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Abstract

In this paper, we are interested in providing lower estimations for the maximum number of limit cycles 
H(n) that planar piecewise linear differential systems with two zones separated by the curve y = xn can 
have, where n is a positive integer. For this, we perform a higher order Melnikov analysis for piecewise 
linear perturbations of the linear center. In particular, we obtain that H(2) ≥ 4, H(3) ≥ 8, H(n) ≥ 7, for 
n ≥ 4 even, and H(n) ≥ 9, for n ≥ 5 odd. This improves all the previous results for n ≥ 2. Our analysis is 
mainly based on some recent results about Chebyshev systems with positive accuracy and Melnikov Theory, 
which will be developed at any order for a class of nonsmooth differential systems with nonlinear switching 
manifold.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, the interest in nonsmooth differential systems has grown mainly due to the amount 
of engineering, physical, biological, and real processes problems that are naturally modeled by 
this class of differential systems (see, for instance, [3] and the references therein for piecewise 
linear differential models of real processes). Much of the questions on nonsmooth differential 
systems arise as extensions of classical and important results already established for smooth 
differential systems. Since these questions appear naturally in many applications, they are not 
merely mathematical or academic (see, for instance, [7,34,38,39]).

Motivated by the second part of the 16th Hilbert’s Problem, there exists an increasing interest 
on establishing a uniform upper bound for the maximum number of limit cycles that planar 
piecewise linear differential systems can have. In the research literature, one can find many papers 
addressing this problem assuming that the switching curve is a straight line (see, for instance, 
[1,5,8,10–12,16–18,22,21,26,27,29,32], and references therein). In this case, no examples with 
more than 3 limit cycles are known so far. In [4,35], it is shown that such an upper bound is strictly 
related to the nonlinearity of the switching curve. In this direction, piecewise linear system with 
two zones separated by a curve y = xn, with n being a positive integer, has been addressed (see, 
for instance, [2,23,33]).

Accordingly, given a positive integer n, let H(n) denote the maximum number of limit cycles 
that planar piecewise linear systems with two zones separated by the curve y = xn can have. In 
this paper, we are interested in determining lower bounds for H(n). For that, we consider the 
following planar piecewise linear vector field

Z(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(x,y) =

⎛⎜⎜⎜⎜⎝
y +

k∑
i=1

εiP +
i (x, y)

−x +
k∑

i=1

εiQ+
i (x, y)

⎞⎟⎟⎟⎟⎠ , y − xn > 0,

Y (x, y) =

⎛⎜⎜⎜⎜⎝
y +

k∑
i=1

εiP −
i (x, y)

−x +
k∑

i=1

εiQ−
i (x, y)

⎞⎟⎟⎟⎟⎠ , y − xn < 0,

(1)

where n is a positive integer, and P ±
i and Q±

i are affine functions provided by

P +
i (x, y) = a0i + a1ix + a2iy,

P −
i (x, y) = α0i + α1ix + α2iy,

Q+
i (x, y) = b0i + b1ix + b2iy,

Q−
i (x, y) = β0i + β1ix + β2iy,

with aji, αji, bji, βji ∈ R, for i ∈ {1, . . . , k} and j ∈ {0, 1, 2}. The switching curve of system (1)
is provided by � = {(x, y) ∈ R2 : y = xn}. Here, we assume the Filippov’s convention [9] for 
trajectories of (1).
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Usually, periodic solutions of differential systems are studied by means of Poincaré maps. 
Since system (1) is a k-order perturbation of the linear center (x′, y′) = (y, −x), it is easy to 
see that, for |ε| sufficiently small, a Poincaré Map πε can be defined in the section S = {(x, y) :
x > 0, y = 0}, which is parameterized by x. Moreover, for |ε| sufficiently small, (x; ε) �→ πε(x)

is smooth (because it is composition of smooth functions), thus we can compute the Taylor 
expansion of πε around ε = 0 as

πε(x) = x +
k∑

i=1

εiMi(x) +O(εk+1).

For each i ∈ {1, . . . , k}, the function Mi is called Melnikov function of order i. Denote M0 = 0
and let M�, for some � ∈ {1, 2, . . . , k}, be the first non-vanishing Melnikov function, that is 
Mi = 0 for i ∈ {0, . . . , � − 1} and M� �= 0. Since periodic solutions of (1) are in one-to-one 
correspondence with fixed points of the Poincaré map πε, one can easily get as a simple conse-
quence of the Implicity Function Theorem that simple zeros of M� correspond to limit cycles of 
(1). Accordingly, we denote by m�(n) the maximum number of simple zeros that the first non-
vanishing Melnikov function M� can have for any choice of parameters aji, αji, bji, βji ∈ R, 
for i ∈ {1, . . . , �} and j ∈ {0, 1, 2}.

Under certain conditions, upper bounds for the maximum number of limit cycles of (1), bifur-
cating from the period annulus of (1)

∣∣
ε=0, can also be given based on m�(n) (see, for instance, 

[30, Theorems 14 and 15] and [15, Theorems 3.1, 3.2, and 3.3]). However, in general, the val-
ues m�(n), for � ∈ {1, . . . , k}, provide lower bounds for H(n), indeed H(n) ≥ m�(n) for every 
� ∈ {1, . . . , k}. In [5], a higher order analysis of system (1) was performed assuming a straight 
line as the switching curve, that is n = 1. It was shown that m1(1) = m2(1) = 1, m3(1) = 2, and 
m�(1) = 3 for � ∈ {4, . . . , 7}. The nonlinear case of switching curves was firstly addressed in [23]
by means of Averaging Theory. In particular, it was shown that m1(2) = 3. It is worth mentioning 
that the Averaging Theory is a classical method to attack this problem (see [6,25,37]), which has 
been recently developed for nonsmooth differential systems in [19,23,24,28] (see, also, [13,14]). 
However, in these previous studies some strong conditions are assumed on the switching set 
when dealing with higher order perturbations. Indeed, in [23] it was observed that the first order 
averaging function can always be used for determining the number of zeros of the first Melnikov 
function, however higher order averaged functions do not always control the bifurcation of iso-
lated periodic solutions for nonsmooth differential systems. Thus, in [2] the Melnikov functions 
up to order 2 was obtained for a wider class of nonsmooth differential systems with nonlinear 
switching curve. In addition, it was shown that m1(3) = 3 and m2(3) = 7. The known values in 
research literature for m�(n), for � ∈ {1, . . . , 6}, are summarized in Table 1. In particular, these 
previous studies provided H(1) ≥ 3, H(2) ≥ 2, and H(3) ≥ 7.

Our first main result completes Table 1 by providing the values m�(n), for � ∈ {1, . . . , 6}
and n ∈ N . In particular, we obtain that H(2) ≥ 4, H(3) ≥ 8, H(n) ≥ 7, for n ≥ 4 even, and 
H(n) ≥ 9, for n ≥ 5 odd, which improves all the previous results for n ≥ 2. The contribution of 
Theorem A is summarized in Table 2.

Theorem A. Consider the planar piecewise linear differential system (1). For n ∈ N and � ∈
{1, . . . , 6}, we have the following values for m�(n):

(i) m1(1) = 1, m1(2) = 3, m1(n) = 3 for n ≥ 3 odd, and m1(n) = 4 for n ≥ 4 even;
3
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Table 1
Known values in the research literature. 
In particular, H(1) ≥ 3, H(2) ≥ 2, and 
H(3) ≥ 7.

Known results for m�(n)

Order �

1 2 3 4 ≤ � ≤ 6

D
eg

re
e

n 1 1 1 2 3
2 3 – – –
3 3 7 – –

n ≥ 3 – – – –

Table 2
Our main result competes Table 1. In particular, H(2) ≥ 4, 
H(3) ≥ 8, H(n) ≥ 7, for n ≥ 4 even, and H(n) ≥ 9, for n ≥ 5
odd.

Our contribution
Order k

1 2 3 4 5 6

D
eg

re
e

n 1 1 1 2 3 3 3
2 3 4 4 4 4 4
3 3 7 7 7 7 8 ≤ m6 ≤ 10

n ≥ 4 even 4 7 7 7 7 7
n ≥ 5 odd 3 7 7 7 7 9 ≤ m6 ≤ 14

(ii) m2(1) = 1, m2(2) = 4, m2(n) = 7 for n ≥ 3;
(iii) m3(1) = 2, m3(2) = 4, m3(n) = 7 for n ≥ 3;
(iv) for � ∈ {4, 5}, m�(1) = 3, m�(2) = 4, m�(n) = 7 for n ≥ 3;
(v) m6(1) = 3, m6(2) = 4, 8 ≤ m6(3) ≤ 10, m6(n) = 7 for n ≥ 4 even, and 9 ≤ m6(n) ≤ 14

for n ≥ 5 odd.

Consequently, H(2) ≥ 4, H(3) ≥ 8, H(n) ≥ 7, for n ≥ 4 even, and H(n) ≥ 9, for n ≥ 5 odd.

In order to prove Theorem A, we shall first compute the Melnikov functions up to order 6
for system (1). For that, Theorem B provides the higher order Melnikov functions for a class of 
nonsmooth differential systems with nonlinear switching manifold, which generalizes the results 
obtained in [2] at any order. Some recent results about Extended Chebyshev systems with positive 
accuracy [36] are also applied to obtain Theorem A.

This paper is structured as follows. In Section 2 we state our second main result, Theorem B, 
which develop the Melnikov theory at any order for a class of nonsmooth differential systems 
with nonlinear switching manifold. Theorem B is proven in the Appendix. In Section 3, we 
provide some families of Extended Chebyshev systems and Extended Chebyshev systems with 
accuracy 1, which are used in Sections 4 and 5, together with the Melnikov theory, to prove The-
orem A. Statement (i) is proven in Section 4 and statements (ii) − (iv) are proven in Section 5.

2. Melnikov functions

In this section, we establish the Melnikov functions at any order for a class of nonsmooth 
differential systems. Consider, an open subset D ⊂ Rd , S1 = R/T for some period T > 0, and 
4
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k a positive integer. Let θj : D → S1, j ∈ {1, . . . , N}, be Ck−1 functions such that θ0(x) ≡ 0 <
θ1(x) < · · · < θN(x) < T ≡ θN+1(x), for all x ∈ D. Under the assumptions above, we consider 
the following piecewise smooth differential system

ẋ =
k∑

i=1

εiFi(t, x) + εk+1R(t, x, ε), (2)

where

Fi(t, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F 0

i (t, x), 0 < t < θ1(x),

F 1
i (t, x), θ1(x) < t < θ2(x),

...

FN
i (t, x), θN(x) < t < T,

and

R(t, x, ε) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R0(t, x, ε), 0 < t < θ1(x),

R1(t, x, ε), θ1(x) < t < θ2(x),
...

