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Abstract

In this work, we study the existence of positive solutions for the system

ðPÞ

�Dpu ¼ mf ðx; u; vÞ in RN ;

�Dpv ¼ mgðx; u; vÞ in RN ;

lim
jxj-N

uðxÞ ¼ 0 ¼ lim
jxj-N

vðxÞ;

8>><
>>:

where Dpu ¼ divðjrujp�2ruÞ is the p-Laplacian ð1opoNÞ: We prove that for 0ompm
*
ðPÞ

admits a positive solution and that ðPÞ has no positive solution for m4mn: In some case we can

have m
*
¼ mn because these parameters depend on p;N and the growth of f and g: The

existence result is related to a sub,super-solution methods and the nonexistence result is a

consequence of Picone’s identity.
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In this paper, we assume that 1opoN and we study the following nonlinear and
nonvariational elliptic system:

ðPÞ

�Dpu ¼ mf ðx; u; vÞ in RN ;

�Dpv ¼ mgðx; u; vÞ in RN ;

lim
jxj-N

uðxÞ ¼ 0 ¼ lim
jxj-N

vðxÞ;
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>>:
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where Dpu ¼ divðjrujp�2ruÞ is the p-Laplacian. We make some suitable hypo-

theses on the regularity and the growth of the functions f and g which will be
detailed later.

Here, we present necessary and sufficient conditions of existence for positive
solutions of Problem ðPÞ: More precisely:

* There exists some mnARþ
*
such that for mAð0; mn� ðPÞ admits a positive solution.

* Conversely, there exists some m
*
ARþ

*
such that ðPÞ has no positive solution for

m4m
*
:

In fact, these real parameters mn and m
*

depend on some weight functions

appearing in the problem. So if we choose correctly these weight functions, we obtain
a more precise result.

There exists m0ARþ
*

such that ðPÞ admits a positive solution if and only if

0ompm0: To treat this subject we employ two methods very different from each
other.

In the proof of existence for a positive solution, we use the sub,super-solution
method (see for example [4,8]). By the Mountain Pass Lemma, we prove the
existence of a nonnegative super-solution. Thanks to Serrin’s estimates [13], we can
apply the Vázquez’s strong maximum principle [14] to establish the positivity of this
solution. Moreover, we take ð0; 0Þ as a sub-solution.

Concerning the necessary condition, our work follows Maya and Shivaji’s
results [11] for the semi-linear case p ¼ 2: In their proof, the self-adjointness
of the usual Laplacian is essential. Since the p-Laplacian does not have this
property, we apply here the Dı́az–Saa’s inequality. We can find the proof of
this inequality in Dı́az and Saa’s article [5] for bounded domains and in Chaı̈b’s
paper [3] for unbounded domains; in fact it appears as a consequence of Picone’s
identity.

In this problem, the functions f and g satisfy the following hypotheses:
ðH1Þ f and g are Carathéodory functions, i.e.:

* ðr; sÞ/f ðx; r; sÞ and ðr; sÞ/gðx; r; sÞ are continuous on ½0;þNÞ2 for almost every

xARN ;
* x/f ðx; r; sÞ and x/gðx; r; sÞ are measurable.

ðH2Þ For all u; vX0 there exist two smooth positive functions A;BAL
N
p ðRNÞ

-LNðRNÞ such that

f ðx; u; vÞXAðxÞvp�1 a:e: in RN ;

gðx; u; vÞXBðxÞup�1 a:e: in RN :
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ðH3Þ For all u; vX0 there exist four smooth functions a; cALdðRNÞ-LNðRNÞ and
b; dALd0 ðRNÞ-LNðRNÞ such that

0pf ðx; u; vÞp1
2

aðxÞðuq�1 þ vq�1Þ þ bðxÞ a:e: in RN ;

0pgðx; u; vÞp1
2

cðxÞðuq�1 þ vq�1Þ þ dðxÞ a:e: in RN ;

where

d ¼ NpðNp � qðN � pÞÞ�1; d0 ¼ NpðNp � N þ pÞ�1;

poqopn and 1opoN;

a; b; c and d are nonnegative functions non identically zero;

jAþj :¼ jfxARN such that a40gj40;

jCþj :¼ jfxARN such that c40gj40:

ðH4Þ The function x/f ðx; 0; 0Þ þ gðx; 0; 0Þ is not identically zero.

