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Abstract

This paper is concerned with blow-up solutions for a complex valued semilinear heat equation. Nonsi-
multaneous blow-up solutions predicted in our previous work are constructed by a fixed point argument.
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1. Introduction

We study blow-up solutions of a one dimensional complex-valued semilinear heat equation.

It = Txx +12, (1)

where z(x,t) is a complex valued function and x € R. This equation is a special case of
Constantin—Lax—Majda equation with a viscosity term, which is a one dimensional model for
the 3D Navier—Stokes equations (see [3,9-11,4]). If we write z =a +ib (a, b € R), (1) is rewrit-
ten as a parabolic system.

a,:axx—i—az—bz, by = by +2ab.
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When z is real-valued (i.e. b = 0), this system is reduced to a single parabolic equation
a; = axx 4+ a?. For such a single case, blow-up problems have been extensively studied by many
authors. In this paper, we focus on blow-up solutions of (1) for the case where z is not real-valued.
It is known that this system possesses finite time blow-up solutions (see [4,8]). Particularly
Nouaili-Zaag [8] show the existence of simultaneous blow-up solutions of (1). Following their
work, the author [6] extends their results and discuss the possibilities of nonsimultaneous blow-
up.

Let z(x,t) be a blow-up solution of (1) and £ € R be its blow-up point. We introduce the
self-similar transformation.

U@y,s)=T -0z +e 2y,1), 1=T—e". 2)
This function U satisfies
U =AU —-U+U? yeR, s>—logT,

where AU = Uy, — 5U,. We define L2(R) = {f € L{, (R); [ f1I3 = (f. f), < o0}, where the
inner product of L%(R) is given by (fi1, f2)p = ffooo fi (y)fz(y)e_mz/“dy. The operator A =
d? y d

L2 T 2dy is self-adjoint in L%(R). We denote by H, the nth eigenfunction of —AH = AH

in L%(R). Its eigenvalue is given by 7. We now recall our previous work.

Theorem 1.1 (see Theorem 1.4 [6]). Let z(x,t) be a blow-up solution of (1) and & € R be its
blow-up point. Define U (y, s) as (2) and put U = u + iv. If two conditions:

(AD) OsupT(T —Dllz®)llec <00 (Typel),
<t<

(A2) lim [lu(s)]l, =0
§—>00

are satisfied, one of the following cases occurs.

1) u=1—cos "Hy+ O (s 2logs in L2(R), _2)
m—2)s m—2)s m =
v= czs*me*( 7 H,+ O (s*(’"ﬂ)e*( 7 logs> in L%(R),
u=1-cie” Vi Hy +0(e550) inL2m),
(C2) (m=2)s (m—1D)s (m>2k, k>2)
v=Cpe 2 Hm+0<e_ 2 ) in L%(R),

where ¢y = @, c1 >0,c#0.
Theorem 1.2 (see Theorem 1.7 [6]). If (C1) with m > 4 or (C2) with m > 4k in Theorem 1.1
occurs, b is bounded for (x,t) € (§ —€,& +¢€) x (0, T) for some € > 0.

The case (C1) with m = 2 in Theorem 1.1 corresponds to blow-up solutions constructed in [8].
A goal of this paper is to construct all blow-up solutions described in Theorem 1.1, which proves
the existence of nonsimultaneous blow-up solutions of (1) from Theorem 1.2.
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Theorem 1.3. All blow-up solutions described in Theorem 1.1 exist.
2. Preliminary

Let z(x, t) be a blow-up solution of (1) and & € R be its blow-up set. Without loss of general-
ity, we can assume & = 0. Furthermore define U (y, s) as (2). It satisfies

U =AU —-U+U? yeR, s>si, (3)

where s; = —log T and AU = Uy, — 3U,. Put p(y) = ¢™>"/* and L2(R) = {f € L?

loc R);
I £1IZ = (f> f)p < 00}, where the inner product of L2 (R) is defined by

(f1. f2)p = / F1) 20 e(y)dy.

