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Abstract

In this paper, we study the regularity for solutions to an obstacle problem of Hessian type fully nonlinear 
equations on Riemannian manifolds. As an application, the existence of a C1,1 solution is proved.
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1. Introduction

Let (Mn, g) be a compact Riemannian manifold of dimension n ≥ 2 with smooth boundary 
∂M and M̄ := M ∪ ∂M . In this paper we study the obstacle problem

max
{
u − h,−(

f
(
λ
(∇2u + A[u])) − ψ(x,u,∇u)

)} = 0 (1.1)

in M with boundary condition

u = ϕ on ∂M, (1.2)

where h ∈ C3(M̄), ϕ ∈ C4(∂M), h > ϕ on ∂M , f is a symmetric function of λ ∈ R
n, ∇2u de-

notes the Hessian of a function u on M , A[u] = A(x, u, ∇u) is a smooth (0, 2) tensor which may 
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depend on u and ∇u, and for a (0, 2) tensor X on M , λ(X) denotes the eigenvalues of X with 
respect to the metric g.

Our motivation to study the obstacle problem for Hessian equations comes in part from their 
applications in differential geometry such as finding the greatest hypersurface with an obstacle 
whose curvature (for example the Weingarten curvature) is bounded below by a nonnegative 
function. For other applications please see [17] where Liu and Zhou considered an obstacle 
problem for Monge–Ampère equations (when f = σ

1/n
n , see (2.5)) arising from the study of 

affine maximal surfaces, and [6] in which Gerhardt studied hypersurfaces of prescribed mean 
curvature bounded from below by an obstacle, while Kinderlehrer [13] treated minimal surfaces 
over obstacles.

The interest to consider (1.1) is also from its connection to the problem of optimal trans-
portation (see [21] for example). In [2], Caffarelli and McCann studied a class of optimal 
transportation problems which is equivalent to a double obstacle problem for Monge–Ampère 
equations. An interesting result of Oberman [19] states that the convex envelope is the viscosity 
solution of a nonlinear obstacle problem which is essentially an obstacle problem for Monge–
Ampère equations (see [20] also).

When A ≡ κug, the obstacle problem for Hessian equations on Riemannian manifolds 
was studied by Jiao and Wang [12] under various conditions which exclude the case that 
f = (σk/σl)

1/(k−l). For Monge–Ampère equations, Xiong and Bao [24] treated the case that 
A ≡ 0 and Lee [15] considered similar problem when ψ ≡ 1, ϕ ≡ 0 in a strictly convex do-
main in Rn. For the study of Hessian equations on Riemannian manifolds, the reader is referred 
to [8–10,16,23] and their references.

The rest of this paper is organized as follows. In Section 2 we discuss the assumptions of this 
work and state our main results. In Section 3 we introduce some notations and an approximating 
Dirichlet problem. The C0 estimates and gradient estimates on the boundary for solutions to the 
approximating problem are treated in Section 4 while in Section 5 and Section 6, the gradient and 
second derivative estimates are established respectively. In Section 7, we will prove the existence 
of a smooth solution to the approximating problem to finish our proof of Theorem 2.2.

2. Assumptions and main results

In this section, we discuss the assumptions of this work and state our main results. Following 
Caffarelli, Nirenberg and Spruck [4], the function f ∈ C2(Γ ) ∩ C0(Γ ) is assumed to be defined 
in an open, convex, symmetric cone Γ ⊂R

n with vertex at the origin,

Γn ≡ {
λ ∈R

n : each component λi > 0
} ⊆ Γ �=R

n

and to satisfy the fundamental structure conditions

fi ≡ ∂f

∂λi

> 0 in Γ, 1 ≤ i ≤ n, (2.1)

f is a concave function in Γ, (2.2)

and

f > 0 in Γ, f = 0 on ∂Γ. (2.3)
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A function u ∈ C2(M) is called admissible at x0 ∈ M if λ(∇2u + A[u])(x0) ∈ Γ and we call 
it admissible in M if it is admissible at each x ∈ M . It is shown in [4] that (2.1) implies that (1.1)
is degenerate elliptic for admissible solutions. While (2.2), which is a type of growth condition 
essentially, ensures that F defined by F(r) = f (λ(r)) for r = {rij } ∈ Sn×n with λ(r) ∈ Γ is 
concave, where Sn×n is the set of n × n symmetric matrices.

We recall the notion of viscosity solution to (1.1) and (1.2) (see [22] and [5]).

Definition 2.1. We define a function u ∈ C0(M̄) to be a viscosity subsolution of (1.1) and (1.2)
if for any function φ ∈ C2(M) and point x0 ∈ M satisfying u(x0) = φ(x0), u ≤ φ in M we have

max
{
φ(x0) − h(x0),−

(
f

(
λ
(∇2φ(x0) + A[φ](x0)

)) − ψ[φ](x0)
)} ≤ 0,

where ψ[φ](x0) = ψ(x0, φ(x0), ∇φ(x0)), and u ≤ ϕ on ∂M . While u is called a viscosity su-
persolution of (1.1) and (1.2) if for any function φ ∈ C2(M) and point x0 ∈ M at which φ is 
admissible, satisfying u(x0) = φ(x0), u ≥ φ in M we have

max
{
φ(x0) − h(x0),−

(
f

(
λ
(∇2φ(x0) + A[φ](x0)

)) − ψ[φ](x0)
)} ≥ 0,

and u ≥ ϕ on ∂M . The function u is a viscosity solution of (1.1) and (1.2) if it is both a viscosity 
subsolution and supersolution.