1. Sufficient condition of existence

In the following, we can assume without loss of generality that a 
 c and b 
 d; we

also define the space D1;pðRNÞ as the closure of the set CN

c ðRNÞ for the norm

jjujjD1;pðRN Þ ¼
Z
RN

jrujp dx

� �1
p

:

We introduce the nonhomogeneous problem

ðVp;qÞ � Dpf ¼ mqaðxÞjfjq�2 in RN :

Resolving this problem, we obtain

mq :¼ inf
fAGq

1

p

Z
RN

jrfjp dx

� 	
;

where Gq :¼ ffAD1;pðRNÞ such that fc0 and 1
q

R
RN aðxÞjfjq dx ¼ 1g:

We can see more details on the properties of mq in [9]; in particular, there exists a

unique minimizer of I : u/1
p

R
RN jrujp dx on the set Gq:
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Theorem 1. Under Hypotheses ðH1Þ; ðH3Þ and ðH4Þ; if m satisfies

0ompmin
p

q
mq; 2

p

q
CðN; pÞqjjajjLdðRN Þ þ 2pCðN; pÞjjbjjLd0 ðRN Þ

� ��1
 !

;

where CðN; pÞ is the Sobolev’s constant, then Problem ðPÞ admits a nontrivial

nonnegative solution.
Moreover, by Hypothesis ðH3Þ; if ðu; vÞ is a nonnegative solution of ðPÞ; then for all

r40; there exist a; gAð0; 1Þ such that ðu; vÞAC1;aðBrÞ � C1;gðBrÞ and u40; v40

on RN :

To prove the existence of a solution for Problem ðPÞ; we have to prove the
existence of sub, super-solution pair.

Definition 1 (Dı́az and Hernández [4]). ðu0; v0Þ � ðu0; v0Þ is a sub,super-solution of
ðPÞ if these functions satisfy:

(S1) ðu0; v0ÞAðD1;pðRNÞÞ2 and ðu0; v0ÞAðD1;pðRNÞÞ2;
(S2) u0pu0 and v0pv0;
(S3) �Dpu0 � mf ðx; u0; vÞp0p� Dpu0 � mf ðx; u0; vÞ for all v in ½v0; v0�;
(S4) �Dpv0 � mgðx; u; v0Þp0p� Dpv0 � mgðx; u; v0Þ for all u in ½u0; u0�:

Proof. First, Hypothesis ðH3Þ implies obviously that ð0; 0Þ is a sub-solution of ðPÞ:
But ð0; 0Þ is not a solution of this problem by Hypothesis ðH4Þ: So, it only remains
to prove the existence of a nonnegative super-solution of ðPÞ: By ðH3Þ; we have to
look for a nonnegative solution of the system:

�Dpu ¼ mð1
2

aðxÞðjujq�2
u þ jvjq�2

vÞ þ bðxÞÞ in RN ;

�Dpv ¼ mð1
2

aðxÞðjujq�2
u þ jvjq�2

vÞ þ bðxÞÞ in RN :

(

The above system being symmetric, we can seek a solution of the form u 
 v 
 w

where w is a solution of

�Dpw ¼ mðaðxÞjwjq�2
w þ bðxÞÞ in RN : ðP0Þ

To prove the existence of solution of ðP0Þ; we will apply the Mountain Pass
Lemma (see for example [12]) to the energy functional

JðwÞ ¼ 1

p

Z
RN

jrwjp dx � m
q

Z
RN

aðxÞjwjq dx � m
Z
RN

bðxÞw dx:

The facts that D1;pðRNÞ is a reflexive Banach space and that J is a continuous

function in C1ðD1;pðRNÞ;RÞ satisfying the Palais–Smale condition are basic results
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(see [10,12]). It remains to verify the two following claims to prove that the
functional J has a mountain pass geometry:

(C1) There exist R40 and a40 such that jjujjD1;pðRN Þ ¼ R implies JðuÞXa;

(C2) There exists u0AD1;pðRNÞ such that jju0jjD1;pðRN Þ4R and Jðu0Þoa:

(C1) Let
R
RN jrwjp ¼ 1

JðwÞ ¼ 1

p
� m

q

Z
RN

aðxÞjwjq dx � m
Z
RN

bðxÞw dx:

By Hölder inequality and Sobolev embeddings, we get

JðwÞX1

p
� m

q
CðN; pÞqjjajjLdðRN Þ � mCðN; pÞjjbjjLd0 ðRN Þ;

where CðN; pÞ is the Sobolev constant.

