v+wi v+ Vyp — Av+ fok xv=0, (1.8)
a,p+T=0, (1.9)
Vg -v+0,w=0, (1.10)

1
8,T+(v-VH)T+w<8ZT+E>—AHT=O, (1.11)

subject to the boundary and initial conditions

v, w, T are periodic in x and y, (1.12)
(00, w)|z=—n,0=0, T|;=—r0=0, (1.13)
(v, T)lt=0 = (vo, To)- (1.14)

Here, for simplicity, we still use Ty to denote the initial temperature in (1.14), though it is now
different from that in (1.7).
Notice that the periodic subspace H, given by

H:={(@w w,p.T)

v, w, p and T are spatially periodic in all three variables

and even, odd, even and odd in z variable, respectively},

is invariant under the dynamics system (1.8)—(1.11). That is if the initial data satisfy the properties
stated in the definition of #, then, as we will see later (see Theorem 1.1), the solutions to system
(1.8)—(1.11) will obey the same symmetry as the initial data. This motivated us to consider the
following system

v+ (- Vv +wi, v+ Vgp — Av + fok x v=0, (1.15)
0:p+T=0, (1.16)
Vg -v+0d,w=0, (1.17)

1
8,T+(U-VH)T+w<8ZT+E>—AHT=O, (1.18)

in £ := M x (—h, h), subject to the boundary and initial conditions

v, w, p and T are periodic in x, y, z, (1.19)
v and p are even in z, and w and T are odd in z, (1.20)
(v, T)lt=0 = (vo, Tp). (1.21)

One can easily check that the restriction on the sub-domain §2¢ of a solution (v, w, p,T) to
system (1.15)—(1.21) is a solution to the original system (1.8)—(1.14). Because of this, throughout
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this paper, we mainly concern on the study of system (1.15)—(1.21) defined on £2, while the
well-posedness results for system (1.8)—(1.14) defined on §2 follow as a corollary of those for
system (1.15)—(1.21).

For any function ¢ (x, y, z) defined on £2, we define functions ¢ and & as follows

¢—¢.

h
_ 1 ~
cb(x,y):%/qb(x,y,z)dz, ¢
—h

Using these notations, system (1.15)—(1.21) is equivalent to (see [7] for example)

Z

v —Av+ (v-Vy)v — (/VH~v(x,y,§,t)d§>8zv

—h
Z

+ fok x v+VH(Ps(x,y,t)—/T(x,y,f,t)dé) =0, (1.22)

—h

Vi -5=0, (1.23)

Z

&T — AgT +v-VyT — (/VH-v(x,y,g,r)dg) (8ZT+%) =0, (1.24)

—h

complemented with the following boundary and initial conditions

v and T are periodic in x, y, z, (1.25)
v and T are even and odd in z, respectively, (1.26)
(v, T)li=0 = (vo, To). (1.27)

Throughout this paper, we use LY (£2), LY(M) and W™9(£2), W™49(M) to denote the stan-
dard Lebesgue and Sobolev spaces, respectively. For ¢ = 2, we use H™ instead of W2, We use
an;}q (£2) and H{,’ér to denote the spaces of periodic functions in W4(£2) and H" (£2), respec-
tively. For simplicity, we use the same notations L” and H™ to denote the N product spaces
(LP)N and (H™)VN, respectively. We always use lull, to denote the L¥ norm of u.

Definitions of strong solution, maximal existence time and global strong solution to system
(1.22)—(1.27) are given by the following three definitions, respectively.

Definition 1.1. Given a positive number #y. Let vp € H 2(£2) and Ty € H?*(£2) be two periodic
functions, such that they are even and odd in z, respectively. A couple (v, T) is called a strong
solution to system (1.22)—(1.27) (or equivalently (1.15)—(1.21)) on £2 x (0, #p) if

(i) vand T are periodic in x, y, z, and they are even and odd in z, respectively;
(i) v and T have the regularities

ve L0, 10; H*(£2)) N C([0, to]; H'(£2)) N L*(0, to; H(£2)),
T € L%(0,10; H*(2)) N C([0,t0]; H'(2)),  VuT € L*(0, t0; H*(£2)),
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dveL*(0,10; H'(2)), 8T e L*(0,10; H'(2));

(iii) v and T satisfy Egs. (1.22)—(1.24) a.e. in £2 x (0, #p) and the initial condition (1.27).

Definition 1.2. A finite positive number 7* is called the maximal existence time of a strong
solution (v, T) to system (1.22)—(1.27) if (v, T) is a strong solution to the system on §2 x (0, #p)
for any 7o < 7* and lim,_, 7 (||v]|3,, + | T[13,,) = 0.

Definition 1.3. A couple (v, T) is called a global strong solution to system (1.22)—(1.27) if it is
a strong solution on £2 x (0, #p) for any 79 < oo.

The main result of this paper is the following global existence result.

Theorem 1.1. Suppose that the periodic functions vo, Ty € H>(2) are even and odd in z, re-
spectively. Then system (1.22)—(1.27) (or equivalently (1.15)—(1.21)) has a unique global strong
solution (v, T).