In this paper, we shall prove the existence of a viscosity solution in C1,1(M̄) to (1.1) and (1.2). 
Our strategy is to use a penalization technique for which we consider a singular perturbation 
problem (see (3.4)). We shall use the methods in [9] and [10], where the authors studied the cor-
responding fully nonlinear elliptic equations on general Riemannian manifolds, to establish the 
a priori C2 estimates independent of the perturbation for solutions to (3.4). After establishing the 
C2 estimates, (2.1) and (2.3) ensure that Eq. (3.4) is uniformly elliptic and the C2,α estimates fol-
low by the Evans–Krylov theory. Next, the existence of smooth solutions to (3.4) can be derived 
using the method of continuity and degree theory. As is well known, the concavity condition (2.2)
which is crucial to the Evans–Krylov theory as well as the second order estimates, plays an ex-
tremely important role in the theory of fully nonlinear equations. So conditions (2.1)–(2.3) are 
standard and fundamental in the study of Hessian equations.

The ideas proposed in [9] and [10] allow us to consider various classes of fully nonlinear 
equations under conditions which are nearly optimal. In order to state our main results let us 
introduce some notations adopted from [9].

For σ > 0 let Γ σ = {λ ∈ Γ : f (λ) > σ } and ∂Γ σ = {λ ∈ Γ : f (λ) = σ } which is a smooth 
and convex hypersurface in Rn by assumptions (2.1) and (2.2). We shall only consider the case 
Γ σ �= ∅. For λ ∈ Γ we use Tλ = Tλ∂Γ f (λ) to denote the tangent plane at λ to the level surface 
∂Γ f (λ).

The following condition is essential to our work in this paper:

∂Γ σ ∩ Tλ∂Γ f (λ) is nonempty and compact, ∀σ > 0, λ ∈ Γ σ . (2.4)

Condition (2.4) means that the level set of f would not be too “straight” when |λ| is 
large. So assumption (2.4) excludes linear elliptic equations but is satisfied by a very gen-
eral class of functions f . In particular, (2.4) holds for those f whose level set is strictly 
convex. Thus, (2.4) holds for f = σ

1/k , k ≥ 2 and f = (σk/σl)
1/(k−l) which we recall was 
k
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not covered by the work of Jiao and Wang [12], 1 ≤ l < k ≤ n, defined on the cone Γk =
{λ ∈R

n : σj (λ) > 0, j = 1, . . . , k}, where σk(λ) are the elementary symmetric functions

σk(λ) =
∑

i1<...<ik

λi1 . . . λik , k = 1, . . . , n. (2.5)

Another example satisfying (2.4) is f = logPk , where

Pk(λ) :=
∏

i1<···<ik

(λi1 + · · · + λik ), 1 ≤ k ≤ n

defined in the cone

Pk := {
λ ∈ R

n : λi1 + · · · + λik > 0
}
.

The following condition is used to overcome the difficulty caused by the presence of curvature 
in the boundary estimates for second order derivatives (see [9] or [10]):

∑
fi(λ)λi ≥ 0, ∀λ ∈ Γ. (2.6)

Finally, note that for fixed x ∈ M̄ , z ∈R and p ∈ T ∗
x M ,

A(x, z,p) : T ∗
x M × T ∗

x M →R

is a symmetric bilinear map. We shall use the notation

Aξη(x, ·,·) := A(x, ·,·)(ξ, η), ξ, η ∈ T ∗
x M (2.7)

and, for a function v ∈ C2(M), A[v] := A(x, v, ∇v), Aξη[v] := Aξη(x, v, ∇v).
Throughout the paper we assume ψ ∈ C3(T ∗M × R) (for convenience we shall write

ψ = ψ(x, z, p) for (x, p) ∈ T ∗M and z ∈ R though), ψ > 0, and that there exists an admis-
sible subsolution u ∈ C2(M̄) satisfying

f
(
λ
(∇2u + A[u])) ≥ ψ(x,u,∇u) in M,

u = ϕ on ∂M (2.8)

and u ≤ h in M .
The reader is referred to Theorem 1.3 of [12] in which the third author and Wang constructed 

some subsolutions satisfying (2.8) in some special cases. By (2.3), we can see that λ(∇2u +
A[u])(x) ∈ K for all x ∈ M̄ , where K is a compact subset of Γ , since ψ(x,u, ∇u) ≥ δ0 > 0 for 
some constant δ0.

As in [10], we make the following technical assumptions:

−ψ(x, z,p) and Aξξ (x, z,p) are concave in p, (2.9)
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and

−ψz,A
ξξ
z ≥ 0, ∀ξ ∈ TxM. (2.10)

For the gradient estimates, we usually need some growth conditions and in this paper, we as-
sume that (see [8])

{
p · ∇xA

ξξ (x, z,p) + |p|2Aξξ
z (x, z,p) ≤ ω̄1(x, z)|ξ |2(1 + |p|γ1

)
,

p · ∇xψ(x, z,p) + |p|2ψz(x, z,p) ≥ −ω̄2(x, z)
(
1 + |p|γ2

)
,

(2.11)

for some continuous functions ω̄1, ω̄2 ≥ 0 and constants γ1, γ2 > 0.
We shall establish the gradient estimates under two groups of conditions. Firstly we use the 

following condition that there exists c̄ > 0 such that

Aξξ
pkpl

(x, z,p)ηkηl ≤ −c̄|ξ |2|η|2 + c̄
∣∣g(ξ, η)

∣∣2
, ∀ξ, η ∈ TxM (2.12)

and

lim
t→∞f (t1) = +∞ (2.13)

where 1 = (1, . . . , 1) ∈ R
n which holds for f = σ

1/k
k and f = (σk/σl)

1/(k−l) obviously.
We remark that the condition (2.12) implies the following MTW condition which was intro-

duced by Ma, Trudinger and Wang in [18] to establish interior regularity for potential functions 
of the optimal transportation problem:

Aξξ
pkpl

(x, z,p)ηkηl ≤ −c̄|ξ |2|η|2, ∀ξ, η ∈ TxM, ξ ⊥ η.

