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Abstract

In this work, we study the existence of positive solutions for the system

—Ayu = uf(x,u,v) in RY,
(2) —A,v = pg(x,u,v) in RY,
lim wu(x)=0= lim ov(x),
[x| = o0 [x| = o0
where Apu = div(|Vul*Vu) is the p-Laplacian (1<p<N). We prove that for 0<u<u, (2)
admits a positive solution and that () has no positive solution for x> y*. In some case we can
have u, = u* because these parameters depend on p, N and the growth of f and g. The

existence result is related to a sub,super-solution methods and the nonexistence result is a
consequence of Picone’s identity.
© 2002 Elsevier Science (USA). All rights reserved.
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In this paper, we assume that 1 <p <N and we study the following nonlinear and
nonvariational elliptic system:

—Ayu = pf (x,u,v) in RV,

(2){ —Ap = pg(x,u,v) in RV,
lim wu(x)=0= lim ov(x),
x| = o0 [x| = o0
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where A,u = div(|Vul’ “*Vu) is the p-Laplacian. We make some suitable hypo-
theses on the regularity and the growth of the functions f and g which will be
detailed later.

Here, we present necessary and sufficient conditions of existence for positive
solutions of Problem (#). More precisely:

® There exists some x*eR? such that for ue (0, 1*] (2) admits a positive solution.
e Conversely, there exists some u, € RT such that (2) has no positive solution for

In fact, these real parameters p* and u, depend on some weight functions

appearing in the problem. So if we choose correctly these weight functions, we obtain
a more precise result.
There exists pyeR! such that (#) admits a positive solution if and only if

0<u<py. To treat this subject we employ two methods very different from each
other.

In the proof of existence for a positive solution, we use the sub,super-solution
method (see for example [4,8]). By the Mountain Pass Lemma, we prove the
existence of a nonnegative super-solution. Thanks to Serrin’s estimates [13], we can
apply the Vazquez’s strong maximum principle [14] to establish the positivity of this
solution. Moreover, we take (0,0) as a sub-solution.

Concerning the necessary condition, our work follows Maya and Shivaji’s
results [11] for the semi-linear case p = 2. In their proof, the seclf-adjointness
of the usual Laplacian is essential. Since the p-Laplacian does not have this
property, we apply here the Diaz—Saa’s inequality. We can find the proof of
this inequality in Diaz and Saa’s article [5] for bounded domains and in Chaib’s
paper [3] for unbounded domains; in fact it appears as a consequence of Picone’s
identity.

In this problem, the functions f and g satisfy the following hypotheses:

(A1) f and g are Carathéodory functions, i.e.:

® (r,5)—f(x,r,s)and (r,s)— g(x, r,s) are continuous on [0, +o0)* for almost every

xeRY,
® x> f(x,r,s) and x+—g(x,r,s) are measurable.

N
(#2) For all u,v=0 there exist two smooth positive functions 4, BeL? (R")
A L% (RY) such that

fx,u,0)=A(x)"" ae. in RV,

g(x,u,v)=B(x)u’! ae. in RV,
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(#°3) For all u, v>0 there exist four smooth functions a, ce L*(RY) n L* (RY) and
b,de LY (RV)nL*(RM) such that

0</f(x,u,v)<Fa(x)(w!' +v97") + b(x) ae. in RY,

0<g(x,u,v)<e(x) (' +v7 ") +d(x) ae. in RY,
where

0=Np(Np—q(N =p))"', & =Np(Np—N+p)",
p<g<p® and 1<p<N,
a,b,c and d are nonnegative functions non identically zero,
|/ ™| = |{xeR" such that a>0}|>0,

|67| = |{xeR" such that ¢>0}|>0.

(A#4) The function x—f(x,0,0) + g(x,0,0) is not identically zero.