RN(t, x, ε), θN(x) < t < T,

with Fj
i : S1 × D → Rd , Rj : S1 × D × (−ε0, ε0) → Rd , for i ∈ {1, . . . , k} and j ∈ {1, . . . , N}, 

being Ck functions and T -periodic in the variable t . In this case, the switching manifold is pro-
vided by � = {(θi(x), x); x ∈ D, i ∈ {0, 1, . . . , N}}. For the sake of simplicity, denote

Fj (t, x, ε) =
k∑

i=1

εiF
j
i (t, x) + εk+1Ri(t, x, ε), for j ∈ {0, . . . ,N}. (3)

It is worth mentioning that the differential system (2) is a particular form of the differential 
systems previously considered in [23], where first and second order averaging method for de-
tecting periodic solutions of a wider class of nonsmooth systems were developed. This particular 
class of systems seems to have first appeared in [13] and after in [2]. It is written in a standard 
form suitable for applying techniques from regular perturbation theory, and then it is very com-
mon in the research literature as well as some variations using characteristic function (see also 
[19,24]).

As the main result of this section, Theorem B provides sufficient conditions for T -periodic 
solutions x(t, ε) of system (2) to be given as simple zeros of the ith Melnikov function,

Mi(x) = 1

i!z
N
i (T , x),

where zj
(t, x) is defined recursively for i = 1, . . . , k and j = 0, . . . , N as follows:
i

5
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z0
1(t, x) =

t∫
0

F 0
1 (s, x)ds,

z
j

1(t, x) = z
j−1
1 (θj (x), x) +

t∫
θj (x)

F
j

1 (s, x)ds,

z0
i (t, x) = i!

t∫
0

⎛⎝F 0
i (s, x) +

i−1∑
l=1

∑
b∈Sl

1

b1!b2!2!b2 . . . bl !l!bl
∂Lb
x F 0

i−l(s, x)

l∏
m=1

(
z0
m(s, x)

)bm

⎞⎠ds,

z
j
i (t, x) = z

j−1
i (θj (x), x)

+i!
t∫

θj (x)

(
F

j
i (s, x)

+
i−1∑
l=1

∑
b∈Sl

1

b1!b2!2!b2 . . . bl !l!bl
∂Lb
x F

j
i−l(s, x)

l∏
m=1

(
z
j
m(s, x)

)bm
)

ds

+i!
i−1∑
p=1

1

p!
∂p

∂εp

(
δ
j
i−p

(
A

p
j (x, ε), x

)) ∣∣∣
ε=0

,

where δj
i (t, x) = 1

i!
(
z
j−1
i (t, x) − z

j
i (t, x)

)
and Ap

j (x, ε) =
p∑

q=0

εq

q! α
q
j (x) with

α
q
j (x) =

q∑
l=1

q!
l!

∑
u∈Sq,l

Dlθj (x)

(
l∏

r=1

w
j
ur

(x)

)
, for q = 1, . . . , k − 1, (4)

and

w
j
1(x) = z

j−1
1 (θj (x), x),

w
j
i (x) = 1

i!z
j−1
i (θj (x), x)

+
i−1∑
a=1

∑
b∈Sa

1

(i − a)!b1!b2!2!b2 . . . ba!a!ba
∂

Lb
t z

j−1
i−a (θj (x), x)

a∏
m=1

(
αm

j (x)
)bm

.

(5)

Here ∂Lb
x G(t, x) denotes the derivative of order Lb of a function G, with respect to the variable 

x, Sa is the set of all a-tuples of non-negative integers (b1, b2, . . . , ba) satisfying b1 + 2b2 +
· · · + aba = a, Lb = b1 + b2 + · · · + ba , and Sq,a is the set of all a-tuples of positives integers 
(b1, b2, . . . , ba) satisfying b1 + b2 + · · · + ba = q . Considering the notations, we are able to 
enounce our main result on Melnikov functions.

Theorem B. Consider the nonsmooth differential system (2) and denote M0 = 0. Assume 
that, for some � ∈ {1, . . . , k}, Mi = 0, for i = 1, . . . , � − 1, and M� �= 0. If M�(a

∗) = 0 and 
det(DM�(a

∗)) �= 0, for some a∗ ∈ D, then, for |ε| �= 0 sufficiently small, there exists a unique 
T -periodic solution x(t, ε) of system (2) satisfying x(0, ε) → a∗ as ε → 0.
6
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Theorem B generalizes the results of [2] and it is proven in the Appendix. Indeed, applying 
the recurrence above for i = 1, 2 we get the expressions for M1 and M2 obtained in [2], namely

M1(x) =
T∫

0

F1(s, x)ds,

M2(x) =
T∫

0

⎡⎣DxF1(s, x)

s∫
0

F1(t, x)dt + F2(s, x)

⎤⎦ds

+
N∑

j=1

(
F

j−1
1

(
θj (x), x

)− F
j

1

(
θj (x), x

))
α1

j (x).

(6)

3. Chebyshev systems

Let F = [u0, . . . , un] be an ordered set of smooth functions defined on the closed interval 
[a, b] and let Span(F) be the set of all linear combinations of elements of F . The maximum 
number of zeros, counting multiplicity, that any nontrivial function in Span(F) can have will 
be denoted by Z(F). A classical tool to study Z(F) is the Theory of Chebyshev systems. The 
set F is said to be an Extended Chebyshev system or just ET-system on [a, b] if Z(F) ≤ n (see 
[20]). If the functions in F are linearly independent, it is always possible to find an element in 
Span(F) with n zeros (see [31]), in this case Z(F) = n. When Z(F) = n + k, the set F is called 
an ET-system with accuracy k on [a, b], (see [36]).

Recall that the Wronskian of the ordered set [u0, . . . , us], of s + 1 functions, is defined as

W(x) = W(u0, . . . , us)(x) = det(M(u0, . . . , us)(x)),

where

M(u0, . . . , us)(x) =

⎛⎜⎜⎜⎝
u0(x) . . . us(x)

u′
0(x) . . . u′

s(x)
...

...

u
(s)
0 (x) u

(s)
s (x)

⎞⎟⎟⎟⎠ .

We say that F is an Extended Complete Chebyshev system or an ECT-system on a closed interval 
[a, b] if and only if for any k, 0 ≤ k ≤ n, [u0, u1, . . . , uk] is an ET-system. In order to prove that 
F is an ECT-system on [a, b] it is sufficient and necessary to show that W(u0, u1, . . . , uk)(t) �= 0
in [a, b] for 0 ≤ k ≤ n, see [20].

3.1. Preliminary results

In this section, we introduce some results regarding extended Chebyshev system.
A first classical result is the following:
7
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Theorem 1 ([20]). Let F = [u0, u1, . . . , un] be an ECT-system on a closed interval [a, b]. Then, 
the number of isolated zeros for every element of Span(F) does not exceed n. Moreover, for each 
configuration of m ≤ n zeros, taking into account their multiplicity, there exists F ∈ Span(F)

with this configuration of zeros.

Next results, proven in [36], extend the above theorem when some of the Wronskians vanish.

Theorem 2 ([36]). Let F = [u0, u1, . . . un] be an ordered set of functions on [a, b]. Assume that 
all the Wronskians Wi(x), i ∈ {0, . . . , n − 1}, are nonvanishing except Wn(x), which has exactly 
one zero on (a, b) and this zero is simple. Then, the number of isolated zeros for every element of 
Span(F) does not exceed n + 1. Moreover, for any configuration of m ≤ n + 1 zeros there exists 
F ∈ Span(F) realizing it.

Theorem 3 ([36]). Let F = [u0, u1, . . . , un] be an ordered set of analytic functions in [a, b]. 
Assume that all the νi zeros of the Wronskian Wi are simple for i ∈ {0, . . . , n}. Then the number 
of isolated zeros for every element of Span(F) does not exceed

n + νn + νn−1 + 2 (νn−2 + · · · + ν0) + μn−1 + · · · + μ3 (7)

where μi = min(2νi, νi−3 + . . . + ν0), for i ∈ {3, . . . , n − 1}.

Remark 4. In Theorem 3, we are assuming that all the zeros of the Wronskians Wi , i ∈
{0, . . . , n}, are simple. This condition can be dropped as follows:

Assume that, for each i ∈ {0, . . . , n}, the Wronskian Wi has νi zeros counting multiplicity. 
Then, the number of simple zeros for every element of Span(F) does not exceed (7).

Indeed, if there exists an element f = ∑n
i=0 aiui ∈ Span(F) for which the number of sim-

ple zeros exceeds (7), then by perturbing the functions ui , let us say uε
i , for i ∈ {0, . . . , n}, the 

function fε = ∑n
i=0 aiu

ε
i would still exceed (7), because we are assuming that the zeros of f are 

simple. In addition, such a perturbation can be chosen in such a way that each Wronskian Wε
i of 

ordered set of functions 
[
uε

0, u
ε
1, . . . , u

ε
i

]
, for i ∈ {0, . . . , n}, has less than or exactly νi zeros, all 

of them simple. This contradicts Theorem 3.

3.2. New families of ET-systems with accuracy

In what follows, for k ∈ Z+ and λ ∈ R, we consider the functions uk
1, . . . , u

k
23, and uk,λ

24 de-
fined on (0, ∞) as

uk
1(x) = 1, uk

2(x) = x,

uk
3(x) = x2k−2, uk

4(x) = x2k,

uk
5(x) = x2k+1, uk

6(x) = x4k−2,

uk
7(x) = x4k, uk

8(x) = x4k+1,

uk
9(x) = x6k−2, uk

10(x) = x6k,

uk (x) = x6k+1, uk (x) = x(1 + x4k),
11 12

8
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uk
13(x) = x4k + x2, uk

14(x) = x + (2k + 1)x8k+1

uk
15(x) =

(
x4k + x2

)
tan−1

(
x2k−1

)
, uk

16(x) = (
x4k−2 + 1

) (
2kx4k−1 + x

)
,

uk
17(x) =

(
x4k−2 + 1

)(
2kx4k−1 + x

)
tan−1

(
x2k−1

)
, uk

18(x) = x1/k
(
(2k + 1)x2 + 1

)3
,

uk
19(x) = −x1/k

(
(2k + 1)x3 + x

)2
, uk

20(x) = −x
1
k
+3 ((2k + 1)x2 + 1

)2
,

uk
21(x) = x

3
2k

+1
(
(2k + 1)x2 + 1

)3
, uk

22(x) = x
1
k
+1 ((2k + 1)x2 + 1

)3
,

uk
23(x) =

(
x2 + 1

)
x

3
2k

(
(2k + 1)x2 + 1

)3
,

and

u
k,λ
24 (x) = x5λ3(2k + 1)3 + x2

(
3
(
8k2 + 6k + 1

)
λ2 + 1

)+ λx
(−4k2λ2 − 2k

(
λ2 − 3

)+ 3
)

+1 + (2k + 1)(λx3
(
(4k2 + 1)λ2 + k

(
4λ2 − 6

)+ 3
)+ x4

(
3λ2 + k

(
6λ2 + 2

))
).