Local existence of strong solutions are obtained by a regularization mechanism. More pre-
cisely, we add the vertical diffusion term, with a diffusion coefficient ¢ > 0, in the temperature
equation to obtain a regularized system. We then establish uniform estimates, in ¢, for strong
solutions of the regularized system, over a short interval of time independent of ¢, and then take
the limit, as & goes to zero, to obtain local strong solutions to system (1.22)—(1.27). To obtain
the global strong solutions, from the local existence results, we need to establish the a priori es-
timates on the derivatives of the solution, up to the second order. The first crucial estimate is the
LS estimate on v, which has been originally obtained by Cao and Titi in [6,7]. Next, we establish
the estimates on the derivatives. Resulting from the lack of sufficient information on the equation
for the vertical velocity w, and the absence of the vertical diffusion in the temperature equation,
the treatments of different derivatives will vary. In particular, when we deal with the derivatives
of v of the same order, we first work on the vertical derivatives and then the horizontal ones. The
reason for this is due to the fact that we need the estimates on the vertical derivatives to handle
the term of the form (/* » Vi - vd§)0;v, which has “stronger nonlinearity” than the term of the
form (v - Vg)v. Keeping this in mind and making use of the L% estimates for v, we successfully
obtain the estimates on 831}, then on Vg9, v and finally on V2v and V2T. As a result, we obtain
the a priori estimates which guarantee the global existence of strong solutions.

As a corollary of Theorem 1.1, we have the following theorem, which states the well-
posedness of strong solutions to system (1.8)—(1.14). The strong solutions to system (1.8)—(1.14)
are defined in the similar way as before.

Theorem 1.2. Let vy and Ty be two functions such that they are periodic in x and y. Denote by
v and T§" the even and odd extensions in z of vo and To, respectively. Suppose that v§", Ts*' €

szer(.Q). Then system (1.8)—(1.14) has a unique global strong solution (v, T).

The existence part follows directly by applying Theorem 1.1 with initial data (v§*', T5*") and
restricting the solution on the sub-domain £29. While the uniqueness part can be proven in the
same way as that for Theorem 1.1. It should be pointed out that, due to the same reason as stated
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in Remark 1.1 in [4], the condition that vg’“, TOeXt € ngr(.Q) in the above theorem is necessary
for the existence of strong solutions to system (1.8)—(1.14).

The rest of the paper is organized as follows: in the next section, Section 2, we prove the
local existence of strong solutions; in Section 3, by establishing the necessary a priori estimates,
we show that the local strong solution can be extended to be a global one, and thus obtain a
global strong solution.

Throughout this paper, we use C to denote a general constant which may be different from

line to line.
2. Local existence of strong solutions

In this section, we establish the local existence of strong solutions to system (1.15)—(1.21),
or equivalently system (1.22)—(1.27).

We first cite the following proposition on the local existence of strong solutions to the system
with full diffusion (see Proposition 2.1 of [4]).

Proposition 2.1. Let vy € H*(£2) and Ty € H?*(2) be two periodic functions, such that they are
even and odd in z, respectively. Then for any given ¢ > 0, there is a t. > 0, depending on ¢,
and a unique strong solutions (vg, Tg), with (vg, Ty) € L°°(0, t,; H2(.Q)) NC([O0, t.]; H! )N
L2(0, t.; H3(£2)) and (8,v, 8, Ty) € L2(0, t.; H (2)), to the following system

Z
v—Av+ (v-Vg)v— </Vy-v(x,y,$,t)dé)3zv

—h

Z
+ fok x v+VH(PS(x,y,t)—/T(x,y,é,t)dé) =0, 2.1)

—h

Vi 0 =0, 2.2)
z 1
8T — ApT — e9>T +v- VT — </VH-v(x,y,é,t)d§> <BZT+ E) —0, (23)
—h

subject to the boundary and initial conditions (1.25)—(1.27).

The following lemma will be used to obtain a uniform lower bound of the existence time,
independent of ¢, and the uniform in ¢ estimates on the local strong solution (v, T,) obtained in
Proposition 2.1. It also plays an important role in proving the uniqueness of strong solutions.

Lemma 2.1. (See [5].) The following inequalities hold true
h

h
/(/f(x,y,z)dz></g(x,y,z)h(x,y,z)dz)dxdy
h

M - —h

1/2 1/2 1/2 1/2

12 2
< CIFIL (12 + 1R £1Y ) gl mi (181 + 19 kA1),
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and
h

h
/(/f(x,y,z)dz>(/g(x,y,z)h(x,y,z)dz)dxdy
M N “h

1/2 172

1/2 1/2 1/2 1/2
<CI £y (s + 19aglly ) 1Ry > (111Y* + 1V ekl ),

for every f, g, h such that the right hand sides make sense and are finite.

We also need the following lemma on differentiation under the integral sign and integration
by parts.

Lemma 2.2. (See [4].) Let f and g be two spatial periodic functions such that

feL?(0,10; H(2)), d f € L*(0,10; H'(£2)),
g€ L?(0,10; H*(2)), g L*(0,10; L*(£2)).

Then it follows that

d
E/|Af|2dxdydz:—2/va,fVAfdxdydz,
2

2
/ V32 fVAfdxdydz = / 10, Af 2dxdydz
2 2

and

d
/ 19, g2 dxdydz = =2 / 9,802 gdxdydz,
2

2

dt
f 9%,802 gdxdydz = / 19,0, g|*dxdydz,
22 2

fora.e. t € (0, 1), where x', x/ € {x, y, z}.
The next lemma is a version of the Aubin—Lions lemma.

Lemma 2.3 (Aubin—Lions lemma). (See Simon [19], Corollary 4.) Assume that X, B and Y are
three Banach spaces, with X << B < Y. Then it holds that ‘

(i) If F is a bounded subset of L?(0,T; X) where 1 < p < 0o, and %—f = {%|f € F}is
bounded in L' (0, T; Y), then F is relatively compact in L?(0, T; B);

(ii) If F is bounded in L*°(0, T'; X) and % is bounded in L" (0, T;Y) wherer > 1, then F is
relatively compact in C ([0, T]; B).