The eigenfunction H,, and the eigenvalue A, of —AH = _H in L%(R) are given by

n
Hﬂ(y):Cl’lhn(%)v )\‘IZ:E (n:()71129"')s

where £, is the Hermite polynomial given by

2 d" 2
— (1LY -y
() = (= 1)"e (dy”e )

and C, is the normalization constant such that ||H,||, = 1. The functional space L%(R) is
spanned by eigenfunctions {H,},>0. Without loss of generality, we can assume that the coef-
ficient of y" in H, (y) is positive. Here we recall the following inequality (see (6) [6] p. 4218).

o0

/ 2 2ody <c (1113 +1412). “)

—00
3. Construction of blow-up solutions

The proof of Theorem 1.3 is based on ideas in [1], which are developed in [2,7] for a single
case. Following [8], we apply this method to (1). To construct all blow-up solutions described in
Theorem 1.1, we introduce new functional spaces (see Definition 3.1, Definition 3.2) and provide
corresponding a priori estimates. By the use of comparison arguments (see Lemma 3.3) and the
inequality (4), we can provide simpler and more elementary proof than that of [8]. The proof in
this section is also valid for a single case.
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3.1. Strategy of the proof

Our proof uses the construction method in [1] (see also [2,7,8]). For simplicity, we consider
the case (C1). Let

_ _ (m=2)s

f 1 R 5)
= 7, =C . 1 - A 9
14cos— 1 Hy § 2 (14 cos—1Hp)? "

Iz

where ¢p = 5~ and ¢; is a nonzero constant. These are global profile functions obtained in
Theorem 1.5 in [6]. A goal is to construct a solution U = u + iv of (3) satisfying

(m—2)s
lim slu(s) — fll, =0, lim s™e 2 [u(s) —gll, =0.
§—>00 §—>00

Since f =1 —cos "Hr + O(s™2) in L%(R) and g = cos e~ M2 H, 4+ O (s~
e~ (m=2s/2y in L%(R), this proves Theorem 1.3. To construct such solutions, we study the be-
havior of (p,q) = (u — f,v — g). Then p and q satisfy

ps=Ap+p+Ni, qgi=Ag+qg+ Ny, (6)

where N1 and N; are negligible terms. We expand p and g by the eigenfunctions {H,},>0 of
—AH =\H.

P& =) pi)H;, q)=Y qs)H;.

n=0 n=0

We here consider only po(s), pi(s), go(s), -+, gm—1(s). Since other components {p; (s)}iz2
and {g;(s)}>m are controlled by the spectrum properties of A (see Lemma 3.4 and Lemma 3.5)
and the maximum principle (see Lemma 3.3), it is enough to control those (m + 2) components.
Finally this (m 4 2) dimensional problem is solved by a fixed point argument (see Section 3.3).
3.2. A functional setting for the case (C1)

Let f, g be given by (5). It is known that those global profile functions f, g give better ap-
proximations than expansions in Theorem 1.1 (see Theorem 1.5 [6]). These satisfy

fi=Af —f+f2+A1, g =Ag—g+2fg+ A,
where A, Ay are
-2 —1 -2 2.—2,17/\2 -1 -3
Ar=cos2Hy (1+c0s™ Ha) =203 2(H)? (14005 Ha)
m 1\ 2 -2 —1 gy Hr/n
Azz—?g—6(COS H2) fg+2(cos H2>fg+4(cos H,) . fs.
m

Since H,, is the nth degree polynomial, it holds that
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(m—2)s
2

Al <es(1452), 1Aal <es™ DT (1 [y 4571y 2).

Furthermore we define p, g, pi, gi, p1 and g by

2 m
p:u—f:ZpiHi—f-PJ_, q:U—g:quHj"“U-'
i=0 Jj=0

For Q C R2, we define BC(2) = L®(2) N C ().

Definition 3.1. Let s > s; and V (s1, s2) be a subsetin BC(R x [s1, s2])2 whose elements consist
of functions (p, q) satisfying the following inequalities for s € (s1, 52).