We define on (0, ∞) the ordered set of functions

Fk
1 = [uk

1, u
k
12, u

k
4],

Fk
2 = [uk

13, u
k
15, u

k
5, u

k
2],

Fk
3 = [uk

1, u
k
4, u

k
9, u

k
16, u

k
17],

Fk
4 = [uk

4, u
k
9, u

k
6, u

k
3, u

k
16, u

k
17],

Fk
5 = [uk

1, u
k
4, u

k
7, u

k
8, u

k
10, u

k
5, u

k
11, u

k
14],

Fk
6 = [uk

1, u
k
4, u

k
9, u

k
6, u

k
3, u

k
16, u

k
17] and

Fk,λ
7 = [uk

18, u
k
19, u

k
20, u

k
21, u

k
22, u

k
23, u

k,λ
24 ].

Proposition 5. The sets of functions F1
2 , F1

3 , F2
4 , and Fk

5 , for k ≥ 1 are ECT-systems on [a, b], 
for any 0 < a < b.

Proof. It is enough to show that the Wronskians defined by F1
2 , F1

3 , F2
4 , and Fk

5 , k ≥ 1, do not 
vanish in (0, ∞), which, by definition, implies that all of these sets are ECT-systems.

The Wronskians of the family F1
2 are provided by

W0(x) = x2 + x4,

W1(x) = x2
(
x4 + x2

)
,

W2(x) = − 4x9

x4 + x2 ,

W3(x) = 32x9

(x2 + x4)2 ,

which, clearly, do not vanish in (0, ∞).
9
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The Wronskians of F1
3 are provided by

W0(x) = 1,

W1(x) = 2x,

W2(x) = 16x3,

W3(x) = 48x(1 − 3x2 + 10x4),

W4(x) = 1536x3(9 + 2x2)

(1 + x2)3 ,

which, clearly, do not vanish in (0, ∞).

The Wronskians of the family F2
4 are provided by

W0(x) = x4,

W1(x) = 6x13,

W2(x) = −48x17,

W3(x) = 3072x16,

W4(x) = 27648x13
(
924x12 − 25x6 + 15

)
,

W5(x) = 47775744x24
(
2464x18 + 42156x12 + 3975x6 + 3325

)(
x6 + 1

)4 ,

which, clearly, do not vanish in (0, ∞).

The Wronskians of Fk
5 are

W0(x) = 1,

W1(x) = 2kx2k−1,

W2(x) = 16k3x6k−3,

W3(x) = 16k3
(
8k2 + 6k + 1

)
x10k−5,

W4(x) = 768k6(2k − 1)
(
8k2 + 6k + 1

)
x16k−9,

W5(x) = −1536k7
(
1 − 4k2

)2 (
16k2 − 1

)
x18k−13,

W6(x) = −12288k9(2k + 1)3(4k − 1)(6k + 1)
(−8k2 + 2k + 1

)2
x24k−18,

W7(x) = −589824k12(2k + 1)3(4k − 1)(6k + 1)
(−8k2 + 2k + 1

)2
x24(k−1)(

48k3 − 44k2 + 12k − 1 + (2k + 1)2(4k + 1)(6k + 1)(8k + 1)x8k
)
.

It can easily be seen that, for k ∈Z+, the Wronskians do not vanish in (0, ∞).
This ends the proof of Proposition 5. �

Proposition 6. The sets of functions Fk
1 , for k ≥ 1, Fk

2 , for k ≥ 2, Fk
4 , for k > 2, and F2

6 are 
ET-system with accuracy 1 on [a, b], for any 0 < a < b.
10
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Proof. For each set Fk
1 , for k ≥ 1, and Fk

2 , Fk
4 , and Fk

6 , for k ≥ 2, we will show that all their 
Wronskians are nonvanishing except the last, which has exactly one simple zero in (0, ∞). Thus, 
from Theorem 2, we will have that all of these sets are ET-systems with accuracy 1.

The Wronskians of the family Fk
1 are provided by

W0(x) = 1,

W1(x) = (4k + 1)x4k + 1,

W2(x) = 2kx2(k−1)(−(1 + 6k + 8k2)x4k + 2k − 1).

It can easily be seen that, for k ∈ Z+, the Wronskians W0(x) and W1(x) do not vanish in R and 
W2(x) has exactly one positive zero, which is simple.

The Wronskians of the family Fk
2 are provided by

W0(x) = x2 + x4k,

W1(x) = (2k − 1)(x2k+2 + x6k),

W2(x) = −4(2k − 1)3x8k+1

x2 + x4k
,

W3(x) = −16k(2k − 1)3x8k−3
(
(k − 1)(4k − 1)x4k−2 + 1 − 3k

)(
x4k−2 + 1

)2 .

Again, it can easily be seen that, for k ∈ Z+ such that k ≥ 2, the Wronskians W0(x), W1(x),

W2(x) do not vanish in (0, ∞) and W3(x) has a unique positive zero, which is simple.

The Wronskians of the family Fk
4 , for k > 2, are provided by

W0(x) = x2k,

W1(x) = (4k − 2)x8k−3,

W2(x) = −8(k − 1)k(2k − 1)x12k−7,

W3(x) = 128(k − 1)k3(2k − 1)x14k−12,

W4(x) = 128(k − 1)k3(2k − 1)3x14k−15P0,k

(
x4k−2

)
,

W5(x) = 8192(1 − 2k)6(k − 1)k3x24k−16(
x4k + x2

)4 P1,k(x
4k−2),

where

P0,k(x) = 6k(4k − 1)(6k − 1)x2 − (2k + 1)2x + 3(2k(4k − 9) + 9),

and
11
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P1,k(x) = −4(k − 1)k(2k − 5)(3k − 2)(4k − 1)(6k − 1)x3

+4(k(k(k(4k(9k(8k + 3) − 281) + 949) − 249) + 20) − 1)x2

+(3k − 1)(4k(k(4k(36k − 89) + 185) + 5) − 29)x

+(2k − 3)(3k − 1)(4k − 3)(4k − 1)(10k − 1).

Notice that the Wronskians Wi(x) �= 0 for i = 0, 1, 2, 3 do not vanish in (0, ∞). Next, we shall 
show that W4(x) > 0 in (0, ∞) and W5(x) has one positive zero, which is simple. By computing 
the discriminant of P0,k and P1,k we obtain

Dis(P0,k) = −13824k5 + 36880k4 − 29056k3 + 7800k2 − 640k + 1,

and

Dis(P1,k) = −16(2k − 1)6(3k − 1)
(
576k6 − 720k5 + 380k4 − 212k3 + 183k2 − 89k + 17

)(
41 − 12428k − 51458k2 + 3664611k3 − 32461588k4 + 126891032k5−

257528192k6 + 276914736k7 − 143578944k8 + 22830336k9 + 3317760k10
)
.

Performing a simple analysis, it can be seen that Dis(P0,k), Dis(P1,k) < 0 for k > 2. Therefore, 
P0,k(x) does not admit real zeros and P1,k(x) has at most one real zero, counting multiplicity. 
Consequently W4(x) does not vanish in R and W5(x) has at most one positive zero, which is 
simple if it exists. Now, P1,k(0) = (−3 + 2k)(−1 + 3k)(−3 + 4k)(−1 + 4k)(−1 + 10k) > 0 and

lim
x→∞ Sign(P1,k(x)) = Sign

((
40k − 516k2 + 2220k3 − 3808k4 + 2640k5 − 576k6

))
< 0.

Therefore, W5(x) has exactly one positive zero, which is simple.

The Wronskians of the family F2
6 are

W0(x) = 1,

W1(x) = 4x3,

W2(x) = 240x11,

W3(x) = −11520x14,

W4(x) = 1474560x12,

W5(x) = 13271040x8P2,2(x
6),

W6(x) = −183458856960x18P4,2(x
6)(

x6 + 1
)5

,

where

P2,2(x) = 15 − 175x + 12012x2

and

P4,2(x) = 8008x4 + 460390x3 − 993711x2 + 29800x − 6650.
12
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Clearly, Wi(x) �= 0 for i = 0, 1, 2, 3, 4, 5. Now, the discriminant of P4,2(x) is given by

Dis(P4,2) = −5822536650303705842827108906279200.

Thus, P4,2(x) has at most two real zeros counting multiplicity. Additionally, P4,2(0) = −6650
and limx→∞ P4,2(x) = ∞. Therefore, P4,2(x) and, consequently, W6(x) have exactly on positive 
zero, which is simple.

This ends the proof of the Proposition 6. �
Proposition 7. The sets of functions Fk

6 , for k > 2, is an ET-system with accuracy 1 on [a, b], 
for any 0 < a < b.

Proof. Let Gk = [uk
0, u

k
4, u

k
9, u

k
6, u

k
3, u

k
16] and Hk

α,β = [uk
4, u

k
9, u

k
6, u

k
3, αuk

0 + βuk
16 + uk

17] be or-
dered sets. Observe that

Span(Fk
6 ) = Span(Gk) ∪

⋃
α,β∈R

Span(Hk
α,β).

The demonstration of this lemma will be done in two steps. Firstly, we will show that the Wron-
skians defined by Fk

6 are nonvanishing except for the last one, which has two simple zeros. 
Secondly, we will prove that Gk is an ECT-system and that the Wronskians defined by Hk

α,β are 
nonvanishing except the last one, which has at most 3 zeros, counting multiplicity. Thus, from 
Theorems 1, 2, 3, and Remark 4, we have that 7 ≤Z(F6

k ) ≤ 8, Z(Gk) = 5 and 4 ≤Z(Hk
α,β) ≤ 7. 

Hence, we conclude that Z(F6
k ) = 7.

The Wronskians of the family Fk
6 are provided by

W0(x) = 1,

W1(x) = 2kx2k−1,

W2(x) = 8k(k(6k − 5) + 1)x8k−5,

W3(x) = −64(1 − 2k)2(k − 1)k2(3k − 1)x12k−10,

W4(x) = 2048k4(3k − 1)
(
2k2 − 3k + 1

)2
x14k−16,

W5(x) = 2048(1 − 2k)4(k − 1)2k4(3k − 1)x14k−20P2,k

(
x4k−2

)
,

W6(x) = 262144(k − 1)2k4(2k − 1)7(3k − 1)x24k−20P4,k(x
4k−2)(

x4k + x2
)5

,

where

P2,k(x) = 6k(4k − 1)(6k − 1)(8k − 3)x2 − (4k − 1)(2k + 1)2x + 3(2k(4k − 9) + 9)

and
13
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P4,k(x) = 4(k − 1)2k(2k − 5)(3k − 2)(4k − 1)(6k − 1)(8k − 3)x4

−2(3k − 2)(4k − 1)(k(4k(k(4k(2k(78k − 179) + 235) − 89) − 59) + 35) − 1)x3

+(3k − 2)(k(4k(2k(10k(k(4k(48k − 61) + 177) − 183) + 1017) − 465) + 201)

−19)x2 − 4(3k − 1)(5k − 2)(2k(k(4k(k(4k − 19) + 44) − 75) − 19) + 13)x

+(2k − 3)(3k − 1)(4k − 3)(4k − 1)(5k − 2)(10k − 1).