An alternative assumption

fj (λ) ≥ ν0

(
1 +

∑
fi(λ)

)
for any λ ∈ Γ with λj < 0, (2.14)

where ν0 is a uniform positive constant, is commonly used in deriving gradient estimates, see [8,
11,22] and [23] for example. Together with (2.14), we also need (2.6) and the following growth 
conditions (see [8]):

p · Dpψ(x, z,p),−p · DpAξξ (x, z,p)/|ξ |2 ≤ ω̄(x, z)
(
1 + |p|γ )

(2.15)

and

∣∣Aξη(x, z,p)
∣∣ ≤ ω̄(x, z)|ξ ||η|(1 + |p|γ )

, ∀ξ, η ∈ TxM̄, ξ ⊥ η, (2.16)

for some continuous function ω̄ ≥ 0 and constant γ ∈ (0, 2). Our main results are stated in the 
next theorem.
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Theorem 2.2. Suppose that (2.1)–(2.4), (2.6) and (2.8)–(2.10) hold. Assume that A(x, z, p) ≡
A(x, p) or trA(x, z, 0) ≤ 0 when z is sufficiently large and

∣∣Aξξ (x, z,p)
∣∣ ≤ ω̄(x, z)|ξ |2(1 + |p|2) (2.17)

for any ξ ∈ TxM when |p| is sufficiently large, where ω̄ ≥ 0 is a continuous function. Then there 
exists a viscosity solution u ∈ C1,1(M̄) to (1.1) and (1.2) under any of the following additional 
assumptions: (i) (2.11)–(2.13) hold for γ1 < 4, γ2 = 2 in (2.11); (ii) (2.11) and (2.14)–(2.16)
hold for γ1, γ2 < 4 in (2.11).

Furthermore, u ∈ C3,α(E) for any α ∈ (0, 1), and

f
(
λ
(∇2u + A(x,u,∇u)

)) = ψ(x,u,∇u) in E,

where E ≡ {x ∈ M : u(x) < h(x)}.

3. Preliminaries

Throughout the paper ∇ denotes the Levi-Civita connection of (Mn, g). The curvature tensor 
is defined by

R(X,Y )Z = −∇X∇Y Z + ∇Y ∇XZ + ∇[X,Y ]Z.

Let e1, . . . , en be local frames on Mn. We denote gij = g(ei, ej ), {gij } = {gij }−1. Define the 
Christoffel symbols Γ k

ij by ∇ei
ej = Γ k

ij ek and the curvature coefficients

Rijkl = g
(
R(ek, el)ej , ei

)
, Ri

jkl = gimRmjkl.

We shall use the notation ∇i = ∇ei
, ∇ij = ∇i∇j − Γ k

ij∇k , etc.
For a differentiable function v defined on Mn, we usually identify ∇v with the gradient of v, 

and use ∇2v to denote the Hessian of v which is locally given by ∇ij v = ∇i (∇j v) − Γ k
ij∇kv. 

We recall that ∇ij v = ∇jiv and

∇ijkv − ∇jikv = Rl
kij∇lv, (3.1)

∇ijklv − ∇klij v = Rm
ljk∇imv + ∇iR

m
ljk∇mv + Rm

lik∇jmv

+ Rm
jik∇lmv + Rm

jil∇kmv + ∇kR
m
jil∇mv. (3.2)

By direct calculation, we see, for each 1 ≤ i, j, k ≤ n,

∇ijkv = ∇3v(ei, ej , ek) = ∇i (∇jkv) − ∇lkvΓ l
ji − ∇j lvΓ l

ki

and

∇ikj v = ∇3v(ei, ek, ej ) = ∇i (∇kj v) − ∇lj vΓ l − ∇klvΓ l .
ki j i
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Therefore, by the symmetry of {∇ij v}, we have

∇ijkv = ∇ikj v.

It follows that, by (3.1),

∇ikj v − ∇jikv = Rl
kij∇lv. (3.3)

We shall use a penalization technique to consider the following singular perturbation problem

{
f

(
λ
(∇2u + A(x,u,∇u)

)) = ψ(x,u,∇u) + βε(u − h) in M,

u = ϕ on ∂M,
(3.4)

where the penalty function βε is defined by

βε(z) =
{

0, z ≤ 0,

z3/ε, z > 0,

for ε ∈ (0, 1). Obviously, βε ∈ C2(R) satisfies

βε,β
′
ε, β

′′
ε ≥ 0;

βε(z) → ∞ as ε → 0+, whenever z > 0;
βε(z) = 0, whenever z ≤ 0.

(See [24].) Obviously, u is also a subsolution to (3.4) since u ≤ h. Let uε ∈ C3(M̄) ∩ C4(M) be 
an admissible solution to (3.4) with uε ≥ u. We show that there exists a constant C independent 
of ε such that

|uε|C2(M̄) ≤ C (3.5)

for small ε.
From now on, we may drop the subscript ε when there is no possible confusion. For simplicity 

we shall denote U := ∇2u + A(x, u, ∇u) and, under a local frame e1, . . . , en,

Uij ≡ U(ei, ej ) = ∇ij u + Aij (x,u,∇u),

∇kUij ≡ ∇U(ek, ei, ej ) = ∇kij u + ∇kA
ij (x,u,∇u)

≡ ∇kij u + ∇′
kA

ij (x,u,∇u) + A
ij
z (x,u,∇u)∇ku

+ A
ij
pl

(x, u,∇u)∇klu (3.6)

where Aij = Aeiej and ∇′
kA

ij denotes the partial covariant derivative of A when viewed as 

depending on x ∈ M only, while the meanings of Aij
z and Aij

pl
, etc. are obvious. Similarly we can 

calculate ∇klUij = ∇k∇lUij − Γ m∇mUij , etc.
kl
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Let F be the function defined by

F(r) = f
(
λ(r)

)
for a symmetric matrix r with λ(r) ∈ Γ . Throughout the paper we shall use the notation

F ij = ∂F

∂rij
(U), F ij,kl = ∂2F

∂rij ∂rkl

(U).