3 3 3
s2(Ipol +1p1D . s*|p2l. s2lpLllp <1,

m

m—2)s

st g0l + -+ lgm-iD. laal. stllgLlly <s™™e™ 7

We remark that V (sq, s2) does not require any restrictions on L°°-norms of (p, ¢). This is
the difference between this definition and Definition 3.1 in [8]. We will see that L°°-norms of
(p, q) are automatically controlled as far as the solution belongs to V (s, s2) (see Lemma 3.3).
This simplifies the proof. If we can find a solution in V(s1,s2) with sp = oo, this gives the
desired blow-up solution which behaves like (C1) in Theorem 1.1. To construct such solutions,
we consider the following form of initial data.

d()H()-I—dlS_lHl
u|s:s1 :f|s:sl + <—1 ,

14572 H, -
Vloms, = 8ls=s, b0H0+blsf1H1 +-~-+bm71sf<m71)Hm,1
T sV Hy 1+ 572" Hop ’

where d = (dy, dy) € R2and b = (bo, b1, -+ ,dp—1) € R™ are parameters.
3.3. Proof of Theorem 1.3 for the case (C1)

For given (d, b) € R2 x R™, we denote by U = u + iv a solutions of (3) with initial data (7).
Let

p=u—f g=v—g.

From this definition, p and ¢ depend on (d, b) € R? x R™. We denote by (d, b) € D(s1, 52)
if (p,q) € V(s1,s2). Therefore it is sufficient to prove the existence of parameters (d, b) €
D(s1, s2) with so = co. To find such parameters, we apply a fixed point argument. From
Lemma 3.1, we find that D(s1, s1) is an open star-shaped set with respect to the origin. Further-
more since (d, b) = (0,0) € D(s1, 51), it is clear that D(s1, s2) is not empty if s is sufficiently
close to s1. To derive a contradiction, we assume that D(sy, so) = @ for some s» > s;. Then
there exists s3 € (s1, s2] such that D(sy, ) # @ for t € [s1,s3) and D(s1,t) =@ for T > s3.
In this situation, for any (d, b) € D(sy, s1), there exists T € [s1, s3] such that (p(7),¢q(7)) €
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—-3/2 —m—}Te—(nz—z)r/z

oV (s1, 1), namely |p;i(t)| =7 for some i € {0, 1} or |g;(T)| =T for some
j €1{0,---,m — 1}. Other possibilities are excluded from Lemmas 3.4-3.5. We now define a
mapping P : D(s,s1) — 0([—1, 11* x [—1, 1]™) by

P@.b)=(r2d(), NS P b@).

From Lemma 3.1 and Lemma 3.6, we find that this mapping P is continuous on D(sy, s1).
However since D(s1,s1) is a star-shaped set, it is impossible. Therefore we conclude that
D(s1, s2) # 0 for any s» > s1. As a consequence, we can choose (d,, b,) € R2 x R™ such that
(dy, by) € D(s1, s2) with so = 51 +n. Let U, = u, +iv, be a corresponding solution of (3). Since
pn =1u, — f and g, = v, — g satisfy estimates in Definition 3.1 for s € (s1, 52), by taking a sub-
sequence, we obtain U = lim,,_, o, U,, which is the desired solution. This proves Theorem 1.3
for the case (C1).

3.4. A priori estimates for the case (C1)

In this subsection, we use the same notations as in Section 3.3. For given (d, b) € R2 x R™,
we denote by U = u + iv a solutions of (3) with initial data (7) andput p=u — f,g=v — g.
However (u, v) and (p, g) depend on (d, b) € R2 x R™, we do not write their dependence for
simplicity.