So, when mpð2 p
q

CðN; pÞqjjajjLdðRN Þ þ 2pCðN; pÞjjbjjLd0 ðRN ÞÞ
�1; if we choose

the constants R ¼ 1 and a ¼ 1
p
� m

q
CðN; pÞqjjajjLdðRN Þ � mCðN; pÞjjbjjLd0 ðRN Þ; the

functional J satisfies the first condition.
(C2) Let wACN

0 ðRNÞ be fixed such that w40 on Aþ and wX0 on RN : For all kX0

we have

JðkwÞ ¼ kp

p

Z
RN

jrwjp dx � m
q

kq

Z
RN

aðxÞjwjq dx � mk

Z
RN

bðxÞw dx:

As a40 on Aþ and q4p41; we obtain

JðkwÞ tends to�N as k tends toþN:

So putting w0 ¼ kw; there exists some k great enough so that jjw0jjD1;p4R and

Jðw0Þoa which is exactly condition (C2).
By Mountain Pass Lemma, we have obtained the existence of a solution for

Problem ðP0Þ: But before affirming that this solution is a super-solution of ðPÞ; it
remains to prove that it is a nonnegative solution, i.e. greater than the sub-solution.

Let w� ¼ maxð0;�wÞ where wAD1;pðRNÞ is a solution of ðP0Þ

�Dpw ¼ mðaðxÞjwjq�2
w þ bðxÞÞ in RN :

Assuming that w�c0; we multiply Eq. (P0) by w� and integrate on RN :Z
RN

jrwjp�2rwrw� dx ¼ m
Z
RN

aðxÞjwjq�2
ww� dx þ m

Z
RN

bðxÞw� dx

Z
RN

jrw�jp dx ¼ m
Z
RN

aðxÞjw�jq dx � m
Z
RN

bðxÞw� dx: ð1Þ

K. Cha.ıb / J. Differential Equations 189 (2003) 513–525 517



Since bX0 we obtain Z
RN

jrw�jp dxpm
Z
RN

aðxÞjw�jq dx:

We can assume that 1
q

R
RN aðxÞjw�jq dx ¼ 1 because w�c0 and ac0: Now we choose

m small enough so that mpp
q
mq and then

Z
RN

jrw�jp dxppmq: ð2Þ

But, by the definition of mq; for all f in Gq we have mqp1
p

R
RN jrfjp dx:

Since there exists a unique minimizer of I on Gq(see [9]), we have w� ¼ f and by

Eq. (1) it implies that b 
 0 which contradicts ðH3Þ; so wX0:
Finally, after this study, we can apply the results of the sub,super-solution

method.
Indeed, ð0; 0Þ � ðw;wÞ is a sub,super-solution pair for the problem ðPÞ:

(S1) wAD1;pðRNÞ;
(S2) 0pw;
(S3) By ðH3Þ;

�mf ðx; 0; vÞp0 for all v in ½0;w�:

Moreover, for all v in ½0;w� we have

�Dpw � mf ðx;w; vÞ ¼ mðaðxÞwq�1 þ bðxÞ � f ðx;w; vÞÞ

Xmð1
2

aðxÞðwq�1 þ vq�1Þ þ bðxÞ � f ðx;w; vÞÞ

X 0:

(S4) In the same way, for all u in ½0;w� we obtain

�mgðx; u; 0Þp0

and

�Dpw � mgðx; u;wÞX0:

Now, we will use the Leray–Schauder’s fixed point theorem to prove the existence
and the uniqueness of the positive solution of ðPÞ:

We denote E ¼ ðLp * ðRNÞÞ2 with pn ¼ Np
N�p

and K ¼ ½u0; u0� � ½v0; v0� ¼ Ku � Kv

and we define the operator T : K-E by

for all ð %u; %vÞ in K ;
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ðw; zÞ ¼ Tð %u; %vÞ is the unique solution of the decoupled system ðSdÞ:

ðSdÞ
�Dpw þ MkðxÞjwjq�2

w ¼ mf ðx; %u; %vÞ þ MkðxÞ %uq�1 in RN ;

�Dpz þ MkðxÞjzjq�2
z ¼ mgðx; %u; %vÞ þ MkðxÞ%vq�1 in RN

(

with kALdðRNÞ-LNðRNÞ and for all R40 there exists eR such that inf
BR

kðxÞ4eR:

The operator T has a fixed point in K if the four following assertions are
satisfied:

(LS1) K is a convex, bounded and closed set in E:
(LS2) T is well defined on K :
(LS3) K is stable by T ; i.e. TðKÞCK :
(LS4) T is a compact operator.