By (2.1), the matrix {F ij } has positive eigenvalues f1, . . . , fn. Moreover, when Uij is diagonal 
so is {F ij }, and the following identities hold

F ijUij =
∑

fiλi, F ijUikUkj =
∑

fiλ
2
i

where λ(U) = (λ1, . . . , λn).
Our main tool is the following theorem proved in [10].

Theorem 3.1. Assume that (2.1), (2.2) and (2.4) hold. Let K be a compact subset of Γ and 
0 < a ≤ b < supΓ f . There exist positive constants θ = θ(K, [a, b]) and R = R(K, [a, b]) such 
that for any λ ∈ Γ [a,b] = Γ a \ Γ b , when |λ| ≥ R,

∑
fi(λ)(μi − λi) ≥ θ + θ

∑
fi(λ) + f (μ) − f (λ), ∀μ ∈ K. (3.7)

4. C0 estimates

In this section, we consider the C0 estimates and gradient estimates on the boundary for uε. 
Actually, we can prove

Theorem 4.1. There exists a constant C independent of ε such that

sup
M̄

|u| + sup
∂M

|∇u| ≤ C, (4.1)

provided (i) A(x, z, p) ≡ A(x, p) and Aξξ (x, p) is concave in p for each ξ ∈ TxM or
(ii) trA(x, z, 0) ≤ 0 when z is sufficiently large and (2.17) holds.

Proof. (4.1) is clear under the assumption (i), so we just prove (4.1) when (ii) is assumed. Note 
that

�u + trA(x,u,∇u) > 0

since Γ ⊂ {λ ∈R
n : ∑λi > 0}. Suppose supM̄ u is achieved at x0 ∈ M . Thus, at x0, ∇u = 0 and 

�u ≤ 0. We have, at x0,

0 < �u + trA
(
x0, u(x0),0

) ≤ trA
(
x0, u(x0),0

)
.
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Therefore, there exists a positive constant c0 under control such that u(x0) ≤ c0. Then we obtain

sup
M

|u| ≤ max
{

sup
M

|u|, sup
∂M

|ϕ|, c0

}
≤ C.

Now let v = eau, where a is a constant sufficiently large to be chosen later. We see that

�v = aeau
(�u + a|∇u|2).

Let μ ≡ supM |u|. It follows that, by (2.17),

�v + a2eaμ ≥ aeau
(�u + a|∇u|2 + a

) ≥ aeau
(�u + trA(x,u,∇u)

)
> 0,

when a is sufficiently large. Let φ be the solution to

{ �φ + a2eaμ = 0 in M,

φ = eaϕ on ∂M.

Then e−aμ ≤ v ≤ φ on M̄ by the maximum principle. Furthermore,

∇νv ≤ ∇νφ on ∂M

where ν is the interior unit normal to ∂M . Therefore, we get

∇νu ≤ ∇νφ

av
≤ C on ∂M.

It follows that

sup
∂M

|∇νu| ≤ C.

Then we get (4.1) since ∇ξ u(x0) = ∇ξ ϕ(x0) for any x0 ∈ ∂M and ξ ∈ Tx0∂M . �
Remark 4.2. We can see from the proof that (4.1) holds for any admissible function u ∈ C2(M̄)

satisfying u ≥ u in M and u = ϕ on ∂M .

5. The interior gradient estimates

In this section we establish the interior gradient estimates of uε. Similar to Lemma 3.2 of [24]
(see [12] also), we can prove the following lemma which is crucial to establish both the gradient 
estimates and second derivative estimates.

Lemma 5.1. There exists a positive constant c0 independent of ε such that

0 ≤ βε(u − h) ≤ c0 in M. (5.1)
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Proof. We consider the maximum of u −h on M̄ , and we may assume it is achieved at an interior 
point x0 ∈ M since u − h = ϕ − h < 0 on ∂M . We have, at x0, ∇(u − h) = 0 and ∇2u ≤ ∇2h. 
Therefore, at x0,

βε(u − h) = f
(
λ
(∇2u + A(x,u,∇u)

)) − ψ(x,u,∇u)

≤ f
(
λ
(∇2h + A(x,u,∇h)

)) − ψ(x,u,∇h) ≤ c0

for some uniform constant c0 > 0 independent of ε by (4.1). Hence (5.1) holds. �
Theorem 5.2. Assume that (2.1), (2.2), (2.11), (2.12) and (2.13) hold for γ1 < 4, γ2 = 2 in (2.11). 
Then for ε sufficiently small,

max
M̄

|∇u| ≤ C
(

1 + max
∂M

|∇u|
)
, (5.2)

where C is a positive constant depending on |u|C0(M̄), |u|C2(M̄) and other known data.