Lemma 3.1. It holds that
(Pls=s;» H)p = (1 +o()disy" (=0, 1),
|(Pls=s;s H2)pl + 1P 1 ls=s, o < es72(1dol + 1di 157,
; (m—2)s m-1 .
@hmsr HDo =bjsy 40 (s7e™ 2 ) w0 (57" P lbjls | G=0.m =1,
j=0

—1
(m—2)s n

—3m — -2 —j
1(@ls=s1- Hu)pl + 1gLls=s, Il < cs77"e™ 2 +esy™ Y bjls; .
j=0

Proof. We note from (7) that

doHoy +dlsl_lH1

Pls=s; =
= 1—|—S172H2
—2m —(m—1)
gl _ S Hyp, ¢l +b0H0+"'+bm7151 Hy—1
= 1+ sl—Zm Hop = 1+ S1—2m Hyp '

Since (H,,, Hy,) =0ifn1 #nz and 1 —i—sl_z’l Hy, > % on R for any fixed n € N, we easily obtain
conclusion. O

The following lemma follows from the definition of V (s, s2) and Lemma 3.1. We skip the
proof.

Please cite this article in press as: J. Harada, Nonsimultaneous blowup for a complex valued semilinear heat equation,
J. Differential Equations (2017), http://dx.doi.org/10.1016/j.jde.2017.05.024




YJDEQ:8851

J. Harada / J. Differential Equations eee (eeee) eee—eee 7

Lemma 3.2. Let (p, q) € V(s1, s1). Then it holds that

3 _ 1_; (m—2)s
i) <25, 27 G=0.1), byl <2s; "D

(G=0,---m—1).
Lemma 3.3. Let (p, q) € V(s1, 52). Then it holds that for s € (s1, 52) and y € R

(m—2)s

Ip)lloo <2, gy, )l <ce” 2 (1+[y").

Proof. From the choice of initial data, we easily see that

C()S_le(l —|—S1—2H2 + doHyp +d1s1_1H1) — (doHo +d1S1_1H1))
(1+cos; ' H)(1+ 52 Hy)

1- uls:sl =

Since H,(y) is the n the polynomial H,(y) = an,y" + - - - + a0 with a,,, > 0 (see Section 2),
we get from Lemma 3.2 that for large y > 0

a
1 +S1_2H2 + doHo +d1sl_1H1 > 14 %sl_zyz — 2apo|do| — 2a11|d1|s1_1y

an _ -3 -3
>1+4+ 75‘1 2y2 —dagos, * —4airs; *y

an (y an\ -1\? —3 0%1 1
>—=\(=—4(—)s 7| +1—4ags; > =8 —)s; .
2 \s1 axn axn

Therefore there exists y; > 0 such that 1 — u|,—;, > 0 for y > y;. Furthermore since u =1 —

gs‘le(l +o0(1)) in LZ(R), it holds that u|,—y, <1 for s € (s1,s2). Since & = 1 becomes a
super-solution, a comparison argument shows u < 1 for y > yq, s € (s1, s2). By the same way, we
can show that u < 1 for y < —yy, s € (51, 52). Since || pll, < cs /4, the first estimate is derived.
Next we prove the second estimate. Let y; > y; be a point such that H,,(y) > 1 for y > y>. From
the definition of V (sq, s2), we find that v|,—,, < csMe=mM=Ds/2 for s € (s1, $2). Furthermore
from the definition of g and Lemma 3.2, we easily see that v|s—, < cs™Me~M=2s/2 [ for
y>y.Leto =e ""2/2H, Since [u| < 1 for |y| > yi, we find that vy — A+ v —2uv > 0 for
y > y». Therefore a comparison argument shows that v < e~ "=23/2_ for y > y,, s € (51, 52).
By the same way as the above, we obtain [v| < ce™"=25/2(1 4+ |y|™) for y € R, s € (s1,52). O

Next we derive a priori estimates of solutions in L%(]R).

Lemma 3.4. Let (p, q) € V(s1, 52). Then it holds that for s € (s1, 52)

_7
i

_3
lpLllp <es™3,  |pal <ecs™2.