Now we provide a lower bound, in dependent of ¢, for the existence time and establish the uni-
form, in ¢, estimates for the solution (v, T;) obtained in Proposition 2.1. We have the following:
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Proposition 2.2. The local strong solution (ve, Tp) given by Proposition 2.1 can be established
on the interval (0, ty), such that
to
2 2 2 2 2
sup (I[ve 122 + I 7212,.) +/(||VUE||H2 +IVHTN2s + 110, T, 12,0)de < €

0<t<ty 0

and
Iy
/(natvgni,] + 119, T, )de < €,
0

where to and C are two positive constants independent of €.

Proof. Suppose (0, t}) is the maximal interval of existence of the local strong solution (v, T¢).
We are going to show that 7 > 1o, for some positive number #( independent of .

We focus in our analysis on the interval (0, ¢}). Multiplying (2.1) by v, and (2.3) by T,
respectively, and summing the resulting equations up, then it follows from integrating by parts
and using (2.2) that

(lve|* + T, 1*)dxdydz + /(|vug|2 +|VuT:|* +¢l3,T|?)dxdydz
2 2

:/[VH(jngé)vg—i—%(jVH-vgdé)Ts}dxdydz.
2

—h —h

24t

Applying the operator V to Eqgs. (2.1) and (2.3), multiplying the resulting equations by —V Av,
and —V AT, respectively, summing these equalities up and integrating over £2, it follows from
integrating by parts and Lemma 2.2 that

1d

EE/(|AUS|2+|AT£|2)dxdydz+/(|VAv8|2+|VHAT8|2+8|82AT8|2)dxdydz

2 2

= V| (ve - Vg)ve — ZVH'vgds d;Ve — Vg ZngS :VAv,
e v~ (] v [ )

—h —h
i 1
— A|:v8 -VyuTe — < / Vi - vgdé) <8ZT8 + z>:|ATS}dxdydz.
—h
Summing the above two equalities up yields
S (Ivel® + |Ave|* + | Te|* + | AT, |*)dxdydz
2

+ /(|va|2 + VA P+ |Vu T + [Vu AT * + 18, T, | + €19, AT, |*)dxdydz
2
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:!{vﬂ(_[nds>vs+%(_[v;{~vgds>Ts

+ V| (ve - Vg)v, — (/VH~v8d§)82vs—VH</T8d‘§>:| VA,

—h —h

z _
1
—Alv, - VT, — (/VH.vgdg:) (E)zTg—i—E) ATg}dxdydz

n
Z 1 z -
:/{</VHT8d§>U8+E(/VH'UEdé:)TE—i_ Vv - Vyug

2 —h

—h

Z Z
+ v, - VgV, — V( / Vg - vgdé)azvg — (/VH . vgdé‘;)Vazvg

—h —h

Z
— VHV< / Tsdé):| :VAv, — |:Avg -VyTe +2Vv, -V VT,
—h

Z Z
1
— (fVH . Av8d5> (E)ZT,S + E) — 2( / VVy - vsdE>V8zTg:|ATs}dxdydz.
—h —h

We estimate the integral on the right hand side of the above equality, denoted by I as follows.
By Lemma 2.1, and using the Holder, Young, Sobolev and Poincaré inequalities, we have

h

h
hsc/{</|vHTg|ds>|vg|+</|va|ds>m|+[|va|2+|vs||vzvg|
Zh

2 —h

h h h
+ <{|V2vg]d$>|azvgl+ <{|W8|ds)|v2v€\ + <{]V2Tg|d$>:||VAv8|

h
+ |:|Ave||vHTe| + IV |[Ve VT | + (/IVHAveIdE>]IATsI}dxdde
“h

+C!A[[(ZIVAvsIdE) (ZlaszllATsld€>

h h

+ </|V2v8|d§>(/|V2T£|2d§>:|dxdydz

—h —h
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< ClIVaT: lallvellz + IV ve 2l Tell2 + (VeI + velloo | Ve |,

+ V20 |31V vells + [ V2T [ )1V Avellz + (1920 5| VA Te |

1/2
+ IV l3IVE VTl + IV Ave[12) | ATe 2] + CIIV Ave 1210 Tell,

1/2 1/2 1/2 1/2 1/2
X (10,715 + IVE Ty AT > (1A TS + IV AT 11,?)

+ C[ V20 [ [V Te [, (| Te ], + |V VP Te )

1/2 1/2
< CllvellZ + 1T 12 + (el + 1AVl 21V Avg 1y el 2 + 1T 12,) 11V Avgl2

1/2 1/2
+ (1Ave 1y 2 IV Ave 1y 2 I Te Nl g2 + el 2 IV ATzl + [V Avel2)

32

1/2
IVEATLL,)

X | AT ll2] + CIIV Ave o (I Te 132 + 1 T

+ Clvell g2 (1T 13,2 + 1 Tell g2 | VE AT, |12)
1
< S(IVAV I3+ IVH AT 3) + C (1 + llve G + 176 05,2)-

Therefore, we obtain, for any ¢ € (0, £),

0<s<t

t
sup ([vell32 + 1713,2) + /(nwsn%ﬂ +IVaTe 3 + elld:Tell3,.)ds
0

t
3
<CCo+C [ (14 ol + 1T ) ds.
0

where Co = [|vol2, + 1 Tol12,, + 1.
Setting

0<s<t

t
F@ = sup (Ivel3s + 1T 130 + 1) + [ (IV0ell22 + IVH T3, + €ll8. T2 1|3, ds
H H H H H
0
for t € [0, ¢}). Then one has
t
ft)<CCo+ C/(f(s))3ds, t€[0,1}).