Proof. To prove (5.2), we set w = |∇u| and suppose the function wφ−a achieves a positive 
maximum at an interior point x0 ∈ M , where φ is a positive function to be determined and 
0 < a < 1 is a constant. Choose a smooth orthonormal local frame e1, . . . , en about x0 such that 
∇ei

ej = 0 at x0 and {Uij (x0)} is diagonal. The function logw − a logφ attains its maximum at 
x0 where

∇iw

w
− a∇iφ

φ
= 0, (5.3)

∇iiw

w
+ (a − a2)|∇iφ|2

φ2
− a∇iiφ

φ
≤ 0 (5.4)

for i = 1, . . . , n. Note that for each fixed 1 ≤ i ≤ n,

w∇iw = ∇lu∇ilu

and, by (3.3) and (5.3),

w∇iiw = ∇lu∇iilu + ∇ilu∇ilu − ∇iw∇iw

= (∇liiu + Rk
iil∇ku

)∇lu +
(

δkl − ∇ku∇lu

w2

)
∇iku∇ilu

≥ (∇lUii − Aii
pk

∇lku − Aii
u ∇lu − ∇′

lA
ii
)∇lu − C|∇u|2

= ∇lu∇lUii − w2

φ

(
aAii

pk
∇kφ + φAii

u

) − ∇lu∇′
lA

ii − Cw2. (5.5)

Here we have used the Einstein summation convention over the l and the k indices.
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Differentiating Eq. (3.4), by (5.3),

F ii∇lu∇lUii = ∇lu∇′
lψ + ψu|∇u|2 + ψpk

∇lu∇lku

+ β ′
ε(u − h)

(|∇u|2 − ∇u · ∇h
)

= ∇lu∇′
lψ + ψu|∇u|2 + aw2

φ
ψpk

∇kφ

+ β ′
ε(u − h)

(|∇u|2 − ∇u · ∇h
)
. (5.6)

Let φ = (u − u) + b > 0, where b = 1 + supM(u − u). By (2.12) we find

−Aii
pk

∇kφ = Aii
pk

(x,u,∇u)∇k(u − u)

≥ Aii(x,u,∇u) − Aii(x,u,∇u) + c̄
(|∇φ|2 − |∇iφ|2)

≥ Aii(x,u,∇u) − Aii(x,u,∇u) + c̄
(|∇φ|2 − |∇iφ|2) − C. (5.7)

Because of the convexity of ψ in p, we see

ψpk
∇kφ = ψpk

(x,u,∇u)∇k(u − u) ≥ ψ(x,u,∇u) − ψ(x,u,∇u). (5.8)

By (5.4), (5.5) and (5.7), we have

0 ≥ ∇lu

w2
F ii∇lUii + a

φ
F ii(Uii − Uii) + ac̄|∇φ|2

φ

∑
F ii

+ a − a2 − c̄aφ

φ2
F ii |∇iφ|2 − F iiAii

u − ∇lu

w2
F ii∇′

lA
ii − C

∑
F ii . (5.9)

Without loss of generality, we assume c̄ is sufficiently small such that c̄φ < 1
2 and thus we can 

guarantee that

a − a2 − c̄aφ

φ2
>

1
2a − a2

φ2
> 0

by choosing a sufficiently small.
By the concavity of F , we derive for B sufficiently large

F ii(Uii − Uii) = F ii(Uii + 2Bgii − Uii − 2Bgii)

≥ F(U + 2Bg) − ψ(x,u,∇u) − βε(u − h) − 2B
∑

F ii

≥ F(Bg) − ψ(x,u,∇u) − βε(u − h) − 2B
∑

F ii . (5.10)

We may assume that |∇u| is sufficiently large to make

|∇u|2 − ∇u · ∇h >
1 |∇u|2.

2
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Therefore, by (2.11), (5.6), (5.8), (5.9) and (5.10), we have

0 ≥ φ

w2

(∇lu∇′
lψ + ψu|∇u|2) + a

(
ψ(x,u,∇u) − ψ(x,u,∇u)

)
+ φ

w2
β ′

ε(u − h)
(|∇u|2 − ∇u · ∇h

) + c̄′|∇φ|2
∑

F ii

− φ

w2

(∇luF ii∇′
lA

ii + F iiAii
u |∇u|2) − Cφ

∑
F ii

+ a
(
F(Bg) − ψ(x,u,∇u) − βε(u − h) − 2B

∑
F ii

)
≥ aF(Bg) − aψ(x,u,∇u) − Cφ|∇u|γ2−2

+ (
c̄′φ|∇φ|2 − Cφ|∇u|γ1−2 − Cφ − 2aB

)∑
F ii

+ φ

2
β ′

ε(u − h) − aβε(u − h), (5.11)

where c̄′ = ac̄.
Now by Lemma 5.1, we find that

u − h ≤ (c0ε)
1/3 in M. (5.12)

It follows that

φ

2
β ′

ε(u − h) − aβε(u − h) = (u − h)2

ε

(
3φ

2
− a(u − h)

)

≥ (u − h)2

ε

(
1 − a(c0ε)

1/3) > 0

provided ε < 1
c0a

3 . Thus, we see

0 ≥ aF(Bg) − aψ(x,u,∇u) − Cφ|∇u|γ2−2

+ (
c̄′φ|∇φ|2 − Cφ|∇u|γ1−2 − Cφ − 2aB

)∑
F ii .

By (2.13), choosing B sufficiently large, we may assume aF(Bg) − aψ(x, u, ∇u) −
Cφ|∇u|γ2−2 ≥ 0 and we obtain

c̄′φ|∇φ|2 − Cφ|∇u|γ1−2 − Cφ − 2aB ≤ 0,

from which we can get a bound for |∇u(x0)|. The proof of (5.2) is completed. �
Theorem 5.3. Assume that (2.1), (2.2), (2.6), (2.11), (2.14), (2.15) and (2.16) hold for γ1, γ2 < 4
in (2.11). Then (5.2) holds.
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Proof. By (5.6), we have

F ii∇lu∇lUii = ∇luψxl
+ ψu|∇u|2 + aw2

φ
ψpk

∇kφ, (5.13)

provided |∇u| is sufficiently large.
In the proof of Theorem 5.2, let φ = −u + supM u + 1. By the concavity of Aii(x, z, p) in p,

Aii = Aii(x,u,∇u) ≤ Aii(x,u,0) + Aii
pk

(x,u,0)∇ku. (5.14)