1. Sufficient condition of existence

In the following, we can assume without loss of generality that a = c and b = d; we
also define the space D'?(R") as the closure of the set C*(RY) for the norm

1
P
el o, = ( /R vl dx) .

We introduce the nonhomogeneous problem
(7 pg) — Bpd = an(x)|¢|q_2 in RV,

Resolving this problem, we obtain

1
— 1 _ X7 P
Ha = ¢1£1f:q {P /RN Vel dx}7

where I', = {¢e D'?(R") such that $#0 and }IfRN a(x)|p|? dx = 1}.
We can see more details on the properties of y, in [9]; in particular, there exists a
unique minimizer of 7: w7 [on [Vul” dx on the set I'.
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Theorem 1. Under Hypotheses (#'1),(#'3) and (#'4), if u satisfies
p P -
0<p<min (q Ky (Zq C(va)q||a”L5(RN) + 2PC(N»P)||b||Lé’<RN)) ) )

where C(N,p) is the Sobolev’s constant, then Problem () admits a nontrivial
nonnegative solution.

Moreover, by Hypothesis (#3), if (u,v) is a nonnegative solution of (), then for all
r>0, there exist o,y€(0,1) such that (u,v)e C'*(B,) x C'(B,) and u>0,v>0
on RV,

To prove the existence of a solution for Problem (), we have to prove the
existence of sub, super-solution pair.

Definition 1 (Diaz and Hernandez [4]). (ug,v) — (u°,1°) is a sub,super-solution of
(2) if these functions satisfy:

(S (up,v9) € (D'7(RY))* and (u°,1°) € (D'?(RY))?;
(S2) up<u® and vy <Y

(S3) —Ayug — pf (x, up,v) <
(54) —A,v0 — ug(x,u,v9) <

0< — A — uf (x,u°,v) for all v in [vg,1°);
0< — A" — pug(x,u,v°) for all u in [ug, u°).

Proof. First, Hypothesis (#°3) implies obviously that (0, 0) is a sub-solution of ().
But (0,0) is not a solution of this problem by Hypothesis (##4). So, it only remains
to prove the existence of a nonnegative super-solution of (2). By (#°3), we have to
look for a nonnegative solution of the system:

{ —Apu = pu( a(x)(jul"%u + |o]" %) + b(x)) in RY,
—Apv = (S a(x)(ul’*u+ [v]**v) + b(x)) in RY.

The above system being symmetric, we can seek a solution of the formu=v=w
where w is a solution of

—Aw = p(a(x)|w|* w4 b(x)) in RY. (2°)

To prove the existence of solution of (#°), we will apply the Mountain Pass
Lemma (see for example [12]) to the energy functional

J(w) :1/ [Vwl|? dx—H/ a(x)|w|! dx—,u/ b(x)w dx.
DY q./rY RY

The facts that D'?(RY) is a reflexive Banach space and that J is a continuous
function in C'(D'?(RY), R) satisfying the Palais-Smale condition are basic results
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(see [10,12]). It remains to verify the two following claims to prove that the
functional J has a mountain pass geometry:

(C1) There exist R>0 and a>0 such that ||u[| pi,gv) = R implies J(u) >a;
(C2) There exists uye D'?(R") such that |[u0]] prr vy > R and J (up) <a.
(C1) Let [ [Vwf =1

J(w) :l_ﬁ/ a(x)|w|? dx—,u/ b(x)w dx.
P qJ)rY RY

By Holder inequality and Sobolev embeddings, we get

1 p
NW>;—gquﬂwmmw—ﬂqumbmmw

where C(N,p) is the Sobolev constant.

So, when M<(2§C(N,p)q||a||Lé(RN) +2pC(N,p)||b||L5/(RN))7l, if we choose
the constants R=1 and a = 117 - C(N,p)lall pswry — HC(N, p)||b|| 7 g, the
functional J satisfies the first condition.

(C2) Let we Cy° (R") be fixed such that w>0 on /" and w=0 on R". For all k>0
we have

P
J(kw) :k_/v|Vw|P dx—ﬁk‘f/ “a(x)w|! dx—,uk/ b(x)w dx.
P JrY q RY RY

As a>0 on .«/" and ¢>p>1, we obtain
J(kw) tends to — oo as k tends to 4 oo.
So putting w® = kw, there exists some k great enough so that |[w°[|,, >R and
J(w") <a which is exactly condition (C2).

By Mountain Pass Lemma, we have obtained the existence of a solution for
Problem (#°). But before affirming that this solution is a super-solution of (2), it

remains to prove that it is a nonnegative solution, i.e. greater than the sub-solution.
Let w™ = max (0, —w) where we D'?(RY) is a solution of (2")

—A,w = p(a(x)|w|?w + b(x)) in RY.