Clearly, Wi(x) �= 0 for i = 0, 1, 2, 3, 4. Now, we show that, for k > 2, W5(x) > 0 in (0, ∞) and 
W6(x) has two positive zeros, which are simple. By computing the discriminant of P2,k and P4,k

we obtain

Dis(P2,k) = −(4k − 1)Ak,

where

Ak = 1 + 1948k − 20744k2 + 66464k3 − 77296k4 + 27584k5

and

Dis(P4,k) = −192(2 − 3k)2(1 − 2k)12(3k − 1)(4k − 1)(5k − 2)BkCk,

with

Bk = 206 − 1917k + 5508k2 + 14166k3 − 161955k4 + 507294k5 − 336876k6 − 2819520k7

+11872944k8 − 24994208k9 + 32211648k10 − 24318720k11 + 8294400k12,

Ck = 1234 + 1406151k − 140801881k2 + 1655961863k3 + 15757275163k4

−454467427122k5 + 3991908595280k6 − 18758368588312k7 + 52157245218176k8

−84657031448672k9 + 65764683807488k10 + 13116254256768k11

−75206228610816k12 + 66368938080256k13 + 1454789099520k17.

It is straightforward to see that Ak, Bk, Ck > 0. Thus, we get that Dis(P4,k), Dis(P2,k) < 0. 
Therefore, P2,k(x) and, consequently, W5(x), do not admit real zeros. Additionally, P4,k(x) and, 
consequently, W6(x) have at most two positive zeros counting multiplicity. Furthermore,

P4,k(0) = (2k − 3)(3k − 1)(4k − 3)(4k − 1)(5k − 2)(10k − 1),

P4,k(2) = −6 − 3687k + 63459k2 − 351684k3 + 787140k4 − 528768k5

−478272k6 + 738816k7 − 221184k8,

and lim
x→∞P4,k(x) = ∞. Since sign(P4,k(0)) = −sign(P4,k(2)) = 1, it follows that P4,k(x) and, 

consequently, W6(x) have exactly two positive zeros, which are simple. Therefore, from Theo-
rems 2 and 3, it follows that 7 ≤Z(Fk

6 ) ≤ 8.
Since the Wronskians of Gk are, clearly, equal to the first six Wronskians of Fk

6 , we get that 
Z(Gk) is an ECT-system and, from Theorem 1, Z(Gk) = 5.
14
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Now, computing the Wronskians of Hk
α,β , we obtain

W0(x) = x2k,

W1(x) = (4k − 2)x8k−3,

W2(x) = −8(k − 1)k(2k − 1)x12k−7,

W3(x) = 128(k − 1)k3(2k − 1)x14k−12,

W4(x) = 128(2k − 1)3(k − 1)k3x14k−15Sk
3

(
x4k−2

)
Qk

α,β(x),

where

Qk
α,β(x) =

(
αSk

1(x) + (2k − 1)x2k+9Sk
2

(
x4n−2

)
(2k − 1)x4

(
x4k + x2

)3
Sk

3

(
x4k−2

) + tan−1
(
x2k−1

)+ β

)
,

Sk
1(x) = 16(−1 + k)k(−1 + 3k)x3(x2 + x4k)3,

Sk
2(x) = −3(9 + 2k(−9 + 4k)) + (−71 + 4(37 − 15k)k)x

+(−1 + 2k)(61 + 2k(−37 + 92k))x2

+(−1 + 4k(3 + k(−41 + 96k)))x3 + 6k(−1 + 4k)(−1 + 6k)x4,

Sk
3(x) = 3(9 + 2k(−9 + 4k)) − (1 + 2k)2x + 6k(−1 + 4k)(−1 + 6k)x2.

Clearly, Wi(x) �= 0 for i = 0, 1, 2, 3. The derivative of Qk
α,β(x) can be written as

(Qk
α,β)′(x) = Rk(x)Sk

α(x),

with

Rk(x) = −16(k − 1)k(3k − 1)x2qk
1 (x4k−2)

(2k − 1)x8Sk
3

(
x4k−2

)2 ,

Sk
α(x) = α + 4(1 − 2k)2x10k+4qk

2 (x4k−2)

(k − 1)k(3k − 1)
(
x4k + x2

)4
qk

1 (x4k−2)
,

where

qk
1 (x) = 6k(4k − 1)(6k − 1)(8k − 3)x2 − (2k + 1)2(4k − 1)x + 3(2k(4k − 9) + 9),

qk
2 (x) = 9 − 171k + 1052k2 − 2692k3 + 2816k4 − 960k5

+(−29 + 107k + 680k2 − 3644k3 + 4848k4 − 1728k5)x

+(4 − 80k + 996k2 − 3796k3 + 4496k4 − 432k5 − 1152k6)x2

+(−40k + 516k2 − 2220k3 + 3808k4 − 2640k5 + 576k6)x3.

Observe that, for k > 2, the function qk
1 (x) is positive. Indeed,

Dis(qk
1 ) = −(4k − 1)(1 + 1948k − 20744k2 + 66464k3 − 77296k4 + 27584k5) < 0

and qk(0) > 0. Moreover, notice that Rk(x) does not vanish in (0, ∞) and
1

15
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(Sk
α)′(x) = 8(1 − 2k)2x10k−5q3(x

4k−2)qk
4 (x4k−2)

(k − 1)k(3k − 1)(1 + x4k−2)5(qk
1 (x4k−2))2

,

where

qk
3 (x) = −27 − 6k(−9 + 4k) + (1 + 4k(1 + k))x − 6k(−1 + 4k)(−1 + 6k)x2,

qk
4 (x) = (−3 + 2k)(−1 + 3k)(−3 + 4k)(−1 + 4k)(−2 + 5k)(−1 + 10k)

−4(−1 + 3k)(−2 + 5k)(13 + 2k(−19 + k(−75 + 4k(44 + k(−19 + 4k)))))x

+(38 − 459k + 4323k2 − 21852k3 + 53688k4 − 72240k5)x2

+(81520k6 − 89280k7 + 46080k8)x2 + (4 − 162k + 1738k2 − 4608k3)x3

+(−17208k4 + 114176k5 − 226240k6 + 192384k7 − 59904k8)x3

+(4(−1 + k)2k(−5 + 2k)(−2 + 3k)(−1 + 4k)(−1 + 6k)(−3 + 8k))x4.

By computing the discriminant of qk
3 and qk

4 we obtain

Dis(qk
3 ) = 1 − 8k(80 + k(−975 + 2k(1816 + k(−2305 + 864k))))

and

Dis(qk
4 ) = −192(3k − 2)2(2k − 1)12(3k − 1)(4k − 1)(5k − 2)DkEk,

with

Dk = 206 − 1917k + 5508k2 + 14166k3 − 161955k4 + 507294k5 − 336876k6

−2819520k7 + 11872944k8 − 24994208k9 + 32211648k10 − 24318720k11

+8294400k12,

Ek = 1234 + 1406151k − 140801881k2 + 1655961863k3 + 15757275163k4

−454467427122k5 + 3991908595280k6 − 18758368588312k7 + 52157245218176k8

−84657031448672k9 + 65764683807488k10 + 13116254256768k11

−75206228610816k12 + 66368938080256k13 − 30092670877696k14

+12225870102528k15 − 5928649555968k16 + 1454789099520k17.

Thus, by straightforward computations, we obtain Dis(qk
3 ), Dis(qk

4 ) < 0, for k > 2. Therefore, 
q3(x) does not admit real zeros and qk

4 has at most two positive zeros counting multiplicity. It 
implies that the number of zeros of (Sk

α)′(x) counting multiplicity is at most two. Consequently, 
(Qk

α,β)′(x) has at most 3 zeros. Notice that

lim
x→0

Sign((Qk
α,β)′(x)) = lim

x→∞ Sign((Qk
α,β)′(x)) = −α.

For α �= 0, follows that (Qk
α,β)′(x) has at most 2 zeros. Therefore, Qk

α,β and, consequently, W4

have at most 3 positive zeros. Thus, from Theorem 3 and Remark 4, we get that Z(Hk
α,β) ≤ 7. 

For α = 0, it follows that Span(Hk
α,β) ⊂ Span(Fk

4 ). Taking Proposition 6 into account, we get 

that Z(Hk ) = 6. This ends the proof of the Proposition 7. �
α,β
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Proposition 8. For λ ∈ R, Z(F1,λ
7 ) ≤ 10 on [a, b], for any 0 < a < b. In addition, for λ = 2, 

there exists a function in Span(F1,2
7 ) having 8 simple zeros in (0, ∞).

Proof. Let

f (x) = a0u
1
18(x) + a1u

1
19(x) + a2u

1
20(x) + a3u

1
21(x) + a4u

1
22(x) + a5u

1
23(x) + a6u

1,λ
24 (x)

be a function in Span(F1,λ
7 ). The 5th derivative of f , f (5)(x), is written as a linear combination 

of the functions of the ordered set

J0 = [1, x, x2, x3, (u1
21)

(5)(x), (u1
23)

(5)(x)].

Computing the Wronskians of J0, we get

W0(x) = 1,

W1(x) = 1,

W2(x) = 2,

W3(x) = 12,

W4(x) = 8505
(
9
(
429

(
85x4 + x2

)+ 35
)
x2 + 55

)
128x13/2 ,

W5(x) = 120558375

65536x15

(
409280498055x14 + 16979438619x12 + 2324256363x10

+589231071x8 + 64265157x6 + 508833x4 + 23177x2 + 1573
)
.

Clearly, all the Wronskian above do not vanish in (0, ∞), which implies that J0 is an ECT-
system. From Theorem 1, f (5)(x) has at most 5 zeros and, therefore, f (x) has at most ten zeros. 
Consequently, Z(Fk,λ

7 ) ≤ 10.

Finally, let f (x) ∈ Span(F
1,2
7 ) be provided by

f (x) = a0u
1
18(x) + a1u

1
19(x) + a2u

1
20(x) + a3u

1
21(x) + a4u

1
22(x) + a5u

1
23(x) + u

1,2
24 (x),

where

a0 = −29.674872845038724, a1 = −88.998921871,

a2 = 1.777150602939737, a3 = −2.0194231196937788 × 10−5,

a4 = 0.5926213398946085, a5 = 3.18899089714221 × 10−8.