(LS1) It is easy to verify the first point because u0; u0; v0 and v0 are in D1;pðRNÞ
which is a reflexive Banach space.

(LS2) To prove that T is well defined is equivalent to prove that problem ðSdÞ
admits a unique solution for all ð %u; %vÞ in K :

As we are considering a decoupled system, we only have to study the existence and
uniqueness of the solution for every equation separately. We state

Jf ðwÞ ¼
Z
RN

jrwjp dx þ M

Z
RN

kðxÞjwjq dx �
Z
RN

f̃ðxÞw dx

and

JgðzÞ ¼
Z
RN

jrzjp dx þ M

Z
RN

kðxÞjzjq dx �
Z
RN

g̃ðxÞz dx;

where f̃ðxÞ ¼ mf ðx; %u; %vÞ þ MkðxÞ %uq�1; g̃ðxÞ ¼ mgðx; %u; %vÞ þ MkðxÞ%vq�1:

Jf and Jg are C1ðD1;pðRNÞ;RÞ; lower weakly semi-continuous, strictly convex and

coercive on D1;pðRNÞ: These properties imply the existence of a unique couple
solution of ðSdÞ:

Since f̃; g̃X0; we apply the Vázquez’s strong maximum principle and we obtain
that these solutions are positive (see for example [2]).

(LS3) For the stability of K by T ; we are going to prove that wXu0 because the
other inequalities can be proved by the same way.

The pair ðu0; v0Þ is a sub-solution of problem ðPÞ and satisfies

�Dpu0 � mf ðx; u0; vÞp0 8vA½v0; v0�;
�Dpv0 � mgðx; u; v0Þp0 8uA½u0; u0�:

(
ð3Þ
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The pair ðw; zÞ is defined by ðw; zÞ ¼ Tð %u; %vÞ where ð %u; %vÞAK and satisfies

�Dpw þ MkðxÞwq�1 ¼ mf ðx; %u; %vÞ þ MkðxÞ %uq�1;

�Dpz þ MkðxÞzq�1 ¼ mgðx; %u; %vÞ þ MkðxÞ%vq�1:

(
ð4Þ

Since ð %u; %vÞ is in K we have

�Dpw þ MkðxÞwq�1
Xmf ðx; %u; %vÞ þ MkðxÞuq�1

0 ;

�Dpz þ MkðxÞzq�1
Xmgðx; %u; %vÞ þ MkðxÞvq�1

0 :

(
ð5Þ

We multiply the first equations of (3) and (5) by ðu0 � wÞþ ¼ maxð0; u0 � wÞ;
we integrate on RN and subtract the inequalities obtained. We assume that

ðu0 � wÞþc0;

0X

Z
RN

ð�Dpu0 þ DpwÞðu0 � wÞþ dx þ
Z
RN

½mðf ðx; %u; %vÞ � f ðx; u0; %vÞÞ

þ MkðxÞðuq�1
0 � wq�1Þ�ðu0 � wÞþ dx:

Since kðxÞðuq�1
0 � wq�1Þðu0 � wÞþc0; we can choose M such that the second

integral is positive. So

Z
RN

ð�Dpu0 þ DpwÞðu0 � wÞþ dxo0;

which contradicts the monotonicity of the operator �Dp (see [6, Chapter 1]);

consequently, ðu0 � wÞþ ¼ 0; i.e., u0pw: We have proved that K is stable by T :
(LS4) Now, we have to prove that T is continuous from K to K and T

maps bounded subsets of K into conditionally compact subsets of K : We will see in
details the second point; concerning the continuity, the proof uses the same
ingredients.

Let ð %un; %vnÞnAN be a sequence in K converging weakly to ð %u; %vÞ for the norm of

ðLp* ðRNÞÞ2: By the preceding point, we can say that ðTð %un; %vnÞÞnAN ¼
ðwn; znÞnANCK : For example, we will prove that there exists a sub-sequence

ðwnÞnAN which converges strongly in Ku for the norm of Lp* ðRNÞ; for the

convergence in Kv of the other sequence ðznÞnAN the method is the same.