Assuming that w~ #0, we multiply Eq. (#°) by w™ and integrate on R".

/ Vw2V wVw ™ dx = u/ a(x) w2 ww™ dx + u/ b(x)w™ dx
RN RN RN

/ [Vw™ P dx = ,u/ a(x)jw™|"dx — ,u/ b(x)w™ dx. (1)
RN IRN IRN
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Since b>0 we obtain
/ |[Vw™ P dx<u/ a(x)|w™ |7 dx.
RN RN

We can assume that }IfRN a(x)|w~|?dx = 1 because w~ #0 and a#0. Now we choose
w small enough so that ,uglé,uq and then

/RN [Vw™ " dx<pu,. (2)

But, by the definition of y,, for all ¢ in I'; we have u, S%fRN V| dx.

Since there exists a unique minimizer of / on I'y(see [9]), we have w™ = ¢ and by
Eq. (1) it implies that » = 0 which contradicts (#73); so w=0.

Finally, after this study, we can apply the results of the sub,super-solution
method.

Indeed, (0,0) — (w,w) is a sub,super-solution pair for the problem (2):

(S1) weD'"?(RN);

(S2) 0<w;
(S3) By (£3),

—uf(x,0,0)<0 for all v in [0, w].
Moreover, for all v in [0, w] we have
—Apw — pf (x, w,0) = p(a(x)wi" + b(x) — 1 (x, w,v))
> ub ()™ + o9Y) + b(x) — £ (x, w, )
=0.
(S4) In the same way, for all u in [0, w] we obtain
—ug(x,u,0)<0
and
—Aw — ug(x,u,w)=0.

Now, we will use the Leray—Schauder’s fixed point theorem to prove the existence
and the uniqueness of the positive solution of (2).

We denote E = (L/*(RV))* with p* = NN—f’p and K = [ug,u’] x [v9,0"] = K, x K,
and we define the operator 7 : K — E by

for all (@#,7) in K,
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(w,z) = T(a, ) is the unique solution of the decoupled system ().

(& —Agw + Mk(x)|w]|"w = uf (x,@,7) + Mk(x)ad~" in RV,
—Ayz + Mk(x)|2| 2 = pg(x, @, 0) + Mk(x)5¢~" in RY

with ke L(RY)nL* (R") and for all R>0 there exists ¢z such that inf k(x)>eg.
R

The operator T has a fixed point in K if the four following assertions are
satisfied:

(LS1) K is a convex, bounded and closed set in E.
(LS2) T is well defined on K.

(LS3) K is stable by T, i.e. T(K)<=K.

(LS4) T is a compact operator.

(LS1) It is easy to verify the first point because uy, u°, vy and v° are in D'?(R")
which is a reflexive Banach space.

(LS2) To prove that T is well defined is equivalent to prove that problem (%)
admits a unique solution for all (,7) in K.

As we are considering a decoupled system, we only have to study the existence and
uniqueness of the solution for every equation separately. We state

Jf(w):/ |Vl dx+M/ k(x)|w|qu7/ flx)wdx
RN RN RN
and
J,(2) :/ V2P dx+M/ k(x)\z|qu—/ d(x)z dx,
[RN RN RN

where f(x) = pf (x, @, 5) + Mk(x)a’™", §(x) = ug(x, @, ) + Mk(x)p/~".

Jr and J, are C'(D'?(R"), R), lower weakly semi-continuous, strictly convex and
coercive on D'P(RY). These properties imply the existence of a unique couple
solution of ().

Since £, §=>0, we apply the Vazquez's strong maximum principle and we obtain
that these solutions are positive (see for example [2]).

(LS3) For the stability of K by T, we are going to prove that w>u, because the
other inequalities can be proved by the same way.

The pair (u, vo) is a sub-solution of problem (2) and satisfies

0 (3)

—Apug — uf (x,u9,v) <O Voe vy, 1",
—Ayvg — pg(x,u,v0) <O Vueug,u’].
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The pair (w, z) is defined by (w,z) = T'(&1,7) where (&, 5) e K and satisfies

—Apw + Mk(x)wi™! = uf (x, @, D) + Mk(x)al™!, ()
—Apz + Mk(x)z97! = pg(x, @, 8) + Mk(x)p77".