The function g, defined by g(x) = f (x2), is a polynomial of degree 19 in interval (0, ∞). Direct 
computation shows that g has 8 zeros, which are simple as Dis(g) �= 0. �
Proposition 9. For k > 1 and λ ∈R, Z(Fk,λ

7 ) ≤ 14 on [a, b], for any 0 < a < b. In addition, for 
λ = 1, there exists a function in Span(Fk,1

) having 9 simple zeros in (0, ∞).
7
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Proof. Let

f (x) = a0u
k
18(x) + a1u

k
19(x) + a2u

k
20(x) + a3u

k
21(x) + a4u

k
22(x) + a5u

k
23(x) + a6u

k,λ
24 (x)

be a function in Span(Fk,λ
7 ). Since (uk,λ

24 )(8) = 0 for every k > 1, f (8)(x) is written as a linear 
combination of the functions of the ordered set

Hk =
[
(uk

18)
(8), (uk

19)
(8), (uk

20)
(8), (uk

21)
(8), (uk

22)
(8), (uk

23)
(8)

]
.

Computing the Wronskians of Hk , we get

W0(x) = − (k − 1)x
1
k
−8

k8 Uk
0 (x),

W1(x) = 2(k − 1)2(k + 1)(2k − 1)(2k + 1)(3k − 1)x
2
k
−15

k16
Uk

1 (x),

W2(x) = 6(k − 1)2(k + 1)2(2k − 1)(2k + 1)2
(
9k2 − 1

)
x

3
k
−22

k24 Uk
2 (x),

W3(x) = 81(2k − 1)(2k + 1)3
(
k2 − 1

)2 (
18k3 + 27k2 − 2k − 3

)
x

9
2k

−32

1024k35
Uk

3 (x),

W4(x) = −81(1 − 2k)2
(
2k3 + k2 − 2k − 1

)3 (
18k3 + 27k2 − 2k − 3

)
x

11
2k

−43

1024k44 Uk
4 (x),

W5(x) = −729(1 − 2k)2
(
2k3 + k2 − 2k − 1

)3 (
18k3 + 27k2 − 2k − 3

)
x

7
(

1
k
−8

)
4194304k56

Uk
5 (x),

where U0, U1, U2, U3, U4 and U5 are polynomials of degrees 6, 8, 12, 18, 22, and 30, respec-
tively. By straightforward computations, we get that Ui(x), for i = 0, 1, 2, 3, 4, does not vanish 
in (0, ∞) and U5(x) has exactly one positive zero, which is simple. From Theorem 2, it follows 
that Z(Hk) = 6. Hence, we conclude that Z(Fk,λ

7 ) ≤ 14.

In what follows, we shall prove that there exists a function in Span(Fk,1
7 ) having 9 simple 

zeros in (0, ∞). Accordingly, let f (x; a) ∈ Span(F
k,1
7 ) be provided by

f (x;a) = (1 + 2k)(a0 − 4(1 + k))uk
19(x) + (−3a3 + a1(1 + 2k))(1 + 2k)uk

20(x)

−4(1 + k)uk
18(x) + a2u

k
21(x) + (−2a3 + a1(1 + 2k))uk

22(x) + a4u
k
23(x) + u

k,1
24 (x),

where a = (a0, a1, a2, a3, a4) ∈ R5.
Denote gk(x; a) := f (x2k; a). First, we prove that, for each integer k > 1, there exists δk > 0

such that gk(x; a) has at least 4 simple zeros in (0, 2), for every a ∈ B(0, δk). Notice that g(x; 0)

has at least 4 zeros in (0, 2) with odd multiplicity, for every k > 1. Indeed,

gk(0;0) > 0, gk(1/2;0) < 0, gk(1;0) = 0, g′
k(1;0) < 0, and gk(2;0) > 0.

For 2 ≤ k ≤ 30, it is relatively easy to see that Dis(gk(x; 0)) �= 0, which implies that the 4 zeros 
above are simple. Now, for k > 30, we have
18
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gk(x;0) = H1(x
2k) + H2(x

2k),

where

H1(x) = (
8k3 + 6k + 4

)
x3 + 2

(
12k2 + 9k + 2

)
x2 + (−4k2 + 4k + 3

)
x + 1

+ (
16k2 + 14k + 3

)
x4 + (2k + 1)3x5,

H2(x) = −8
(
2k2 + 3k + 1

)
x

1
k
+2 − 4(k + 1)(2k + 1)2x

1
k
+4 − 4(k + 1)x1/k.

Notice that H1(x) > 0 for x > 0. The Wronskian of [H1(x), H2(x)] can be written as W1(x) =
4(k + 1)x

1
k
−1

k
P5,k(x), with

P5,k(x) = −1 − (
4(k − 2)k2 + k + 3

)
x + 2

(
k
(
24k2 + 2k − 9

)− 3
)
x2

+10(k − 1)(2k + 1)
(
2k2 + k + 1

)
x3 − 2(2k + 1)(k(12k + 19) + 6)x4

+2(k − 1)(2k + 1)2(5k(2k + 1) + 6)x5 − 2(2k + 1)2(k(2k(12k + 7) + 15) + 5)x6

+2(2k + 1)3
(
(2k − 5)k2 + 3

)
x7 − (2k + 1)3(8k + 3)x8 + (k − 1)(2k + 1)5x9.

It is easy to see that Dis
(
P

(3)
5,k

)
< 0 and, since P (3)

5,k (x) has degree 6, we conclude that P (3)
5,k (x)

has at most 4 real zeros, counting multiplicity. In addition, limx→±∞ P
(3)
5,k (x) > 0, P (3)

5,k (−1/2) <

0, P (3)
5,k (0) > 0, and P (3)

5,k (1/2) < 0. Thus, P (3)
5,k (x) has two zeros in (−∞, 0) and two zeros in 

(0, ∞). Therefore, P (2)
5,k (x) has at most 3 zeros in (0, ∞), counting multiplicity. Since

P
(2)
5,k (0) > 0 and lim

x→∞P
(2)
5,k (x) > 0,

it follows that P (2)
5,k (x) has at most two positive zeros, counting multiplicity. Moreover,

P5,k(0) < 0 and lim
x→∞P5,k(x) > 0.

Thus, P5,k(x) has at most 3 zeros, counting multiplicity in (0, ∞). From Theorem 3 and Re-
mark 4, we get that gk(x; 0) has 4 simple zeros on (0, ∞). Hence, gk(x; 0) has 4 simple zeros in 
(0, 2).

Thus, we have proven that, for each k > 1, gk(x; 0) has at least 4 simple zeros in (0, 2). Since 
gk(x; a) depends continuously on a, for each k > 1 there exists δk > 0 such that gk(x; a) has at 
least 4 simple zeros in (0, 2), for every a ∈ B(0, δk).

Now, we prove that, for each integer k > 1, there exists ak ∈ B(0, δk) such that gk(x; ak) has 
5 additional simple zeros in (2, ∞). For that, taking x = y−1 in (0, ∞), we see that

gk(y
−1;a) = 1

y3+16k
hk(y;a),

where hk(y; a), around y = 0, writes
19
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hk(y;a) = a4 + a2y
2k + a3y

2k+1 + 2a4(2 + k)

1 + 2k
y4k − a0y

4k+1 + 3a2

2k + 1
y6k + a1y

6k+1

+y6k+3 + O(y6k+4).

Thus, for each integer k > 1, we can choose a ∈ B(0, δk) so that hk(y; a) has 5 simple positive 
zeros in a neighborhood of y = 0. Consequently, gk(x; a) has 5 additional simple positive zeros 
in a neighborhood of the infinity. Hence, we found a function in Fk,1

7 having at least 9 simple 
zeros. �
4. First order analysis

This section is devoted to the proof of statement (i) of Theorem A. In order to apply Theo-
rem B, we first write system (1) in polar coordinates x = r cos(θ) and y = r sin(θ),

(ṙ, θ̇ )T = (0,−1)T +
6∑

i=1

εiGi(θ, r), (8)

where

Gi(r) =
{

(A+
i (r, θ),B+

i (r, θ))T , if sin(θ) − rn−1 cosn(θ) > 0,

(A−
i (r, θ),B−

i (r, θ))T , if sin(θ) − rn−1 cosn(θ) < 0,

with

A+
i = cos(θ)(a0i + r(a2i + b1i ) sin(θ)) + a1i r cos2(θ) + sin(θ)(b0i + b2i r sin(θ)),

B+
i = r−1[− sin(θ)(a0i + a2i r sin(θ)) + cos(θ)(r(b2i − a1i ) sin(θ) + b0i ) + b1i r cos2(θ)],

A−
i = cos(θ)(α0i + r(α2i + β1i ) sin(θ)) + α1i r cos2(θ) + sin(θ)(β0i + β2i r sin(θ)),

B−
i = r−1[− sin(θ)(α0i + α2i r sin(θ)) + cos(θ)(r(β2i − α1i ) sin(θ) + β0i ) + β1i r cos2(θ)].

Then, taking θ as the new time, system (8) writes as

dr

dθ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6∑
i=1

εiA+
i (r, θ)

−1 +
6∑

i=1

εiB+
i (r, θ)

, if sin(θ) − rn−1 cosn(θ) > 0,

6∑
i=1

εiA−
i (r, θ)

−1 +
6∑

i=1

εiB−
i (r, θ)

, if sin(θ) − rn−1 cosn(θ) < 0.

(9)

Thus, for |ε| �= 0 sufficiently small, system (9) and, consequently, system (8) become equivalent 
to
20
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dr

dθ
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

6∑
i=1

εiF+
i (r, θ) +O(ε7), if sin(θ) − rn−1 cosn(θ) > 0,

6∑
i=1

εiF−
i (r, θ) +O(ε7), if sin(θ) − rn−1 cosn(θ) < 0,

(10)

where

F+
1 (r, θ) = − cos(θ)(a01 + r(a21 + b11) sin(θ)) − a11r cos2(θ) − sin(θ)(b01 + b21r sin(θ)),

F−
1 (r, θ) = − cos(θ)(α01 + r(α21 + β11) sin(θ)) − α11r cos2(θ) − sin(θ)(β01 + β21r sin(θ)).

Let θ1(r) = arctan(rn−1) be the solution of the equation sinθ − r cosn−1 θ = 0 in [0, π/2]. Thus, 
for r > 0, sin θ − r cosn−1 θ < 0 if and only if 0 < θ < θ1(r) or π − (−1)nθ1(r) < θ < 2π ; and 
sin θ − r cosn−1 θ > 0 if and only if θ1(r) < θ < π − (−1)nθ1(r).