0

Set F(t) = [y(f(t)¥)ds + 1, then we have

F(=(f0) <ci(Fo)’, vielo,r),

where C is a positive constant depending only on % and (vg, Tp). This inequality implies

1 1
F(t) < ———, Vvrel0,t*)n|0, — |,
()_«/l—zclt [ 8) |: 2C1>
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and thus

t

sup (Hve”?{z + ||T€||%_12) + /(”VUSH%_IZ + ”VHTa”?{z + 8||BZT8||?_12)dS
0

0<s<t

C
= CC+CF(1) = CCo+ —=mme = C(Co + V2),
- 1

forany ¢ € [0, ) N[0, 4171]. Recalling that 7 is the maximal existence time, the above inequality
implies that #J > %. Thus we can take 7p = %.
Thanks to the estimates we have just proved, one can use the same argument as in the last

paragraph of the proof of Proposition 3.1 in [4] to obtain the estimates on 9d,;v, and 9; T, and thus
we omit the details here. This completes the proof. O

Now we can prove the local well-posedness of strong solutions to system (1.15)—(1.21),
or equivalently system (1.22)—(1.27).

Proposition 2.3. Let vo € H>(2) and Ty € H*(82) be two periodic functions, such that they are
even and odd in z, respectively. Then system (1.22)—(1.27) has a unique strong solution (v, T)
in §2 x (0, ty), where ty is the same positive time stated in Proposition 2.2. Moreover, the strong
solution depends continuously on the initial data.

Proof. By Proposition 2.1 and Proposition 2.2, for any given & > 0, system (2.1)—(2.3), subject
to the boundary and initial conditions (1.25)—(1.27), has a unique strong solution (vg, Tz) in
2 x (0, ty) such that

fp
sup (Ilvell3,> + 1 76113,5) + /(nwsu%,z HIVETS,, + elld Tell3,.)dt < C
0

0<t<ty

and

fo
/(na,vgni,l + 118, T. 113, )dt < C,
0

where C is a constant independent of €. On account of these estimates and applying Lemma 2.3,
there is a subsequence, still denoted by {(v., T¢)}, and (v, T), such that

(ve, Te) = (v, T), inC([0,10]; H'(£2)),
(Vve, Vi T:) = (Vu,VyT), inL*(0,t0; H'(£2)),
(e, T)—= (0. T),  in L(0, 10: H(2)).
(Vue, VuT:) = (Vu,VuT), in L*(0,10; H*(£2)),
(30, 8 Te) = (3v,8,T), in L*(2 x (0, 10)),
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where — and —~ are the weak and weak-* convergence, respectively. Thanks to these conver-
gence, one can easily show that (v, T) is a strong solution to system (1.22)—(1.27), or equivalently
to system (1.15)—(1.21). The continuous dependence on the initial data, in particular the unique-
ness, are straightforward corollary of Proposition 2.4 below, see Corollary 2.1. O

For the continuous dependence on the initial data, the solutions are not required to have so
high regularities as stated in Definition 1.1. In fact, we have the following:

Proposition 2.4. Let (vi, T1) and (va, Tz) be two spatially periodic functions, satisfying the fol-
lowing regularity properties

(vi, T) € L™(0, 10: H' (2)) N C([0, t0]; L*(£2)).
(3rvi, 8 T7, 892v;) € L*(£2 x (0, 10)), (Vivi, VuTy) € L*(0, to; H'(£2)),

i=1,2, where § > 0 is a given constant. Set
o) =1+ 0205+ 0020 + [v20 5| Va5
+ 0.0 |3 Vv |3 + |20 [3 + [0 T2 |3

+| O3 Va0 + |00 3| VHa. 0|5, 2.4)

forany t € (0, t9). Suppose that both (v, T1) and (va, T>) satisfy the following system

Z

v — Agv—832v+ (v Vi)v — (fVH-v(x,y,g,t)dS)azv

—h
+fok><v—i—VH(ps(x,y,t)—/T(x,y,é,t)dé) =0, (2.5)
n
Vy-0=0, (2.6)
T — AyT +v-VyT — ( / Vi - u(x, v, €, r)dg) <BZT + %) -0, 2.7)

—h
in £2 x (0, 1p).
Setting (v, T) = (vi — va, T1 — Tp), then it follows that

t

sup (Ilvll3 + ||T||%)+f(

0<s<t
0

IVoll3 + VT3 + 818,v113)ds

< CeCRPOB (| w19 — o3+ [ (T1o — (T2)o]3).

forany t € (0, tg), where ((vi)o, (T;)o), i = 1, 2, are the initial values of (v;, T;).
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Proof. One can easily check that (v, T') satisfies

v — Agv— 8320+ (v1 - Vi)v+ (v- Vi)va

—(/Vy~v1d§)azv— (/Vﬁ'vdé)azv2+fokxv
“h

—h
Z
+VHps(x7yrt)_VH</T(x’y’$vt)dS> :O’ (28)
—h
Vi -5 =0, 2.9)