Since (i1, 7) is in K we have
—Apw + Mk(x)wi=' = pf (x, 1, 8) + Mk(x)ul ", )
—Ayz 4+ Mk(x)297" = ug(x, @, ) + Mk(x)vl "

We multiply the first equations of (3) and (5) by (1o — w)" = max(0,uy — w),
we integrate on RY and subtract the inequalities obtained. We assume that
(U() - 111)+ ioa

0= /RN(_APMO + Apw) (up — w)+ dx + /R [(f (x,,0) — f(x,uo,D))

N

+ Mk(x) (@l = wi )] (o — w) " dx.

Since k(x)(ul™" — wi ") (up — w)"#£0, we can choose M such that the second
integral is positive. So

/ (—=Apup + Ayw) (g — w) ™ dx <0,
RY

which contradicts the monotonicity of the operator —A, (see [6, Chapter 1]);
consequently, (g —w)" =0, i.e., uy<w. We have proved that K is stable by T

(LS4) Now, we have to prove that 7T is continuous from K to K and T
maps bounded subsets of K into conditionally compact subsets of K. We will see in
details the second point; concerning the continuity, the proof uses the same
ingredients.

Let (i,,0,),.n be a sequence in K converging weakly to (&,7) for the norm of
(LP*(RY))2. By the preceding point, we can say that (T (i, Bn)) yen =
(Wi, Zn)eny =K. For example, we will prove that there exists a sub-sequence
(Wp),en, Which converges strongly in K, for the norm of L’*(RY); for the
convergence in K, of the other sequence (z,),. the method is the same.

First, we prove that the sequence (w,),.n is bounded in K, for the norm of
D'?(R") by estimating

I, = / [Vw,lf dx + M/ k(x)wi dx.
RV RY
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I, = / S (x, iy, By) Wy dx + M k(x )uZ‘lwn dx
R’V

< ,u/ S, i, 5w dx 4+ M | k(x)u’ dx
RY

RY
< E/ a(x) (" + ") dx
2 [RN
+ ,u/ b(x)u® dx+M/ k() dx
RN RN

< Clp, M)l s g (11 il’*<R,v

101 )

+ 11811 vy 1] - ) + 11K

L3(RY) ||”O||Lp* RY) ]

Because ae L°(RY), be LY (RY), ke LY(RY), u°,1°e LP*(RV), there exists C>0
such that

/ [Vw,|" dx< C.
RV

We can extract a sub-sequence also denoted by (w,),. 5 converging weakly in
D'?(RN). Then (w), . converges strongly in L*(Bg) for all R>0 and all s<p* so it
converges almost everywhere in R and is dominated by the super-solution u°.
Consequently, it converges in K,, for the norm of LP*(RN ).

We do the same work for (z,), ., S0 we prove that the operator T: K —>Kc E =
(L7* (RM))? is compact.

After these proofs, we apply the Leray—Schauder’s fixed point theorem to this
operator T'. So, there exists (#,v) in K such that (u,v) = T'(u,v). It signifies that (u, v)
is a nonnegative solution of (2).

Moreover, by maximum principle and by some regularity results, we prove that
the nonnegative solution (u,v) is positive. We only have to use the Vazquez strong
maximum principle. Indeed since x>0 and (#3) is satisfied, we have —A,u>0 and
—A,v=0. Vazquez’s strong maximum principle [14] says that if the problem admits a
nontrivial smooth solution (CIIOC([R{N )) satisfying >0, v>0on R then this solution
is positive: u>0, v>0on RY. O

2. Necessary condition of existence
Recall the problem we study in this paper

—Apu = uf (x,u,v) in RV,
(2){ —Apv = pg(x,u,v) in RY,

| l‘im u(x)=0= | llim v(x).



522 K. Chdib | J. Differential Equations 189 (2003) 513525

We also consider the eigenvalue problem

(V) =Dy = 1 C(x)p" " in RY

N
with Ce L (R¥)nL* (R"Y), C#0 and A(x)>C(x)>0 a.e. in R".
The properties of the principal eigenvalue of Problem (77,) are studied by

Fleckinger et al. [7]. In particular, there exists a positive eigenfunction in D'¥ ([RN )
corresponding to the first eigenvalue ;. In this section, we can assume without loss
of generality that 4 = C.