According to (6), the first order Melnikov function of system (10) is provided by

M1(r) =
θ1(r)∫
0

F−
1 (θ, r)dθ +

π−(−1)nθ1(r)∫
θ1(r)

F+
1 (θ, r)dθ +

2π∫
π−(−1)nθ1(r)

F−
1 (θ, r)dθ. (11)

In order to compute the exact expression of the Melnikov Function (11) we distinguish two cases, 
depending on n.

Case 1: Let n = 2k + 1 for a positive integer k. Thus,

M1(r) = 1

2
(v0 cos(θ1(r)) + rv1 + v2 sin(θ1(r))),

where

v0 = 4β01 − 4b01,

v1 = −π(a11 + α11 + b21 + β21),

v2 = 4(a01 − α01).

Notice that the parameter vector (v0, v1, v2) ∈ R3 depends on the original parameters in a sur-
jective way. Taking x = r cos(θ1(r)), it follows that

x2 + x4k+2 = r2 and sin(θ1(r)) = x2k+1

r
.

Hence, M1(r) = qk
1 (x)

2
√

x4k + 1
, where

qk
1 (x) = v1u

k
12(x) + v2u

k
4(x) + v0u

k
1(x),

which belongs to Fk
1 . So, the maximum number of positive zeros of the polynomial function 

qk(x) coincides with m1(2k + 1).
1
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Note that q0
1 (x) is a first degree polynomial, thus the maximum number of positive simple 

zeros is 1. For k ≥ 1, Proposition 6 implies that Fk
1 is an ET-system with accuracy 1 on [a, b] for 

any 0 < a < b. Thus, the maximum number of positive simple zeros of qk
1 (x) is 3 and there exists 

(v0, v1, v2) ∈ R3 for which qk
1 (x) has exactly 3 positive simple zeros. Therefore, m1(1) = 1 and 

m1(2k + 1) = 3 for k ≥ 1.

Case 2: Let n = 2k for a positive integer k. Thus,

M1(r) = rv0 + rv1 sin(θ1(r)) cos(θ1(r)) + rv2θ1(r) + v3 cos(θ1(r)),

where

v0 = −π(a11 + α11 + b21 + β21)

2
,

v1 = a11 − α11 − b21 + β21,

v2 = a11 − α11 + b21 − β21,

v3 = 2(β01 − b01).

Notice that the parameter vector (v0, v1, v2, v3) ∈ R4 depends on the original parameters in a 

surjective way. Again, taking x = r cos(θ1(r)), it follows that M1(r) = qk
2 (x)√

x2 + x4n
, where

qk
2 (x) = v0u

k
13(x) + v1u

k
5(x) + v2u

k
15(x) + v3u

k
2(x),

which belongs to Fk
2 . From Proposition 5, F1

2 is an ECT-system on [a, b] for any 0 <
a < b. Thus, the maximum number of positive simple zeros of q1

2(x) is 3 and there exists 
(v0, v1, v2, v3) ∈ R4 for which q1

2 (x) has exactly 3 positive simple zeros. Therefore, m1(2) = 3. 
For k ≥ 2, from Proposition 6, Fk

2 is an ET-system with accuracy 1 on [a, b] for any 0 < a < b. 
So, the maximum number of positive simple zeros of qk

2(x) is 4 and there exists (v0, v1, v2, v3) ∈
R4 for which qk

2 (x) has exactly 4 positive simple zeros. Therefore, m1(2k) = 4 for k ≥ 2.

5. Higher order analysis

This section is devoted to the proof of statements (ii)-(v) of Theorem A for 2 ≤ l ≤ 6. From 
Theorem B, the simple zeros of the Melnikov function of order �, M�, provide periodic solutions 
of (10) whenever Mi = 0, for i = 1, . . . , � −1. In our problem, it can be seen that, for each n ∈N
and � ∈ {2, . . . , 6}, there exists � −1 set of minimal conditions on the parameters of perturbations, 
Kn

�,1, . . . , K
n
�,�−1, such that Mi(x) = 0 for i ∈ {1, . . . , � −1}. In order to obtain m�(n), we have to 

study M� for each set of condition. By assuming conditions Kn
�,i , it can be seen that M� = Mn

�,i , 
where

Mn
�,i(x) = pn

�,i(x)

qn
�,i(x)

,

with qn (x) �= 0 in (0, ∞) and
�,i
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Table 3
Structure of the higher order Melnikov functions.

n = 2 pn
�,i

(x) ∈ Span(F1
3 ) � = 2, . . . ,6 and i = 1, . . . , � − 1

n = 2k pn
�,i

(x) ∈ Span(Fk
6 ) � = 2, . . . ,6 and i = 1, . . . , � − 1

n = 2k + 1
pn

�,i
(x) ∈ Span(Fk

5 ) � = 2, . . . ,5 and i = 1, . . . , � − 1

pn
6,i

(x) ∈ Span(Fk
5 ) i = 1, . . . ,4

pn
6,5(x) ∈ Span(Fk,λ

7 )

Case 1: Let n = 2 and � ∈ {2, . . . , 6}. Assuming conditions on the parameters of perturbations 
such that Mi = 0 for i ∈ {1, . . . , � − 1}, the Melnikov function of order � is provided by

M�(x) = 1

(1 + 2x2)2 P�(x),

where

P�(x) = C�
0u1

1(x) + C�
1u1

4(x) + C�
2u1

9(x) + C�
3u1

16(x) + C�
4u1

17(x),

which belongs to Span(F1
3 ) (see Table 3). In addition, it can be seen that the parameter vector 

(C�
0, . . . , C�

4) ∈ R5 depends on the original coefficients of perturbation in a surjective way. From 
Proposition 5, Span(F1

3 ) is an ECT-systems on [a, b] for any 0 < a < b. Thus, we conclude that 
the maximum number of positive simple zeros of P�(x) is 4 and there exists (C�

0, . . . , C�
4) ∈ R5

for which P�(x) has exactly 4 positive simple zeros. Therefore, m�(2) = 4 for � = 2, . . . , 6.

Case 2: Let n = 2k, k > 1, and � ∈ {2, . . . , 6}. Assuming conditions on the parameters of per-
turbations such that Mi = 0 for i ∈ {1, . . . , � − 1}, the Melnikov function of order � is provided 
by

M�(x) = 1

(1 + 2kx4k−2)2 Qk
�(x),

where

Q�(x) = C�
0uk

1(x) + C�
1uk

4(x) + C�
2uk

9(x) + C�
3uk

6(x) + C�
4uk

3(x) + C�
5uk

16(x) + C�
6uk

17(x),

which belongs to Span(Fk
6 ) (see Table 3). In addition, it can be seen that the parameter vector 

(C�
0, . . . , C�

6) ∈ R7 depends on the original coefficients of perturbation in a surjective way. From 
Propositions 6 and 7, Span(Fk

6 ) is an ET-system with accuracy 1 on [a, b] for any 0 < a <

b. Thus, we conclude that the maximum number of positive simple zeros of Qk
�(x) is 7 and 

there exists (C�
0, . . . , C

�
6) ∈ R7 for which Qk

�(x) has exactly 7 positive simple zeros. Therefore, 
m�(2k) = 7 for k > 1 and � = 2, . . .6.

Case 3: Let n = 2k + 1, k > 0 and �{2, . . . , 5}. Assuming conditions on the parameters of per-
turbations such that Mi = 0 for i ∈ {1, . . . , � − 1}, the Melnikov function of order � is provided 
by
23
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M�(x) = 1

(1 + (1 + 2k)x4k)2 Rk
�(x),

where

Rk
�(x) = C�

0uk
1(x) + C�

1uk
4(x) + C�

2uk
7(x) + C�

3uk
8(x) + C�

4uk
10(x) + C�

5uk
5(x) + C�

6uk
11(x)

+C�
7uk

14(x),

which belongs to Span(Fk
5 ) (see Table 3). In addition, it can be seen that the parameter vector 

(C�
0, . . . , C�

7) ∈ R8 depends on the original coefficients of perturbation in a surjective way. From 
Proposition 5, Span(Fk

5 ) is an ECT-system on [a, b] for any 0 < a < b. Thus, we conclude that 
the maximum number of positive simple zeros of Rk

�(x) is 7 and there exists (C�
0, . . . , C�

7) ∈ R8

for which Rk
�(x) has exactly 7 zeros. Therefore, m�(2k + 1) = 7 for k > 0 and � = 1, . . . , 5.

Case 4: Let n = 2k + 1, k > 0, and � = 6. Assuming conditions on the parameters of pertur-
bations such that Mi = 0 for i ∈ {1, . . . , 5}, the Melnikov function of order 6 has two possible 
forms (see Table 3). The first one has its numerator as a linear combination of functions in Fk

5 , 
which, from Proposition 5, has at most 7 positive simple zeros. The second one is provided by

M6(x) = Lk(x2k)

x2(1 + (1 + 2k)x4k)2 ,

where

Lk(x) = C0u
k
18(x) + C1u

k
19(x) + C2u

k
20(x) + C3u

k
21(x) + C4u

k
22(x) + C5u

k
23(x) + C6u

k,λ
24 (x),

which belongs to Span(Fk,λ
7 ) (see Table 3). In addition, it can be seen that the parameter vector 

(C�
0, . . . , C�

6) ∈ R7 depends on the original coefficients of perturbation in a surjective way. For 
k = 1, Proposition 8 provides that L1(x) has at most 10 positive simple zeros and that there exists 
(C�

0, . . . , C�
6) ∈ R7 such that L1(x) has at least 8 positive simple zeros. For k > 1, Proposition 9

provides that Lk(x) has at most 14 positive simple zeros and that there exists (C�
0, . . . , C

�
6) ∈ R7

such that LK(x) has at least 9 positive simple zeros. Therefore, 8 ≤ m6(3) ≤ 10 and, for k > 1, 
9 ≤ m6(2k + 1) ≤ 14.

Hence, we have concluded the proof of Theorem A.
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Appendix. Proof of Theorem B

Let ϕ(t, x, ε) denote the solution of the T -periodic nonsmooth differential system (2) with 
initial condition ϕ(0, x, ε) = x. Let αj (x, ε) denote the smallest positive time for which the 
trajectory ϕj−1(·, x, ε), starting at ϕj−1(αj−1(x, ε), x, ε) ∈ D, reaches the manifold {(θj (x), x) :
x ∈ D} ⊂ �. In this way

αj (x, ε) = θj (ϕj−1(αj (x, ε), x, ε)), (12)

for j = 1, . . . , N . For the sake of completeness, denote α0(x, ε) = 0. Thus,

ϕ(t, x, ε) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ0(t, x, ε), 0 ≤ t ≤ α1(x, ε),

ϕ1(t, x, ε), α1(x, ε) ≤ t ≤ α2(x, ε),
...

...