By (2.6) and (5.14), we have

−F ii∇iiφ = F ii∇iiu = F iiUii − F iiAii

≥ −F iiAii ≥ −C
(
1 + |∇u|)∑

F ii . (5.15)

Thus, from (5.4), (5.5), (5.13), (5.15), (2.11) and (2.15) we drive for a < 1,

0 ≥ (a − a2)

φ2
F ii |∇iu|2 + ∇lu∇′

lψ

w2
+ ψu − a

φ
ψpk

∇ku

+ a

φ
F iiAii

pk
∇ku − F iiAii

u − F ii ∇lu∇′
lA

ii

w2
− C

(
1 + |∇u|)∑

F ii

≥ c1F
ii |∇iu|2 − C

(|∇u|γ2−2 + |∇u|γ + 1
)

− C
(
1 + |∇u| + |∇u|γ + |∇u|γ1−2)∑

F ii, (5.16)

where c1 = minM̄
(a−a2)

φ2 > 0.

Without loss of generality, we assume ∇1u(x0) ≥ 1
n
|∇u(x0)| > 0. Note that Uij (x0) is diago-

nal. By (5.3), (5.14) and (2.16) we find

U11 = − a

φ
|∇u|2 + A11 + 1

∇1u

∑
k≥2

∇kuA1k

≤ − a

φ
|∇u|2 + C

(
1 + |∇u| + |∇u|γ−2) < 0 (5.17)

provided |∇u| is sufficiently large. Therefore, by (2.14),

f1 ≥ ν0

(
1 +

n∑
i

fi

)
.

Thus, by (5.16), we have
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0 ≥ c1F
11|∇1u|2 − C

(|∇u|γ2−2 + |∇u|γ + 1
)

− C
(
1 + |∇u| + |∇u|γ + |∇u|γ1−2)∑

F ii

≥ c1ν0

n2

(
1 +

∑
F ii

)
|∇u|2 − C

(|∇u|γ2−2 + |∇u|γ + 1
)

− C
(
1 + |∇u| + |∇u|γ + |∇u|γ1−2)∑

F ii

= c1ν0

n2
|∇u|2 − C

(|∇u|γ2−2 + |∇u|γ + 1
)

+
(

c1ν0

n2
|∇u|2 − C

(
1 + |∇u| + |∇u|γ + |∇u|γ1−2))∑

F ii . (5.18)

Then we can get a bound |∇u(x0)| ≤ C from (5.18). �
Since we have obtained a bound |u|C1(M̄) ≤ C, there exist uniform constants ψ1 > ψ0 > 0

independent of ε such that

ψ0 ≤ ψ(x,u,∇u) ≤ ψ1. (5.19)

Let L be the linear operator locally defined by

Lv := F ij∇ij v + (
F ijA

ij
pk

− ψpk

)∇kv, v ∈ C2(M) (5.20)

where Aij
pk

≡ A
ij
pk

[u] ≡ A
ij
pk

(x, u, ∇u), ψpk
≡ ψpk

[u] ≡ ψpk
(x, u, ∇u). Then in our case, Propo-

sition 2.2 in [10] becomes:

Lemma 5.4. There exist uniform positive constants R, θ depending only on λ(∇2u + A[u]), 
ψ0 and ψ1 + c0 such that

L(u − u) ≥ θ
(

1 +
∑

F ii
)

− βε(u − h) whenever
∣∣λ(U)

∣∣ ≥ R.

The proof is the same as in [10] by using Theorem 3.1, so we omit it here.

6. Estimates for second order derivatives

In this section we will consider the estimates for second order derivative of uε and we also 
drop the subscript ε as usual. Note that there exists a uniform constant C independent of ε such 
that tr(A[u]) ≤ C on M̄ . Let ζ be the solution to

�ζ + C = 0

in M with ζ = ϕ on ∂M . Then we get u ≤ ζ in M by the maximum principle since �u + C > 0
in M . Since h > ϕ on ∂M we have h > ζ ≥ u in a neighborhood of ∂M in which βε(u − h) ≡ 0. 
Therefore, by the arguments of Section 5 in [10], we can obtain a constant C independent of ε
such that
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∣∣∇2u
∣∣ ≤ C on ∂M.

Set

W = max
x∈M̄, ξ∈TxM, |ξ |=1

(
Aξξ (x,u,∇u) + ∇ξξ u

)
eφ,

where φ is a C2 function to be determined. It suffices to estimate W . We may assume W is 
achieved at an interior point x0 ∈ M and for some unit vector ξ ∈ Tx0M . Choose a smooth 
orthonormal local frame e1, . . . , en about x0 such that ξ = e1, ∇iej (x0) = 0 and that Uij (x0) is 
diagonal. We need only estimate U11(x0) > 0 from above.

At the point x0 where the function logU11 +φ (defined near x0) attains its maximum, we have

∇iU11

U11
+ ∇iφ = 0 for each i = 1, · · · , n (6.1)

and

∇iiU11

U11
−

(∇iU11

U11

)2

+ ∇iiφ ≤ 0. (6.2)

Differentiating Eq. (3.4) twice, we obtain at x0, by (6.1),

F ii∇11Uii + F ij,kl∇1Uij∇1Ukl ≥ ψpj
∇jU11 + ψplpk

∇1lu∇1ku + β ′′
ε (u − h)

(∇1(u − h)
)2

+ β ′
ε(u − h)∇11(u − h) − CU11

≥ −U11ψpj
∇jφ − CU11 + ψp1p1U

2
11

+ (U11 − C)β ′
ε(u − h) (6.3)

provided U11 is sufficiently large.
In addition, we have,

(∇iU11)
2 ≤ (∇1U1i )

2 + CU2
11, (6.4)