First, we prove that the sequence ðwnÞnAN is bounded in Ku for the norm of

D1;pðRNÞ by estimating

In :¼
Z
RN

jrwnjp dx þ M

Z
RN

kðxÞwq
n dx:
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In ¼ m
Z
RN

f ðx; %un; %vnÞwn dx þ M

Z
RN

kðxÞ %uq�1
n wn dx

p m
Z
RN

f ðx; %un; %vnÞu0 dx þ M

Z
RN

kðxÞu0q dx

p
m
2

Z
RN

aðxÞ ðu0q þ v0q�1u0Þ dx

þ m
Z
RN

bðxÞu0 dx þ M

Z
RN

kðxÞu0q dx

pCðm;MÞ½jjajjLdðRN Þðjju0jjq
Lp

* ðRN Þ þ jjv0jjq
Lp

* ðRN ÞÞ

þ jjbjjLd0 ðRN Þjju0jjLp
* ðRN Þ þ jjkjjLdðRN Þjju0jjq

Lp
* ðRN Þ�:

Because aALdðRNÞ; bALd0 ðRNÞ; kALdðRNÞ; u0; v0ALp* ðRNÞ; there exists C40
such that Z

RN

jrwnjp dxoC:

We can extract a sub-sequence also denoted by ðwnÞnAN converging weakly in

D1;pðRNÞ: Then ðwnÞnAN converges strongly in LsðBRÞ for all R40 and all sppn so it

converges almost everywhere in RN and is dominated by the super-solution u0:

Consequently, it converges in Ku for the norm of LpnðRNÞ:
We do the same work for ðznÞnAN; so we prove that the operator T : K-KCE ¼

ðLp* ðRNÞÞ2 is compact.
After these proofs, we apply the Leray–Schauder’s fixed point theorem to this

operator T : So, there exists ðu; vÞ in K such that ðu; vÞ ¼ Tðu; vÞ: It signifies that ðu; vÞ
is a nonnegative solution of ðPÞ:

Moreover, by maximum principle and by some regularity results, we prove that
the nonnegative solution ðu; vÞ is positive. We only have to use the Vázquez strong
maximum principle. Indeed since m40 and ðH3Þ is satisfied, we have �DpuX0 and

�DpvX0: Vázquez’s strong maximum principle [14] says that if the problem admits a

nontrivial smooth solution ðC1;g
locðRNÞÞ satisfying uX0; vX0 on RN then this solution

is positive: u40; v40 on RN : &

2. Necessary condition of existence

Recall the problem we study in this paper

ðPÞ

�Dpu ¼ mf ðx; u; vÞ in RN ;

�Dpv ¼ mgðx; u; vÞ in RN ;

lim
jxj-N

uðxÞ ¼ 0 ¼ lim
jxj-N

vðxÞ:

8>><
>>:
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We also consider the eigenvalue problem

ðVpÞ � Dpf ¼ l1CðxÞfp�1 in RN

with CAL
N
p ðRNÞ-LNðRNÞ; Cc0 and AðxÞXCðxÞX0 a.e. in RN :

The properties of the principal eigenvalue of Problem ðVpÞ are studied by

Fleckinger et al. [7]. In particular, there exists a positive eigenfunction in D1;pðRNÞ
corresponding to the first eigenvalue l1: In this section, we can assume without loss
of generality that A 
 C:

Theorem 2. We assume that Hypotheses ðH1Þ and ðH2Þ are satisfied. If ðu; vÞ is a

positive solution in ðD1;pðRNÞ-C
1;g
locðR

NÞÞ2 ð0ogo1Þ of ðPÞ then mpl1; where l1 is

the first eigenvalue of ðVpÞ:

When we study ðPÞ on a bounded domain O and only in this case, we can apply

Dı́az–Saa’s inequality to positive solutions in D1;pðOÞ-C
1;g
locðOÞ ðgAð0; 1Þ). But, if

O ¼ RN we can use a method introduced in [7] by Fleckinger et al. or in [2] by
Bechah et al. We simplify this proof by using Picone’s identity which is presented by
Allegretto and Huang [1] with some applications.

Lemma 1 (Picone identity). Let v40; uX0 differentiable. Let

Lðu; vÞ ¼ jrujp þ ðp � 1Þ up

vp
jrvjp � p

up�1

vp�1
ru � rvjrvjp�2;

Rðu; vÞ ¼ jrujp �r up

vp�1

� �
jrvjp�2rv:

Then Lðu; vÞ ¼ Rðu; vÞX0:
Moreover, Lðu; vÞ ¼ 0 a.e. on O if and only if rðu

v
Þ ¼ 0 a.e. on O:

The reader can see the proof of this lemma in Allegretto and Huang’s paper [1] or
in Chaı̈b’s one [3].