Z
T —AyT +v1-VyT +v-VyT, — (fVH . v1d$)8ZT
—h

— (/Vy-vdé) (BZTQ‘l— %) =0. (2.10)

—h

Multiplying (2.8) by v and integrating over 2, then it follows from integrating by parts and
(2.9) that

1d 2 2 2
ST v dxdydz+/(|VHv| + 810, v|13)dxdydz
Q Q
Z Z
:/{|:</VH~vdE>8zv2—(v~VH)v2i| -V — (/Td%‘)VHm}dxdydz. (2.11)
Q —h —h

By Lemma 2.1, and using Young’s inequality, we have the following estimates

Z

/(/VH~vd§>8zv2~vdxdydz

2 ‘—h

h h
5/(/|VHv|dz)</|8Zv2||v|dz>dxdy
—h —h

M

1/2 1/2 1/2 1/2 1/2 1/2
< CIVavI2d.vally > (190205 + IV E vl ) ol > (Il + 1951y )

< < IVuvl3 4+ C(1+ 130205 + 180211319 Vi val13) 0113

< =IVuvl3 +Co@)vli3,

O — OO =—
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for any ¢ € (0, fp). Noticing that |v2(z)| < ﬁ ffh lva(2)|dz + ffh |0,v2|dz, it follows from inte-
grating by parts, applying Lemma 2.1, and using Young’s inequality that

’/(v -Vy)v - vdxdydz < / [Vyvllv||vz|dxdydz

gc/<f(|m|+|a val)d )</|VHU||v|dz>dxdy

1/2 1/2 1/2 1/2
< Cll.vally > (19,0215 + 1V 8,021 2) IV Evll2 vy > (ol + 1V el %)

1/2 1/2 1/2 1/2 1/2
+C||v2|| P (o2 lly? + 19502 1Y IV ol o132 (11 + 1950115
||vHv||2+C( + o2l + 02031 Ve vall3 + 13,0213 + 19:0213118: Varva 13) Ilv]13

IVEvI5+ Co @ vli3, (2.12)

OOI'—OO

for any ¢ € (0, #p). The above two inequalities, substituted into (2.11), imply
d 3
oL+ 3 1Vavo | + 2] < con (o 3+ [T ]3). @13)

for any € (0, 1p).
Multiplying (2.10) by T and integrating by parts yield

1d
S T >dxdydz + / VT > dxdydz
2

Z
1
=— / |:v -VuT, — < /VH . vdé) <81T2 + Z)]dedydz. (2.14)
2 —h

Using the fact that |7>(z)| < 21_h ffh |T2(z)|dz + ffh |0, T>|dz, the same argument as that for
(2.12) gives

/ v-VygThTdxdydz

= ‘/ T,(Vyg -vT +v-VgT)dxdydz

‘/|VHT||v||T2|dxdydz

< /|vHv||T||Tz|dxdydz +

h

h
/(/(|T2|+|31T2|)dz>(/IVHUHTIdZ)dxdy
Zh

M —h

<C
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h

/(/(IT2|+|a Dl)d )(/IvIIVHﬂdz)dxdy

M “—h

+C

lV VuT L+ D2 DIV T2 + 110, T3
=( avl3 + IVETI3) + C(L+ 105 + 123 IVE T3 + 19 T3
F 18 21319 Ve T2113) (11013 + IIT113)

1
Z(”VHU”z +IVHTI3) +Co@ (IIvl3 + ITI3),

for any ¢ € (0, #p). Applying Lemma 2.1 again, it follows from the Young inequality that

/(/VH-vd’g) <BZT2+ %)dedydz
2 ‘—h
h h
§Cf(f|VHv|dz>(f(|BZT2|+1)|T|dz>dxdy
M —h —

1/2 1/2 1/2
< CIVavlala, B0y > (1. TallY + 1V e d, T )T 1L

1/2 1/2
< (ITIY? + IVaTI3?) + CIVav 2 T2

1
Z(IIVHU||2+ IVETI3) + C(1+ 10:T2013 + 10: 2131 Ve 3. T2115) 1T 113

—_—

Z(”Vanz +IVHTIE) + CoOITI3,
for any ¢ € (0, #p). Substituting the above two estimates into (2.14), one has

d
Ao+ 1VaT ) < [Vie o [3 + Co o (v |5 + [ 70]5).

for any 7 € (0, 7p).
Summing the above inequality up with (2.13) leads to

C w3+ 701D + 5 (Va3 + [VaTo [} + s )
= Cop(fof;+[T0])
for any ¢ € (0, #p), which, by Gronwall’s inequality, implies the conclusion. O
As a corollary of Proposition 2.4, we have the following corollary, which guarantees the
uniqueness and continuous dependence on initial data of strong solutions to system (1.22)—(1.27),

or equivalently to system (1.15)—(1.21).

Corollary 2.1. Strong solution to system (1.22)—(1.27) depends continuously on initial data, and
in particular is unique.
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Proof. Let (v, T1) and (v2, T5) be two strong solutions to system (1.22)—(1.27) on £2 x (0, tp).
Recalling the regularity properties of strong solution (v», 7>), the function ¢ (¢) defined by (2.4)
is integrable on time interval (0, #p). By virtue of this fact, one can apply Proposition 2.4 to obtain
the continuous dependence on initial data, and in particular the uniqueness. This completes the
proof. O

Remark 2.1. By Proposition 2.4, neither the vertical viscosity, i.e. one can take § = 0, nor the
vertical diffusion, which is zero in our case, are necessary to guarantee the uniqueness, and
continuous dependence on initial data, of the solutions that enjoy the regularity properties stated
in the proposition.