Proof. Let (p,q) € V(s1,s2). We first estimate p . Multiplying p, =Ap+p —2(1 — f)p+
p?> — A —v? by p. and integrating over R, we see that
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2
1d
Ed—S”PL”%<_||VPL||%+||PL||%+C/|(1_f)|(§ |p,~H,-|2+pi)pdy
R i=0

2
+f (Z i + pi) pulpdy+ [+ )ipLlp dy.
R N=0 R

From Lemmas 3.1-3.3 and [A{] < es—2(1 + y?), we get from (4) that

2 2
1d 1 _ _ 1 _7
S—lplr < —<lpela+c (s D IpP+ D Ipil* ) +es™ < ——lpLll} +es 2
2ds 4 = = 4
Therefore it follows from LLemma 3.1 and Lemma 3.2 that

7
s8] _1 S s _ _7 _7
||P¢||,%<€ - IIPLIX:S.IIE,+CS 2<c<<—> e 26 )>s Thes™2<es 2.
S1

Next we provide estimates of p;. Since fR H23 pdy=cy ! (see p. 829 in [5]) and

/(1 — f)pHap dy — pacos ™ / Hipdy || <es™'(Upol + Ipil + IpLll,) +es ™2 pal,
R R

we get

1p2+ 25" pal <es™HUpol + Ip1l + 1pLllp) +es ™2 pal + 1(p?, Ho)pl + [(A1, Ho)
+|(v2, Hp)pl.

By the explicit form of H;, we find that (co Hy — ZCO(HZ’)Z, H,), = 0. This implies |(A1, H2)| <
¢s 3. Furthermore we easily see that |(p2, H),l < c(|po|2 + |p1 |2 + |p2|2) + |(pi, H>),| and

1

8

7 7
(3, Ho)pl < llpollp /pinp dy| <elpilya. (8)
R

The last inequality follows from Lemma 3.3. Therefore we get

21 _
8 <cs 2,

ol

1p2+2s ' py| < cs™3 +cs
which implies

51\? _3
P2l < () 1p2lsms | 4+es7,

(Sl

_3 3
From Lemma 3.1 and Lemma 3.2, we conclude |p2| < ¢s, 2524 cesT2 <es O
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Lemma 3.5. Let (p, q) € V(s1, 52). Then it holds that for s € (s1, 52)

1 1 . _(m=2)s
Igm |, 54”‘]J_||,0<§S "e 2 .

Proof. Multiplying g = Ag +q9 —2(1 — f)g +2pq +2pg — A> by g, and integrating over R,
we see that

1d -
Eanmnﬁ<—||VqL||f,+||qL||f,+c/|(1—f)| > laiHil* +41 | o dy
R j=0

m
+c/|p| Y laiHilP + 41 | o dy+ Qlpglly + 1820 lgLl -
R j=0

The term || pg|l, is estimated as (8).

1

8
7
/ngzp dy < /pzp dy /ngmp dy | <ellpla /g“’p dy
R R R R

0| —

By the same way as in the proof of the previous lemma, we get

ld m—é B m m
5$||ql||%,<—< > 2)||qu|i+cs 1Zqi+c||p||p2q§+c(||pg||%,+||Az||i)
j=0 j=0

m_ 3
< — 2 2 ”anz + Cs—2m—1e—(m—2)s.

From Lemma 3.1 and Lemma 3.2, it holds that

—(m—3Y(s—g¢ 1 —(m—)¢
lgolly <e =260 gy [ (15 + o572 e (728

< Ce—(m—%)(s—sl)sl—3me—(m—2)sl + CS—Zm—le—(m—Z)s

2m+1
“m —om—L _m_ N R i .| “om—1 —(m—
<ecs mg 2m e m=2)s [ > e 26 )+CS 2m le (m—=2)s
51
—m —2m—r _n— om—1 —(m—
<CS1 ms 2m Te (m 2)s+cs 2m le (m 2)s.