ϕN(t, x, ε), αN(x, ε) ≤ t ≤ T ,

(13)

where ⎧⎪⎪⎨⎪⎪⎩
∂ϕj

∂t
(t, x, ε) = Fj (t, ϕj (t, x, ε), ε), for j = 0, . . . ,N,

ϕ0(0, x, ε) = x,

ϕj (αj (x, ε), x, ε) = ϕj−1(αj (x, ε), x, ε), for j = 1, . . . ,N.

The recurrence above describes initial value problems, which are equivalent to the following 
integral equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ϕ0(t, x, ε) = x +
t∫

0

F 0(s, ϕ0(s, x, ε), ε)ds,

ϕj (t, x, ε) = ϕj−1(αj (x, ε), x, ε) +
t∫

αj (x,ε)

F j (x,ϕj (s, x, ε), ε)ds, for j = 1, . . . ,N.

(14)

Now, consider the displacement function

�(x, ε) = ϕ(T , x, ε) − x. (15)

By denoting zj
i (t, x) = ∂iϕj

∂εi
(t, x, 0), we expand ϕj (t, x, ε), around ε = 0 up to power k, we get 

that

ϕj (t, x, ε) = x +
k∑

i=1

εi

i! z
j
i (t, x) + O(εk+1), (16)

and, consequently,
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�(x, ε) =
k∑

i=1

εi

i! z
N
i (T , x) + O(εk+1).

Hence, the Melnikov function of order i is provided by

Mi(x) = 1

i!z
N
i (T , x).

Indeed, from (15), it is clear that T -periodic solutions ϕ(t, x, ε) of system (2), satisfying 
x(0, x, ε) = x, are in one-to-one correspondence to the zeros of the equation �(x, ε) = 0. From 
hypothesis,

�̂(x, ε) := �(x, ε)

ε�
= M�(x) +O(ε�+1),

�̂(a∗, 0) = Ml(a
∗) = 0, and det

(
∂�̂

∂x
(a∗,0)

)
= det(DM�(a

∗)) �= 0. Therefore, based on the 

Implicit Function Theorem, we get the existence of a unique Ck function a(ε) ∈ D, defined for 
|ε| �= 0 sufficiently small, such that a(0) = a∗ and �(a(ε), ε) = �̂(a(ε), ε) = 0.

We conclude the proof of Theorem B by showing in Proposition 11 that the functions zj
i (t, x)

are provided by (4), (4), and (5). For this, we need the following technical lemma:

Lemma 10. Let Ql :Rd × · · · ×Rd → Rd be a l-multilinear map. Then,

Ql

(
k∑

i=1

εixi

)l

=
kl∑

p=l

εp
∑

u∈Sp,l

Ql

(
l∏

r=1

xur

)
, (17)

where Sp,l = {
(u1, . . . , ul) ∈ (Z+)l : u1 + · · · + ul = p

}
.

Proof. The proof of this result will follow by induction on l. It’s easy to see that for l = 1 the 
result holds. Suppose by induction hypothesis that (17) holds for l-multlinear maps. Then, define 
the l-multilinear map

Q̃l(y1, . . . , yl) = Ql+1

(
y1, . . . , yl,

k∑
i=1

εixi

)
.

Notice that

Ql+1

(
k∑

i=1

εixi

)l+1

= Q̃l

(
k∑

i=1

εixi

)l

.

Thus, applying the induction hypothesis for Q̃l in the equality above, we have
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Ql+1

(
k∑

i=1

εixi

)l+1

=
kl∑

p=l

εp
∑

u∈Sp,l

Ql+1

(
l∏

r=1

xur ,

k∑
i=1

εixi

)

=
k∑

i=1

kl∑
p=l

εp+i
∑

u∈Sp,l

Ql+1

(
l∏

r=1

xur , xi

)

=
k∑

i=1

kl+i∑
q=l+i

εq
∑

u∈Sq−i,l

Ql+1

(
l∏

r=1

xur , xi

)

=
k(l+1)∑
q=l+1

εq

q−l∑
i=1

∑
u∈Sq−i,l

Ql+1

(
l∏

r=1

xur , xi

)
.

Considering Si,q,l+1 = {(v1, . . . , vl, i); (v1, . . . , vl) ∈ Sq−i,l}, we get

Ql+1

(
k∑

i=1

εixi

)l+1

=
k(l+1)∑
q=l+1

εq

q−l∑
i=1

∑
v∈Si,q,l+1

Ql+1

(
l+1∏
r=1

xvr

)
.

Thus, since

Sq,l+1 =
q−l⋃̇
i=1

Si,q,l+1,

we conclude that

Ql+1

(
k∑

i=1

εixi

)l+1

=
k(l+1)∑
q=l+1

εq
∑

v∈Sq,l+1

Q

(
l+1∏
r=1

xvr

)
,

which finishes this proof. �
Proposition 11. The functions zj

i (t, x) are provided by (4), (4), and (5).

Proof. First of all, recall the Faà di Bruno’s formula for the lth derivative of the composed 
function: Let g and h be sufficiently smooth functions then

dl

dαl
g(h(α)) =

∑
b∈Sl

l!
b1!b2!2!b2 . . . bl !l!bl

g(Lb)(h(α))

l∏
j=1

(
h(j)(α)

)bj

, (18)

where Sl is the set of all l-tuples of non-negative integers (b1, b2, . . . , bl) satisfying b1 + 2b2 +
· · · + lbl = l, and L = b1 + b2 + · · · + bl .

Here, we shall we expand ϕj (t, x, ε), around ε = 0 up to order k. By taking (3) into account 
and computing the expansion of Fj

(s, ϕj (s, x, ε)) around ε = 0 up to order k − i, we obtain
i
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t∫
αj (x,ε)

F j (s, ϕj (s, x, ε), ε)ds =
t∫

αj (x,ε)

(
k∑

i=1

k−i∑
l=0

εi+l

l!
∂l

∂εl

(
F

j
i (s, ϕj (s, x, ε))

) ∣∣∣
ε=0

)
ds

+O(εk+1)

=
k∑

i=1

εi

t∫
αj (x,ε)

(
i−1∑
l=0

1

l!
∂l

∂εl

(
F

j
i−l(s, ϕj (s, x, ε))

) ∣∣∣
ε=0

)
ds

+O(εk+1).

(19)

For i = 1, . . . , k, and j = 0, . . . , N , denote

K
j
i (t, x) =

i−1∑
l=0

1

l!
∂l

∂εl

(
F

j
i−l (t, ϕj (t, x, ε))

) ∣∣∣
ε=0

.

By applying Faà di Bruno’s formula (18) in the expression above, it follows that

K
j

1 (t, x) = F
j

1 (t, x),

K
j
i (t, x) = F

j
i (t, x) +

i−1∑
l=1

∑
b∈Sl

1

b1!b2!2!b2 . . . bl !l!bl
∂Lb
x F

j
i−l(t, x)

l∏
m=1

(
z
j
m(t, x)

)bm

,
(20)

for i = 2, . . . , k, and j = 0, . . . , N , where Lb and Sl are defined in (18).

Now, expanding 

t∫
αj (x,ε)

K
j
i (s, x)ds around ε = 0 up to order k − i, we get

k∑
i=1

εi

t∫
αj (x,ε)

K
j
i (s, x)ds =

k∑
i=1

εi

⎛⎜⎝k−i∑
p=0

εp

p!
∂p

∂εp

⎛⎜⎝ t∫
αj (x,ε)

K
j
i (s, x)ds

⎞⎟⎠∣∣∣∣∣
ε=0

+ O(εk−i+1)

⎞⎟⎠
=

k∑
i=1

k−i∑
p=0

εi+p

p!
∂p

∂εp

⎛⎜⎝ t∫
αj (x,ε)

K
j
i (s, x)ds

⎞⎟⎠∣∣∣∣∣
ε=0

+ O(εk+1)

=
k∑

i=1

εi
i−1∑
p=0

1

p!
∂p

∂εp

⎛⎜⎝ t∫
αj (x,ε)

K
j
i−p(s, x)ds

⎞⎟⎠∣∣∣∣∣
ε=0

+ O(εk+1).

(21)
For i = 1, . . . , k, and j = 0, . . . , N , denote

I
j
i (t, x) =

i−1∑
p=0

1

p!
∂p

∂εp

⎛⎜⎝ t∫
αj (x,ε)

K
j
i−p(s, x)ds

⎞⎟⎠∣∣∣∣∣
ε=0

. (22)

Thus,
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I
j
1 (t, x) =

t∫
θj (x)

K
j
1 (s, x)ds, for j = 0, . . . ,N,

I
j
i (t, x) =

t∫
θj (x)

K
j
i (s, x)ds + K̃

j
i (x), for i = 2, . . . , k, and j = 0, . . . ,N,

(23)

provided that

K̃
j
i (x) = −

i−1∑
p=1

1

p!
∂p−1

∂εp−1

(
K

j
i−p(αj (x, ε), x)

∂

∂ε
αj (x, ε)

)∣∣∣∣∣
ε=0

, (24)

for i = 1, . . . , k, and j = 0, . . . , N .
Replacing (22) into (21) and, then, into (19), we get

t∫
αj (x,ε)

F j (s, ϕj (s, x, ε), ε)ds =
k∑

i=1

εiI
j
i (t, x) + O(εk+1).

Thus, replacing the expression above into (14), we obtain

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ϕ0(t, x, ε) = x +

k∑
i=1

εiI 0
i (t, x) + O(εk+1),

ϕj (t, x, ε) = ϕj−1(αj (x, ε), x, ε) +
k∑

i=1

εiI
j
i (t, x) + O(εk+1),

for j = 1, . . . , N . Hence, proceeding by induction on j , we conclude that

ϕj (t, x, ε) = x +
k∑

i=1

εiJ
j
i (t, x, ε) + O(εk+1), for j = 0, . . . ,N, (25)

where

⎧⎪⎪⎨⎪⎪⎩
J 0

i (t, x, ε) = I 0
i (t, x),

J
j
i (t, x, ε) =

j−1∑
l=0

I l
i (αl+1(x, ε), x) + I

j
i (t, x),

(26)

for i = 1, . . . , k, and j = 1, . . . , N .
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Now, expanding J j
i (t, x, ε) around ε = 0 up to order k − i, we get

k∑
i=1

εiJ
j
i (t, x, ε) =

k∑
i=1

εi

⎛⎝k−i∑
p=0

εp

p!
∂p

∂εp

(
J

j
i (t, x, ε)

) ∣∣∣
ε=0

+ O(εk−i−1)

⎞⎠
=

k∑
i=1

εi
i−1∑
p=0

1

p!
∂p

∂εp

(
J

j
i−p(t, x, ε)

) ∣∣∣
ε=0

+ O(εk+1).