3. Global existence of strong solutions

In this section, we show that the local strong solution established for short time in Section 2
can be in fact extended to be a global one.

Let (v, T) be the unique strong solution obtained in Proposition 2.3. Suppose that (0, 7*) is
the maximal interval of existence. If 7* = oo there is nothing to prove. Therefore, for the next
analysis, we assume by contradiction that 7 < oo, and we will focus our analysis on (0, 7).
We have the following three propositions which will provide the needed a priori estimates on
(w, T).

Proposition 3.1. There is a bounded continuously increasing function K(t), on [0, T™), such
that

sup (I3 + 1T 13 + 10lg + IV 31175, + 19:011E)

0<s<t

t
+/(||W||%+ IVETI3 + | AE I 2000 ds < K1(0),
0

Sforanyt €0, 7).

Proof. The conclusion follows directly from inequalities (59), (69), (91) and (103) in [7], with
slight modifications. Thus we omit the proof here. O

Set u = 9, v, then it satisfies

Z
hu—Au+ (v-Viu — (/Vyov(x,y,é,t)dé)azu

Zh
4+ @ -Vg)v— (Vg -v)u+ fok xu—VgT =0, (3.1)

on (0, 7%).
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Proposition 3.2. There is a bounded continuously increasing function K»(t), on [0, T*), such
that

0<s<t

t
sup ||Vu||§+/y|v2uy|§ds < K>(1),
0

foranyt €[0,T%).

Proof. By the boundary conditions (1.25) and (1.26), u = d,v is 2h periodic and odd in the
vertical variable z, and thus u(x,y, —h,t) = —u(x,y, h,t) = —u(x,y, —h, t), which implies
ul;=—p =0and Vyu|,—_, =0, for any ¢ € (0, 7*). Multiplying Eq. (3.1) by —8z2u and integra-
tion by parts, using Lemma 2.2 and the fact that |Vgyu(x,y, z,t)| < fi’h |Vyou(x,y, &, t)|d&,
then it follows from the Holder, Sobolev and Poincaré inequalities that

27 |0;u|“dxdydz + | 10;Vu|“dxdydz
Q2

2
=/|:(v -Vyu — ( /VH . vdé) Bzu:| . Bzzudxdydz
2 —h

+ /[(u -Vy)v— (Vg -v)u+ fok xu — VHT] . azzudxdydz
Q

=" /{[2(“ -Vp)u —2(Vy -v)ou + (3;u - Vg)v
2

— (Vg -wu] - du+VyT - 32uldxdydz

=— f{[Z(u Viu — (Vg -wu] - d.u +2v - Vi (19,ul?)
2

— Vi - uv - d,u — (d.u - Vg)dou v+ VyT - 2uldxdydz

h
< C/[Iul(/ |vHazu|ds)|azu| + || Va0 ul|dul + |VHT||83u|]dxdydz

2 —h

<C[(lulls + Ivll6)I Ve dzull2lld-ulls + I Va T 12 |02u | ,]

< C[(llulls + wlle) IVl dully > 1V 0ully + IVH T 2] 82u] ]
< %nvazunﬁ + C(llullg + IvIg)1d-ull3 + CIVATIS.

Thanks to Proposition 3.1, this inequality gives

0<s<t

t
sup [|9;ull3 + / IVd,ull3ds
0
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t
< ecfé“""éﬂ'”'é“s(nazuon% +C / ||VHT||%ds>

2
< CXT (ool + K1) =: K5 (), (3.2)

for every t € [0, T%).

Multiplying (3.1) by —Apgu and integrating by parts, using Lemma 2.2 and the fact that
[Vgv(x,y,z,t)| < |Vgo(lx,y, )| + fi’h |Vgu(x,y, &, t)|d&, then it follows from the Holder,
Sobolev, Poincaré inequality and Lemma 2.1 that

2dt/|vHu| dxdydz+/|VHVu| dxdydz

Z

=f|:(v-VH)u— (/Vy-vdé)azu+(u-VH)v

2 —h

— (Vg -v)u+ fok xu — VHT:| - Agudxdydz

h
SC/[IUIIVHMH-(/IVHMIdZ+IVH5I>(|3zM|+IMI)
“h

2
+ |VHT|j| |Aguldxdydz

< ClIvlehVaulls + llulo(IVruls +1IVEl3) + IVaT 2] Anull

h h
+C/|:(_{|VHu|d$)+IVH6|:| <l|8zu||AHu|d$>dxdy

M
< C[(lulls + Ivlle)IVaulls + lullsIVadlls + IVa T2l A zul
2 1/2 1/2 - 1/2 1/2
+ C[IVRullY > (IVaully + 1951y + 1V a0 13 IV 515 + 11VE D11y )]

1/2 1/2
 l10gully* (I1uelly* + IV d.ully *) 1A gul

1/3

12 1/2
< C(Ills + 10ll6) IVaully*1V Viaully + llull| V117 L2(M)

12

1/2
Yooy F IV a1 219 VA2

+IVET ]I Amula + C(IVEDI A, [ AHD]

L2(M)
1/2
x N1zully 21V 8l * 1A gull2
< Euvan% + C(llullg + Il IVrull3 + C(IulgNAH DT 2 00 + IVET 1 200)

+ Cllo-ul3IVa-ul3IVaull3 + ClIVEDI 200 | Arl 200 1021121 V32|12
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1
< Eanwn% + C(llullg + lolig + 18uli31Vaul3) I Vaul3

+ C (G A BTy + UVHTIZ + IVHDIT 2 4 1A DT 20 + 1800051 VO0]13).