Proof of Theorem 2. We consider a sequence of nonnegative functions ðfnÞnAN in

CN

0 ðRNÞ converging to f for the norm of D1;pðRNÞ; where f is a positive

eigenfunction associated to l1 for Problem ðVpÞ: Such a sequence exists because

CN

0 ðRNÞ is dense in D1;pðRNÞ: Since ðu; vÞ is a positive solution of ðPÞ; we apply

Picone’s identity to the functions fn; u and fn; v; next we add the inequalities
obtained

0p
Z
RN

Lðfn; uÞ dx þ
Z
RN

Lðfn; vÞ dx
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0p
Z
RN

Rðfn; uÞ dx þ
Z
RN

Rðfn; vÞ dx

0p
Z
RN

jrfnj
p

dx �
Z
RN

r fp
n

up�1

� �
jrujp�2ru dx

þ
Z
RN

jrfnj
p

dx �
Z
RN

r fp
n

vp�1

� �
jrvjp�2rv dx:

We can take
fp

n

up�1 and
fp

n

vp�1 as test functions because fnACN

0 ðRNÞ; u40 and v40: So

we apply the divergence theorem and we obtain

0p2

Z
RN

jrfnj
p

dx þ
Z
RN

fp
n

up�1
Dpu dx þ

Z
RN

fp
n

vp�1
Dpv dx;

0p2

Z
RN

jrfnj
p

dx � m
Z
RN

fp
n

up�1
f ðx; u; vÞ dx � m

Z
RN

fp
n

vp�1
gðx; u; vÞ dx:

Hypothesis ðH2Þ; f ðx; u; vÞXAðxÞvp�1 and gðx; u; vÞXAðxÞup�1 give

0p2

Z
RN

jrfnj
p

dx � m
Z
RN

AðxÞ fp
n

up�1
vp�1 dx � m

Z
RN

AðxÞ fp
n

vp�1
up�1 dx:

Since up�1

vp�1 þ vp�1

up�1X2; we have

0p2

Z
RN

jrfnj
p

dx � m
Z
RN

AðxÞfp
n dx

� �
:

Taking n-N in the last inequality, ðfnÞnAN converges to f in D1;pðRNÞ; so

ðfnÞnAN converges to f in LpnðRNÞ and ðfp
nÞnAN converges to fp in L

pn

p ðRNÞ: We

therefore obtainZ
RN

AðxÞðfp
n � fpÞ dxpjjAjj

L

N
p ðRN Þ

jjfp
n � fpjj

L

pn

p ðRN Þ
tends to 0 as n-N:

And finally Z
RN

jrfjp dxXm
Z
RN

AðxÞfp dx:

Now, by using the fact that f is a positive eigenfunction associated to the eigenvalue
l1; we arrive to the expected result

mpl1: &
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Remark. In fact, in this paper we have shown:

* If mpminðp
q
mq; ð2 p

q
CðN; pÞqjjajjLdðRN Þ þ 2pCðN; pÞjjbjjLd0 ðRN ÞÞ

�1Þ then ðPÞ admits

a positive solution.
* If ðPÞ admits a positive solution then mpl1:

If we choose the functions a and b such that jjajjLd0 ðRN Þ and jjbjjLd0 ðRN Þ be small

enough we have

min
p

q
mq; 2

p

q
CðN; pÞqjjajjLdðRN Þ þ 2pCðN; pÞjjbjjLd0 ðRN Þ

� ��1
 !

¼ p

q
mq:

Moreover, denoting by fq the solution of ðVp;qÞ associated to mq we haveZ
RN

jrfqj
p

dx ¼ p

q
mq

Z
RN

aðxÞjfqj
q

dx:

Since l1 is the first eigenvalue of ðVpÞ; we haveZ
RN

jrfqj
p

dxXl1

Z
RN

CðxÞjfqj
p

dx:

If we take a such that
R
RN aðxÞjfqj

q
dxp

R
RN CðxÞjfqj

p
dx we obtain l1pp

q
mq:

Finally, for m0 ¼ l1; we obtain the following:

ðPÞ admits a positive solution if and only if 0ompm0:
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