Theorem 2. We assume that Hypotheses (A1) and (#2) are satisfied. If (u,v) is a
positive solution in (D1=1’(RN)mCllo’z(RN))2 (0<y<1) of () then u< iy, where 2y is
the first eigenvalue of (V).

When we study (2) on a bounded domain Q and only in this case, we can apply
Diaz—Saa’s inequality to positive solutions in DI’P(Q)mCllO’z(Q) (ye(0,1)). But, if
Q =R" we can use a method introduced in [7] by Fleckinger et al. or in [2] by
Bechah et al. We simplify this proof by using Picone’s identity which is presented by

Allegretto and Huang [1] with some applications.

Lemma 1 (Picone identity). Let v>0, u>=0 differentiable. Let

u? Mpil )
L(u,v) =|Vulf’ + (p — 1)E|VU|” —pFVu - Vo[Vl ™7,

w _2
R(u,v) = |Vul’ — V(—l> Vo’ “Vo.
U])

Then L(u,v) = R(u,v)>0.
Moreover, L(u,v) = 0 a.e. on Q if and only if V(%) =0 a.e. on Q.

The reader can see the proof of this lemma in Allegretto and Huang’s paper [1] or
in Chaib’s one [3].

Proof of Theorem 2. We consider a sequence of nonnegative functions (¢,,),.y in
Cy (RY) converging to ¢ for the norm of D'P(RY); where ¢ is a positive
eigenfunction associated to 4; for Problem (77,). Such a sequence exists because
Cg (RY) is dense in D'?(RY). Since (u,v) is a positive solution of (), we apply
Picone’s identity to the functions ¢,, v and ¢,, v, next we add the inequalities
obtained

0< [ L@y drt [ Lg0)ds
RN RN
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0< /RNR(QS )dx+/A R(¢,,v) dx

0< / Vo, dx— ( >|Vu|p2Vudx
RN

+/ \V¢n|pdx—/ V(('bp)va Vo dx.
RN RN

We can tak p”, as test functions because ¢, € C° (R"), u>0 and v>0. So
we apply the dlvergence theorem and we obtain

4 gzn n
OSZ/N |V(]’)n| dx + /N 1 Apu dx + /RN ! Apvdx7

0<2/ IV, | dx — / P — 2 (x,u, v)dx—,u/ Upfl g(x,u,v) dx.
RY

Hypothesis (#2), f(x,u,v)=A(x)v’~! and g(x,u,v)=>A(x)u’~" give

e P
P . n . n
0<2/RN IV, I dx ,u/RNA(x)up_lup dx H/RNA(X) o

= p—1
Since ':,, r+5>2, we have

O<2[/RN Vo, dx—,u/RNA(x)qbﬁ dx].

Taking n— oo in the last inequality, (¢,),. converges to ¢ in D'?(RY), so

*

»*
(¢,),cn converges to ¢ in L7 (RY) and (@), ., converges to ¢ in L» (RY). We
therefore obtain

W dx.

[ AC@ - @ ar<lall 5 |# -9 p  tends 10 0as no oo
RY "y

LP (RY) LP (RY)

And finally

/ |Vl dx>u/ A(x)¢? dx.
RN IRN

Now, by using the fact that ¢ is a positive eigenfunction associated to the eigenvalue
A1, we arrive to the expected result

U<y, O
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Remark. In fact, in this paper we have shown:

o 1 p<min® gy, (22 CN,p)llall s, + 22 CN. ) 1Bll s ) ™") then () admits
a positive solution.
o If (#) admits a positive solution then pu</;.

If we choose the functions a and b such that ||a[|,s g~ and |[[b][;s kv, be small
enough we have

-1
P p p
min 5#(17 <25C(Nap)q|a||ﬁ(w") + 2pC(N’p)|b||L5'([REN)> = 5:”1]'

Moreover, denoting by ¢, the solution of (77, ,) associated to y, we have

Lo as=Lu, [ a@is,”ax

R N

Since 4; is the first eigenvalue of (77,), we have

/ |V¢q|pdx>il/ C(x)|p, I dx.
RN [RN

If we take a such that [pva(x)|¢,|" dx< [pv C(x)[@,|" dx we obtain 4 <tp
Finally, for y, = 4;, we obtain the following:

q°

() admits a positive solution if and only if 0 < p< .
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