Therefore, by Proposition 3.1, and using (3.2), it follows from the above inequality that for any
tel0, 7%

sup [|Vgull3 + / IVVyul3ds
05&51‘

t

C o (lulE+1olld+10,u31Vaul3)d 2 2 ~12
<e Jo Ulelig+vlig+110zul31 Vo u13)ds IVyuol3 4+ C (”M”6”AHU||L2(M)
0

FIVETIZ + IV 24 | AEDIT 20 + ||azu||%||vazu||%)ds}
< CCETOHRZO) (g2, + K2() + K1 (1) + KY2()) = K} (1),

Combining this inequality with (3.2), we have

sup [|Vull5 + /||V2u||2d8<K2(t)+K§/(t)— K> (1),

O<s<t

for any ¢ € [0, T), completing the proof. O

Proposition 3.3. There is a bounded continuously increasing function K3(t), on [0, T™), such
that

t

sup (lApvl3+I1AT]3) +/(||VAHv||§+ IVHAT3) < K3(1),

O<s<t
0

forany t € [0, T*).
Proof. It follows from integrating by parts, the Sobolev embedding inequality and the Poincaré

inequality that

/|VHU|4dxdydz=—fVH (IVav*Vyv)vdxdydz
2

< c/ Vel |v| [V v|dxdydz < Cl[Vavl3livlle| Vv
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and

/|V%1v|3dxdydz=—/VH . (|V12qv|V%1v)VHvdxdydz
Q2 2

< C/|V,%,v| Vv IVavldxdydz < C|| V|| Vi, Vavlle
2
<C|VEv|5| Vv Ve Vol = C| VRV I VE AR VI VE V2.
The above two inequalities imply

12 1/2
IVavl; < Cllvlls| Vv IVavlls < CIIVE Apolly 21V VoY,

37
and thus
1/2 1/2
IVavl3 < Clollsl Ve Vol 2 1Ve Apvlly. (3.3)
Applying the operator Vg to Eq. (1.22), multiplying the resulting equation by —VgAgv

and integrating over £2, then it follows from Lemma 2.2, (1.23), (3.3), the Holder, Sobolev and
Poincaré inequalities that

1d
EZf|A,z,v|2dxdya'z+/|VAHU|2dmyarz
2 2

Z/VH|:(U'VH)U— </VH-vd$>Bzv—VH</Td$>:| :VyAgvdxdydz

Q —h —h
h h
gC/[|v||vi,v|+|vHv|2+ </|V%,v|d§)|azv|+ (/IVH-v|d§>|8ZVHv|
2 —h —h

h
+ </|V§T|d5>]|vﬂAHv|dxdydz
—h

<C(Ivlle||VEv]s + IVaIE+ | VAV [ 519:vl6 + Va3 Vaulls
+VET [ )IVE AR
= C[(lulls + 1016 [ Vv ]y (1 VR0, + [V VRvl,)
+ 10lslIVa VUl 2 1Va Apvlly + IV Vvl VVaul2 + | AT I12]1 Ve Ag vl
< C(Ivlls + lulle) 1Az vy 21V AEVIY + [vls(IA Iy + 1VHulY?)

$ IV Avlly + (1Agvi + 1VEul2) [ V2ul, + 1A TI]1VE Ag vl

1
< SIVALvIZ+C(lullg + vlis + 192 ]3) (1A VI3 + IVEul3) + 1ALTI3),



4128 C. Cao et al. / J. Differential Equations 257 (2014) 4108-4132
and thus

d
EHAan% +IVARVI3
< C[(Iullf + 101E+ | P2 3) (1A VI3 + 1VEul3) + 1A TI3): (3.4)

Applying the operator V to Eq. (1.24), multiplying the resulting equation by —VAT and
integrating over §2, using the facts that

h
|Av(x,y,z,t)’ < |AH1_)(x,y,t)| +/|Au(x,y,.§,t)‘d§,
—h

h
|Vox, y,2,0)| < |Vab(x, y. 1)| +/|W(x,y,s,z)\dg,
—h

h

|VVH ' U(X, y,Z,t)| = f|va ~M()C, y,E»t)|dE,
—h

then it follows from integrating by parts that

1d
EE/|AT|2dxdydz+/IVHAT|2dxdydz
2 2

:—/A|:U-VHT— (/VH-vd§>(31T+%>:|Adedydz

Q —h
7 1
:—/|:AU~VHT+2VUIVHVT— </AVH-vd$><81T+Z)
Q —h

Z
— 2( f VVy - vd$> -VazT:|Adedydz
—h

Z

/ AV - vd&)

—h

1
:—/|:AU~VHT+2VUIVHVT—Z<
Q

Z
-2 fva-vdg>vazT]Adedydz
—h

Z
+/(/AVH~vd§>azT(AHT+822T)dxdydz
2 “—h
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) Z
|:Av VuT +2Vv:VygVT — E(/ AV - vd“;‘)