Next we estimate ¢,,. Since fR HzHrflp dy =m/cy (see proof of Lemma 3.4 in [6]), we get

) (m—12) _
qm+< 5 Fms 1>qm

m—1

<es™ | Y lgjl+ llgnll,
j=0

+es g2l + 1(pg. Hu)ol + 1Pl pllg Hinllp + 1 A2l -
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Since |(pq, Hn)pl < cllplioligllpy + 1(p1Lg1, Hy)pl, by the same way as (8), it holds that

L
8

5 _(m=2s 3
(pq. Ha)pl < s~ Fe= "2 4 cllgu i, lpL Il /piH,ipdy

R
B + s TR e T
Therefore we obtain
~ (m—2) . S _m=s
Qm+< 5 +ms >qm <cs Te” 2

From Lemma 3.1 and Lemma 3.2, we conclude

ST\ _(m=2G—sy) _m5 _(m=2s
|Qm| < (?) e 2 |qm|s:sl | +cs 4e 2

o =25 s (s
<cs12ms Me~™"72 4ecs MaeT 2.

The proof is completed. O

As a consequence of the above lemmas, we obtain the transverse property of solutions in
V(si, $2).

Lemma 3.6. Let (p, q) € V(s1,52). If | pi (s2)| = s2_3/2f0rs0mei € {0, 1}, there exists € > 0 such
—m—1
that | pi| > s73/% for s € (s2, 52+ €). Iflgj(s2)| =s, " Yo~ =) for some j € {0, -+ ,m — 1},

1
there exists € > 0 such that |q ;| > s 2= for s € (52, 52 + €).

Proof. Since p;=Ap+ p—2(1— f)p+ p> — A1 —v?, we get

d 3 i\ 3 ! 39 3 39
a(szpi)— 1—5 s2pi| <ces2pllp+es2(p”, Ha)pl + 52| A1l +52|(v7, Ha)pl

Therefore if p;(sy) =5, >~ for some i € {0, 1}, it holds that
d 3 i _3
a(“l’iﬂs:sz >1-— 3 7% t>0.

For the case p; (s2) = —s2_3/2 for some i € {0, 1}, by the same reason, we obtain j—s(szp,-) ls=s, <0.
Therefore the first part is proved. Since g; = Ag + g —2(1 — f)g +2pg + 2pg — A2, we see
that

3
<cs 4.

d 1 (m=2)s m j 1 (m=2)s
%(Sm-i-ze 2 CIj) _ (3 _ %) Sm+zequ

The second part follows from this estimate. O
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3.5. Proof of Theorem 1.3 for the case (C2)

Since the argument for the case (C1) can be directly extended to that for the case (C2), we
skip the proofs except for Lemma 3.10. The only difference between two cases is whether global
profile functions f, g include the polynomial decay s~ in their expression or not (see (5), (9)).
We first define global profile functions f, g by

_ (m=2)s
1 cre” 2 Hy

- 14+cre=*=Ds .’ §= (14 cre=*=Ds )2

f (m>2k, k>2), )

where c; > 0 and c; # 0. These satisfy
fi=Af—f+f+A1, g =Ag—g+2fg+ A,
where A1, Ay are given by
Ar==2(1+cie” D Hy) e * TV Hy, ),
_ —k=Dys 7 \ [ Hm B —k=Ds 17\ g2
Ay =4(cie H), fg—06(ce Hy ) f°g.
Hy,
We easily see that

A1l < ce” 26D 4y,

|As| < ce=®F5 =D (] g y2etm=2y | o=@kt G =3)s(q 4 ydktm=2)

We define p, g, pi, gi, p1 and g by

2k—1 m—1
P=u—f=ZpiHi+pzksz+m, C]Zv_gZZQjHj+CImHm+C]J_~
i=0 j=0

Definition 3.2. Let 5o > s; and V (s1, s2) be a subsetin BC(R x [sq, sz])2 whose elements consist
of functions (p, ¢g) satisfying the following inequalities for s € (s1, 52).