∇iiU11 ≥ ∇11Uii + ∇iiA
11 − ∇11A

ii − CU11, (6.5)

and

F ii
(∇iiA

11 − ∇11A
ii
) ≥ F ii

(
A11

pj
∇iij u − Aii

pj
∇11j u

) − CU11

∑
F ii

+ F ii
(
A11

pipi
U2

ii − Aii
p1p1

U2
11

) − C
∑

F ii

≥ U11F
iiAii

pj
∇jφ − CU11

(∑
F ii + 1

)
− C

∑
F iiU2

ii − U2
11

∑
F iiAii

p1p1
− Cβ ′

ε(u − h). (6.6)

i≥2 i≥2
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Therefore, by (6.2), (6.3), (6.5) and (6.6), we get

Lφ ≤ E − ψp1p1U11 + C

U11

∑
F iiU2

ii + U11

∑
i≥2

F iiAii
p1p1

+
(

C

U11
− 1

)
β ′

ε(u − h) + C
∑

F ii + C (6.7)

where

E = 1

U2
11

F ii(∇iU11)
2 + 1

U11
F ij,kl∇1Uij∇1Ukl.

Let

φ = δ|∇u|2
2

+ bη

where b, δ are undetermined constants, 0 < δ < 1 ≤ b, and η is a C2 function which may depend 
on u but not on its derivatives. We have

∇iφ = δ∇j u∇ij u + b∇iη

= δ∇j u
(
Uij − Aij

) + b∇iη (6.8)

and

∇iiφ = δ(∇ij u)2 + δ∇j u∇iij u + b∇iiη

≥ δ

2
U2

ii − Cδ + δ∇j u∇iij u + b∇iiη. (6.9)

By (6.8),

(∇iφ)2 ≤ Cδ2(1 + U2
ii

) + Cb2 ≤ Cδ2U2
ii + Cb2. (6.10)

Using (3.3), (6.8) and the equality in (5.6), we have

F ii∇iij u∇j u ≥ F ii∇j u
(∇jUii − ∇jA

ii
) − C|∇u|2

∑
F ii

≥ ψpk
∇jku∇j u + β ′

ε(u − h)∇j u∇j (u − h) − C
∑

F ii

− C|∇u|2
(∑

F ii + 1
)

− F iiAii
pk

∇j u∇jku

≥ (
ψpk

− F iiAii
pk

)∇jku∇j u − C
(∑

F ii + 1
)

− Cβ ′
ε(u − h). (6.11)

Therefore, we see
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Lφ ≥ bLη + δ

2
F iiU2

ii − Cδβ ′
ε(u − h) − C

∑
F ii − C. (6.12)

Now we estimate E following [9] (see [23] also) by using an inequality shown by Andrews [1]
and Gerhardt [7]. For fixed 0 < s ≤ 1/3, let

J = {i : Uii ≤ −sU11}, K = {i : Uii > −sU11}.

We have (see [9])

−F ij,kl∇1Uij∇1Ukl ≥
∑
i �=j

F ii − Fjj

Ujj − Uii

(∇1Uij )
2

≥ 2
∑
i≥2

F ii − F 11

U11 − Uii

(∇1Ui1)
2

≥ 2

(1 + s)U11

∑
i∈K

(
F ii − F 11)(∇1Ui1)

2

≥ 2(1 − s)

(1 + s)U11

∑
i∈K

(
F ii − F 11)((∇iU11)

2 − CU2
11/s

)
. (6.13)

By (6.13), (6.10) and (6.1),

E ≤ 1

U2
11

∑
i∈J

F ii(∇iU11)
2 + C

∑
i∈K

F ii + CF 11

U2
11

∑
i /∈J

(∇iU11)
2

≤
∑
i∈J

F ii(∇iφ)2 + C
∑

F ii + CF 11
∑

(∇iφ)2

≤ Cb2
∑
i∈J

F ii + Cδ2
∑

F iiU2
ii + C

∑
F ii + C

(
δ2U2

11 + b2)F 11. (6.14)

Therefore, by (6.7), (6.12) and (6.14), we derive

bLη ≤
(

Cδ2 − δ

2
+ C

U11

)
F iiU2

ii + Cb2
∑
i∈J

F ii + C
(∑

F ii + 1
)

+ Cb2F 11 +
(

C

U11
+ Cδ − 1

)
β ′

ε(u − h). (6.15)

By doing a minimization over δ, we can guarantee that

max

{
Cδ2 − δ

2
,Cδ − 1

}

is negative. We choose this δ and then let
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c1 := −1

2
max

{
Cδ2 − δ

2
,Cδ − 1

}

so that c1 > 0. Then we may assume

max

{
Cδ2 − δ

2
+ C

U11
,

C

U11
+ Cδ − 1

}
≤ −c1

for otherwise we have U11 ≤ C
c1

and we are done.
Now let η = u − u, by Lemma 5.4, we have, when U11 ≥ R,

(bθ − C)
(

1 +
∑

F ii
)

≤ −c1F
iiU2

ii + Cb2F 11 + Cb2
∑
i∈J

F ii

+ bβε(u − h) − c1β
′
ε(u − h).

Choosing b sufficiently large such that bθ − C > 0, and we then have

0 ≤ −c1F
iiU2

ii + Cb2F 11 + Cb2
∑
i∈J

F ii

+ bβε(u − h) − c1β
′
ε(u − h). (6.16)

By (5.12), we have

bβε(u − h) − c1β
′
ε(u − h) = (u − h)2

ε

(
b(u − h) − 3c1

) ≤ 0 (6.17)

provided ε ≤ 1
c0

( 3c1
b

)3. It follows from (6.16) and (6.17) that

−c1F
iiU2

ii + Cb2
∑
i∈J

F ii + Cb2F 11 ≥ 0

when ε is small. Note that |Uii | ≥ sU11 for i ∈ J . It follows that

(
Cb2 − c1s

2U2
11

)∑
i∈J

F ii + (
Cb2 − c1U

2
11

)
F 11 ≥ 0.