—h

2( VVy - vdé) ~V81T:|Adedydz —/|:AVH -vTAyT
Q

1
+ ( AVy - vdg>TAHazT +5AVa- v|8zT|2:|dxdydz

Z
1
/|:Av VuT +2Vv: VHVT—E<fAVH~vd§)
2

—h

2( VVy - vd&)VazT}Adedydz—/[AVH -vTAyT
Q

+ ( / AV - vd&)TAHBZT — Av- VHBZTBZT]dxdydz.
—h

4129

We estimate the quantity on the right hand side of the above equality, denoted by I, as follows.
By Lemma 2.1, Lemma 2.2, and using the Holder, Sobolev and Poincaré inequalities, we deduce

h h
Izscf[(/|Au|d§+|AH6|>|vHT|+</|Vu|ds+|vH6|>|vHVT|
2 —h —h
h h
+(/|VHAv|d§>+ (/lVVH-u|d§)|VazT|:||AT|dxdydz
—h —h

h
+C/[|AVHU||T||AHT|+ (/IAVHv|d$>|T||AH8ZT|:|dxdydz
2 _

h

+c/</|Au|d§+|AH5|>|3ZT||vHaZT|dxdydz
2

—h

< c/[/h(w + |V2u|)d§:| U(wﬂ + |v2T|)|v2T\ds]dxdy

M =

+C/(|VH1_)|+|AHI_)|)<

h
/(|VT| + |V2T|)|V2T|dg)dxdy
—h
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h

+C/</|VHAv|d$>|AT|dxdydz+C/|:|AVHU||T||AHT|

M “—h 2

h
+ (f |AVHv|d§)|T||AH8ZT|i|dxdydz
—h

< C[(IVulla + | V2ul, + 1VE 0l 200 + 18030 200) (IVT 1Y + | 92T (5%

12

2

)’ )’ ) + 1V AVIIAT 2
+IVEAVIAT oo | AT ll2 + 11V AVl N T ool A8 T 1]

< C[(|V2ully + 1A#31 24 IATI2(IAT 2 + IVEAT 12) + Vi Av[2 | AT |12

+IAVHVIT ool AT ll2 4 IV AVl T ooV AT |I2]

172

< (IVT1y? + | VT | )

FIVEVTIY 4 | Ve v2T )2

< V2T (IVAT )" + Ve veT |

2 _ 1
= C(1L+ |V2uly +1ALDI)IATIS + SIVEAT I+ C(1+ ITIS) I VA Avi,
Therefore, we obtain

4 AT 2
S IATIZ+1Vu AT
t
2 _
< C(L+ITIZ) IV AVIE+ C(1+ || V2ul; + 1A# DI IAT 3. (3.5)

For any given ¢ € [0, 7*), recalling that K (¢) is a bounded continuously increasing function,
it follows from Proposition 3.1 that

sup | T2, < sup Ki(s) < K1(1).

O<s<t 0<s<t

Therefore it follows from (3.5) that
d 2 2
L |aT)E +[VaaT);
<C(1+ [V |5+ [An56) 720 [AT G

+C(1+ K1) Vaavs) |2, (3.6)

for all s € (0,7), with z € (0, 7). On the other hand, by (3.4), it holds that

d
75 HAHU(S)H; + HVAHv(s)Hi

<C(1+ [u® ¢+ v ¢+ [V2u® [3) (| auvs) |5 + | AT G)]3)

+C(Ju ¢+ v ¢+ [ V2u) |3) | Vau]5- (3.7)
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Choose a sufficiently big positive constant «. Multiplying (3.7) by a(1 + K;(¢)) and summing
the resulting inequality up with (3.6), then we obtain

d
Sl Ki0)|anv@ 3+ AT ]+ (VARG + [VaaT®)]3)

< C(1+ K1) (1+ lully + [0+ 1AE D12 + | V2 ]3) o)
x (1ARvI3 + IATI3) () + C(1+ K@) (lullé + 102 + | V2] 2) () | Vi) |3

for any 0 < s <t < T*. By Proposition 3.1 and Proposition 3.2, it follows from this inequality
that
t

sup (lAgvl3+ ||AT||%)+/(||VAHU||%+ IVHAT|3)
05351

0

L UFKLO) [y A+ IullgHIvlgHI AnDIT  +IV2ulD)ds

<C

t

2
x [nvoni,z +1Tol3,. + (1 +K1<t))f(||u||é+ lvllg + ||v2u||2)||vHu||%ds]
0
2
< CeC(I+K1(1))(I+K1(t)H'Kl([)+K2([))[||v()||?{2 + ||T0||§{2

+ (14 K1) (KTt + K2 (1) K2 (0)] =: K3(0),
for every ¢ € [0, T*), completing the proof. O

With these a priori estimates in hand, we are now ready to prove the global existence of strong
solutions as follows.

Proof of Theorem 1.1. By Proposition 2.3, there is a unique strong solution (v, T) in £2 X
(0, t9). We consider the solution on the maximal interval of existence (0, 7). We need to prove
that 7* = co. Recall that we have assumed by contradiction that 7* < co. By Proposition 3.1,
Proposition 3.2 and Proposition 3.3, we have the following estimate

t

2 2
sup ([[v(®)] 52 + 17| 52) + /(||Vv||§,z +IVaT|3,)ds < CK (1),
0o<s<

<s<t 0

for any ¢ € (0, T*), where
K(t)=Ki1(@)+ K2(2) + K3(2).
Note that K (¢) is a bounded continuously increasing function, on (0, 7*), the above inequality
implies that
T*

sup_ (v |2 + | T %2) + / (190112 + IVHTI2,)dt < CK(T),
0<t<T*
- 0
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and thus, by Proposition 2.3, we can extend such strong solution beyond 7%, contradicting to
the definition of 7*. This contradiction implies that 7* = oo, and thus completes the proof of
Theorem 1.1. O
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