—(k—1 _ (m=2)s
e gl <em T

Ipll, <
Initial data is defined by

_ _ @by
doHo+dye™ VHy + - +dy_1e” &  Hy_,

Uls=s) = f|s=&1 +

1+ eks Hy, '
s _(m—l)sl
ol = 8ls=s boHo +bie” * Hi+ -+ bn_1e” T Hp-i
§=S51 1 +e—(m—2)s1 Hop, 1+ e Hy,,
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Lemma 3.7. It holds that
isy 2kl isy
(Pls=s;» Hi)p =die™ % + 0 (e"“ > Idile_7> (=0, ,2k—1),
2k—1 isy
(Pls=si» H2)pl + 1P Lls=sillp < ce ™1 Y " |dile™ 7,
i=0

m—1
is 3(m—2)s is
(Q|x=s1aHj)p=bj€_]Tl+0<e_ 2 1>+0 e_mSIZ|bj|e_]Tl (j=0,m—l),

3(m 72>] —ms, s
(@ls=s;» Hn)pl + l1gLls=s | < ce” +ce Zua e 7.

Lemma 3.8. Ler (p, g) € V(s1, s1). Then it holds that
i) <2e~%"1=0% G =0, 2k — 1), |bj| <2 "TDN (=0, m— 1),

Lemma 3.9. Let (p, q) € V(s1, s2). Then it holds that for s € (s1,s2) and y € R

_(m—
P oo <2, gy, )l <ce” 2 (1+[y").
Lemma 3.10. Let (p, q) € V(s1, s52). Then it holds that for s € (s1, 52)

Ipal + Ipoll, < ze=® D5,

Proof. Let (p,q) € V(s1,s2). We first estimate p, . Since p satisfies p; = Ap + p — 2(1 —
p+p*— A — 12 we get

1d
Sz lpl; < —||Vpu|2+||m||2+c/|1—f|(2|p,H|2+pl)pdy

=0

[(Z|P:H| +m) lpLlp dy+f(|A1|+v2)|pL|p dy.

R i=0

By the explicit form of f and |p| < 2, it holds that

1+y2k)p2
_ —(k=1)s ( 1
/'1 f|PJ_/0 dy <ce / / 1+Cl€7(k71)SH2kp dy

yl<s yl>s

2
2k—1
<esHemEDS ) p |12 4 cem DS / (p— ZpiHl) y*pdy

[yl>s
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< CSZkef(kfl)s”pL”,% _i_cef(kfl)s / y6k72p dy
[y|>s

2
§
< CSZke—(k—l)S ||PJ.||3; 4 CS6k_3€_(k_l)s€_T )

From Lemma 3.9, we easily see that fR v4,0 dy < ce~2m=2s Therefore since (p,q) € V(s1,52)
and m > 2k, it holds that

1d 2 3 2 —3(k—1)
Eal|1&|lp<—<k—z> IpLl? +ce .
As a consequence, from Lemma 3.7 and Lemma 3.8, we obtain

k=3 (s— I
IpoLl? < e 26=DE=0) b |12 4 cem kD20 s

_ Co(k— C(k—3Ys —o(k3
< ce kst p=2k=Ds 4 (= (k=3)s51 ,=2(k=3)s

Next we estimate py;. Since ps = Ap+ p +2(—1+ f)p+ p?> — A1 —v? and m > 2k, we get

|pak + (k — D) pog| < ce” €D 1p||, + /pZHka dy|+cllAill, + /vZHka dy|.
R R

Here we note that

1
i

3
/PZHZkP dy| < /pzp dy /Pszsz dy | <clpl}.
R R R

E )

Therefore since m > 2k, we obtain

3(k=1Ds

|p2k + (k= Doyl <ce” 2

Integrating this inequality, we conclude

1
| pak| <e”®DED oy, |+ cem2 (DS m (k=D

1
<Ce—ks1e—(k—1)x —i—ce_f(k_])s'e_(k_l)s. O

Lemma 3.11. Let (p, q) € V (s1, 52). Then it holds that for s € (s1, 52)

1 _m=2s

lgml + llgLlly, < 5e= 2

Lemma 3.12. Let (p, q) € V(s1, 52). If | pi(s2)| = e~ *=D%2 for some i € {0--- , 2k — 1}, there
exists € > 0 such that |p;| > e~ %=V for s € (s2,50 + €). If lgj(s2)| = e~ M=2%2/2 for some
J€{0,---,m — 1}, there exists € > 0 such that |q;| > e~ M=Ds/2 for 5 € (50, 57 + €).
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