(27)

Therefore, replacing (27) into (25) and taking (16) into account, it follows that

z
j
i (t, x) = i!

i−1∑
p=0

1

p!
∂p

∂εp

(
J

j
i−p(t, x, ε)

) ∣∣∣
ε=0

. (28)

In particular, replacing (20) into (23), we get

z
j

1(t, x) =
t∫

0

F1(s, x)ds. (29)

Now, for i = 2, . . . , k, and j = 0, replacing (23) into (26), and then into (28), we obtain

z0
i (t, x) = i!

j−1∑
l=0

θl+1(x)∫
θl (x)

Kl
i (s, x)ds + i!

t∫
θj (x)

K
j
i (s, x)ds. (30)

Finally, for j = 1, . . . , N , replacing (26) into (28), it writes

z
j
i (t, x) = i!

i−1∑
p=0

1

p!
∂p

∂εp

⎛⎝j−1∑
l=0

I l
i−p(αl+1(x, ε), x) + I

j
i−p(t, x)

⎞⎠∣∣∣∣∣
ε=0

= i!
⎛⎝j−1∑

a=0

I a
i (θa+1(x), x) + I

j
i (t, x)

⎞⎠
+i!

i−1∑
p=1

1

p!
j−1∑
a=0

∂p

∂εp

(
I a
i−p(αa+1(x, ε), x)

) ∣∣∣
ε=0

.

(31)

From (23), we have

j−1∑
a=0

I a
i (θa+1(x), x) + I

j
i (t, x) =

j−1∑
a=0

θa+1(x)∫
θa(x)

Ka
i (s, x)ds +

t∫
θj (x)

K
j
i (s, x)ds +

j∑
a=0

K̃a
i (x) (32)

and
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i−1∑
p=1

1

p!
∂p

∂εp

(
I a
i−p(αa+1(x, ε), x)

) ∣∣∣
ε=0

=
i−1∑
p=1

1

p!
∂p−1

∂εp−1

(
Ka

i−p(αa+1(x, ε), x)
∂

∂ε
αa+1(x, ε)

)∣∣∣
ε=0

.

(33)

From (13), we have α0(x, ε) = 0, then from this and (24), we obtain

j∑
a=0

K̃a
i (x) +

j−1∑
a=0

i−1∑
p=1

1

p!
∂p−1

∂εp−1

(
Ka

i−p(αa+1(x, ε), x)
∂

∂ε
αa+1(x, ε)

)∣∣∣
ε=0

=
j∑

a=1

i−1∑
p=1

1

p!
∂p−1

∂εp−1

(
Ka−1

i−p (αa(x, ε), x)
∂

∂ε
αa(x, ε)

)∣∣∣
ε=0

−
j∑

a=0

i−1∑
p=1

1

p!
∂p−1

∂εp−1

(
Ka

i−p(αa(x, ε), x)
∂αa

∂ε
(x, ε)

)∣∣∣
ε=0

=
j∑

a=1

i−1∑
p=1

1

p!
∂p−1

∂εp−1

((
Ka−1

i−p (αa(x, ε), x) − Ka
i−p(αa(x, ε), x)

) ∂αa

∂ε
(x, ε)

)∣∣∣
ε=0

.

(34)

Therefore, from (29), (30), (31), (32), (33), and (34), we have that

z
j

1(t, x) =
t∫

0

F1(s, x)ds,

z0
i (t, x) = i!

t∫
θj (x)

K
j
i (s, x)ds,

z
j
i (t, x) = i!

j−1∑
l=0

θl+1(x)∫
θl (x)

Kl
i (s, x)ds + i!

t∫
θj (x)

K
j
i (s, x)ds

+i!
j∑

a=1

i−1∑
p=1

1

p!
∂p−1

∂εp−1

((
Ka−1

i−p (αa(x, ε), x) − Ka
i−p(αa(x, ε), x)

) ∂αa

∂ε
(x, ε)

)∣∣∣
ε=0

,

(35)
for i = 2, . . . , k and j = 1, . . . , N . Notice that

K
j
i (t, x) = 1

i!
∂z

j
i

∂t
(t, x), for i = 1, . . . , k, and j = 0, . . . ,N.

Then, denoting δj
i (t, x) = 1 (

z
j−1
i (t, x) − z

j
i (t, x)

)
, we get that
i!
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∂p

∂εp

(
δa
i−p(A

p
a (x, ε), x)

) ∣∣∣
ε=0

= ∂p

∂εp

(
δa
i−p(αa(x, ε), x)

) ∣∣∣
ε=0

= ∂p−1

∂εp−1

((
Ka−1

i−p (αa(x, ε), x) − Ka
i−p(αa(x, ε), x)

) ∂αa

∂ε
(x, ε)

)∣∣∣
ε=0

(36)

where Ap
a (x, ε) =

p∑
q=0

εq

q! α
q
a (x). Moreover,

j−1∑
a=0

θa+1(x)∫
θa(x)

Ka
i (s, x)ds +

t∫
θj (x)

K
j
i (s, x)ds =

=
t∫

0

⎛⎝Fi(s, x) +
i−1∑
l=1

∑
b∈Sl

Bb∂
Lb
x Fi−l (s, x)

l∏
m=1

(zm(s, x))bm

⎞⎠ds

(37)

where

zi(t, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z0
i (t, x), 0 ≤ t ≤ θ1(x),

z2
i (t, x), θ1(x) ≤ t ≤ θ2(x),

...
...

zN
i (t, x), θN(x) ≤ t ≤ T .

Hence, from (35), (36), and (37), it writes

z
j

1(t, x) =
t∫

0

F1(s, x)ds,

z0
i (t, x) = i!

t∫
0

⎛⎝F 0
i (s, x) +

i−1∑
l=1

∑
b∈Sl

Bb∂
Lb
x F 0

i−l(s, x)

l∏
m=1

(
z0
m(s, x)

)bm

⎞⎠ds,

z
j
i (t, x) = i!

t∫
0

⎛⎝Fi(s, x) +
i−1∑
l=1

∑
b∈Sl

Bb∂
Lb
x Fi−l(s, x)

l∏
m=1

(zm(s, x))bm

⎞⎠ds

+i!
j∑

a=1

i−1∑
p=1

1

p!
∂p

∂εp

(
δa
i−p(A

p
a (x, ε), x)

) ∣∣∣
ε=0

,

(38)

for i = 2, . . . , k and j = 1, . . . , N . Notice that the formula (4) follows from (38) by induction on 
j . Therefore, the proof of Proposition 11 is concluded by proving the following claim:

Claim 1. For q = 1, . . . , k and j = 1, . . . , N , we have that 
∂qαj

∂εq
(x, 0) = α

q
j (x) where αq

j is 

provided by (4).
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Indeed, from (12), we get

α
q
j (x) = ∂q

∂εq

(
θj (ϕj−1(αj (x, ε), x, ε))

) ∣∣∣
ε=0

.

From (16) and the above expression, we obtain

α
q
j (x) = ∂q

∂εq

(
θj (x + h(x, ε))

) ∣∣∣
ε=0

,

where

h(x, ε) =
k∑

i=1

εi

i! z
j−1
i (αj (x, ε), x) + O

(
εk+1

)
.

Computing the expansion of h(x, ε), around ε = 0 up to order k − i, we get

h(x, ε) =
k∑

i=1

εi

i!
k−i∑
a=0

εa

a!
∂a

∂εa

(
z
j−1
i (αj (x, ε), x)

) ∣∣∣
ε=0

+ O(εk+1)

=
k∑

i=1

εi

i−1∑
a=0

1

(i − a)!a!
∂a

∂εa

(
z
j−1
i−a (αj (x, ε), x)

) ∣∣∣
ε=0

+ O(εk+1).

(39)

For i = 1, . . . , k, and j = 1, . . . , N , denote

w
j
i (x) =

i−1∑
a=0

1

(i − a)!a!
∂a

∂εa

(
z
j−1
i−a (αj (x, ε), x)

) ∣∣∣
ε=0

. (40)

Expanding θj (x + h(x, ε)) in Taylor series in h(x, ε), around h(x, ε) = 0 up to order k, we 
have

α
q
j (x) = ∂q

∂εq

(
θj (x) +

k∑
l=1

1

l!D
lθj (x)(h(x, ε))l + O

(
(h(x, ε))k+1

))∣∣∣∣∣
ε=0

= ∂q

∂εq

(
k∑

l=1

1

l!D
lθj (x)(h(x, ε))l

)∣∣∣∣∣
ε=0

.

(41)

Thus, replacing (40) into (39), and into (41), we obtain

α
q
j (x) = ∂q

∂εq

⎛⎝ k∑
l=1

1

l!D
lθj (x)

(
k∑

i=1

εiw
j
i (x) + O(εk+1)

)l
⎞⎠∣∣∣∣∣

ε=0

.

According to the multilinearity of Dlθj (x) and the above expression, we have
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α
q
j (x) = ∂q

∂εq

⎛⎝ k∑
l=1

1

l!D
lθj (x)

(
k∑

i=1

εiw
j
i (x))

)l

+ O(εk+1)

⎞⎠∣∣∣∣∣
ε=0

= ∂q

∂εq

⎛⎝ k∑
l=1

1

l!D
lθj (x)

(
k∑

i=1

εiw
j
i (x))

)l
⎞⎠∣∣∣∣∣

ε=0

.

From the above expression and Lemma 10, it writes

α
q
j (x) =

k∑
l=1

1

l!
kl∑

p=l

∂q

∂εq

(
εp

) ∣∣∣
ε=0

∑
u∈Sp,l

Dlθj (x)

(
l∏

r=1

w
j
ur

(x)

)
, (42)

where Sp,l = {
(u1, . . . , ul) ∈ (N∗)l : u1 + · · · + ul = p

}
.

Notice that

∂q

∂εq

(
εb
) ∣∣∣

ε=0
=

{
q!, p = q,

0, p �= q.

Thus, from this and (42), we obtain

α
q
j (x) =

k∑
l=q

q!
l!

∑
u∈Sq,l

Dlθj (x)

(
l∏

r=1

w
j
ur

(x)

)
. (43)

Note that if q < l and exist (b1, . . . , bl) ∈ Sq,l , then l ≤
l∑

t=1

bt = q < l. It is a contradiction, 

thus, Sq,l is empty for q < l. Then, from this fact, (40), and (43), it is writes

α
q
j (x) =

q∑
l=1

q!
l!

∑
u∈Sq,l

Dlθj (x)

(
l∏

r=1

w
j
ur

(x)

)
,

where

w
j

1(x) = z
j−1
1 (θj (x), x)

and applying the formula’s Faà di Bruno in (40), we have

w
j
i (x) = 1

i!z
j−1
i (θj (x), x)

+
i−1∑
a=1

∑
b∈Sa

1

(i − a)!b1!b2!2!b2 . . . ba !a!ba
∂

Lb
t z

j−1
i−a (θj (x), x)

a∏
m=1

(
αm

j (x)
)bm

.

This finishes the proof of Claim 1. �
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