This implies a bound U11(x0) ≤ Cb2

c1s
2 or U11(x0) ≤ Cb2

c1
.

7. Existence of smooth solution to (3.4)

In this section, we prove the existence of smooth solution to (3.4) by using the method of 
continuity and a degree theory argument based on the estimates we have established. The proof 
is standard so we only provide a sketch here. For more details we refer the readers to [3] and [8]. 
First we note that by the Evans–Krylov theory (see [14] for example) and Schauder theory we 
can get higher estimates of uε which may depend on ε. For example, we can obtain



714 G. Bao et al. / J. Differential Equations 258 (2015) 696–716
|uε|C5,α(M̄) ≤ C = C(ε), (7.1)

where 0 < α < 1.

Case 1. A = A(x, p), ψ = ψ(x, p).

For each fixed t ∈ [0, 1], consider the Dirichlet problem

f
(
λ(U)

) = tψ(x,∇u) + (1 − t)f
(
λ(U)

) + βε(u − h) in M,

u = ϕ on ∂M, (7.2)

where U = ∇2u + A(x, ∇u) and U = ∇2u + A(x, ∇u). Note that u is a subsolution to (7.2). 
Similar to (7.1), any admissible solution ut

ε ∈ C∞(M̄) satisfies the a priori estimates

|ut
ε|C5,α(M̄) ≤ C = C(ε)

since ut
ε ≥ u by the maximum principle. Obviously, u is the unique solution to (7.2) when t = 0. 

By the method of continuity, for each t ∈ [0, 1], there exists a unique admissible solution to (7.2)
in C∞(M̄).

Case 2. The general case: A = A(x, z, p), ψ = ψ(x, z, p).

For R > 0, let

QR = {
v ∈ C5,α(M̄) : |v|C5,α(M̄) < R, v > 0 in M,v|∂M = 0 and ∇νv > 0 on ∂M

}
,

where α ∈ (0, 1), and ν is the unit interior normal to ∂M . For t ∈ [0, 1] and fixed v ∈ QR , 
consider the Dirichlet problem

f
(
λ
(∇2u + At(x,∇u)

)) = ψt(x,∇u) in M,

u = ϕ on ∂M, (7.3)

where

At(x,∇u) = tA(x,u + v,∇u) + (1 − t)A(x,u,∇u)

and

ψt(x,∇u) = tψ(x,u + v,∇u) + 1 − t

2
f

(
λ(U)

) + βε(u − h).

We see that u is a subsolution of (7.3) by (2.10) and according to Case 1, there exists a unique 
solution ut ∈ C5,α(M̄) satisfying ut ≥ u in M to (7.3) for each t ∈ [0, 1].

Consider the map T tv = ut − u. We see that

∣∣ut
∣∣

5,α ¯ ≤ C = C(R),

C (M)
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and

ut > u in M, ∇νu
t > ∇νu on ∂M

by the maximum principle and the Hopf lemma.
Let v ∈QR be an arbitrary solution to T tv = v which means that u + v is the unique solution 

to (7.3) and λ[∇2(u + v) + At(x, ∇(u + v))] ∈ Γ .
We claim that u + v is admissible in M . Indeed, for any x ∈ M , we may assume that 

A(x,u + v, ∇(u + v)) − A(x,u, ∇(u + v)) is diagonal at x by choosing a smooth local frame 
e1, . . . , en about x. We can derive from (2.10) that Aii(x,u+v, ∇(u+v)) ≥ Aii(x,u, ∇(u+v))

for each i = 1, . . . , n since v > 0 in M . It follows that, at x,

{∇ij (u + v) + Aij
(
x,u + v,∇(u + v)

)}
− {∇ij (u + v) + (

At
)ij (

x,∇(u + v)
)}

= (1 − t)
{
Aij

(
x,u + v,∇(u + v)

) − Aij
(
x,u,∇(u + v)

)} ≥ 0,

where (At )ij (x, ∇(u + v)) = At(x, ∇(u + v))(ei, ej ) (see (2.7)). Therefore, ∇2(u + v) +
A(x,u + v, ∇(u + v)) ≥ ∇2(u + v) + At(x, ∇(u + v)) and u + v is admissible in M .

By Remark 4.2 and the arguments in Section 4, there exists a positive constant C independent 
of R such that

|u + v|C1(M̄) ≤ C.

Note that the constants in the second derivative estimates depend only on |u+ v|C1(M̄) and other 
known data. We then obtain a positive constant C0 independent of R such that

|u + v|C2(M̄) ≤ C0

and thus |v|C5,α(M̄) ≤ C1 independent of R. It follows that the equation T tv − v = 0 admits no 
solution on the boundary of QR when R is sufficiently large.

Thus the degree

deg
(
I − T t ,QR,0

) = γ (7.4)

is well defined and independent of t for R sufficiently large. When t = 0 there exists a unique 
function v0 = u0 − u satisfying v0 − T 0v0 = 0 which is a regular point of I − T 0. Consequently 
γ = ±1, and T tv − v = 0 has a solution vt ∈ QR for all t ∈ [0, 1]. The function u1 = u + v1 is 
then a solution of (3.4). Then we obtain a smooth solution uε to (3.4). Furthermore, (3.5) holds.

Thus, there exist a subsequence uεk
and a function u ∈ C1,1(M̄) such that

uεk
→ u in C1,α(M̄), ∀α ∈ (0,1), as εk → 0.

Similar to [24], we can see that u ≤ u ≤ h and u is a (viscosity) solution of (1.1) and (1.2). 
Furthermore, u ∈ C3,α(E) for any α ∈ (0, 1), by the Evans–Krylov theory and Schauder theory. 
We then complete the proof of Theorem 2.2.
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